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Abstract

The purpose of this paper is to elaborate a formal framework for ex-
pressing and proving informational representability of abstract frames. The
property of informational representability can be meaningful in investigations
of nonclassical logics. We introduce a general notion of informational rep-
resentability, we develop a method of proving informational representability
and we give examples of informational representability and non-representability
of frames.

1 Introduction

Any abstract mathematical structure, e.g. an abstract algebra or an abstract
relational system, is intended to serve as a pattern of a class of ’concrete’ struc-
tures. In the concrete structures their components, e.g. the operations or the
relations, are defined directly, while in the abstract structures they are defined in
terms of a set of conditions (axioms). Consider an example of Boolean algebras.
In the algebras of sets the operations of union, intersection and complement of
sets are defined in the well known way, these are the direct definitions saying how
the respective compound sets are made out of the component sets. An abstract
Boolean algebra is defined in an axiomatic way. Join, meet and complement of
elements of any algebra from the class are assumed to satisfy some conditions.

The adequacy of an abstract structure for providing a general scheme of con-
crete structures is typically expressed as a representation theorem of the following
form: For every abstract structure S from a certain class C of structures there
is a concrete structure S′ that is a member of C and S and S′ are isomorphic
in a suitable sense. For example, the Stone representation theorem for Boolean
algebras establishes an isomorphism between any abstract Boolean algebra and
an algebra of sets.

In this paper we put forward an idea of representability for the structures that
arise in connection with reasoning about incomplete information. The abstract
structures dealt with in the paper are relational systems that are extensions of
frames of standard multimodal logics. The concrete structures are frames derived
from information systems. The relations in those frames are defined in terms of
the informational resources of an information system.
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1.1 Information systems

Different application areas use different conceptual means for representation of
information about the domains they deal with. It can be observed that a great
variety of informational structures and data employ the notions of ’object’ and
’property’ as the most elementary pieces of information. Similarly, it is well estab-
lished in philosophical logic that an analysis of concepts is based on these notions.
Concepts are determined by defining their extension or denotation and intension or
connotation. The extension of a concept consists of the objects that are instances
of this concept and the intension of a concept consists of the properties that are
characteristic for the objects to which this concept applies. For example, to define
the concept ’organism’ we should list the earmarks of organism and the typical
species of organisms. Very often properties of objects are expressed in terms
of attributes and values of the attributes. The concrete information structures
considered in this paper are based on information systems that are collections of
(names of) objects together with their descriptions in terms of the values of some
attributes meaningful for these objects. We use the notion of information system
that evolved from the developments presented in [25, 26, 36, 29].

Let a set OB of objects be given, and suppose that properties of those ob-
jects are articulated in terms of attributes from a set AT and values of these
attributes. For example, property of ’being green’ is represented as a pair (colour,
green), where ’colour’ is an attribute, and ’green’ is one of its values. In general, a
description of an object is of the form (attribute, a subset of values). Information
of that kind has several intuitive meanings. For instance, if the age of a person
is known approximately, say between 20 and 25, then this information is repre-
sented as a pair (age, {20, ..., 25}). With another interpretation a pair (attribute,
a subset of values) can be viewed as a many-valued information discussed, among
others, in [29]. For example, if a person speaks French, German, Polish, then this
information is represented as the pair (languages spoken, {F,D, P l}) with the
intuition that a given object assumes all the values F , D, and Pl of the attribute
’languages spoken’. In [8] and [14] knowledge representation languages are dis-
cussed where symbolic objects of the form (attribute, a subset of values) are also
used. A simple form of description of objects in terms of binary attributes having
values ’yes’ and ’no’ is a basis for knowledge representation within the framework
of formal concept analysis, see e.g. [44].

By an information system we mean a triple (OB,AT, {V ALa : a ∈ AT}) where
OB is a nonempty set of objects and AT is a nonempty set of attributes, V ALa
is a nonempty set of values of the attribute a and each attribute is understood
as a mapping a : OB → P (V ALa) \ ∅. We shall also use the more concise
(OB,AT ) to represent (OB,AT, {V ALa : a ∈ AT}). We write IS to denote
the class of information systems. An information system S′ = (OB′, AT ′) is said
to be a subsystem of the information system S = (OB,AT ) iff OB′ ⊆ OB and
{aOB′ : a ∈ AT} = AT ′ where aOB′ denotes the restriction of a to OB′.

1.2 Information frames

Any information system contains an implicit information about relationships
among the objects. Let an information system (OB,AT, {V ALa : a ∈ AT})
be given and let A be a subset of AT . A classical relationship among objects that
has been a starting point of the notion of ’rough set’ is indiscernibility:
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Strong (weak) indiscernibility: (x, y) ∈ ind(A) (wind(A)) iff a(x) =
a(y) for all a ∈ A (for some a ∈ A).

Intuitively, two objects are A-indiscernible whenever all the A-properties that they
possess are the same, in other words up to discriminative resources from A these
objects are the same. Objects are weakly A-indiscernible whenever some of their
A-properties are the same. Indiscernibility relations derived from an information
system were introduced in [23].

Important applications of indiscernibility relations are concerned with repre-
sentation of approximations of subsets of objects in information systems. Let A
be a subset of AT and X be a subset of OB, then the lower ind(A)-approximation
of X (L(ind(A))X) and the upper ind(A)-approximation of X (U(ind(A))X) are
defined as follows:

L(ind(A))X = {x ∈ OB : for all y ∈ OB if (x, y) ∈ ind(A), then y ∈ X}

U(ind(A))X = {x ∈ OB : there is y ∈ OB such that (x, y) ∈ ind(A) and
y ∈ X}

In the classical rough set theory setting, if ind(A) is a strong indiscernibility
relation, then we obtain the following hierarchy of definability of sets. A subset
X of OB is said to be:

A-definable if L(ind(A))X = X = U(ind(A))X;

roughly A-definable if L(ind(A))X 6= ∅ and U(ind(A))X 6= OB;

internally A-indefinable if L(ind(A))X = ∅;

externally A-indefinable if U(ind(A))X = OB;

totallyA-indefinable if internallyA-indefinable and externallyA-indefinable.

It is easy to see that operations of lower and upper approximation coincide
with modal operators of necessity and possibility, respectively.

The other application of indiscernibility relations is concerned with modeling
uncertain knowledge acquired from information about objects that is given in an
information system [30, 31, 33, 5, 7].

Let X be a subset of OB, we define the sets of A-positive (POS(A)X), A-
borderline (BOR(A)X) and A-negative (NEG(A)X) instances of X as follows:

POS(A)X = L(ind(A))X;

BOR(A)X = U(ind(A))X \ L(ind(A))X;

NEG(A)X = OB \ U(ind(A))X.

Knowledge about a set X of objects that can be discovered from information
provided in an information system can be modelled in the following way:

K(A)X = POS(A)X ∪NEG(A)X

Intuitively, A-knowledge about X consists of those objects that are either
A-positive instances of X (they are members of X up to properties from A) or
A-negative instances of X (they are not members of X up to properties from A).
We say that A-knowledge about X is:
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complete if K(A)X = OB, otherwise incomplete;

rough if POS(A)X, BOR(A)X, NEG(A)X 6= ∅;

pos-empty if POS(A)X = ∅;

neg-empty if NEG(A)X = ∅;

empty if pos-empty and neg-empty.

Epistemic operators K(A) are extensions of operators introduced in [19]. The
above examples suggest that modal logics are an adequate formal tool for repre-
sentation of and reasoning about information provided in the form of an informa-
tion system.

Many other relationships among objects can be derived in a natural way from
any information system. In sections 5 and 6 several of them are discussed, see
also [35]. All these relationships are referred to as information relations. By an
information frame derived from an information system S = (OB,AT, {V ALa :
a ∈ AT}) we mean a relational system (OB, {R(A) : A ⊆ AT}) where {R(A) :
A ⊆ AT} is a family of information relations derived from S. In a more gen-
eral setting we also admit frames with several families of information relations.
Frames derived from information systems are the concrete structures. Abstract
information frames are relational systems that, however, differ from the standard
Kripke frames in that their accessibility relations are relative to subsets of a set.
This set is intuitively interpreted as the set of attributes that are meaningful for
the objects from the universe of the frame [32, 1]. The relations are assumed to
satisfy various properties, for example strong indiscernibility relations are equiva-
lence relations. All these frames determine models of the respective modal logics.
Modal operators in these logics are determined by information relations. The log-
ics are referred to as information logics. A sample of recent results on information
logics can be found in [1, 2, 11, 22, 21, 35, 28].

The purpose of this paper is to elaborate a formal framework for expressing
and proving informational representability of abstract information frames. Let a
similarity relation � in a class C of frames be given, for example the relation of
’being isomorphic’ or ’being modally equivalent’. Intuitively, a frame K from the
class C is informationally �-representable if there is an information system S and
a frame K′ derived from this system S such that K′ is in the class C and, moreover,
K is �-related to K′. The first theorem of this kind has been proved in [37, 38]. In
[34] it has been observed that a property of informational representability might
be meaningful in investigations of nonclassical logics, and a notion of informational
representability has been proposed. In the present paper we introduce a general
notion of informational representability, we develop a method of proving informa-
tional representability and we give examples of informational representability and
non-representability of frames.

The paper is organized as follows. In section 2 we introduce a general notion
of an abstract frame and a scheme of modal languages whose modal operators are
determined by relations from those frames. A great variety of information logics
considered in the literature are defined using some instances of these notions. In
section 3 we present a construction of concrete frames derived from an informa-
tion system. We present a language determined by information systems. The
expressions of this language enable us to express definitions of relations in the
derived frames. In section 4 a method of proving informational representability
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of abstract frames is presented. The method is a generalization of the method
developed in [37]. In sections 5 and 6 many examples of representability and non-
representability results are presented for classes of frames of information logics.

The present paper is an extended version of the two conference papers [10, 9].

2 Frames with parameterised accessibility relations

In this section we introduce a general notion of frame that captures most of the
types of frames involved in the semantics of information logics. This notion is
an extension of the notion of frame used in the theory of modal logics (see e.g.
[24, 3, 43, 18, 16]). We shall consider frames with several (finitely many) families of
accessibility relations of different arities, and moreover, each of these families will
be indexed with subsets (and not individual elements) of a set, referred to as the
set of parameters. Parameters are intended to be abstract counterparts of entities
that determine relations. For example, if we are interested in information relations
of an information system, then we should take the attributes of the system as
the parameters. If we deal with a logic of knowledge, then the parameters are
knowledge agents. Instead of ordinary frames of multimodal logics that contain
just several relations, we will be dealing with frames with families of relations.
Intuitively, each family consists of relations of the same type, that is all the
relations in a family satisfy the same conditions e.g. they are equivalence relations,
and in general there are several relations in every such family, each of which is
determined by a subset of parameters. For example, the family of indiscernibility
relations of an information system consists of relations that reflect indiscernibility
of objects with respect to any subset of attributes in that information system.
Each of these relations is an equivalence relation. Classes of frames indexing the
relations by sets of parameters have been intensively studied in the past (see e.g.
[32, 20, 1]).

A signature Σ is a pair 〈P, 〈n1, . . . , nk〉〉 where P is a non-empty set of parame-
ters and 〈n1, . . . , nk〉 is a non-empty sequence of natural numbers greater than 2.
Let Σ = 〈P, 〈n1, . . . , nk〉〉 be a signature. By a Σ-frame we understand a structure

(U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}})

where U is a non-empty set and for all P ⊆ P, for all l ∈ {1, . . . , k}, Rl(P ) is a
nl-ary relation on U . We write FΣ to denote the class of Σ-frames.

The modal language LM is determined by the non-empty set F0 of propositional
variables and by the set OP = {¬,∧} of logical propositional operators. The set F
of LM-formulae is the smallest set that satisfies the following conditions: F0 ⊆ F,
if c ∈ OP (of arity n) then c(F1, . . . , Fn) ∈ F and if P ⊆ P, l ∈ {1, . . . , k}, and
F1, . . . , Fnl−1 ∈ F then 〈P 〉l(F1, . . . , Fnl−1) ∈ F. As usual, by a LM-model we
understand a triple (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}, V ) such that (U, {Rl(P ) :
P ⊆ P, l ∈ {1, . . . , k}}) is a Σ-frame and V is a mapping F0 → P(U). Let
M = (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}, V ) be a LM-model. We say that a
formula F is satisfied by u ∈ U in M (written M, u |= F ) when the following
conditions are satisfied.

• M, u |= p iff u ∈ V (p), for all p ∈ F0;

• M, u |= ¬F iff not M, u |= F ;

• M, u |= F ∧G iff M, u |= F and M, u |= G;
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• M, u |= 〈P 〉l(F1, . . . , Fnl−1) iff there are v1, . . . , vnl−1 ∈ U such that for all
i ∈ {1, . . . , nl − 1}, M, vi |= Fi and Rl(P )(u, v1, . . . , vnl−1).

Let K = (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) be a Σ-frame. We write K |= F to
denote the fact that for all models M = (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}, V )
and for all u ∈ U , M, u |= F . The Kripke-style semantics of formulae with n-ary
modal operators (n ≥ 2) can be found for instance in [27].

Definition 2.1. Let Ki = (Ui, {Ril(P ) : P ⊆ P, l ∈ {1, . . . , k}}) be Σ-frames for
i = 1, 2.

(1) K1 and K2 are said to be isomorphic (written K1 ≡ K2) iff there is a 1-1
mapping g : U1 → U2 such that for all l ∈ {1, . . . , k}, for all P ⊆ P and for
all u1, . . . , unl

∈ U1, R1
l (P )(u1, . . . , unl

) iff R2
l (P )(g(u1), . . . , g(unl

)).

(2) K1 and K2 are said to be modally equivalent (written K1 ≡m K2) iff for all
F ∈ F, K1 |= F iff K2 |= F .

∇

It is known that =⊆≡⊆≡m.

Example 2.1. Let S = (OB,AT ) be an information system. Consider the
signature Σ0 = 〈AT, 〈2〉〉. Two objects o1 and o2 are said to be indiscernible with
respect to A ⊆ AT (in short o1 ind(A) o2) iff for all a ∈ A, a(o1) = a(o2). In the
Σ0-frame (OB, {ind(A) : A ⊆ AT}), ind(A) is an equivalence relation on OB for
every A ⊆ AT and for any A,A′ ⊆ AT , ind(A ∪A′) = ind(A) ∩ ind(A′).

As usual, a Σ-frame K′ = (U ′, {R′l(P ) : P ⊆ P, l ∈ {1, . . . , k}}) is said to be a
subframe of the Σ-frame K = (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) iff U ′ ⊆ U and
for all l ∈ {1, . . . , k}, P ⊆ P, Rl(P ) ∩ (U ′ × U ′) = R′l(P ).

3 Frames derived from information systems

In order to derive Σ-frames from information systems, a first task consists in
relating the set of parameters with a given set of attributes. That is why, any
derivation of frames shall be defined modulo a contribution function.

Definition 3.1. Let S = (OB,AT ) ∈ IS and Σ be a signature 〈P, 〈n1, . . . , nk〉〉.
A contribution function I for S is a mapping I : AT → P(P) such that

⋃
a∈AT I(a) =

P. ∇

For any P ⊆ P, we write I−1(P ) to denote the set {a ∈ AT : I(a) ∩ P 6= ∅}.
The intended meaning of I is the following: every attribute a contributes to the
construction of relations involving some parameters in I(a). Moreover, every
parameter p has at least one attribute that contributes to p.

3.1 A language for information systems

The language LS is determined by seven sets which are supposed to be pairwise
disjoint: the set CONS = {0, 1} of constants, the non-empty countable set VAR of
variables, the non-empty set FUN of unary function symbols, the set OR = {∩,∪,−}
of constructors (of respective arity 2,2 and 1), the set PRE = {=,⊆} of predicate
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symbols, the set {∀,∃} of quantifiers and the set OP = {¬,∧} of propositional
logical operators. Function symbols are intended to represent the attributes and
variables will range over the set of objects of an information system. The set T of
terms is the smallest set that satisfies the following conditions:

(1) CONS ⊆ T;

(2) if f ∈ FUN and x ∈ VAR, then f(x),−f(x) ∈ T and

(3) for all ⊕ ∈ OR \ {−} if t1, t2 ∈ T, then ⊕(t1, t2) ∈ T.

The set F0 of atomic formulae is the set of expressions {⊕(t1, t2) : t1, t2 ∈ T, ⊕ ∈
PRE}. The set F of formulae is the smallest set that satisfies the following condi-
tions: F0 ⊆ F and if c is any n-ary propositional operator and F1, . . . , Fn ∈ F, then
c(F1, . . . , Fn) ∈ F. An extended formula is an expression of the form q1f1 . . . qnfnF
(also written Q F ) with F ∈ F, {q1, . . . , qn} ⊆ {∃, ∀} and {f1, . . . , fn} ⊆ FUN. The
set of extended formulae is written Fe. The extended formula q1f1 . . . qnfnF is
said to be weak (resp. strong) iff {q1, . . . , qn} = {∃} (resp. {q1, . . . , qn} = {∀}).

For any syntactic set X, and for any syntactic object O, we write X(O) to denote
the set consisting of elements of X occurring in O.

An extended formula Q F is said to be well-closed iff for all f ∈ FUN(F ), f
occurs exactly once in Q. We shall adopt the convention F ⊆ Fe by considering
that a formula in F is an extended formula with an empty string of quantifications.

Let S = (OB,AT ) be an information system. A function interpretation m in
S is a mapping m : FUN → AT . An object interpretation v in S is a mapping
v : VAR→ OB. The interpretation of terms generated by m and v is the mapping
Im,v : T→ P(

⋃
a∈AT V ala) such that:

• Im,v(f(x)) = m(f)(v(x)), Im,v(−f(x)) = V alm(f) \ Im,v(f(x)), Im,v(0) = ∅,
• Im,v(1) =

⋃
a∈AT V ala, Im,v(⊕(t1, t2)) = ⊕(Im,v(t1), Im,v(t2)) when ⊕ ∈

OR \ {−}.

By abusing our notation, as usual ∩,∪,− denote the Boolean operations on
sets. It follows that the terms represent sets of values of attributes.

Example 3.1. The expressions below are in Fe:

¬(f(x)=0); ∀f (f(x)=1)⇒ (−f(x)=0); ∀f∃f ′ f(x)=f ′(x)

By contrast, the following ones do not belong to Fe:

−(−f(x))=f(x); ∀f (f(x) ⊆ 1 ∧ ∃f ′ f ′(x) ⊆ 1); ∀x∀f f(x) ⊆ 1

This underlines the fact that the choice of a language of information systems does
not have to be unique and LS is sufficient for the forthcoming developments.

Let S = (OB,AT ) be an information system, m be a function interpretation
and v be an object interpretation. We say that an extended formula F is satis-
fied in S under the interpretation Im,v (written S, Im,v |= F ) when the following
conditions are satisfied.

• S, Im,v |= ⊕(t1, t2) iff ⊕(Im,v(t1), Im,v(t2)) when ⊕ ∈ PRE;

• S, Im,v |= ¬F iff not S, Im,v |= F ;
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• S, Im,v |= F ∧G iff S, Im,v |= F and S, Im,v |= G;

• S, Im,v |= ∀f F iff for all a ∈ AT , S, Im′a,v |= F where m′a is defined as
follows: m′a(f) = a and for all f ′ 6= f , m′a(f

′) = m(f ′);

• S, Im,v |= ∃f F iff there exists a ∈ AT such that S, Im′a,v |= F where m′a is
defined as above.

Let S = (OB,AT ) be an information system and F ∈ Fe such that the vari-
ables occurring in F are x1, . . . , xn (in the order of enumeration). For all function
interpretations m in S, we write mS(F ) to denote the set

mS(F ) = {〈v(x1), . . . , v(xn)〉 : ∃v : VAR→ OB, S, Im,v |= F}

If F has the form ∀f G (resp. ∃f G), then mS(F ) =
⋂
a∈AT (m′a)S(G) (resp.

mS(F ) =
⋃
a∈AT (m′a)S(G)).

Example 3.2. (Example 2.1 continued) Consider the formula f(x1)=f(x2), say
F0. Let S = (OB,AT ) ∈ IS be an information system. It is easy to show that for
all A ⊆ AT , o1, o2 ∈ OB, o1 ind(A) o2 iff for all a ∈ A, (o1, o2) ∈ m(OB,{a})(F0)
where m is the unique function interpretation in (OB, {a}).

3.2 Σ-specification

The language LS enables us to express definitions of relations derived from infor-
mation systems. These definitions will be referred to as specifications.

Definition 3.2. Let Σ be the signature 〈P, 〈n1, . . . , nk〉〉. A Σ-specification S is
a sequence of k well-cosed extended formulas, say 〈F1, . . . , Fk〉, such that for all
l ∈ {1, . . . , k}, card(VAR(Fl)) = nl. ∇

A Σ-specification S is said to be strong (resp. weak) iff S is a sequence of
strong extended formulae (resp. S is a sequence of either strong or weak ex-
tended formulae). Since every extended formula occurring in a Σ-specification
〈Q1F1, . . . ,QkFk〉 is closed with respect to the function symbols, for all l ∈
{1, . . . , k}, for all information systems S = (OB,AT ) and for all function in-
terpretations m,m′ in S, mS(QlFl) = m′S(QlFl).

For any information system S = (OB,AT ) and for any contribution function
I for S if card(FUN(F )) = 1, then for all P, P ′ ∈ P(P) \ {∅}, if q1f1F is strong
(resp. weak), then

m(OB,I−1(P∪P ′))(q1f1F ) =
⋂

Q∈{P,P ′}

m(OB,I−1(Q))(q1f1F )

(resp. m(OB,I−1(P∪P ′))(q1f1F ) =
⋃

Q∈{P,P ′}

m(OB,I−1(Q))(q1f1F )).

Besides, if card(AT ) = 1, then for all extended formulae Q1F and Q2F and for
all ∅ 6= P ⊆ P,

m(OB,I−1(P ))(Q1F ) = m(OB,I−1(P ))(Q2F ) = m(OB,I−1(P ))(F )

We write spec1
Σ to denote the set of Σ-specifications 〈F1, . . . , Fk〉 such that for all

l ∈ {1, . . . , k}, card(FUN(Fl)) = 1. It means that in each Fi, there occurs exactly
one function symbol representing an attribute.
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3.3 A frame derived from an information system

We are now in position to define a family of derivation functions parameterised
by the signatures and specifications.

Definition 3.3. Let Σ = 〈P, 〈n1, . . . , nk〉〉 be a signature, S = (OB,AT ) ∈ IS
be an information system, I be a contribution function for S and S = 〈F1, . . . , Fk〉
be a Σ-specification. We write DΣ,S(S, I) to denote the Σ-frame (OB, {Rl(P ) :
P ⊆ P, l ∈ {1, . . . , k}}) such that

∀l ∈ {1, . . . , k}, ∀∅ 6= P ⊆ P, Rl(P ) = m(OB,I−1(P ))(Fl)

By convention, for all l ∈ {1, . . . , k}, if Fl is weak, then Rl(∅) = ∅ otherwise
Rl(∅) = OB ×OB ∇

DΣ,S will be referred to as a derivation function. It is parameterised by a sig-
nature Σ and a specification S. Given an information system S and a contribution
function I for S, the derivation function returns a frame whose signature is Σ and
whose relations are defined according to the specification S using the attributes
of the system S.

It is important to observe that the correctness of Definition 3.3 rests on the
fact that each Fl is closed with respect to the function symbols.

4 Informational representability of Σ-frames

In this section we present a notion of informational representability of a class of
frames and a general method of proving representability. Next, the method will
be applied to some particular classes of frames.

Definition 4.1. Let Σ be a signature, X ⊆ FΣ be a set of Σ-frames, Y ⊆ IS be
a set of information systems, and S = 〈F1, . . . , Fk〉 be a Σ-specification. The class
of Σ-frames X is said to be (�, S)-inf-representable (� ∈ {=,≡,≡m}) in Y iff

(1) (soundness) for all information systems S ∈ Y and for all contribution
functions I for S, the Σ-frame DΣ,S(S, I) belongs to X,

(2) (completeness) for all Σ-frames K ∈ X, there is an information system
S ∈ Y and a contribution function I for S such that DΣ,S(S, I) �K.

∇

The notion of representability introduced in Definition 4.1 depends on the
derivation functions DΣ,S. A more general concept of representability can be
introduced but Definition 4.1 shall be sufficient in the forthcoming developments.
For instance, the condition (2) in Definition 4.1 states that for any Σ-frame K
belonging to the set X of Σ-frames, there is an information system from which a
Σ-frame similar to K can be derived.

4.1 Nice pair proof technique

This technique has been originally introduced in [37] for the information logic
NIL. We show that this technique can be extended to a more general case of an
arbitrary information frame considered in this paper.
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For all non-empty sets X, for all 〈p, Y 〉 ∈ P × P(P(X)), we write at〈p,Y 〉 to
denote the mapping

at〈p,Y 〉 : X → P({p} × Y )

such that

for all x ∈ X, at〈p,Y 〉(x) = {〈p, Z〉 : x ∈ Z ∈ Y }.

Hence for all Z ∈ Y , x ∈ X, we have x ∈ Z iff 〈p, Z〉 ∈ at〈p,Y 〉(x). Roughly
speaking, the second component of at〈p,Y 〉(x) contains the sets of Y having x as
an element.

Definition 4.2. Let K = (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) ∈ FΣ be a Σ-
frame and S = 〈F1, . . . , Fk〉 ∈ spec1

Σ be a Σ-specification such that in each formula
Fi there occurs exactly one function symbol representing an attribute. A nice pair
with respect to K and S, say N = 〈p, X〉, is a member of P× P(P(U)) such that

(1)
⋃
{Y : Y ∈ X} = U and

(2) for all l ∈ {1, . . . , k}, Rl({p}) ⊆ m
(U,{at〈p,X〉})(Fl) where m is the unique

function interpretation in the information system (U, {at〈p,X〉}).

∇

Condition (1) in Definition 4.2 guarantees that (U, {at〈p,X〉}) is an information
system. A nice pair can be viewed as an encoding of some information system
from which can be partly defined some Σ-frame. Definition 4.3 below presents
different kinds of nice pairs and sets of nice pairs having strong properties.

Definition 4.3. With the notations of Definition 4.2, a nice pair N is (K, S)-
complete with respect to the parameter p iff the inclusion in Definition 4.2(2) is
replaced by an equality. A set of nice pairs X is said to be (K, S)-complete iff for
all p ∈ P, there is 〈p, Y 〉 ∈ X such that 〈p, Y 〉 is (K, S)-complete with respect to p.
A set of nice pairs X is said to be P-full iff for all p ∈ P, {〈p′, Y 〉 ∈ X : p = p′} 6= ∅.
A set of nice pairs X is minimally (K, S)-complete iff X is (K, S)-complete and for
all Y ⊂ X (strict inclusion), Y is not (K, S)-complete. ∇

The crucial notion in Definition 4.3 is that of (K, S)-complete set X of nice
pairs. Indeed, the relations in K parameterised by a singleton can be defined from
S and X only. Definition 4.4 shall be mainly needed in Section 4.2.

Definition 4.4. Let Σ be a signature, S = 〈F1, . . . , Fk〉 ∈ spec1
Σ be a Σ-specification

and X ⊆ FΣ be a set of Σ-frames. A (resp. minimal) nice pair function with
respect to S and X is a mapping truc such that for all K ∈ X, truc(K) is a (resp.
minimally) (K, S)-complete set of nice pairs. ∇

Example 4.1. (Example 3.2 continued) Consider the Σ0-specification S0 =
〈∀f F0〉 with Σ0 = 〈P, 〈2〉〉 for some set P = {p} of parameters. Let K =
(U, {Rl(P ) : P ⊆ {p}, l ∈ {1}}) be a Σ0-frame such that R1(∅) = U × U and
R1({p}) is an equivalence relation. Consider the pair 〈p, {R1({p})(u) : u ∈ U}〉 =
〈p, X〉 (X is merely the set of equivalence classes). Since R1({p}) is reflexive, then⋃
Y ∈X Y = U . Moreover, for all u, v ∈ U
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(u, v) ∈ R1({p}) iff R1({p})(u) = R1({p})(v)
iff {Y : u ∈ Y ∈ X} = {Y : v ∈ Y ∈ X}
iff {〈p, Y 〉 : u ∈ Y ∈ X} = {〈p, Y 〉 : v ∈ Y ∈ X}
iff at〈p,X〉(u) = at〈p,X〉(v)
iff (u, v) ∈ m

(U,{at〈p,X〉})(F0)

So 〈p, X〉 is (K, S0)-complete with respect to p and {〈p, X〉} is a minimally (K, S0)-
complete set of nice pairs.

Proposition 4.1. With the notations of Definition 4.2, let X be a P-full set of
nice pairs. Then,

(1) SX = (U, {at〈p,Y 〉 : 〈p, Y 〉 ∈ X}) is an information system and

(2) IX : {at〈p,Y 〉 : 〈p, Y 〉 ∈ X} → P(P) with IX(at〈p,Y 〉) = {p}, is a contribution
function for SX .

Observe that for any 〈p, Y 〉, 〈p′, Y ′〉 ∈ X with p 6= p′, at〈p,Y 〉 6= at〈p
′,Y ′〉. SX

(in Proposition 4.1) is a set-theoretical information system following Vakarelov’s
terminology (see e.g. [41, 42]). Lemma 4.2 below can be seen as the main tech-
nical result of the paper since it establishes correspondences between Σ-frames
and set-theoretical information systems obtained from complete set of nice pairs
(using the language LS). Proposition 4.3 below states some consequences for the
informational representability.

Lemma 4.2. Let Σ be a signature, K = (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) ∈
FΣ be a Σ-frame, S = 〈F1, . . . , Fk〉 be a weak Σ-specification in spec1

Σ and X
be a set of nice pairs with respect to K and S. Moreover, assume that for all
l ∈ {1, . . . , k}, for all ∅ 6= P ⊆ P, if Fl is strong, then Rl(P ) =

⋂
p∈P Rl({p})

otherwise Rl(P ) =
⋃
p∈P Rl({p}).

(1) If S is strong and X is (K, S)-complete, then
(?) ∀l ∈ {1, . . . , k}, ∀∅ 6= P ⊆ P, Rl(P ) = m(U,I−1

X (P ))(Fl)

(2) If X is minimally (K, S)-complete, then (?).

Proof: We first consider the case P = {p0} for some p0 ∈ P. Assume that
Rl(P )(o1, . . . , onl

) for some o1, . . . , onl
∈ U . By Definition 4.2(2), for any 〈p0, Y 〉 ∈

X, m
(U,{at〈p0,Y 〉})(Fl)(o1, . . . , onl

). If Fl is strong, then

m(U,I−1
X (P ))(Fl) =

⋂
a∈I−1

X (P )

m(U,{a})(Fl)

and m(U,I−1
X (P ))(Fl)(o1, . . . , onl

) since

I−1
X (P ) = I−1

X ({p0}) = {at〈p0,Y 〉 : 〈p0, Y 〉 ∈ X}

If Fl is weak, then I−1
X (P ) is a singleton (by hypothesis), say {〈p0, Y0〉}. Hence

m
(U,{at〈p0,Y0〉})(Fl) = m(U,I−1

X (P ))(Fl)

Hencem(U,I−1
X (P ))(Fl)(o1, . . . , onl

). Now assumem(U,I−1
X (P ))(Fl)(o1, . . . , onl

). Since

X is (K, S)-complete, there is 〈p0, Y0〉 ∈ X such that

m
(U,{at〈p0,Y0〉})(Fl)(o1, . . . , onl

) iff Rl(P )(o1, . . . , onl
)
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If Fl is strong, thenm(U,I−1
X (P ))(Fl) ⊆ m(U,{at〈p0,Y0〉})(Fl). HenceRl(P )(o1, . . . , onl

).

In the case when Fl is weak and X is minimally (K, S)-complete, we have I−1
X (P ) =

{at〈p0,Y0〉}. Hence, m
(U,{at〈p0,Y0〉})(Fl) = m(U,I−1

X (P ))(Fl) and thereforeRl(P )(o1, . . . , onl
).

Now take any ∅ 6= P ⊆ P and assume Fl is weak (resp. strong).

Rl(P )(o1, . . . , onl
) iff

⋃
p∈P Rl({p})(o1, . . . , onl

)

(resp.
⋂
p∈P Rl({p})(o1, . . . , onl

))

(by hypothesis)
iff ∃p ∈ P such that (resp. ∀p ∈ P ) Rl({p})(o1, . . . , onl

)
(by definition of ∩ and ∪)
iff ∃p ∈ P such that (resp. ∀p ∈ P )
m(U,I−1

X ({p}))(Fl)(o1, . . . , onl
)

(by the previous cases with singletons)

iff ∃p ∈ P,∃a ∈ I−1
X ({p}) such that

(resp. ∀p ∈ P,∀a ∈ I−1
X ({p})) m(U,{a})(Fl)(o1, . . . , onl

)

(by construction of mS(F ))

iff ∃a ∈ {at〈p,Y 〉 : 〈p, Y 〉 ∈ X, p ∈ P} such that (resp.

∀a ∈ {at〈p,Y 〉 : 〈p, Y 〉 ∈ X, p ∈ P}) m(U,{a})(Fl)(o1, . . . , onl
)

(by construction of IX)

iff ∃a ∈ I−1
X (P ) such that

(resp. ∀a ∈ I−1
X (P )) m(U,{a})(Fl)(o1, . . . , onl

)

iff m(U,I−1
X (P ))(Fl)(o1, . . . , onl

)

(by definition of m)

Q.E.D.

Proposition 4.3 below states sufficient conditions to establish informational
representability.

Proposition 4.3. Let Σ be a signature, S = 〈F1, . . . , Fk〉 be a strong (resp.
weak) Σ-specification in spec1

Σ. Let X ⊆ FΣ be a set of Σ-frames such that
for all l ∈ {1, . . . , k}, for all ∅ 6= P ⊆ P, for all K = (U, {Rl(P ) : P ⊆ P, l ∈
{1, . . . , k}}) ∈ X, if Fl is strong, then Rl(P ) =

⋂
p∈P Rl({p}) and Rl(∅) = U ×U

otherwise Rl(P ) =
⋃
p∈P Rl({p}) and Rl(∅) = ∅. Let Y ⊆ IS and � ∈ {=,≡

,≡m} be such that:

(1) for all information systems S ∈ Y , for all contribution functions I, we have
DΣ,S(S, I) ∈ X.

(2) there is a (resp. minimal) nice pair function truc with respect to S and X
such that {Struc(K) : ∃K ∈ X} ⊆ Y . Struc(K) is defined as in Proposition
4.1.

Then X is (�, S)-inf-representable in Y .

Proof: By hypothesis (1), it is immediate that the condition (1) in Definition
4.1 holds. Now take some Σ-frame K = (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) ∈ X
and X ′ = truc(K). We write K′ = (U, {R′l(P ) : P ⊆ P, l ∈ {1, . . . , k}}) to denote
the Σ-frame DΣ,S(SX′ , IX′) (remember the information system SX′ belongs to
Y by hypothesis). By Lemma 4.2, for all l ∈ {1, . . . , k}, for all ∅ 6= P ⊆ P,
Rl(P ) = R′l(P ). Moreover, for all l ∈ {1, . . . , k}, if Fl is strong (resp. weak), then
R′l(∅) = U ×U = Rl(∅) (resp. R′l(∅) = ∅ = Rl(∅)). Hence K = K′. The condition
(2) in Definition 4.1 holds which terminates the proof. Q.E.D.
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Example 4.2. (Example 4.1 continued) We write X0 to denote the set of Σ0-
frames such that R1(∅) = U × U and R1({p}) is an equivalence relation. We
show that X0 is (=, S0)-inf-representable in IS. For any information system S,
and for any contribution function I (actually there is only one), it is easy to check
that DΣ0,S0

(S, I) ∈ X0. For each K ∈ X0, we build the pair truc(K) = 〈p, X〉 as
in Example 4.1 From Example 4.1, for each K ∈ X0, {truc(K)} is a minimally
(K, S0)-complete set of nice pairs. {Struc(K) : K ∈ X} ⊆ IS by Proposition 4.1
and by Proposition 4.3, X0 is (=, S0)-inf-representable in IS.

4.2 Negation and reordering lemmas

In this section, we present two ways to obtain (minimal) nice pair functions from
existing ones by relating adequately the specifications and the classes of frames.
In that way, we facilitate the application of Proposition 4.3.

Let F ∈ Fe be an extended formula such that VAR(F ) = {x1, . . . , xn}, x1, . . . , xn
being in the order of enumeration. For any permutation σ of the set {1, . . . , n} we
write Fσ to denote the formula obtained from F by substituting simultaneously
in F , xi by xσ(i) for all i ∈ {1, . . . , n}. Moreover, for any n-ary relation R and
for any permutation σ of the set {1, . . . , n} we write Rσ to denote the following
n-ary relation:

Rσ = {(oσ(1), . . . , oσ(n)) : (o1, . . . , on) ∈ R}

Observe that for any information system S = (OB,AT ), for any function
interpretation m in S, mS(F )σ = mS(Fσ). For any set of permutations {σl :
{1, . . . , nl} → {1, . . . , nl}, l ∈ {1, . . . , k}}, for any Σ-frame K = (U, {Rl(P ) : P ⊆
P, l ∈ {1, . . . , k}}) we write Kσ1 . . . σk = (U, {R′l(P ) : P ⊆ P, l ∈ {1, . . . , k}})
to denote the Σ-frame such that for any l ∈ {1, . . . , k}, for any P ⊆ P, R′l(P ) =
Rl(P )σl.

Lemma 4.4. (Reordering) Let Σ be a signature, S = 〈F1, . . . , Fk〉 be a weak
Σ-specification in spec1

Σ, X ⊆ FΣ be a set of Σ-frames, and truc be a min-
imal nice pair function with respect to S and X. Let σl be a permutation of
the set {1, . . . , nl} for l ∈ {1, . . . , k}. Then truc′ is a minimal nice pair func-
tion with respect to S′ = 〈F1σ1, . . . , Fkσk〉 and {Kσ1 . . . σk : ∃K ∈ X} where
truc′(Kσ1 . . . σk) = truc(K) for all K ∈ X.

Proof: Let p ∈ P, l ∈ {1, . . . , k}, o1, . . . , onl
∈ U and 〈p, Y 〉 ∈ truc′(Kσ1 . . . σk).

We have

R′l({p})(o1, . . . , onl
) iff Rl({p})(oσl(1), . . . , oσl(nl)) (by definition of Kσ1 . . . σk)

iff m
(U,{at〈p,Y 〉})(Fl)(oσl(1), . . . , oσl(nl))

(〈p, Y 〉 is (K, S)-complete)
iff (m

(U,{at〈p,Y 〉})(Fl)σl)(o1, . . . , onl
) (by definition of Rσ)

iff m
(U,{at〈p,Y 〉})(Flσl)(o1, . . . , onl

) (property of m)

Moreover,
⋃
Z∈Y Z = U since 〈p, Y 〉 is a (K, S)-complete set of nice pairs. Hence

{〈p, Y 〉} is a (Kσ1 . . . σk, S
′)-complete set of nice pairs. The minimality of truc

entails the minimality of truc′. Q.E.D.

The starting point of Lemma 4.5 below rests on the fact that for any S =
(OB,AT ) ∈ IS, for any function interpretation m in S,

mS(¬F ) = OBcard(VAR(F )) \mS(F )
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with F ∈ F. For any Σ-specification S = 〈F1, . . . , Fk〉, for any Σ-frame K =
(U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) we write K¬ = (U, {R′l(P ) : P ⊆ P, l ∈
{1, . . . , k}}) to denote the Σ-frame such that

• if Fl is weak, then R′l(∅) = ∅ otherwise R′l(∅) = U × U ;

• for all ∅ 6= P ⊆ P, if Fl is strong, then R′l(P ) =
⋂
p∈P R′l({p}) otherwise

R′l(P ) =
⋃
p∈P R′l({p});

• for all p ∈ P, R′l({p}) = −Rl({p}).

Lemma 4.5. (Negation) Let Σ be a signature, S = 〈q1f1 F1, . . . , qkfk Fk〉 be a
weak Σ-specification in spec1

Σ, X ⊆ FΣ be a set of Σ-frames and truc be a
minimal nice pair function with respect to S and X. Then truc′ is a minimal nice
pair function with respect to S′ = 〈q1f1 ¬F1, . . . , qkfk ¬Fk〉 and {K¬ : ∃K ∈ X}
where truc′(K¬) = truc(K) for all K ∈ X.

Proof: Let p ∈ P, l ∈ {1, . . . , k}, o1, . . . , onl
∈ U and 〈p, Y 〉 ∈ truc′(K¬). We

have

R′l({p})(o1, . . . , onl
) iff not −R′l({p})(o1, . . . , onl

)
(by definition of the complement relation ’−’)
iff not Rl({p})(o1, . . . , onl

) (by definition of K¬)
iff not m

(U,{at〈p,Y 〉})(qlfl Fl)(o1, . . . , onl
)

(〈p, Y 〉 is (K, S)-complete)

iff not m
(U,{at〈p,Y 〉})(Fl)(o1, . . . , onl

) (card({at〈p,Y 〉}) = 1)

iff m
(U,{at〈p,Y 〉})(¬Fl)(o1, . . . , onl

) (property of m)

iff m
(U,{at〈p,Y 〉})(qlfl ¬Fl)(o1, . . . , onl

) (card({at〈p,Y 〉}) = 1)

The rest of the proof follows the lines of the second part of the proof of Lemma
4.4. Q.E.D.

5 Examples of informational representability

We present examples of informational representability theorems for frames with
information relations from the indiscernibility group and the orthogonality group.
The analogous representability results for many other classes of frames can be
obtained using the method developed in the paper.

5.1 Σ-frames with a single family of binary relations

In the rest of the section, Σ is assumed to be a signature 〈P, 〈2〉〉 for some non-
empty set P of parameters.

5.1.1 Indiscernibility

Let S = (OB,AT ) ∈ IS be an information system. In the language LS, the rela-
tion ind(AT ) is defined as follows: ind(AT ) = mS(F0) where F0 = ∀f f(x1)=f(x2)
(see Example 2.1). Observe that ind(AT ) is an equivalence relation. We define a
class of abstract Σ-frames related to the Σ-specification S0 = 〈F0〉. Let truc be
the mapping such that for all K = (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) ∈ FΣ,

truc(K) = {〈p, {R1({p})(u) : u ∈ U}〉 : p ∈ P}
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We write FS0
to denote the set of Σ-frames (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) such

that,

• R1(∅) = U × U ; for all ∅ 6= P ⊆ P, R1(P ) =
⋂
p∈P R1({p});

• for all p ∈ P, R1({p}) is an equivalence relation.

The rest of the section is devoted to showing that truc is a minimal nice pair
function with respect to S0 and FS0

. Hence FS0
is (=, S0)-inf-representable in

IS. It is easy to check that for all 〈p, X〉 ∈ truc(K),
⋃
Y ∈X Y = U .

Lemma 5.1. Let K = (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) ∈ FS0
be a Σ-frame. For all

〈p, X〉 ∈ truc(K), for all u, v ∈ U , (u, v) ∈ R1({p}) iff (for all Y ∈ X, u ∈ Y iff
v ∈ Y ).

Proof: See Example 4.1. Q.E.D.

Lemma 5.2. Let K = (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) ∈ FS0
be a Σ-frame.

truc(K) is a minimally (K, S0)-complete set of nice pairs.

Proof: For all 〈p, X〉 ∈ truc(K), u, v ∈ U , (u, v) ∈ m
(U,{at〈p,X〉})(F0) iff for all

Y ∈ X, u ∈ Y iff v ∈ Y . So truc(K) is a minimally (K, S0)-complete set of nice
pairs. Q.E.D.

Corollary 5.3. FS0
is (=, S0)-inf-representable in IS.

Let S = (OB,AT ) ∈ IS be an information system. Two objects o1 and o2 are
said to be in the relation of diversity with respect to A ⊆ AT (in short o1 div(A) o2)
iff for all a ∈ A, a(o1) 6= a(o2). In the language LS, the relation div(AT ) is defined
as follows: div(AT ) = mS(F ′0) with F ′0 = ∀f ¬(f(x1)=f(x2)). Using Lemma 4.5
and the above construction, {K¬ : ∃K ∈ FS0

} is (=, 〈F ′0〉)-inf-representable in IS.

5.1.2 Complementarity

Let S = (OB,AT ) ∈ IS be an information system. Two objects o1 and o2 are
said to be in the relation of complementarity with respect to A ⊆ AT (in short
o1 comp(A) o2) iff for all a ∈ A, a(o1) = V ala \ a(o2). In the language LS,
the relation comp(AT ) is defined as follows: comp(AT ) = m(OB,AT )(F0) with
F0 = ∀f f(x1)= − f(x2). Observe that comp(A) is symmetrical, irreflexive and
intransitive. When o1 comp(A) o2 holds, for all a ∈ A, V ala is uniquely deter-
mined by a(o1) and a(o2), that is V ala = a(o1) ∪ a(o2). This may explain why
the representation of complementarity relations has been an open problem until
now [42] (see also in [12], their use for the reduction of decision rules). We define
a class of abstract Σ-frames related to the Σ-specification S0 = 〈F0〉. First, some
preliminary definitions are needed.

Definition 5.1. Let R be a binary relation over the set U , R is said to be
complementarity iff R is symmetrical, R does not contain cycles of odd length
and for all u, v, w, z ∈ U , if (u, v) ∈ R, (v, w) ∈ R and (w, z) ∈ R, then (u, z) ∈ R
(3-transitivity). ∇

It can be shown that comp(AT ) is a complementarity relation. We write
FS0

to denote the set of Σ-frames (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) such that,
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R1(∅) = U × U , for all ∅ 6= P ⊆ P, R1(P ) =
⋂
p∈P R1({p}) and for all p ∈ P,

R1({p}) is complementarity. The rest of the section is devoted to showing that
FS0

is (=, S0)-inf-representable in IS.
For any binary relation R over the set U , for all u ∈ U we write Cu,R to denote

the largest subset of U such that u ∈ Cu,R and for all v ∈ Cu,R \ {u}, there is a
R′-path between u and v where R′ is the symmetrical closure of R. Observe that
{Cu,R : u ∈ U} is a partition of U . For all u ∈ U , we write C0

u,R (resp. C1
u,R) to

denote the largest subset of Cu,R such that for all v ∈ C0
u,R, there is a R′-path of

even (resp. odd) length between u and v where R′ is the symmetrical closure of R.
Moreover, for all U ′ ⊆ U , we write CU

′
u,R to denote C0

u,R if u ∈ U ′, C1
u,R otherwise.

Observe that for all u, v, w ∈ U , when R is complementarity, if {v, w} ⊆ Cu,R,
then {C1

v,R, C
0
v,R} = {C1

w,R, C
0
w,R}.

Lemma 5.4. Let R be a complementarity relation over the set U . The set {Ciu,R :
u ∈ U, i ∈ {0, 1}} is a partition of U .

Let truc be the mapping such that for all K = (U, {Rl(P ) : P ⊆ P, l ∈
{1}}) ∈ FS0

,

truc(K) = {〈p, {
⋃
u∈Y

CU
′

u,R1({p}) : ∃U ′ ⊆ U, ∃Y ∈Wp}〉 : p ∈ P}

with Wp = {Y ⊆ U : ∀u, v ∈ Y, Cu,R1({p}) 6= Cv,R1({p}),
⋃
u∈Y Cu,R1({p}) = U}.

The set Wp contains the subsets of U with exactly one element for each set in
{Cu,R1({p}) : u ∈ U}. Moreover, truc(K) can be roughly defined as the set of
pairs 〈p, U ′〉 such that U ′ ⊆ U is a maximal (with respect to set inclusion) subset
of U such that

R1({p}) ∩ U ′ × U ′ = ∅

It is easy to show that for all 〈p, X〉 ∈ truc(K), for all Y0 ∈Wp,

X = {
⋃
u∈Y0

CU
′

u,R1({p}) : ∃U ′ ⊆ U}

It is worth mentioning that, for all u, v ∈ U , (∀Y ∈ X, either u ∈ Y and v 6∈ Y
or u 6∈ Y and v ∈ Y ) iff (u, v) ∈ m

(U,{at〈p,X〉})(F0). Moreover, for all 〈p, X〉 ∈
truc(K),

⋃
Y ∈X Y = U .

Lemma 5.5. Let K = (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) ∈ FS0
. For all 〈p, X〉 ∈

truc(K), for all u, v ∈ U , (u, v) ∈ R1({p}) iff for all Y ∈ X, either (u ∈ Y and
v 6∈ Y ) or (u 6∈ Y and v ∈ Y ).

Proof: (→) Assume (u, v) ∈ R1({p}). Since u ∈ C0
u,R1({p}) and v ∈ C1

u,R1({p}),

it follows that for all U ′ ⊆ U , {u, v} 6⊆ CU ′u,R1({p}). Hence there is no Y ∈ X such

that u ∈ Y and v ∈ Y . Moreover, for all U ′ ⊆ U , for all Y ′ ∈Wp,

{u, v} ∩
⋃
u′∈Y ′

CU
′

u′,R1({p}) 6= ∅

and ⋃
u′∈Y ′

CU
′

u′,R1({p}) ∈ X
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So for all Y ∈ X, either (u ∈ Y and v 6∈ Y ) or (u 6∈ Y and v ∈ Y ).
(←) Now assume for all Y ∈ X, u ∈ Y iff v 6∈ Y . First suppose that

Cu,R1({p}) 6= Cv,R1({p}). It follows that there is Y0 ∈ Wp such that {u, v} ⊆ Y0.
In particular take Y0 = ({xw : w ∈ U} \ {xu, xv}) ∪ {u, v}) where xw is some
representative element of Cw,R1({p}). Hence

{u, v} ⊆
⋃
u′∈Y0

C
{u,v}
u′,R1({p}) = X0

So there is X0 ∈ X such that {u, v} ⊆ X0, which leads to a contradiction. So
Cu,R1({p}) = Cv,R1({p}). Suppose there is a R1({p})-path of even length between
u and v, say (u0, . . . , un, . . . , u2×n) with u0 = u and v = u2×n (recall that R1({p})
is symmetrical). There is Y0 ∈Wp such that {un} ⊆ Y0. Hence

{u, v} ⊆
⋃
u′∈Y0

CU
′

u′,R1({p}) = X0

where U ′ = U if n is even otherwise U ′ = ∅. So there is X0 ∈ X such that
{u, v} ⊆ X0, which leads to a contradiction. So there is a R1({p})-path of odd
length between u and v, say (u0, . . . , u(2×n)+1) with u0 = u and v = u(2×n)+1.
If n = 0, then (u, v) ∈ R1({p}). If n = 1, then by the 3-transitivity condi-
tion (u, v) ∈ R1({p}). Now assume n > 1. By the 3-transitivity condition,
(u(2×(n−1)), u(2×n)+1) ∈ R1({p}). So there is a path of length (2 × (n − 1)) + 1
between u and v. By induction on n we can therefore prove that (u, v) ∈ R1({p}).
Q.E.D.

Lemma 5.6. Let K = (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) ∈ FS0
be a Σ-frame.

truc(K) is a minimally (K, S0)-complete set of nice pairs.

Corollary 5.7. FS0
is (=, S0)-inf-representable in IS.

For any p ∈ P the class of frames Fp (in the standard sense for modal logics)
defined by Fp = {(U,R1({p})) : (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) ∈ FS0

} is not
closed by the p-morphism construction. It follows that Fp is not modally definable
(see [17]). The condition of being a complementarity relation can be expressed
by a set Γ of formulas from the classical first-order logic.

Let S = (OB,AT ) ∈ IS be an information system. Two objects o1 and
o2 are said to be in relation of incomplementarity with respect to A ⊆ AT (in
short o1 incomp(A) o2) iff for all a ∈ A, (V ala \ a(o1)) 6= a(o2). In the language
LS, the relation incomp(AT ) is defined as follows: incomp(AT ) = mS(F ′0) with
F ′0 = ∀f ¬(−f(x1)=f(x2)). Using Lemma 4.5 and the above construction, {K¬ :
∃K ∈ FS0

} is (=, 〈F ′0〉)-inf-representable in IS.

5.1.3 Positive and negative similarity

Let S = (OB,AT ) ∈ IS be an information system. Two objects o1 and o2 are
said to be in the relation of positive similarity (resp. negative similarity) with
respect to A ⊆ AT (in short o1 psim(A) o2 -resp. o1 nsim(A) o2 ) iff for all a ∈ A,
a(o1) ∩ a(o2) 6= ∅ (resp. (V ala \ a(o1)) ∩ (V ala \ a(o2)) 6= ∅). In the language
LS, the relation psim(AT ) is defined as follows: psim(AT ) = m(OB,AT )(F0) (resp.
nsim(AT ) = m(OB,AT )(F0)) with

F0 = ∀f ¬(f(x1) ∩ f(x2)=0)
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(resp. F0 = ∀f ¬(−f(x1) ∩ −f(x2)=0))

Let truc be the mapping such that for all K = (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) ∈
FΣ,

truc(K) = {〈p, {{u, v} : (u, v) ∈ R1({p})}〉 : p ∈ P}

(resp. truc(K) = {〈p, {U \ {u, v} : (u, v) ∈ R1({p})} ∪ {U}〉 : p ∈ P})

We write FS0
to denote the set of Σ-frames (U, {Rl(P ) : P ⊆ P, l ∈ {1}})

such that, R1(∅) = U × U , for all ∅ 6= P ⊆ P, R1(P ) =
⋂
p∈P R1({p}) and for all

p ∈ P, R1({p}) is (resp. weakly) reflexive1 and symmetrical. Following the lines
of the previous sections, it can be shown that truc is a minimal nice pair function
with respect to S0 and FS0

. Hence FS0
is (=, S0)-inf-representable in IS.

Moreover, let S = (OB,AT ) ∈ IS be an information system. Two objects o1

and o2 are said to be in the relation of right orthogonality (resp. left orthogonality)
with respect to A ⊆ AT (in short o1 rorth(A) o2 -resp. o1 lorth(A) o2) iff for all
a ∈ A, a(o1) ⊆ (V ala\a(o2)) (resp. (V ala\a(o1)) ⊆ a(o2)). In the language LS, the
relation rorth(AT ) (lorth(AT )) is defined as follows: rorth(AT ) = m(OB,AT )(F

′
0)

(resp. lorth(AT ) = m(OB,AT )(F
′
0)) with F ′0 = ∀f f(x1) ⊆ −f(x2) (resp. F ′0 =

∀f − f(x1) ⊆ f(x2)). Using Lemma 4.5 and the above construction, {K¬ : ∃K ∈
FS0
} is (=, 〈F ′0〉)-inf-representable in IS.

5.1.4 Backward and forward inclusion

Let S = (OB,AT ) ∈ IS be an information system. Two objects o1 and o2 are
said to be in the relation of backward inclusion with respect to A ⊆ AT (in short
o1 bin(A) o2) iff for all a ∈ A, a(o1) ⊆ a(o2). In the language LS, the relation
ind(AT ) is defined as follows: bin(AT ) = m(OB,AT )(F0) with F0 = ∀f f(x1) ⊆
f(x2). Let truc be the mapping such that for all K = (U, {Rl(P ) : P ⊆ P, l ∈
{1}}) ∈ FΣ,

truc(K) = {〈p, {R1({p})(u) : u ∈ U}〉 : p ∈ P}

We write FS0
to denote the set of Σ-frames (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) such

that,

• R1(∅) = U × U , for all ∅ 6= P ⊆ P, R1(P ) =
⋂
p∈P R1({p});

• for all p ∈ P, R1({p}) is reflexive and transitive.

Following the lines of the previous sections, it can be shown that truc is a
minimal nice pair function with respect to S0 and FS0

. Hence FS0
is (=, S0)-inf-

representable in IS.
Let S = (OB,AT ) ∈ IS be an information. Two objects o1 and o2 are

said to be in the relation of forward inclusion with respect to A ⊆ AT (in short
o1 fin(A) o2) iff for all a ∈ A, a(o2) ⊆ a(o1). In the language LS, the relation
fin(AT ) is defined as follows: fin(AT ) = m(OB,AT )(F

′
0) with F ′0 = ∀f f(x2) ⊆

f(x1). Using Lemma 4.4 and the above construction, F ′ = {Kσ : ∃K ∈ FS0
}

is (=, 〈F ′0〉)-inf-representable in IS with σ the 1-1 mapping {1, 2} → {1, 2} such
that σ(1) = 2.

Let S = (OB,AT ) ∈ IS be an information system. Two objects o1 and o2

are said to be in the relation of left negative similarity with respect to A ⊆ AT (in

1A binary relation R on the set U is said to be weakly reflexive iff for all u ∈ U , if for some
v ∈ U , (u, v) ∈ R, then (u, u) ∈ R.
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short o1 lnsim(A) o2) iff for all a ∈ A, (V ala \a(o1))∩a(o2) 6= ∅. In the language
LS, the relation lnsim(AT ) is defined as follows: lnsim(AT ) = mS(G0) with

G0 = ∀f ¬(−f(x1) ∩ f(x2)=0)

Using Lemma 4.5 and the above construction, F ′′ = {K¬ : ∃K ∈ F ′} is (=, 〈G0〉)-
inf-representable in IS.

Let S = (OB,AT ) ∈ IS be an information system. Two objects o1 and o2 are
said to be in the relation of right negative similarity with respect to A ⊆ AT (in
short o1 rnsim(A) o2) iff for all a ∈ A, (V ala \a(o2))∩a(o1) 6= ∅. In the language
LS, the relation rnsim(AT ) is defined as follows: rnsim(AT ) = mS(G′0) with

G′0 = ∀f ¬(f(x1) ∩ −f(x2)=0)

Using Lemma 4.4 and the above construction, {Kσ : ∃K ∈ F ′′} is (=, 〈G′0〉)-inf-
representable in IS (σ as above).

5.2 Σ-frames with a single family of n-ary relations

Some of the constructions previously presented can be generalized to n-ary re-
lations. In the rest of the section Σ = 〈P, 〈n〉〉 for some n ≥ 2. We focus our
attention to the generalized version of the forward inclusion, positive similarity
and indiscernibility relations. For any n-ary relation R on U ,

• R is n-reflexive iff for all x ∈ U , R(x, . . . , x);

• R is n-symmetrical iff for all x1, . . . , xn ∈ U if R(x1, . . . , xn), then for any
set {y1, . . . , yn} ⊆ {x1, . . . , xn} R(y1, . . . , yn);

• R is n-transitive iff for all x1, . . . , xn, y1, . . . , yn ∈ U such that R(x1, . . . , xn)
and R(y1, . . . , yn), if there exist i, j ∈ {1, . . . , n} such that xi = yj , then for
all j′ ≥ j, R(x1, . . . , xi−1, yj′ , . . . , yj′).

The classes of frames with the binary relations (see Section 5.1.1, 5.1.3, 5.1.4)
are extended to n-ary relations where reflexivity (resp. symmetry, transitivity)
is extended to n-reflexivity (resp. n-symmetry, n-transitivity). For any frame
K = (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) of the respective extended classes, the nice
pair function truc is defined by,

(pos. sim.) truc(K) = {〈p, {{u1, . . . , un} : (u1, . . . , un) ∈ R1({p})}〉 : p ∈ P}

(for. incl.) truc(K) = {〈p, {{v : R1({p})(. . . , u, . . . , v, . . .)} : u ∈ U}〉 : p ∈ P}

(ind.) truc(K) = {〈p, {u′, u′′ : R1({p})(. . . , u′, . . . , u, . . . , u′′, . . .) : u ∈ U}〉 : p ∈ P}

With such nice pair functions (the proofs are omitted here), the respective ex-
tended classes of frames are (=, S0)-inf-representable in IS with the corresponding
specification S0. For instance, for the extended indiscernibility relation,

S0 = 〈∀f (f(x1)=f(x2)) ∧ . . . ∧ (f(xn−1)=f(xn))〉
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5.3 Σ-frames with multiple families of binary relations

The informational representability of classes of Σ-frames with multiple families of
binary relations can be found in [37, 39, 40, 42]. Other classes of Σ-frames with
multiple families of relations can be shown to be informationally representable
by using the results of the previous sections and [37, 39, 40, 42]. In order to
avoid the boredom of repetitive arguments, we shall present herein a single and
original example. Let Σ = 〈P, 〈2, 2〉〉 be the signature and S0 = 〈∀f f(x1)= −
f(x2),∀f f(x1)=f(x2)〉 be a Σ-specification in spec1

Σ.
We write FS0

to denote the set of Σ-frames (U, {Rl(P ) : P ⊆ P, l ∈ {1, 2}})
such that ,

• for all l ∈ {1, 2} Rl(∅) = U × U and for all ∅ 6= P ⊆ P, Rl(P ) =⋂
p∈P Rl({p});

• for all p ∈ P, R2({p}) is an equivalence relation;

• for all p ∈ P, R1({p}) is a complementarity relation;

• for all u, v ∈ U , for all p ∈ P, (u, v) ∈ R2({p}) iff there exists a R1({p})-path
of even length between u and v.

Let truc be the mapping defined in Section 5.1.2, that is for allK = (U, {Rl(P ) :
P ⊆ P, l ∈ {1, 2}}) ∈ FS0

,

truc(K) = {〈p, {
⋃
u∈Y

CU
′

u,R1({p}) : ∃U ′ ⊆ U, ∃Y ∈Wp}〉 : p ∈ P}

with Wp = {Y ⊆ U : ∀u, v ∈ Y, Cu,R1({p}) 6= Cv,R1({p}),
⋃
u∈Y

Cu,R1({p}) = U}

Lemma 5.8. Let K = (U, {Rl(P ) : P ⊆ P, l ∈ {1, 2}}) ∈ FS0
. For all 〈p, X〉 ∈

truc(K),

(1)
⋃
Y ∈X Y = U ,

(2) for all u, v ∈ U , (u, v) ∈ m
(U,{at〈p,X〉})(∀f f(x1)=f(x2)) iff (for all Y ∈ X,

u ∈ Y iff v ∈ Y ) iff (u, v) ∈ R2({p}),

(3) for all u, v ∈ U , (u, v) ∈ m
(U,{at〈p,X〉})(∀f f(x1)=− f(x2)) iff (for all Y ∈ X,

u ∈ Y iff v 6∈ Y ) iff (u, v) ∈ R1({p}).

Proof: (1) and (3) follow from Section 5.1.2. (2) The proof is omitted here and
is inspired by the different cases analyzed in the proof of Lemma 5.5. Q.E.D.

Corollary 5.9. FS0
is (=, S0)-inf-representable in IS.

6 Examples of non-representability

Until now, only representability results have been shown. However, non repre-
sentability results are also very informative for understanding the relevance of the
notion of representability we introduced.
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6.1 Class of Σ-frames closed under subframes

The example below provides some insight into classes of information systems
closed under subsystems and classes of Σ-frames closed under subframes. Al-
though Proposition 6.1 might appear quite natural, it has some unexpected con-
sequences (see for instance Corollary 6.2).

Proposition 6.1. Let Σ be a signature, S be a Σ-specification, X ⊆ FΣ be a set
of Σ-frames and Y ⊆ IS be a set of information systems closed under subsystems.
If X is (=, S)-inf-representable in Y , then X is closed under subframes.

Proof: The proof is by an easy verification. For any S = (OB,AT ) ∈ Y , for
any subsystem S′ = (OB′, AT ′) of S, for any contribution function I for S, let I ′

be the contribution function for S′ such that for all a ∈ AT ,

I ′(aOB′) =
⋃
{I(a) : ∃a′ ∈ AT, aOB′ = a′OB′}

Let K = (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) ∈ X. There exist an information
system S ∈ Y and a contribution function I for S such that DΣ,S(S, I) = K.
Let K′ = (U ′, {R′l(P ) : P ⊆ P, l ∈ {1, . . . , k}}) be a subframe of K. It can be
shown that DΣ,S(S′, I ′) = K′ where S′ (resp. I ′) is the restriction of S (resp. I)
to U ′. Since the information system S′ belongs to Y (by hypothesis) and by the
soundness condition in the definition of informational representability, we have
K′ ∈ X. Q.E.D.

Corollary 6.2. Let Σ be a signature, S be a strong Σ-specification and X be a
set of Σ-frames such that for all l ∈ {1, . . . , k},

• Rl(∅) = U × U , for all ∅ 6= P ⊆ P, Rl(P ) =
⋂
p∈P Rl({p})

• for all p ∈ P, Rl({p}) is serial (resp. atomic, weakly dense, discrete).

X is not (=, S)-inf-representable in IS.

Some relationships might exist between subframe logics (see [45]) and the logics
characterized by classes of frames informationally representable by frames derived
from a class of information systems closed under subsystems. However, it is not
in the scope of this work.

6.2 Non representability of local agreement frames in IS

In [15], a class of models for logics of indiscernibility is defined. The relations in
those models are equivalence relations that additionally satisfy a condition referred
to as local agreement. Two equivalence relations R and R′ (on U) are said to be
in local agreement [15] iff for all u ∈ U , either R(u) ⊆ R′(u) or R′(u) ⊆ R(u).

We write FLA to denote the set of Σ-frames (U, {Rl(P ) : P ⊆ P, l ∈ {1}})
such that

• R1(∅) = U × U , for all ∅ 6= P ⊆ P, R1(P ) =
⋂
p∈P R1({p});

• for all p ∈ P, R1({p}) is an equivalence relation;

• for all P,Q ⊆ P, R1(P ) and R1(Q) are in local agreement.
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Observe that FLA is closed under subframes and IS is closed under subsystems
(see Section 6.1). The rest of the section is devoted to showing that KLA is not
(=, S0)-inf-representable in IS where S0 = 〈∀f f(x1)=f(x2)〉.

Proposition 6.3. For all Σ-frames K in FLA, there is an information system
S ∈ IS and a contribution function I for S such that DΣ,I(S, I) = K.

Proof: See the construction truc in Section 5.1.1. Q.E.D.

But,

Proposition 6.4. If P has at least 2 elements, then KLA is not (=, S0)-inf-
representable in IS.

Proof: Let S = ({o1, o2, o3, }, {a, a′}) be the information system such that
a(o1) = a(o2) = {1}, a′(o1) = a′(o3) = {1}, a(o3) = a′(o2) = {2} (V ala = V ala′ =
{1, 2}). For some p, p′ ∈ P define the contribution function I such that I(a) = {p}
and I(a′) = P \ {p}. It is easy to show that in the Σ-frame K = DΣ,I(S, I),
R1({p}) and R1({p′}) are not in local agreement. Q.E.D.

A generalization of the local agreement is introduced in [4] and a broad class
of information logics whose frames satisfy this condition is investigated in [13, 6].

7 Conclusion

In this work we have defined a general framework for proving informational repre-
sentability of classes of frames. The nice pair proof technique has been illustrated
with a number of examples. In particular, we have characterized the class of
frames informationally representable by the so-called complementarity relations.
Considerations about non representability have shown the limits of the notion of
informational representability. Some possible continuations of the present work
might take into account the following open problems:

(1) For which classes of specifications a construction analogous to the nice pair
construction defined in the paper can be developed and the informational
representability theorem can be proved?

(2) What is the exact relationships between first-order definability and infor-
mational representability?

(3) How to extend or restrict the language LS in order to characterize the classes
of informationally representable frames in a systematic way?
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