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Prefixed Tableaux Systems for Modal Logics with Enriched Languages*

Philippe Balbiani

Laboratoire d’informatique de Paris-Nord,

Avenue Jean-Baptiste Clément,
93430 Villetaneuse, France.

Abstract

We present sound and complete prefixed
tableaux systems for various modal logics with
enriched languages including the “difference”
modal operator [#] and the “only if” modal op-
erator [—R]. These logics are of special interest
in Artificial Intelligence since their expressive
power is higher than the standard modal logics
and for most of them the satisfiability problem
remains decidable. We also include in the paper
decision procedures based on these systems. In
the conclusion, we relate our work with similar
ones from the literature and we propose exten-
sions to other logics.

1 Introduction

The definition of logical formalisms that model cognitive
and reasoning processes has been always confronted to
two issues: how to decrease the expressive power of ex-
isting untractable logics in order to obtain tractable frag-
ments and how to increase the expressive power of de-
cidable logics while preserving decidability - this includes
for instance the extension of known decidable fragments
of the classical logic. These fragments include various
modal logics (see e.g. [Hughes and Cresswell, 1984])
if one translates them in the standard way to classical
logic. The modal logics have been recognized in the Ar-
tificial Intelligence community as serious candidates to
capture different aspects of reasoning about knowledge
(see e.g. [Fagin et al., 1995]). However the standard
modal logics have a restricted expressive power (for in-
stance the class of irreflexive frames is not definable by
a modal formula of the logic K).

That is why in the literature various modal logics with
enriched languages have been defined. Most of the work
done for these logics has been dedicated to study their
expressive power (see e.g. [Goranko and Passy, 1992;
Rijke, 1993]). In the paper our aim is to analyze var-
ious features related to the mechanization of numerous
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modal logics with enriched languages. To do so, we de-
fine prefixed tableaux which are known to be close to
the semantics of the logics and they allow a user-friendly
presentation of the proofs. Moreover, the use of prefixes
(see e.g. [Fitting, 1983; Wallen, 1990; Massacci, 1994;
Governatori, 1995]) is known to take advantage of the
computational features of the logics. Namely, each pre-
fix occurring at some stage of the proof contains some
information about part of the current proof. However
we ignore whether a matrix characterization of the log-
ics treated herein exist in order to avoid some redundan-
cies in the tableaux proof search -notational redundancy,
irrelevance and non-permutability [Wallen, 1990].

The logics treated in the paper contain various oper-
ators that differ from the standard necessity operator O
(also noted [R]):

e the difference operator [#] that allows to access to
the worlds different from the current world (see
e.g. applications of its use in [Segerberg, 1981;
Sain, 1988; Koymans, 1992; Rijke, 1993])

e the complement operator [—R] that allows to access
to the worlds not accessible from the current world
(see e.g. [Humberstone, 1983; Goranko, 1990a;
Levesque, 1990; Lakemeyer, 1993])

e and by a side-effect the universal operator [U] that
allows to access to any world of the model (see e.g.
[Goranko and Passy, 1992]). [U]A can be defined
in various ways: for instance [U]A =gy A A [#]A or
[U]a =def [R]A A [—R]A.

Adding these operators to standard modal logics can
significantly increase their expressive power. For in-
stance every finite cardinality is definable in a modal
logic whose language contains [#] [Koymans, 1992].
Most of the logics dealt with in the paper have a decid-
able satisfiability problem and we shall provide decision
procedures based on our systems. However because of
the expressive power of the logics our calculi have two
original features: a current information C is associated
to each branch of a tableau and a restricted cut rule
is included in various calculi that can be viewed as a
modal variant of the cut rule in the d’Agostino’s calculi
[d’Agostino, 1993).



The rest of the paper is structured as follows. Sec-
tion 2 presents the logics considered in the paper. The
sections 3, 4, 5 and 6 present the calculi for the various
logics as well as the decision procedures. Because of lack
of space we have omitted part of the proofs as well as
the possible extensions where the accessibility relations
satisfy standard conditions (reflexivity, symmetry, tran-
sitivity, ...). Section 7 compares our calculi with existing
ones for other modal logics and concludes the paper by
presenting possible extensions.

2 Enriched multi-modal logics
2.1 Syntax and semantics

A modal language L is determined by three sets that are
supposed to be pairwise disjoint: a set Forg = {p,q,...}
of propositional variables, a set {—, A} of propositional
operators (the connectives V, =, < are defined as for the
propositional calculus) and a (possibly finite) countable
set OP = {[i] : i € I} of modal operators. The set of
formulae For of the language L is defined by the following
grammar: A == p| —A| AAB| @A where p € Fory,
A B € For and & € OP. In the sequel we assume that
OP is finite and as usual (i)A =g4.; —[i]-A. A frame
is a structure (W, (R;);cr) where W is a non-empty set
of worlds (sometimes also called knowledge states) and
(R;)icr is a family of binary relations on W. A model
M is a structure (W, (R;)icr, V) where (W, (R;)icr) is
a frame and V is mapping Forq — P(W), the power
set of W. For each set W, we write idy (resp. difw)
to denote the binary relation {(w,w) : w € W} (resp.
W x W\ idw). Let M = (W,(R;)ier,V) be a model.
As usual, we say that a formula A is satisfied by the
world w € W (denoted by M, w |= A) when the following
conditions are satisfied:

e M,w=piff we V(p) for all p € Fory,

e M,w = -4 iff not M,w [ A,

e M,wE=AABIff M,w [ A and M,w [ B,

e M,w = [i]A iff for all w' € W such that (w,w’) €
R;, we have M,w' = A.

In the sequel by a logic £ we understand a pair (For, S)
such that For is a set of formulae from a given language
and S is a set of models. A formula A is said to be L-valid
iff for all models M € S and all w € W, M,w E A. A
formula A is said to be L-satisfiable iff —A is not L-valid.

2.2 Logics in the paper

In the paper we shall consider numerous logics that ad-
mit interactions between the modal operators:

1. K; = (For,S) is the logic such that S is the set
of all the models. The K-satisfiability problem is
PSPACE-complete (see e.g. [Fagin et al., 1995]).

2. L([R],[—R]) = (For,S) (see e.g. [Goranko, 1990a])
is the logic such that I = {1,2} and M =
(W,Ry1,R2,V) € Siff Ry =W x W\ Ry. The satis-
fiability problem is decidable and EXPTIME-hard
[Spaan, 1993]. Similar modal logics are considered
in the context of knowledge representation and rea-
soning (see e.g. [Lakemeyer, 1993]).

3. L([#]) = (For,S) (see e.g. [Segerberg, 1981]) is the
logic such that I = {1} and M = (W,R;,V) € S
iff Ry = difw. The L([#])-satisfiability problem is
NP-complete when Fory is infinite and in P other-
wise (see e.g. [Spaan, 1993; Demri, 1996]).

4. K1([#]) = (For,S) is the logic such that 1 € I
(a distinguished element of I), card(I) > 2 and
M = (VV, (Ri)iela V) € S iff Ry = difw. Axiomati-
zation of K ([#]) has been studied in [Rijke, 1993;
Balbiani, 1997]. For I = {1,2}, the K;([#])-
satisfiability problem is decidable and EXPTIME-
complete [Rijke, 1993].

The models for L([R],[—R]) satisfy (x) Ry = W x W'\
Ry. If we require (%) Ry = dify then [2]A < A is valid
in this new logic. L([#]) can be seen as L([R],[—R])
except that the models satisfy (x) and (xx) and only [1]
is in the language. Moreover, K ([#]) is obtained from
L([#]) by adding the operators {[7] : ¢ € I\ {1}} that
behave as in K;. The notion of complementary relations
is therefore crucial in the semantics of the logics.

It is not the purpose of this section to recall all
the features of the expressive power of the abovemen-
tioned logics (see e.g. [Goranko, 1990a; Koymans, 1992;
Rijke, 1993]). By way of example we consider the logic
K([#]) with I = {1,2}. As usual, a class F of frames
(W, Ry, R2) is said to be K[ ([#])-definable iff there exists
a K ([#])-formula A such that for all frames (W, Ry, Rz),
(W, Ry, Ry) € F iff (W,Ry,Rs) = A (ie. for all valua-
tions V and all w € W, (W, Ry, R, V), w = A). A sim-
ilar notion of definability can be naturally defined for
other logics.

Fact 2.1. [Goranko, 1990b; Koymans, 1992]
e All universal first-order conditions on R,= are
K([#])-definable.
e Every finite cardinality is £([#])-definable.
e Each wuniversal first-order
L([R], [-R])-definable.

The statements of Fact 2.1 do not hold for the logic
K;: for example the class of irreflexive frames is not
K -definable.

formula on R is

3 Tableaux for K;

The calculus defined for K; in this section can be eas-
ily obtained from existing ones in the literature (see e.g.



o:alC]
o:ar [C]
o:az [C]
o 6]
o: P [Cl|o: B2 [C]

a—rule

B—rule

o7 [C) ,
——— w'—rule, new k € w on the branch
ok' : m [C]
o: v [C] ol
o 1 [C] v'—rule

if ¢’ is already on the branch and for some k € w, ¢’ = ok.

Figure 1: Tableaux system for K

[Fitting, 1983]) but it will be the opportunity to intro-
duce various definitions smoothly.

We shall define prefixed tableaux following the
methodology described in [Fitting, 1983]. We make sub-
stantial use of the uniform notation for modal formulae
defined in [Fitting, 1983]. Four types of formulae are
usually distinguished: v (necessity), 7 (possibility), «
(conjunction) and S (disjunction). For ¢ € I, we intro-
duce the types v* and 7*. For instance, —(i)A and [i]A
are of type v* (1§ denotes the formulae —A and A respec-
tively) and —[i]A and (i)A are of type 7w (7§ denotes the
formulae —A and A respectively).

A prefixed formula is a triple of the form o : A [C]
where ¢ is a prefiz, i.e. ¢ is a finite sequence of natural
numbers possibly superscripted by some ¢ € I, A is a
formula and C is a couple {C1,Cs). Each C; is a set of pairs
of prefixes. When the context is clear we omit o or [C].
The condition C is the current information on the branch
that is stored during its development. At each step of
the development of a branch, C is identical for all the
prefixed formulae on that branch, i.e. C is an attribute
for branches. We refer to a prefixed formula as atomic
if it is of the form o : p [C] or o : —p [C] when p is an
atomic formula. Figure 1 presents the prefixed tableau
system for the logic K;. Observe that the condition [C]
is of no use in this calculus.

In the sequel we omit the presentation of the a-rule
(decomposition of conjunctions) and the S-rule (decom-
position of disjunctions) but these rules are included in
any forthcoming calculus. A branch is closed if it con-
tains contradictory prefixed formulae (for any formula A,
o : A and o : —A are contradictory). A tableau is closed
if every branch is closed. A formula A is said to have a
closed tableau iff there is a closed tableau which root is
0 : —A [(#,0)]. Termination occurs when no operation
is possible. A branch is open if it is not closed and a
tableau is open if at least one branch is such.

Theorem 3.1. A formula A is K;-valid iff A has a closed

oV [C] .
) u’—rule, xS {1,2}

o 11 [C]

if C;({o,0'),C) holds and ¢’ already occurs on the branch.

o7 [C]

————— 7' —rule, new k € w on the branch
ok’ : mp [C]

if there is no ¢’ such that o' : 7y on the branch and either
Ci({o,0"),C) or (for all o : v* on the branch, ¢’ : v is on the
branch).

"’ A [C]
" A[C' o A[C"] 0" A [C"]

0,0’ not already applied with this rule

Figure 2: Tableaux system for K,

tableau built with the rules presented in Figure 1.

The proof of Theorem 3.1 can be easily obtained from
existing ones from the literature [Fitting, 1983].

4 Tableaux for L([R],[—R])

Instead of defining a sound and complete calculus for
the logic L([R],[—R]) we define a sound and complete
calculus for the logic K;, (I = {1,2}) characterized by
the models (W, Ry, Ro,V) where Ry U Ry = W x W
(we do not require By N Ry = 0). It is known that
L([R],[-R]) and K, , have the same class of valid for-
mulae [Goranko, 1990a] and we shall provide a decision
procedure for the set of K ,-valid formulae based on
our tableaux approach. Actually from the calculus for
K|, the careful reader will observe that a calculus for
L([R], [~ R]) can be easily defined. However the calculus
for Ky, is more adequate to define a decision procedure.

The rules for the logic K , are those in Figure 2 where

o (' = <Cl U {<‘77 0J>}7CQ>7 "= <Cl762 U {<‘77 0J>}>7

o (" ={(CrU{{0o,0")},C2U{(0,0)}).
For the logic Ky, C;({(o,0),C) holds (i € {1,2}) iff ei-
ther (o,0') € C; or o' = ok® for some k € w. Intuitively,
C; encodes the accessibility relation R;. The condition
C could be deleted in the definition of the calculus since
it only stores some information about the way the rules
have been applied on the branch. However, if one wishes
to implement our calculi, the actual presentation is well-
suited for this purpose. For instance the v-rule can be
read as follows. If the formula o : v occurs on the
branch and if the current information on the branch is
C then add ¢’ : v} on the branch and C remains un-
changed. It is worth observing that the cut rule cannot
be deleted unless completeness is lost. This property
is also shared by the cut rule in the calculi defined in



[d’Agostino, 1993]. It is also worth noting that the con-
dition of the restricted cut rule in Figure 2 is equivalent
to: either not Cy({c,c’),C) or not C3({(c,c’),C). More-
over, by applying the restricted cut rule, the current in-
formation C on the branch is updated.

4.1 Soundness

Let X be a set of prefixed formulae having the same con-
dition C (what happens at a current stage of the devel-
opment of a given branch). Let M = (W, Ry, R2, V') be
a K y-model. By an interpretation of X in M we mean
a mapping Z : {o : 0 : A € X} — W such that if o,0’
occur in X, then C;({o,0’),C) implies (Z(0),Z(c")) € R;
(i = 1,2). We say that X is K ,-satisfiable under the
interpretation T if for each o : A € X, M,I(c) E A
We say that X is K ,-satisfiable if X is K ,-satisfiable
under some interpretation. We say that a branch of a
tableau is K ,-satisfiable if the set of prefixed formulae
on it is K ,-satisfiable. A tableau is K| ,-satisfiable if
some branch is.

Lemma 4.1. Suppose T is a prefixed tableau that is
K| ;-satisfiable. Let T’ be the tableau that results from
a single tableau rule being applied to T. Then T’ is also
K ,-satisfiable.

Proof: By an easy verification. Q.E.D.

Proposition 4.2. (soundness) If A has a closed tableau
built with the rules in Figure 2 then A is K| 5-valid.

Proof: Similar to the proof of Theorem 3.2 in [Fitting,
1983] (p.400). Q.E.D.

4.2 Completeness

Let A be a formula. As done in [Fitting, 1983], we de-
fine a systematic attempt to produce a proof of A. The
procedure is in stages and the stage 1 consists in plac-
ing 0 : —A [(D,0)] at the root. Now suppose n stages of
the construction have been done. If the tableau is closed
then we stop. Similarly if every occurrence of a pre-
fixed formula is finished (see the definition of ’finished’
below) then we stop. Otherwise we go on. If n + 1 is
even, 0,0’ satisfies the condition of the cut rule on some
open branch BR (chosen in some fair way) and (o, o’} is
the smallest pair (for some encoding in the set of nat-
ural numbers w) satisfying this property then split the
end of branch BR in three sub-branches by applying the
restricted cut rule with (o,0’). Otherwise (n 4+ 1 odd)
any stage n + 1 consists in choosing an occurrence of a
prefixed formula o : B [C] as high up in the tree as possi-
ble (as close to the origin as possible) that has not been
finished. If ¢ : B [C] is atomic then the occurrence is
declared finished. This ends the stage n + 1 otherwise
we extend the tableau as follows. For each open branch
BR through the occurrence of o : B [C] (under the proviso
the conditions to apply the rules hold):

P1 If o : B[C] is of the form o : a [C] add o : a3 [C] and
o : ag [C] to the end of BR.

P2 If o : B [C] is of the form o : 3 [C] split the end of
BR and add o : 51 [C] to the end of one sub-branch
and o : B2 [C] to the end of the other one.

P3 If o : B [C] is of the form ¢ : v* [C] then for all o’
satisfying the condition of the v*-rule add o’ : v [C]
to the end of BR, after which add a fresh occurrence
of o : v* [C] to the end of BR.

P4 If o : B [C] is of the form o : 7* [C] then add ok® :
75 [C] to the end of BR. Moreover for o : v¢ [C]
on the branch add ok’ : v} [C] to the end of BR
(applications of the vi-rule)

Having done this for each branch BR through the par-
ticular occurrence of o : B [C] being considered, declare
that occurrence of ¢ : B [C] finished. This ends stage
n+ 1.

Definition 4.1. Let X be a set of prefixed formulae and
C be a condition. We say X is downward-saturated with
respect to C iff:

Cl For all 0,0/ € X, (C1.1) either Ci({(c,0'),C) or
C2((o,0"),C) and, (C1.2) for all p € Forg, {0 : p,o’:
—p} C X implies o # o'.

C2ifo:a€ X then {o:a;,0: a2} C X.

C3 ifo: € X then eithero: 31 € X oro: 3y € X.

C4 if o : v* € X then for all ¢’ in X satisfying the
condition of the v'-rule, we have o’ : v/ € X.

C5 if o : 7° € X then there is o’ such that o’ : 7y € X
and, either C1((0,0"),C) or (forallo : v' € X, o :
v, € X).

\4

Lemma 4.3. If X is downward-saturated with respect
to C then X is K| ,-satisfiable.

Proof: Assume X is downward-saturated wrt C. Let
M = (W, Ry, R3,V) be the structure such that W =
{o:0:Be X}, forallp eForg V(p)={c:0:p€ X}
and for all o,0’ in X and i € {1,2} oR;0’ iff either
Ci((o,0"),C)or {vp:0: v € X} C{B:0' :Be X}.
One can easily check that the definition of M is correct,
Le. M is a Ky,-model. It can be shown by induction
on the structure of the formulae that for every formula
B and every prefix o, if o : B € X then M, 0 |= B (and
therefore X is K ,-satisfiable). Q.E.D.

Proposition 4.4. (completeness) If A is K ,-valid then
A has a closed tableau built with the rules presented in
Figure 2.

Proof: Suppose A has no closed prefixed tableau. So the
systematic procedure does not generate a closed tableau.



We build a tableau with this procedure by consider-
ing 0 : —A [(0,0)] at the root. If the procedure termi-
nates then the tableau contains a non-closed branch. If
the procedure does not terminate, by Konig’s Lemma,
there is an infinite non-closed branch. The systematic
procedure guarantees that the non-closed branch BR is
downward-saturated wrt some C. By Lemma 4.3, BR is
K7 ,-satisfiable. Since 0 : —A € BR, there is a K ,-model
M and a world w such that M, w = —A, which leads to
a contradiction. Q.E.D.

In the systematic procedure, we require that if o : B
is a conclusion of some inference of the vi-rule and if an
occurrence of ¢ : B has already been introduced on the
branch then no new occurrence is added on the branch.
The systematic procedure still guarantees completeness
but it terminates since the 7’-rule can be applied only a
finite number of times. Actually, each 7i-rule is applied
at most me(A) X ZCard({B,—‘B:B subformula of A}) times on
a branch where mw?(A) is the number modal operators
of the form [i] or (i) occurring in A. The other rules
do not introduce new prefixes which guarantees termi-
nation since their applications are restricted (while in-
suring completeness). The systematic procedure above
is therefore a decision procedure for the L([R],[—R])-
validity problem.

5 Tableaux for L([#])

For any finite set X of pairs we write X (a,b) to denote
that (a,b) belongs to the smallest equivalence relation
containing X. The rules for £([#]) are those for K,

except that the 7'-rule becomes

o [C]
okl : Wé [(C1,C2 U{(o,0k")})]

new k € w on the branch

and the restricted cut rule is replaced by:

a" 1A [C]
o" A [(CrU{(o,0)},Ca)] | 0" : A [{Cr,Co U {(o,0")})]

0,0’ occur on the branch and neither C;({c,0’),C) nor
Ca2({o,0"),C) holds.

The definitions of C; and Cy are modified as follows:
C1({o,0'),C) holds iff either Cy(o,c’) holds or ¢ = ¢’
and Ca((o,c’),C) holds iff there exist o3 and o} such
that {(oq,07),(c],01)} N Cs # B, C1({(0,01),C) and
C1({(¢’,01),C). For instance Ci({c,01),C) can be inter-
preted by “o and oy are equal modulo C”. A branch is
closed if there exist prefixed formulae o : A and o’ : —A
on that branch such that C;({o,0’),C) holds. This cal-
culus for £([#]) strongly differs from the one in [Demri,
1996] due to the machinery associated to C and to the
restricted cut rule.

Theorem 5.1. (soundness and completeness) A for-
mula A is £([#])-valid iff A has a closed tableau built
with the rules for L([#]).

In order to provide a decision procedure for £([#]) it is
sufficient to consider the decision procedure in Section 4
adequately modified for £([#]) except that the following
conditions are required to apply the 7!-rule:

pl it is not possible to apply the restricted cut rule
(that is the restricted cut rule is saturated before
applying the 7!-rule),

p2 there is no o’ 7§ on the branch such that
CQ(<07 OJ>7 C)a

p3 there are no oy : 7} and o9 : 7} on the branch such
that C2(<O'1, O'2>, C)

It is possible to show that the calculus is sound and com-
plete and the systematic procedure defined above always
terminates (each formula ! occurring in —A can be used
at most twice as a premise of a mw!'-rule inference on a
given branch). Actually, at most 142 x mw(A) different
prefixes can occur on a given branch where muw(4) is the
so-called modal weight of A, i.e. the number of modal
operators occurring in A. Hence the above systematic
procedure constructs a polynomial-size £([#])-model for
—A (with respect to the size of A) if A is not L£([#])-valid.

6 Tableaux for K;([#])

The conditions C; and C, are defined as in Section 5
as well as the closure conditions. The tableaux rules
for K([#]) are given in Figure 3. Let X be a set
of prefixed formulae having the same condition C and
M = (W, (R;)icr, V) be a K1([#])-model. By an inter-
pretation of X in M we mean a mapping Z : {0 : o :
A € X} — W such that if o, 0" occur in X, then

e o' = ok’ for some k' implies (Z(c),Z(0")) € R;,

e Cy((0,0"),C) implies Z(0) = Z(0') and C3({c,c"),C)

implies Z(o) # Z(c").

Lemma 4.1 can be shown to hold for K;([#]) associ-
ated with the calculus presented in Figure 3: if A has a
closed tableau built with the rules in Figure 3 then A is
K ([#])-valid. We also use the systematic procedure de-
fined in Section 4.2 (with the binary restricted cut rule)
except that (P4) is replaced by:

P4 If o : B [C] is of the form o : 7' [C] with 7 # 1
(resp. o : w* [C]) then add ok' : 7} [C] (resp. ok :
7t [(C1,Co U {{o,0k!)})]) to the end of BR.

Similarly, we say X is downward-saturated wrt C iff:

Cl" For all 0,0/ € X, (C1l'.1) Ci({o,0'),C) iff not
C2((o,0"),C) (note the difference with C1.1 in Sec-
tion 4) and, (C1'.2) for all p € Forg, {0 : p,o’ :
—p} C X implies C3((o,0'),C).

- Conditions C2,C3 from Section 4.2 and C4 for i # 1



o7 [C]
ok’ 7w [C) i
o [C]
ok' i g [(C1,Ca U {{o,0k")})]
o: v [C]

o g [C]

i_rule, new k € w,i € I\ {1}

ml—rule, new k € w

vi—rule, i € T\ {1}

if there exist al_,alki on the branch such that Ci({(c,01),C)
and Ci((d',01k"),C).

o: vt [C] N ] ,
m v —rule, if C2({c,0'),C)

o A [C]
o A [(CLU{(o,0)}, Co)] | 0" : A [(C1, Co U {(o,0") })]

o,0' on the branch and neither C1({c,0’),C) nor C2((c,5"),C)
holds.

Figure 3: Tableaux system for K ([#])

C5' ifo: 7" € X with i # 1 then there exist o/ : 7§ € X
and ok® in X such that Cy({o’,ck?),C).

C6 if 0 : v' € X then for all ¢/ in X such that
C2((0,0"),C), we have o' : 1} € X

C7 if o : 7' € X then there is o’ such that o’ : 7} € X
and Cz({o,0"),C).

Lemma 6.1. If X is downward-saturated wrt C then X
is K([#])-satisfiable.

Proof: Assume X is downward-saturated wrt C. Let
M = (W, (R;)ier, V) be the structure such that,
e W ={|o|:0:Be X} where
lo| ={0¢’:0:Be X,Ci({(c,0"),C)}.
e for all p € Forg V(p) = {|o|:0:p € X}.
e Ry =difw and for all 0,0’ in X, |o|R;|0’| (i # 1) iff
30’1,0’1]€i in X, C1(<U, 0'1>,C) and C1(<0/,01]€i>,6).
M is a K([#])-model. It can be shown (by induction
on B) that if 0 : B € X then M, |o| = B. Q.E.D.

Proposition 6.2. (completeness) If A is Kj([#])-valid
then A has a closed prefixed tableau built with the rules
presented in Figure 3.

In order to obtain a decision procedure, take the system-
atic procedure, incorporate the restrictions pl, p2 and p3
from Section 5 and for ¢ # 1, add the following restric-
tion to the m-rule: there is no o’ : 7} on the branch such
that Cy({ck’,0"),C) holds for some k € w.

7 Concluding remarks

The use of prefizes for tableaux systems dedicated to
modal logics has been thoroughly developed in [Fit-
ting, 1983] whereas our treatment of the condition C

(see e.g. Sections 4, 5, 6) can be viewed as a means
to parametrize our calculi by the theory of the acces-
sibility relations. Hence, the idea of theory resolution
[Stickel, 1985] in which a theory is separately dealt with
from the rest of the calculus is present in our calculi.
This idea is not new in the realm of the mechaniza-
tion of modal logics (see e.g. [Frisch and Scherl, 1990;
Gent, 1993]) but the originality of our work is related to
the conditions satisfied by the accessibility relations of
the models.

The second important feature of our calculi is the use
of a restricted cut rule. Recently, various works have
tamed the cut rule for calculi dedicated to modal logics
(see e.g. [d’Agostino, 1993; Governatori, 1995]). How-
ever our calculi do not have a cut rule with a branching
for formulae. In that sense, the cut rule in our calculi is
even more restricted than the one in [Governatori, 1995].

We have defined sound and complete prefixed tableaux
calculi for the logics L([R],[—R]), and K([#]) (also for
K; and L([#])) and decision procedures have been de-
signed from these systems. It is worth noting that the
expressive power of the modal logics with enriched lan-
guages is attractive in the Artificial Intelligence commu-
nity since for instance the operator [#] has already been
shown to be useful to reason about time [Sain, 1988;
Koymans, 1992] or space [Balbiani et al., 1997].

Future work could be oriented towards the incorpora-
tion of our calculi into existing tableaux-based theorem
provers for modal logics and towards the definition of
other prefixed tableaux for modal logics with enriched
languages including for instance, the logics in the paper
where standard conditions for the accessibility relations
are required -reflexivity, symmetry, .. ..
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