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Abstra
t

We present sound and 
omplete pre�xed

tableaux systems for various modal logi
s with

enri
hed languages in
luding the \di�eren
e"

modal operator [ 6=℄ and the \only if" modal op-

erator [�R℄. These logi
s are of spe
ial interest

in Arti�
ial Intelligen
e sin
e their expressive

power is higher than the standard modal logi
s

and for most of them the satis�ability problem

remains de
idable. We also in
lude in the paper

de
ision pro
edures based on these systems. In

the 
on
lusion, we relate our work with similar

ones from the literature and we propose exten-

sions to other logi
s.

1 Introdu
tion

The de�nition of logi
al formalisms that model 
ognitive

and reasoning pro
esses has been always 
onfronted to

two issues: how to de
rease the expressive power of ex-

isting untra
table logi
s in order to obtain tra
table frag-

ments and how to in
rease the expressive power of de-


idable logi
s while preserving de
idability - this in
ludes

for instan
e the extension of known de
idable fragments

of the 
lassi
al logi
. These fragments in
lude various

modal logi
s (see e.g.

[

Hughes and Cresswell, 1984

℄

)

if one translates them in the standard way to 
lassi
al

logi
. The modal logi
s have been re
ognized in the Ar-

ti�
ial Intelligen
e 
ommunity as serious 
andidates to


apture di�erent aspe
ts of reasoning about knowledge

(see e.g.

[

Fagin et al., 1995

℄

). However the standard

modal logi
s have a restri
ted expressive power (for in-

stan
e the 
lass of irre
exive frames is not de�nable by

a modal formula of the logi
 K).

That is why in the literature various modal logi
s with

enri
hed languages have been de�ned. Most of the work

done for these logi
s has been dedi
ated to study their

expressive power (see e.g.

[

Goranko and Passy, 1992;

Rijke, 1993

℄

). In the paper our aim is to analyze var-

ious features related to the me
hanization of numerous

�

Work supported by C.N.R.S., Fran
e.

modal logi
s with enri
hed languages. To do so, we de-

�ne pre�xed tableaux whi
h are known to be 
lose to

the semanti
s of the logi
s and they allow a user-friendly

presentation of the proofs. Moreover, the use of pre�xes

(see e.g.

[

Fitting, 1983; Wallen, 1990; Massa

i, 1994;

Governatori, 1995

℄

) is known to take advantage of the


omputational features of the logi
s. Namely, ea
h pre-

�x o

urring at some stage of the proof 
ontains some

information about part of the 
urrent proof. However

we ignore whether a matrix 
hara
terization of the log-

i
s treated herein exist in order to avoid some redundan-


ies in the tableaux proof sear
h -notational redundan
y,

irrelevan
e and non-permutability

[

Wallen, 1990

℄

.

The logi
s treated in the paper 
ontain various oper-

ators that di�er from the standard ne
essity operator 2

(also noted [R℄):

� the di�eren
e operator [ 6=℄ that allows to a

ess to

the worlds di�erent from the 
urrent world (see

e.g. appli
ations of its use in

[

Segerberg, 1981;

Sain, 1988; Koymans, 1992; Rijke, 1993

℄

)

� the 
omplement operator [�R℄ that allows to a

ess

to the worlds not a

essible from the 
urrent world

(see e.g.

[

Humberstone, 1983; Goranko, 1990a;

Levesque, 1990; Lakemeyer, 1993

℄

)

� and by a side-e�e
t the universal operator [U ℄ that

allows to a

ess to any world of the model (see e.g.

[

Goranko and Passy, 1992

℄

). [U ℄A 
an be de�ned

in various ways: for instan
e [U ℄A =

def

A ^ [ 6=℄A or

[U ℄A =

def

[R℄A ^ [�R℄A.

Adding these operators to standard modal logi
s 
an

signi�
antly in
rease their expressive power. For in-

stan
e every �nite 
ardinality is de�nable in a modal

logi
 whose language 
ontains [ 6=℄

[

Koymans, 1992

℄

.

Most of the logi
s dealt with in the paper have a de
id-

able satis�ability problem and we shall provide de
ision

pro
edures based on our systems. However be
ause of

the expressive power of the logi
s our 
al
uli have two

original features: a 
urrent information C is asso
iated

to ea
h bran
h of a tableau and a restri
ted 
ut rule

is in
luded in various 
al
uli that 
an be viewed as a

modal variant of the 
ut rule in the d'Agostino's 
al
uli

[

d'Agostino, 1993

℄

.



The rest of the paper is stru
tured as follows. Se
-

tion 2 presents the logi
s 
onsidered in the paper. The

se
tions 3, 4, 5 and 6 present the 
al
uli for the various

logi
s as well as the de
ision pro
edures. Be
ause of la
k

of spa
e we have omitted part of the proofs as well as

the possible extensions where the a

essibility relations

satisfy standard 
onditions (re
exivity, symmetry, tran-

sitivity, : : :). Se
tion 7 
ompares our 
al
uli with existing

ones for other modal logi
s and 
on
ludes the paper by

presenting possible extensions.

2 Enri
hed multi-modal logi
s

2.1 Syntax and semanti
s

A modal language L is determined by three sets that are

supposed to be pairwise disjoint: a set For

0

= fp; q; : : :g

of propositional variables, a set f:;^g of propositional

operators (the 
onne
tives _;);, are de�ned as for the

propositional 
al
ulus) and a (possibly �nite) 
ountable

set OP = f[i℄ : i 2 Ig of modal operators. The set of

formulae For of the language L is de�ned by the following

grammar: A ::= p j :A j A ^ B j �A where p 2 For

0

,

A; B 2 For and � 2 OP . In the sequel we assume that

OP is �nite and as usual hiiA =

def

:[i℄:A. A frame

is a stru
ture (W; (R

i

)

i2I

) where W is a non-empty set

of worlds (sometimes also 
alled knowledge states) and

(R

i

)

i2I

is a family of binary relations on W . A model

M is a stru
ture (W; (R

i

)

i2I

; V ) where (W; (R

i

)

i2I

) is

a frame and V is mapping For

0

! P(W ), the power

set of W . For ea
h set W , we write id

W

(resp. dif

W

)

to denote the binary relation fhw;wi : w 2 Wg (resp.

W �W n id

W

). Let M = (W; (R

i

)

i2I

; V ) be a model.

As usual, we say that a formula A is satis�ed by the

world w 2W (denoted byM; w j= A) when the following


onditions are satis�ed:

� M; w j= p i� w 2 V (p) for all p 2 For

0

,

� M; w j= :A i� not M; w j= A,

� M; w j= A ^ B i� M; w j= A and M; w j= B,

� M; w j= [i℄A i� for all w

0

2 W su
h that (w;w

0

) 2

R

i

, we have M; w

0

j= A.

In the sequel by a logi
 L we understand a pair hFor;Si

su
h that For is a set of formulae from a given language

and S is a set of models. A formula A is said to be L-valid

i� for all models M 2 S and all w 2 W , M; w j= A. A

formula A is said to be L-satis�able i� :A is not L-valid.

2.2 Logi
s in the paper

In the paper we shall 
onsider numerous logi
s that ad-

mit intera
tions between the modal operators:

1. K

I

= hFor;Si is the logi
 su
h that S is the set

of all the models. The K

I

-satis�ability problem is

PSPACE-
omplete (see e.g.

[

Fagin et al., 1995

℄

).

2. L([R℄; [�R℄) = hFor;Si (see e.g.

[

Goranko, 1990a

℄

)

is the logi
 su
h that I = f1; 2g and M =

(W;R

1

; R

2

; V ) 2 S i� R

1

=W �W nR

2

. The satis-

�ability problem is de
idable and EXPTIME-hard

[

Spaan, 1993

℄

. Similar modal logi
s are 
onsidered

in the 
ontext of knowledge representation and rea-

soning (see e.g.

[

Lakemeyer, 1993

℄

).

3. L([ 6=℄) = hFor;Si (see e.g.

[

Segerberg, 1981

℄

) is the

logi
 su
h that I = f1g and M = (W;R

1

; V ) 2 S

i� R

1

= dif

W

. The L([ 6=℄)-satis�ability problem is

NP-
omplete when For

0

is in�nite and in P other-

wise (see e.g.

[

Spaan, 1993; Demri, 1996

℄

).

4. K

I

([ 6=℄) = hFor;Si is the logi
 su
h that 1 2 I

(a distinguished element of I), 
ard(I) � 2 and

M = (W; (R

i

)

i2I

; V ) 2 S i� R

1

= dif

W

. Axiomati-

zation of K

I

([ 6=℄) has been studied in

[

Rijke, 1993;

Balbiani, 1997

℄

. For I = f1; 2g, the K

I

([ 6=℄)-

satis�ability problem is de
idable and EXPTIME-


omplete

[

Rijke, 1993

℄

.

The models for L([R℄; [�R℄) satisfy (?) R

1

=W �W n

R

2

. If we require (??) R

1

= dif

W

then [2℄A, A is valid

in this new logi
. L([ 6=℄) 
an be seen as L([R℄; [�R℄)

ex
ept that the models satisfy (?) and (??) and only [1℄

is in the language. Moreover, K

I

([ 6=℄) is obtained from

L([ 6=℄) by adding the operators f[i℄ : i 2 I n f1gg that

behave as in K

I

. The notion of 
omplementary relations

is therefore 
ru
ial in the semanti
s of the logi
s.

It is not the purpose of this se
tion to re
all all

the features of the expressive power of the abovemen-

tioned logi
s (see e.g.

[

Goranko, 1990a; Koymans, 1992;

Rijke, 1993

℄

). By way of example we 
onsider the logi


K

I

([ 6=℄) with I = f1; 2g. As usual, a 
lass F of frames

(W;R

1

; R

2

) is said to beK

I

([ 6=℄)-de�nable i� there exists

a K

I

([ 6=℄)-formula A su
h that for all frames (W;R

1

; R

2

),

(W;R

1

; R

2

) 2 F i� (W;R

1

; R

2

) j= A (i.e. for all valua-

tions V and all w 2 W , (W;R

1

; R

2

; V ); w j= A). A sim-

ilar notion of de�nability 
an be naturally de�ned for

other logi
s.

Fa
t 2.1.

[

Goranko, 1990b; Koymans, 1992

℄

� All universal �rst-order 
onditions on R;= are

K

I

([ 6=℄)-de�nable.

� Every �nite 
ardinality is L([ 6=℄)-de�nable.

� Ea
h universal �rst-order formula on R is

L([R℄; [�R℄)-de�nable.

The statements of Fa
t 2.1 do not hold for the logi


K

I

: for example the 
lass of irre
exive frames is not

K

I

-de�nable.

3 Tableaux for K

I

The 
al
ulus de�ned for K

I

in this se
tion 
an be eas-

ily obtained from existing ones in the literature (see e.g.



� : � [C℄

� : �

1

[C℄

��rule

� : �

2

[C℄

� : � [C℄

� : �

1

[C℄ j � : �

2

[C℄

��rule

� : �

i

[C℄

�k

i

: �

i

0

[C℄

�

i

�rule; new k 2 ! on the bran
h

� : �

i

[C℄

�

0

: �

i

0

[C℄

�

i

�rule

if �

0

is already on the bran
h and for some k 2 !, �

0

= �k

i

.

Figure 1: Tableaux system for K

I

[

Fitting, 1983

℄

) but it will be the opportunity to intro-

du
e various de�nitions smoothly.

We shall de�ne pre�xed tableaux following the

methodology des
ribed in

[

Fitting, 1983

℄

. We make sub-

stantial use of the uniform notation for modal formulae

de�ned in

[

Fitting, 1983

℄

. Four types of formulae are

usually distinguished: � (ne
essity), � (possibility), �

(
onjun
tion) and � (disjun
tion). For i 2 I, we intro-

du
e the types �

i

and �

i

. For instan
e, :hiiA and [i℄A

are of type �

i

(�

i

0

denotes the formulae :A and A respe
-

tively) and :[i℄A and hiiA are of type �

i

(�

i

0

denotes the

formulae :A and A respe
tively).

A pre�xed formula is a triple of the form � : A [C℄

where � is a pre�x, i.e. � is a �nite sequen
e of natural

numbers possibly supers
ripted by some i 2 I, A is a

formula and C is a 
ouple hC

1

; C

2

i. Ea
h C

i

is a set of pairs

of pre�xes. When the 
ontext is 
lear we omit � or [C℄.

The 
ondition C is the 
urrent information on the bran
h

that is stored during its development. At ea
h step of

the development of a bran
h, C is identi
al for all the

pre�xed formulae on that bran
h, i.e. C is an attribute

for bran
hes. We refer to a pre�xed formula as atomi


if it is of the form � : p [C℄ or � : :p [C℄ when p is an

atomi
 formula. Figure 1 presents the pre�xed tableau

system for the logi
 K

I

. Observe that the 
ondition [C℄

is of no use in this 
al
ulus.

In the sequel we omit the presentation of the �-rule

(de
omposition of 
onjun
tions) and the �-rule (de
om-

position of disjun
tions) but these rules are in
luded in

any forth
oming 
al
ulus. A bran
h is 
losed if it 
on-

tains 
ontradi
tory pre�xed formulae (for any formula A,

� : A and � : :A are 
ontradi
tory). A tableau is 
losed

if every bran
h is 
losed. A formula A is said to have a


losed tableau i� there is a 
losed tableau whi
h root is

0 : :A [h;; ;i℄. Termination o

urs when no operation

is possible. A bran
h is open if it is not 
losed and a

tableau is open if at least one bran
h is su
h.

Theorem 3.1. A formula A isK

I

-valid i� A has a 
losed

� : �

i

[C℄

�

0

: �

i

0

[C℄

�

i

�rule; i 2 f1; 2g

if C

i

(h�; �

0

i; C) holds and �

0

already o

urs on the bran
h.

� : �

i

[C℄

�k

i

: �

i

0

[C℄

�

i

�rule; new k 2 ! on the bran
h

if there is no �

0

su
h that �

0

: �

i

0

on the bran
h and either

C

i

(h�; �

0

i; C) or (for all � : �

i

on the bran
h, �

0

: �

i

0

is on the

bran
h).

�

00

: A [C℄

�

00

: A [C

0

℄ j �

00

: A [C

00

℄ j �

00

: A [C

000

℄

�; �

0

not already applied with this rule

Figure 2: Tableaux system for K

�

1;2

tableau built with the rules presented in Figure 1.

The proof of Theorem 3.1 
an be easily obtained from

existing ones from the literature

[

Fitting, 1983

℄

.

4 Tableaux for L([R℄; [�R℄)

Instead of de�ning a sound and 
omplete 
al
ulus for

the logi
 L([R℄; [�R℄) we de�ne a sound and 
omplete


al
ulus for the logi
 K

�

1;2

(I = f1; 2g) 
hara
terized by

the models (W;R

1

; R

2

; V ) where R

1

[ R

2

= W � W

(we do not require R

1

\ R

2

= ;). It is known that

L([R℄; [�R℄) and K

�

1;2

have the same 
lass of valid for-

mulae

[

Goranko, 1990a

℄

and we shall provide a de
ision

pro
edure for the set of K

�

1;2

-valid formulae based on

our tableaux approa
h. A
tually from the 
al
ulus for

K

�

1;2

the 
areful reader will observe that a 
al
ulus for

L([R℄; [�R℄) 
an be easily de�ned. However the 
al
ulus

for K

�

1;2

is more adequate to de�ne a de
ision pro
edure.

The rules for the logi
 K

�

1;2

are those in Figure 2 where

� C

0

= hC

1

[ fh�; �

0

ig; C

2

i, C

00

= hC

1

; C

2

[ fh�; �

0

igi,

� C

000

= hC

1

[ fh�; �

0

ig; C

2

[ fh�; �

0

igi.

For the logi
 K

�

1;2

, C

i

(h�; �

0

i; C) holds (i 2 f1; 2g) i� ei-

ther h�; �

0

i 2 C

i

or �

0

= �k

i

for some k 2 !. Intuitively,

C

i

en
odes the a

essibility relation R

i

. The 
ondition

C 
ould be deleted in the de�nition of the 
al
ulus sin
e

it only stores some information about the way the rules

have been applied on the bran
h. However, if one wishes

to implement our 
al
uli, the a
tual presentation is well-

suited for this purpose. For instan
e the �

i

-rule 
an be

read as follows. If the formula � : �

i

o

urs on the

bran
h and if the 
urrent information on the bran
h is

C then add �

0

: �

i

0

on the bran
h and C remains un-


hanged. It is worth observing that the 
ut rule 
annot

be deleted unless 
ompleteness is lost. This property

is also shared by the 
ut rule in the 
al
uli de�ned in



[

d'Agostino, 1993

℄

. It is also worth noting that the 
on-

dition of the restri
ted 
ut rule in Figure 2 is equivalent

to: either not C

1

(h�; �

0

i; C) or not C

2

(h�; �

0

i; C). More-

over, by applying the restri
ted 
ut rule, the 
urrent in-

formation C on the bran
h is updated.

4.1 Soundness

Let X be a set of pre�xed formulae having the same 
on-

dition C (what happens at a 
urrent stage of the devel-

opment of a given bran
h). Let M = (W;R

1

; R

2

; V ) be

a K

�

1;2

-model. By an interpretation of X in M we mean

a mapping I : f� : � : A 2 Xg ! W su
h that if �; �

0

o

ur in X, then C

i

(h�; �

0

i; C) implies hI(�); I(�

0

)i 2 R

i

(i = 1; 2). We say that X is K

�

1;2

-satis�able under the

interpretation I if for ea
h � : A 2 X, M; I(�) j= A.

We say that X is K

�

1;2

-satis�able if X is K

�

1;2

-satis�able

under some interpretation. We say that a bran
h of a

tableau is K

�

1;2

-satis�able if the set of pre�xed formulae

on it is K

�

1;2

-satis�able. A tableau is K

�

1;2

-satis�able if

some bran
h is.

Lemma 4.1. Suppose T is a pre�xed tableau that is

K

�

1;2

-satis�able. Let T

0

be the tableau that results from

a single tableau rule being applied to T. Then T

0

is also

K

�

1;2

-satis�able.

Proof: By an easy veri�
ation. Q.E.D.

Proposition 4.2. (soundness) If A has a 
losed tableau

built with the rules in Figure 2 then A is K

�

1;2

-valid.

Proof: Similar to the proof of Theorem 3.2 in

[

Fitting,

1983

℄

(p.400). Q.E.D.

4.2 Completeness

Let A be a formula. As done in

[

Fitting, 1983

℄

, we de-

�ne a systemati
 attempt to produ
e a proof of A. The

pro
edure is in stages and the stage 1 
onsists in pla
-

ing 0 : :A [h;; ;i℄ at the root. Now suppose n stages of

the 
onstru
tion have been done. If the tableau is 
losed

then we stop. Similarly if every o

urren
e of a pre-

�xed formula is �nished (see the de�nition of '�nished'

below) then we stop. Otherwise we go on. If n + 1 is

even, �; �

0

satis�es the 
ondition of the 
ut rule on some

open bran
h BR (
hosen in some fair way) and h�; �

0

i is

the smallest pair (for some en
oding in the set of nat-

ural numbers !) satisfying this property then split the

end of bran
h BR in three sub-bran
hes by applying the

restri
ted 
ut rule with h�; �

0

i. Otherwise (n + 1 odd)

any stage n + 1 
onsists in 
hoosing an o

urren
e of a

pre�xed formula � : B [C℄ as high up in the tree as possi-

ble (as 
lose to the origin as possible) that has not been

�nished. If � : B [C℄ is atomi
 then the o

urren
e is

de
lared �nished. This ends the stage n + 1 otherwise

we extend the tableau as follows. For ea
h open bran
h

BR through the o

urren
e of � : B [C℄ (under the proviso

the 
onditions to apply the rules hold):

P1 If � : B [C℄ is of the form � : � [C℄ add � : �

1

[C℄ and

� : �

2

[C℄ to the end of BR.

P2 If � : B [C℄ is of the form � : � [C℄ split the end of

BR and add � : �

1

[C℄ to the end of one sub-bran
h

and � : �

2

[C℄ to the end of the other one.

P3 If � : B [C℄ is of the form � : �

i

[C℄ then for all �

0

satisfying the 
ondition of the �

i

-rule add �

0

: �

i

0

[C℄

to the end of BR, after whi
h add a fresh o

urren
e

of � : �

i

[C℄ to the end of BR.

P4 If � : B [C℄ is of the form � : �

i

[C℄ then add �k

i

:

�

i

0

[C℄ to the end of BR. Moreover for � : �

i

[C℄

on the bran
h add �k

i

: �

i

0

[C℄ to the end of BR

(appli
ations of the �

i

-rule)

Having done this for ea
h bran
h BR through the par-

ti
ular o

urren
e of � : B [C℄ being 
onsidered, de
lare

that o

urren
e of � : B [C℄ �nished. This ends stage

n+ 1.

De�nition 4.1. LetX be a set of pre�xed formulae and

C be a 
ondition. We say X is downward-saturated with

respe
t to C i�:

C1 For all �; �

0

2 X, (C1.1) either C

1

(h�; �

0

i; C) or

C

2

(h�; �

0

i; C) and, (C1.2) for all p 2 For

0

, f� : p; �

0

:

:pg � X implies � 6= �

0

.

C2 if � : � 2 X then f� : �

1

; � : �

2

g � X.

C3 if � : � 2 X then either � : �

1

2 X or � : �

2

2 X.

C4 if � : �

i

2 X then for all �

0

in X satisfying the


ondition of the �

i

-rule, we have �

0

: �

i

0

2 X.

C5 if � : �

i

2 X then there is �

0

su
h that �

0

: �

i

0

2 X

and, either C

1

(h�; �

0

i; C) or (for all � : �

i

2 X, �

0

:

�

i

0

2 X).

r

Lemma 4.3. If X is downward-saturated with respe
t

to C then X is K

�

1;2

-satis�able.

Proof: Assume X is downward-saturated wrt C. Let

M = (W;R

1

; R

2

; V ) be the stru
ture su
h that W =

f� : � : B 2 Xg, for all p 2 For

0

V (p) = f� : � : p 2 Xg

and for all �; �

0

in X and i 2 f1; 2g �R

i

�

0

i� either

C

i

(h�; �

0

i; C) or f�

i

0

: � : �

i

2 Xg � fB : �

0

: B 2 Xg.

One 
an easily 
he
k that the de�nition ofM is 
orre
t,

i.e. M is a K

�

1;2

-model. It 
an be shown by indu
tion

on the stru
ture of the formulae that for every formula

B and every pre�x �, if � : B 2 X then M; � j= B (and

therefore X is K

�

1;2

-satis�able). Q.E.D.

Proposition 4.4. (
ompleteness) If A is K

�

1;2

-valid then

A has a 
losed tableau built with the rules presented in

Figure 2.

Proof: Suppose A has no 
losed pre�xed tableau. So the

systemati
 pro
edure does not generate a 
losed tableau.



We build a tableau with this pro
edure by 
onsider-

ing 0 : :A [h;; ;i℄ at the root. If the pro
edure termi-

nates then the tableau 
ontains a non-
losed bran
h. If

the pro
edure does not terminate, by K�onig's Lemma,

there is an in�nite non-
losed bran
h. The systemati


pro
edure guarantees that the non-
losed bran
h BR is

downward-saturated wrt some C. By Lemma 4.3, BR is

K

�

1;2

-satis�able. Sin
e 0 : :A 2 BR, there is a K

�

1;2

-model

M and a world w su
h that M; w j= :A, whi
h leads to

a 
ontradi
tion. Q.E.D.

In the systemati
 pro
edure, we require that if � : B

is a 
on
lusion of some inferen
e of the �

i

-rule and if an

o

urren
e of � : B has already been introdu
ed on the

bran
h then no new o

urren
e is added on the bran
h.

The systemati
 pro
edure still guarantees 
ompleteness

but it terminates sin
e the �

i

-rule 
an be applied only a

�nite number of times. A
tually, ea
h �

i

-rule is applied

at most mw

i

(A) � 2


ard(fB;:B:B subformula of Ag)

times on

a bran
h where mw

i

(A) is the number modal operators

of the form [i℄ or hii o

urring in A. The other rules

do not introdu
e new pre�xes whi
h guarantees termi-

nation sin
e their appli
ations are restri
ted (while in-

suring 
ompleteness). The systemati
 pro
edure above

is therefore a de
ision pro
edure for the L([R℄; [�R℄)-

validity problem.

5 Tableaux for L([6=℄)

For any �nite set X of pairs we write X(a; b) to denote

that ha; bi belongs to the smallest equivalen
e relation


ontaining X. The rules for L([ 6=℄) are those for K

�

1;2

ex
ept that the �

1

-rule be
omes

� : �

1

[C℄

�k

1

: �

1

0

[hC

1

; C

2

[ fh�; �k

1

igi℄

new k 2 ! on the bran
h

and the restri
ted 
ut rule is repla
ed by:

�

00

: A [C℄

�

00

: A [hC

1

[ fh�; �

0

ig; C

2

i℄ j �

00

: A [hC

1

; C

2

[ fh�; �

0

igi℄

�; �

0

o

ur on the bran
h and neither C

1

(h�; �

0

i; C) nor

C

2

(h�; �

0

i; C) holds.

The de�nitions of C

1

and C

2

are modi�ed as follows:

C

1

(h�; �

0

i; C) holds i� either C

1

(�; �

0

) holds or � = �

0

and C

2

(h�; �

0

i; C) holds i� there exist �

1

and �

0

1

su
h

that fh�

1

; �

0

1

i; h�

0

1

; �

1

ig \ C

2

6= ;, C

1

(h�; �

1

i; C) and

C

1

(h�

0

; �

0

1

i; C). For instan
e C

1

(h�; �

1

i; C) 
an be inter-

preted by \� and �

1

are equal modulo C". A bran
h is


losed if there exist pre�xed formulae � : A and �

0

: :A

on that bran
h su
h that C

1

(h�; �

0

i; C) holds. This 
al-


ulus for L([ 6=℄) strongly di�ers from the one in

[

Demri,

1996

℄

due to the ma
hinery asso
iated to C and to the

restri
ted 
ut rule.

Theorem 5.1. (soundness and 
ompleteness) A for-

mula A is L([ 6=℄)-valid i� A has a 
losed tableau built

with the rules for L([ 6=℄).

In order to provide a de
ision pro
edure for L([ 6=℄) it is

suÆ
ient to 
onsider the de
ision pro
edure in Se
tion 4

adequately modi�ed for L([ 6=℄) ex
ept that the following


onditions are required to apply the �

1

-rule:

�1 it is not possible to apply the restri
ted 
ut rule

(that is the restri
ted 
ut rule is saturated before

applying the �

1

-rule),

�2 there is no �

0

: �

1

0

on the bran
h su
h that

C

2

(h�; �

0

i; C),

�3 there are no �

1

: �

1

0

and �

2

: �

1

0

on the bran
h su
h

that C

2

(h�

1

; �

2

i; C).

It is possible to show that the 
al
ulus is sound and 
om-

plete and the systemati
 pro
edure de�ned above always

terminates (ea
h formula �

1

o

urring in :A 
an be used

at most twi
e as a premise of a �

1

-rule inferen
e on a

given bran
h). A
tually, at most 1+2�mw(A) di�erent

pre�xes 
an o

ur on a given bran
h where mw(A) is the

so-
alled modal weight of A, i.e. the number of modal

operators o

urring in A. Hen
e the above systemati


pro
edure 
onstru
ts a polynomial-size L([ 6=℄)-model for

:A (with respe
t to the size of A) if A is not L([ 6=℄)-valid.

6 Tableaux for K

I

([6=℄)

The 
onditions C

1

and C

2

are de�ned as in Se
tion 5

as well as the 
losure 
onditions. The tableaux rules

for K

I

([ 6=℄) are given in Figure 3. Let X be a set

of pre�xed formulae having the same 
ondition C and

M = (W; (R

i

)

i2I

; V ) be a K

I

([ 6=℄)-model. By an inter-

pretation of X in M we mean a mapping I : f� : � :

A 2 Xg !W su
h that if �; �

0

o

ur in X, then

� �

0

= �k

i

for some k

i

implies hI(�); I(�

0

)i 2 R

i

,

� C

1

(h�; �

0

i; C) implies I(�) = I(�

0

) and C

2

(h�; �

0

i; C)

implies I(�) 6= I(�

0

).

Lemma 4.1 
an be shown to hold for K

I

([ 6=℄) asso
i-

ated with the 
al
ulus presented in Figure 3: if A has a


losed tableau built with the rules in Figure 3 then A is

K

I

([ 6=℄)-valid. We also use the systemati
 pro
edure de-

�ned in Se
tion 4.2 (with the binary restri
ted 
ut rule)

ex
ept that (P4) is repla
ed by:

P4

0

If � : B [C℄ is of the form � : �

i

[C℄ with i 6= 1

(resp. � : �

1

[C℄) then add �k

i

: �

i

0

[C℄ (resp. �k

1

:

�

1

0

[hC

1

; C

2

[ fh�; �k

1

igi℄) to the end of BR.

Similarly, we say X is downward-saturated wrt C i�:

C1

0

For all �; �

0

2 X, (C1

0

.1) C

1

(h�; �

0

i; C) i� not

C

2

(h�; �

0

i; C) (note the di�eren
e with C1.1 in Se
-

tion 4) and, (C1

0

.2) for all p 2 For

0

, f� : p; �

0

:

:pg � X implies C

2

(h�; �

0

i; C).

- Conditions C2,C3 from Se
tion 4.2 and C4 for i 6= 1



� : �

i

[C℄

�k

i

: �

i

0

[C℄

�

i

�rule; new k 2 !; i 2 I n f1g

� : �

1

[C℄

�k

1

: �

1

0

[hC

1

; C

2

[ fh�; �k

1

igi℄

�

1

�rule; new k 2 !

� : �

i

[C℄

�

0

: �

i

0

[C℄

�

i

�rule; i 2 I n f1g

if there exist �

1

; �

1

k

i

on the bran
h su
h that C

1

(h�; �

1

i; C)

and C

1

(h�

0

; �

1

k

i

i; C).

� : �

1

[C℄

�

0

: �

1

0

[C℄

�

1

�rule; if C

2

(h�; �

0

i; C)

�

00

: A [C℄

�

00

: A [hC

1

[ fh�; �

0

ig; C

2

i℄ j �

00

: A [hC

1

; C

2

[ fh�; �

0

igi℄

�; �

0

on the bran
h and neither C

1

(h�; �

0

i; C) nor C

2

(h�; �

0

i; C)

holds.

Figure 3: Tableaux system for K

I

([ 6=℄)

C5

0

if � : �

i

2 X with i 6= 1 then there exist �

0

: �

i

0

2 X

and �k

i

in X su
h that C

1

(h�

0

; �k

i

i; C).

C6 if � : �

1

2 X then for all �

0

in X su
h that

C

2

(h�; �

0

i; C), we have �

0

: �

1

0

2 X

C7 if � : �

1

2 X then there is �

0

su
h that �

0

: �

1

0

2 X

and C

2

(h�; �

0

i; C).

Lemma 6.1. If X is downward-saturated wrt C then X

is K

I

([ 6=℄)-satis�able.

Proof: Assume X is downward-saturated wrt C. Let

M = (W; (R

i

)

i2I

; V ) be the stru
ture su
h that,

� W = fj�j : � : B 2 Xg where

j�j = f�

0

: � : B 2 X; C

1

(h�; �

0

i; C)g.

� for all p 2 For

0

V (p) = fj�j : � : p 2 Xg.

� R

1

= dif

W

and for all �; �

0

inX, j�jR

i

j�

0

j (i 6= 1) i�

9�

1

; �

1

k

i

in X; C

1

(h�; �

1

i; C) and C

1

(h�

0

; �

1

k

i

i; C).

M is a K

I

([ 6=℄)-model. It 
an be shown (by indu
tion

on B) that if � : B 2 X then M; j�j j= B. Q.E.D.

Proposition 6.2. (
ompleteness) If A is K

I

([ 6=℄)-valid

then A has a 
losed pre�xed tableau built with the rules

presented in Figure 3.

In order to obtain a de
ision pro
edure, take the system-

ati
 pro
edure, in
orporate the restri
tions �1, �2 and �3

from Se
tion 5 and for i 6= 1, add the following restri
-

tion to the �

i

-rule: there is no �

0

: �

i

0

on the bran
h su
h

that C

1

(h�k

i

; �

0

i; C) holds for some k 2 !.

7 Con
luding remarks

The use of pre�xes for tableaux systems dedi
ated to

modal logi
s has been thoroughly developed in

[

Fit-

ting, 1983

℄

whereas our treatment of the 
ondition C

(see e.g. Se
tions 4, 5, 6) 
an be viewed as a means

to parametrize our 
al
uli by the theory of the a

es-

sibility relations. Hen
e, the idea of theory resolution

[

Sti
kel, 1985

℄

in whi
h a theory is separately dealt with

from the rest of the 
al
ulus is present in our 
al
uli.

This idea is not new in the realm of the me
haniza-

tion of modal logi
s (see e.g.

[

Fris
h and S
herl, 1990;

Gent, 1993

℄

) but the originality of our work is related to

the 
onditions satis�ed by the a

essibility relations of

the models.

The se
ond important feature of our 
al
uli is the use

of a restri
ted 
ut rule. Re
ently, various works have

tamed the 
ut rule for 
al
uli dedi
ated to modal logi
s

(see e.g.

[

d'Agostino, 1993; Governatori, 1995

℄

). How-

ever our 
al
uli do not have a 
ut rule with a bran
hing

for formulae. In that sense, the 
ut rule in our 
al
uli is

even more restri
ted than the one in

[

Governatori, 1995

℄

.

We have de�ned sound and 
omplete pre�xed tableaux


al
uli for the logi
s L([R℄; [�R℄), and K

I

([ 6=℄) (also for

K

I

and L([ 6=℄)) and de
ision pro
edures have been de-

signed from these systems. It is worth noting that the

expressive power of the modal logi
s with enri
hed lan-

guages is attra
tive in the Arti�
ial Intelligen
e 
ommu-

nity sin
e for instan
e the operator [ 6=℄ has already been

shown to be useful to reason about time

[

Sain, 1988;

Koymans, 1992

℄

or spa
e

[

Balbiani et al., 1997

℄

.

Future work 
ould be oriented towards the in
orpora-

tion of our 
al
uli into existing tableaux-based theorem

provers for modal logi
s and towards the de�nition of

other pre�xed tableaux for modal logi
s with enri
hed

languages in
luding for instan
e, the logi
s in the paper

where standard 
onditions for the a

essibility relations

are required -re
exivity, symmetry, : : :.
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