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Abstrat

We present sound and omplete pre�xed

tableaux systems for various modal logis with

enrihed languages inluding the \di�erene"

modal operator [ 6=℄ and the \only if" modal op-

erator [�R℄. These logis are of speial interest

in Arti�ial Intelligene sine their expressive

power is higher than the standard modal logis

and for most of them the satis�ability problem

remains deidable. We also inlude in the paper

deision proedures based on these systems. In

the onlusion, we relate our work with similar

ones from the literature and we propose exten-

sions to other logis.

1 Introdution

The de�nition of logial formalisms that model ognitive

and reasoning proesses has been always onfronted to

two issues: how to derease the expressive power of ex-

isting untratable logis in order to obtain tratable frag-

ments and how to inrease the expressive power of de-

idable logis while preserving deidability - this inludes

for instane the extension of known deidable fragments

of the lassial logi. These fragments inlude various

modal logis (see e.g.

[

Hughes and Cresswell, 1984

℄

)

if one translates them in the standard way to lassial

logi. The modal logis have been reognized in the Ar-

ti�ial Intelligene ommunity as serious andidates to

apture di�erent aspets of reasoning about knowledge

(see e.g.

[

Fagin et al., 1995

℄

). However the standard

modal logis have a restrited expressive power (for in-

stane the lass of irreexive frames is not de�nable by

a modal formula of the logi K).

That is why in the literature various modal logis with

enrihed languages have been de�ned. Most of the work

done for these logis has been dediated to study their

expressive power (see e.g.

[

Goranko and Passy, 1992;

Rijke, 1993

℄

). In the paper our aim is to analyze var-

ious features related to the mehanization of numerous

�

Work supported by C.N.R.S., Frane.

modal logis with enrihed languages. To do so, we de-

�ne pre�xed tableaux whih are known to be lose to

the semantis of the logis and they allow a user-friendly

presentation of the proofs. Moreover, the use of pre�xes

(see e.g.

[

Fitting, 1983; Wallen, 1990; Massai, 1994;

Governatori, 1995

℄

) is known to take advantage of the

omputational features of the logis. Namely, eah pre-

�x ourring at some stage of the proof ontains some

information about part of the urrent proof. However

we ignore whether a matrix haraterization of the log-

is treated herein exist in order to avoid some redundan-

ies in the tableaux proof searh -notational redundany,

irrelevane and non-permutability

[

Wallen, 1990

℄

.

The logis treated in the paper ontain various oper-

ators that di�er from the standard neessity operator 2

(also noted [R℄):

� the di�erene operator [ 6=℄ that allows to aess to

the worlds di�erent from the urrent world (see

e.g. appliations of its use in

[

Segerberg, 1981;

Sain, 1988; Koymans, 1992; Rijke, 1993

℄

)

� the omplement operator [�R℄ that allows to aess

to the worlds not aessible from the urrent world

(see e.g.

[

Humberstone, 1983; Goranko, 1990a;

Levesque, 1990; Lakemeyer, 1993

℄

)

� and by a side-e�et the universal operator [U ℄ that

allows to aess to any world of the model (see e.g.

[

Goranko and Passy, 1992

℄

). [U ℄A an be de�ned

in various ways: for instane [U ℄A =

def

A ^ [ 6=℄A or

[U ℄A =

def

[R℄A ^ [�R℄A.

Adding these operators to standard modal logis an

signi�antly inrease their expressive power. For in-

stane every �nite ardinality is de�nable in a modal

logi whose language ontains [ 6=℄

[

Koymans, 1992

℄

.

Most of the logis dealt with in the paper have a deid-

able satis�ability problem and we shall provide deision

proedures based on our systems. However beause of

the expressive power of the logis our aluli have two

original features: a urrent information C is assoiated

to eah branh of a tableau and a restrited ut rule

is inluded in various aluli that an be viewed as a

modal variant of the ut rule in the d'Agostino's aluli

[

d'Agostino, 1993

℄

.



The rest of the paper is strutured as follows. Se-

tion 2 presents the logis onsidered in the paper. The

setions 3, 4, 5 and 6 present the aluli for the various

logis as well as the deision proedures. Beause of lak

of spae we have omitted part of the proofs as well as

the possible extensions where the aessibility relations

satisfy standard onditions (reexivity, symmetry, tran-

sitivity, : : :). Setion 7 ompares our aluli with existing

ones for other modal logis and onludes the paper by

presenting possible extensions.

2 Enrihed multi-modal logis

2.1 Syntax and semantis

A modal language L is determined by three sets that are

supposed to be pairwise disjoint: a set For

0

= fp; q; : : :g

of propositional variables, a set f:;^g of propositional

operators (the onnetives _;);, are de�ned as for the

propositional alulus) and a (possibly �nite) ountable

set OP = f[i℄ : i 2 Ig of modal operators. The set of

formulae For of the language L is de�ned by the following

grammar: A ::= p j :A j A ^ B j �A where p 2 For

0

,

A; B 2 For and � 2 OP . In the sequel we assume that

OP is �nite and as usual hiiA =

def

:[i℄:A. A frame

is a struture (W; (R

i

)

i2I

) where W is a non-empty set

of worlds (sometimes also alled knowledge states) and

(R

i

)

i2I

is a family of binary relations on W . A model

M is a struture (W; (R

i

)

i2I

; V ) where (W; (R

i

)

i2I

) is

a frame and V is mapping For

0

! P(W ), the power

set of W . For eah set W , we write id

W

(resp. dif

W

)

to denote the binary relation fhw;wi : w 2 Wg (resp.

W �W n id

W

). Let M = (W; (R

i

)

i2I

; V ) be a model.

As usual, we say that a formula A is satis�ed by the

world w 2W (denoted byM; w j= A) when the following

onditions are satis�ed:

� M; w j= p i� w 2 V (p) for all p 2 For

0

,

� M; w j= :A i� not M; w j= A,

� M; w j= A ^ B i� M; w j= A and M; w j= B,

� M; w j= [i℄A i� for all w

0

2 W suh that (w;w

0

) 2

R

i

, we have M; w

0

j= A.

In the sequel by a logi L we understand a pair hFor;Si

suh that For is a set of formulae from a given language

and S is a set of models. A formula A is said to be L-valid

i� for all models M 2 S and all w 2 W , M; w j= A. A

formula A is said to be L-satis�able i� :A is not L-valid.

2.2 Logis in the paper

In the paper we shall onsider numerous logis that ad-

mit interations between the modal operators:

1. K

I

= hFor;Si is the logi suh that S is the set

of all the models. The K

I

-satis�ability problem is

PSPACE-omplete (see e.g.

[

Fagin et al., 1995

℄

).

2. L([R℄; [�R℄) = hFor;Si (see e.g.

[

Goranko, 1990a

℄

)

is the logi suh that I = f1; 2g and M =

(W;R

1

; R

2

; V ) 2 S i� R

1

=W �W nR

2

. The satis-

�ability problem is deidable and EXPTIME-hard

[

Spaan, 1993

℄

. Similar modal logis are onsidered

in the ontext of knowledge representation and rea-

soning (see e.g.

[

Lakemeyer, 1993

℄

).

3. L([ 6=℄) = hFor;Si (see e.g.

[

Segerberg, 1981

℄

) is the

logi suh that I = f1g and M = (W;R

1

; V ) 2 S

i� R

1

= dif

W

. The L([ 6=℄)-satis�ability problem is

NP-omplete when For

0

is in�nite and in P other-

wise (see e.g.

[

Spaan, 1993; Demri, 1996

℄

).

4. K

I

([ 6=℄) = hFor;Si is the logi suh that 1 2 I

(a distinguished element of I), ard(I) � 2 and

M = (W; (R

i

)

i2I

; V ) 2 S i� R

1

= dif

W

. Axiomati-

zation of K

I

([ 6=℄) has been studied in

[

Rijke, 1993;

Balbiani, 1997

℄

. For I = f1; 2g, the K

I

([ 6=℄)-

satis�ability problem is deidable and EXPTIME-

omplete

[

Rijke, 1993

℄

.

The models for L([R℄; [�R℄) satisfy (?) R

1

=W �W n

R

2

. If we require (??) R

1

= dif

W

then [2℄A, A is valid

in this new logi. L([ 6=℄) an be seen as L([R℄; [�R℄)

exept that the models satisfy (?) and (??) and only [1℄

is in the language. Moreover, K

I

([ 6=℄) is obtained from

L([ 6=℄) by adding the operators f[i℄ : i 2 I n f1gg that

behave as in K

I

. The notion of omplementary relations

is therefore ruial in the semantis of the logis.

It is not the purpose of this setion to reall all

the features of the expressive power of the abovemen-

tioned logis (see e.g.

[

Goranko, 1990a; Koymans, 1992;

Rijke, 1993

℄

). By way of example we onsider the logi

K

I

([ 6=℄) with I = f1; 2g. As usual, a lass F of frames

(W;R

1

; R

2

) is said to beK

I

([ 6=℄)-de�nable i� there exists

a K

I

([ 6=℄)-formula A suh that for all frames (W;R

1

; R

2

),

(W;R

1

; R

2

) 2 F i� (W;R

1

; R

2

) j= A (i.e. for all valua-

tions V and all w 2 W , (W;R

1

; R

2

; V ); w j= A). A sim-

ilar notion of de�nability an be naturally de�ned for

other logis.

Fat 2.1.

[

Goranko, 1990b; Koymans, 1992

℄

� All universal �rst-order onditions on R;= are

K

I

([ 6=℄)-de�nable.

� Every �nite ardinality is L([ 6=℄)-de�nable.

� Eah universal �rst-order formula on R is

L([R℄; [�R℄)-de�nable.

The statements of Fat 2.1 do not hold for the logi

K

I

: for example the lass of irreexive frames is not

K

I

-de�nable.

3 Tableaux for K

I

The alulus de�ned for K

I

in this setion an be eas-

ily obtained from existing ones in the literature (see e.g.



� : � [C℄

� : �

1

[C℄

��rule

� : �

2

[C℄

� : � [C℄

� : �

1

[C℄ j � : �

2

[C℄

��rule

� : �

i

[C℄

�k

i

: �

i

0

[C℄

�

i

�rule; new k 2 ! on the branh

� : �

i

[C℄

�

0

: �

i

0

[C℄

�

i

�rule

if �

0

is already on the branh and for some k 2 !, �

0

= �k

i

.

Figure 1: Tableaux system for K

I

[

Fitting, 1983

℄

) but it will be the opportunity to intro-

due various de�nitions smoothly.

We shall de�ne pre�xed tableaux following the

methodology desribed in

[

Fitting, 1983

℄

. We make sub-

stantial use of the uniform notation for modal formulae

de�ned in

[

Fitting, 1983

℄

. Four types of formulae are

usually distinguished: � (neessity), � (possibility), �

(onjuntion) and � (disjuntion). For i 2 I, we intro-

due the types �

i

and �

i

. For instane, :hiiA and [i℄A

are of type �

i

(�

i

0

denotes the formulae :A and A respe-

tively) and :[i℄A and hiiA are of type �

i

(�

i

0

denotes the

formulae :A and A respetively).

A pre�xed formula is a triple of the form � : A [C℄

where � is a pre�x, i.e. � is a �nite sequene of natural

numbers possibly supersripted by some i 2 I, A is a

formula and C is a ouple hC

1

; C

2

i. Eah C

i

is a set of pairs

of pre�xes. When the ontext is lear we omit � or [C℄.

The ondition C is the urrent information on the branh

that is stored during its development. At eah step of

the development of a branh, C is idential for all the

pre�xed formulae on that branh, i.e. C is an attribute

for branhes. We refer to a pre�xed formula as atomi

if it is of the form � : p [C℄ or � : :p [C℄ when p is an

atomi formula. Figure 1 presents the pre�xed tableau

system for the logi K

I

. Observe that the ondition [C℄

is of no use in this alulus.

In the sequel we omit the presentation of the �-rule

(deomposition of onjuntions) and the �-rule (deom-

position of disjuntions) but these rules are inluded in

any forthoming alulus. A branh is losed if it on-

tains ontraditory pre�xed formulae (for any formula A,

� : A and � : :A are ontraditory). A tableau is losed

if every branh is losed. A formula A is said to have a

losed tableau i� there is a losed tableau whih root is

0 : :A [h;; ;i℄. Termination ours when no operation

is possible. A branh is open if it is not losed and a

tableau is open if at least one branh is suh.

Theorem 3.1. A formula A isK

I

-valid i� A has a losed

� : �

i

[C℄

�

0

: �

i

0

[C℄

�

i

�rule; i 2 f1; 2g

if C

i

(h�; �

0

i; C) holds and �

0

already ours on the branh.

� : �

i

[C℄

�k

i

: �

i

0

[C℄

�

i

�rule; new k 2 ! on the branh

if there is no �

0

suh that �

0

: �

i

0

on the branh and either

C

i

(h�; �

0

i; C) or (for all � : �

i

on the branh, �

0

: �

i

0

is on the

branh).

�

00

: A [C℄

�

00

: A [C

0

℄ j �

00

: A [C

00

℄ j �

00

: A [C

000

℄

�; �

0

not already applied with this rule

Figure 2: Tableaux system for K

�

1;2

tableau built with the rules presented in Figure 1.

The proof of Theorem 3.1 an be easily obtained from

existing ones from the literature

[

Fitting, 1983

℄

.

4 Tableaux for L([R℄; [�R℄)

Instead of de�ning a sound and omplete alulus for

the logi L([R℄; [�R℄) we de�ne a sound and omplete

alulus for the logi K

�

1;2

(I = f1; 2g) haraterized by

the models (W;R

1

; R

2

; V ) where R

1

[ R

2

= W � W

(we do not require R

1

\ R

2

= ;). It is known that

L([R℄; [�R℄) and K

�

1;2

have the same lass of valid for-

mulae

[

Goranko, 1990a

℄

and we shall provide a deision

proedure for the set of K

�

1;2

-valid formulae based on

our tableaux approah. Atually from the alulus for

K

�

1;2

the areful reader will observe that a alulus for

L([R℄; [�R℄) an be easily de�ned. However the alulus

for K

�

1;2

is more adequate to de�ne a deision proedure.

The rules for the logi K

�

1;2

are those in Figure 2 where

� C

0

= hC

1

[ fh�; �

0

ig; C

2

i, C

00

= hC

1

; C

2

[ fh�; �

0

igi,

� C

000

= hC

1

[ fh�; �

0

ig; C

2

[ fh�; �

0

igi.

For the logi K

�

1;2

, C

i

(h�; �

0

i; C) holds (i 2 f1; 2g) i� ei-

ther h�; �

0

i 2 C

i

or �

0

= �k

i

for some k 2 !. Intuitively,

C

i

enodes the aessibility relation R

i

. The ondition

C ould be deleted in the de�nition of the alulus sine

it only stores some information about the way the rules

have been applied on the branh. However, if one wishes

to implement our aluli, the atual presentation is well-

suited for this purpose. For instane the �

i

-rule an be

read as follows. If the formula � : �

i

ours on the

branh and if the urrent information on the branh is

C then add �

0

: �

i

0

on the branh and C remains un-

hanged. It is worth observing that the ut rule annot

be deleted unless ompleteness is lost. This property

is also shared by the ut rule in the aluli de�ned in



[

d'Agostino, 1993

℄

. It is also worth noting that the on-

dition of the restrited ut rule in Figure 2 is equivalent

to: either not C

1

(h�; �

0

i; C) or not C

2

(h�; �

0

i; C). More-

over, by applying the restrited ut rule, the urrent in-

formation C on the branh is updated.

4.1 Soundness

Let X be a set of pre�xed formulae having the same on-

dition C (what happens at a urrent stage of the devel-

opment of a given branh). Let M = (W;R

1

; R

2

; V ) be

a K

�

1;2

-model. By an interpretation of X in M we mean

a mapping I : f� : � : A 2 Xg ! W suh that if �; �

0

our in X, then C

i

(h�; �

0

i; C) implies hI(�); I(�

0

)i 2 R

i

(i = 1; 2). We say that X is K

�

1;2

-satis�able under the

interpretation I if for eah � : A 2 X, M; I(�) j= A.

We say that X is K

�

1;2

-satis�able if X is K

�

1;2

-satis�able

under some interpretation. We say that a branh of a

tableau is K

�

1;2

-satis�able if the set of pre�xed formulae

on it is K

�

1;2

-satis�able. A tableau is K

�

1;2

-satis�able if

some branh is.

Lemma 4.1. Suppose T is a pre�xed tableau that is

K

�

1;2

-satis�able. Let T

0

be the tableau that results from

a single tableau rule being applied to T. Then T

0

is also

K

�

1;2

-satis�able.

Proof: By an easy veri�ation. Q.E.D.

Proposition 4.2. (soundness) If A has a losed tableau

built with the rules in Figure 2 then A is K

�

1;2

-valid.

Proof: Similar to the proof of Theorem 3.2 in

[

Fitting,

1983

℄

(p.400). Q.E.D.

4.2 Completeness

Let A be a formula. As done in

[

Fitting, 1983

℄

, we de-

�ne a systemati attempt to produe a proof of A. The

proedure is in stages and the stage 1 onsists in pla-

ing 0 : :A [h;; ;i℄ at the root. Now suppose n stages of

the onstrution have been done. If the tableau is losed

then we stop. Similarly if every ourrene of a pre-

�xed formula is �nished (see the de�nition of '�nished'

below) then we stop. Otherwise we go on. If n + 1 is

even, �; �

0

satis�es the ondition of the ut rule on some

open branh BR (hosen in some fair way) and h�; �

0

i is

the smallest pair (for some enoding in the set of nat-

ural numbers !) satisfying this property then split the

end of branh BR in three sub-branhes by applying the

restrited ut rule with h�; �

0

i. Otherwise (n + 1 odd)

any stage n + 1 onsists in hoosing an ourrene of a

pre�xed formula � : B [C℄ as high up in the tree as possi-

ble (as lose to the origin as possible) that has not been

�nished. If � : B [C℄ is atomi then the ourrene is

delared �nished. This ends the stage n + 1 otherwise

we extend the tableau as follows. For eah open branh

BR through the ourrene of � : B [C℄ (under the proviso

the onditions to apply the rules hold):

P1 If � : B [C℄ is of the form � : � [C℄ add � : �

1

[C℄ and

� : �

2

[C℄ to the end of BR.

P2 If � : B [C℄ is of the form � : � [C℄ split the end of

BR and add � : �

1

[C℄ to the end of one sub-branh

and � : �

2

[C℄ to the end of the other one.

P3 If � : B [C℄ is of the form � : �

i

[C℄ then for all �

0

satisfying the ondition of the �

i

-rule add �

0

: �

i

0

[C℄

to the end of BR, after whih add a fresh ourrene

of � : �

i

[C℄ to the end of BR.

P4 If � : B [C℄ is of the form � : �

i

[C℄ then add �k

i

:

�

i

0

[C℄ to the end of BR. Moreover for � : �

i

[C℄

on the branh add �k

i

: �

i

0

[C℄ to the end of BR

(appliations of the �

i

-rule)

Having done this for eah branh BR through the par-

tiular ourrene of � : B [C℄ being onsidered, delare

that ourrene of � : B [C℄ �nished. This ends stage

n+ 1.

De�nition 4.1. LetX be a set of pre�xed formulae and

C be a ondition. We say X is downward-saturated with

respet to C i�:

C1 For all �; �

0

2 X, (C1.1) either C

1

(h�; �

0

i; C) or

C

2

(h�; �

0

i; C) and, (C1.2) for all p 2 For

0

, f� : p; �

0

:

:pg � X implies � 6= �

0

.

C2 if � : � 2 X then f� : �

1

; � : �

2

g � X.

C3 if � : � 2 X then either � : �

1

2 X or � : �

2

2 X.

C4 if � : �

i

2 X then for all �

0

in X satisfying the

ondition of the �

i

-rule, we have �

0

: �

i

0

2 X.

C5 if � : �

i

2 X then there is �

0

suh that �

0

: �

i

0

2 X

and, either C

1

(h�; �

0

i; C) or (for all � : �

i

2 X, �

0

:

�

i

0

2 X).

r

Lemma 4.3. If X is downward-saturated with respet

to C then X is K

�

1;2

-satis�able.

Proof: Assume X is downward-saturated wrt C. Let

M = (W;R

1

; R

2

; V ) be the struture suh that W =

f� : � : B 2 Xg, for all p 2 For

0

V (p) = f� : � : p 2 Xg

and for all �; �

0

in X and i 2 f1; 2g �R

i

�

0

i� either

C

i

(h�; �

0

i; C) or f�

i

0

: � : �

i

2 Xg � fB : �

0

: B 2 Xg.

One an easily hek that the de�nition ofM is orret,

i.e. M is a K

�

1;2

-model. It an be shown by indution

on the struture of the formulae that for every formula

B and every pre�x �, if � : B 2 X then M; � j= B (and

therefore X is K

�

1;2

-satis�able). Q.E.D.

Proposition 4.4. (ompleteness) If A is K

�

1;2

-valid then

A has a losed tableau built with the rules presented in

Figure 2.

Proof: Suppose A has no losed pre�xed tableau. So the

systemati proedure does not generate a losed tableau.



We build a tableau with this proedure by onsider-

ing 0 : :A [h;; ;i℄ at the root. If the proedure termi-

nates then the tableau ontains a non-losed branh. If

the proedure does not terminate, by K�onig's Lemma,

there is an in�nite non-losed branh. The systemati

proedure guarantees that the non-losed branh BR is

downward-saturated wrt some C. By Lemma 4.3, BR is

K

�

1;2

-satis�able. Sine 0 : :A 2 BR, there is a K

�

1;2

-model

M and a world w suh that M; w j= :A, whih leads to

a ontradition. Q.E.D.

In the systemati proedure, we require that if � : B

is a onlusion of some inferene of the �

i

-rule and if an

ourrene of � : B has already been introdued on the

branh then no new ourrene is added on the branh.

The systemati proedure still guarantees ompleteness

but it terminates sine the �

i

-rule an be applied only a

�nite number of times. Atually, eah �

i

-rule is applied

at most mw

i

(A) � 2

ard(fB;:B:B subformula of Ag)

times on

a branh where mw

i

(A) is the number modal operators

of the form [i℄ or hii ourring in A. The other rules

do not introdue new pre�xes whih guarantees termi-

nation sine their appliations are restrited (while in-

suring ompleteness). The systemati proedure above

is therefore a deision proedure for the L([R℄; [�R℄)-

validity problem.

5 Tableaux for L([6=℄)

For any �nite set X of pairs we write X(a; b) to denote

that ha; bi belongs to the smallest equivalene relation

ontaining X. The rules for L([ 6=℄) are those for K

�

1;2

exept that the �

1

-rule beomes

� : �

1

[C℄

�k

1

: �

1

0

[hC

1

; C

2

[ fh�; �k

1

igi℄

new k 2 ! on the branh

and the restrited ut rule is replaed by:

�

00

: A [C℄

�

00

: A [hC

1

[ fh�; �

0

ig; C

2

i℄ j �

00

: A [hC

1

; C

2

[ fh�; �

0

igi℄

�; �

0

our on the branh and neither C

1

(h�; �

0

i; C) nor

C

2

(h�; �

0

i; C) holds.

The de�nitions of C

1

and C

2

are modi�ed as follows:

C

1

(h�; �

0

i; C) holds i� either C

1

(�; �

0

) holds or � = �

0

and C

2

(h�; �

0

i; C) holds i� there exist �

1

and �

0

1

suh

that fh�

1

; �

0

1

i; h�

0

1

; �

1

ig \ C

2

6= ;, C

1

(h�; �

1

i; C) and

C

1

(h�

0

; �

0

1

i; C). For instane C

1

(h�; �

1

i; C) an be inter-

preted by \� and �

1

are equal modulo C". A branh is

losed if there exist pre�xed formulae � : A and �

0

: :A

on that branh suh that C

1

(h�; �

0

i; C) holds. This al-

ulus for L([ 6=℄) strongly di�ers from the one in

[

Demri,

1996

℄

due to the mahinery assoiated to C and to the

restrited ut rule.

Theorem 5.1. (soundness and ompleteness) A for-

mula A is L([ 6=℄)-valid i� A has a losed tableau built

with the rules for L([ 6=℄).

In order to provide a deision proedure for L([ 6=℄) it is

suÆient to onsider the deision proedure in Setion 4

adequately modi�ed for L([ 6=℄) exept that the following

onditions are required to apply the �

1

-rule:

�1 it is not possible to apply the restrited ut rule

(that is the restrited ut rule is saturated before

applying the �

1

-rule),

�2 there is no �

0

: �

1

0

on the branh suh that

C

2

(h�; �

0

i; C),

�3 there are no �

1

: �

1

0

and �

2

: �

1

0

on the branh suh

that C

2

(h�

1

; �

2

i; C).

It is possible to show that the alulus is sound and om-

plete and the systemati proedure de�ned above always

terminates (eah formula �

1

ourring in :A an be used

at most twie as a premise of a �

1

-rule inferene on a

given branh). Atually, at most 1+2�mw(A) di�erent

pre�xes an our on a given branh where mw(A) is the

so-alled modal weight of A, i.e. the number of modal

operators ourring in A. Hene the above systemati

proedure onstruts a polynomial-size L([ 6=℄)-model for

:A (with respet to the size of A) if A is not L([ 6=℄)-valid.

6 Tableaux for K

I

([6=℄)

The onditions C

1

and C

2

are de�ned as in Setion 5

as well as the losure onditions. The tableaux rules

for K

I

([ 6=℄) are given in Figure 3. Let X be a set

of pre�xed formulae having the same ondition C and

M = (W; (R

i

)

i2I

; V ) be a K

I

([ 6=℄)-model. By an inter-

pretation of X in M we mean a mapping I : f� : � :

A 2 Xg !W suh that if �; �

0

our in X, then

� �

0

= �k

i

for some k

i

implies hI(�); I(�

0

)i 2 R

i

,

� C

1

(h�; �

0

i; C) implies I(�) = I(�

0

) and C

2

(h�; �

0

i; C)

implies I(�) 6= I(�

0

).

Lemma 4.1 an be shown to hold for K

I

([ 6=℄) assoi-

ated with the alulus presented in Figure 3: if A has a

losed tableau built with the rules in Figure 3 then A is

K

I

([ 6=℄)-valid. We also use the systemati proedure de-

�ned in Setion 4.2 (with the binary restrited ut rule)

exept that (P4) is replaed by:

P4

0

If � : B [C℄ is of the form � : �

i

[C℄ with i 6= 1

(resp. � : �

1

[C℄) then add �k

i

: �

i

0

[C℄ (resp. �k

1

:

�

1

0

[hC

1

; C

2

[ fh�; �k

1

igi℄) to the end of BR.

Similarly, we say X is downward-saturated wrt C i�:

C1

0

For all �; �

0

2 X, (C1

0

.1) C

1

(h�; �

0

i; C) i� not

C

2

(h�; �

0

i; C) (note the di�erene with C1.1 in Se-

tion 4) and, (C1

0

.2) for all p 2 For

0

, f� : p; �

0

:

:pg � X implies C

2

(h�; �

0

i; C).

- Conditions C2,C3 from Setion 4.2 and C4 for i 6= 1



� : �

i

[C℄

�k

i

: �

i

0

[C℄

�

i

�rule; new k 2 !; i 2 I n f1g

� : �

1

[C℄

�k

1

: �

1

0

[hC

1

; C

2

[ fh�; �k

1

igi℄

�

1

�rule; new k 2 !

� : �

i

[C℄

�

0

: �

i

0

[C℄

�

i

�rule; i 2 I n f1g

if there exist �

1

; �

1

k

i

on the branh suh that C

1

(h�; �

1

i; C)

and C

1

(h�

0

; �

1

k

i

i; C).

� : �

1

[C℄

�

0

: �

1

0

[C℄

�

1

�rule; if C

2

(h�; �

0

i; C)

�

00

: A [C℄

�

00

: A [hC

1

[ fh�; �

0

ig; C

2

i℄ j �

00

: A [hC

1

; C

2

[ fh�; �

0

igi℄

�; �

0

on the branh and neither C

1

(h�; �

0

i; C) nor C

2

(h�; �

0

i; C)

holds.

Figure 3: Tableaux system for K

I

([ 6=℄)

C5

0

if � : �

i

2 X with i 6= 1 then there exist �

0

: �

i

0

2 X

and �k

i

in X suh that C

1

(h�

0

; �k

i

i; C).

C6 if � : �

1

2 X then for all �

0

in X suh that

C

2

(h�; �

0

i; C), we have �

0

: �

1

0

2 X

C7 if � : �

1

2 X then there is �

0

suh that �

0

: �

1

0

2 X

and C

2

(h�; �

0

i; C).

Lemma 6.1. If X is downward-saturated wrt C then X

is K

I

([ 6=℄)-satis�able.

Proof: Assume X is downward-saturated wrt C. Let

M = (W; (R

i

)

i2I

; V ) be the struture suh that,

� W = fj�j : � : B 2 Xg where

j�j = f�

0

: � : B 2 X; C

1

(h�; �

0

i; C)g.

� for all p 2 For

0

V (p) = fj�j : � : p 2 Xg.

� R

1

= dif

W

and for all �; �

0

inX, j�jR

i

j�

0

j (i 6= 1) i�

9�

1

; �

1

k

i

in X; C

1

(h�; �

1

i; C) and C

1

(h�

0

; �

1

k

i

i; C).

M is a K

I

([ 6=℄)-model. It an be shown (by indution

on B) that if � : B 2 X then M; j�j j= B. Q.E.D.

Proposition 6.2. (ompleteness) If A is K

I

([ 6=℄)-valid

then A has a losed pre�xed tableau built with the rules

presented in Figure 3.

In order to obtain a deision proedure, take the system-

ati proedure, inorporate the restritions �1, �2 and �3

from Setion 5 and for i 6= 1, add the following restri-

tion to the �

i

-rule: there is no �

0

: �

i

0

on the branh suh

that C

1

(h�k

i

; �

0

i; C) holds for some k 2 !.

7 Conluding remarks

The use of pre�xes for tableaux systems dediated to

modal logis has been thoroughly developed in

[

Fit-

ting, 1983

℄

whereas our treatment of the ondition C

(see e.g. Setions 4, 5, 6) an be viewed as a means

to parametrize our aluli by the theory of the aes-

sibility relations. Hene, the idea of theory resolution

[

Stikel, 1985

℄

in whih a theory is separately dealt with

from the rest of the alulus is present in our aluli.

This idea is not new in the realm of the mehaniza-

tion of modal logis (see e.g.

[

Frish and Sherl, 1990;

Gent, 1993

℄

) but the originality of our work is related to

the onditions satis�ed by the aessibility relations of

the models.

The seond important feature of our aluli is the use

of a restrited ut rule. Reently, various works have

tamed the ut rule for aluli dediated to modal logis

(see e.g.

[

d'Agostino, 1993; Governatori, 1995

℄

). How-

ever our aluli do not have a ut rule with a branhing

for formulae. In that sense, the ut rule in our aluli is

even more restrited than the one in

[

Governatori, 1995

℄

.

We have de�ned sound and omplete pre�xed tableaux

aluli for the logis L([R℄; [�R℄), and K

I

([ 6=℄) (also for

K

I

and L([ 6=℄)) and deision proedures have been de-

signed from these systems. It is worth noting that the

expressive power of the modal logis with enrihed lan-

guages is attrative in the Arti�ial Intelligene ommu-

nity sine for instane the operator [ 6=℄ has already been

shown to be useful to reason about time

[

Sain, 1988;

Koymans, 1992

℄

or spae

[

Balbiani et al., 1997

℄

.

Future work ould be oriented towards the inorpora-

tion of our aluli into existing tableaux-based theorem

provers for modal logis and towards the de�nition of

other pre�xed tableaux for modal logis with enrihed

languages inluding for instane, the logis in the paper

where standard onditions for the aessibility relations

are required -reexivity, symmetry, : : :.
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