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Abstract. We characterize the computational complexity of simple de-
pendent bimodal logics. We define an operator ©¢ between logics that
almost behaves as the standard joint operator & except that the in-
clusion axiom [2]p = [l]p is added. Many multimodal logics from the
literature are of this form or contain such fragments. For the standard
modal logics K,T,B,54 and S5 we study the complexity of the satis-
fiability problem of the joint in the sense of ©c. We mainly establish
the PSPACE upper bounds by designing tableaux-based algorithms in
which a particular attention is given to the formalization of termination
and to the design of a uniform framework. Reductions into the packed
guarded fragment with only two variables introduced by M. Marx are also
used. E. Spaan proved that K ©c S5 is EXPTIME-hard. We show that
for (£1, L2) € {I, T, B} x {54, S5}, L1 ®¢ L2 is also EXPTIME-hard.

1 Introduction

Combining logics The combination of modal logics has deserved in the past
years a lot of attention (see e.g. [12,15,21, 16,2, 24]) and this is an exciting area.
Indeed, not only there are many ways to combine logics (fusion, product, .. .) but
also many properties of the combined logics deserve to be studied (completeness,
compactness, finite model property, interpolation, decidability, complexity, . .. ).
In this paper, we are mainly concerned with computational complexity issues
and as a side-effect with the design of tableaux-based decision procedures. The
simplest way to combine two logics is to take their fusion, that is to obtain a
bimodal logic which has no axioms that use both of the operators. For two normal
modal logics £1 and L2, we write £1 @ L5 to denote the smallest bimodal logic
with two independent modal operators, say [1] and [2]. The complexity of such
logics has been analyzed in [19] and from [22,18], we know that for instance
the logics K @& K, S5 & S5, 54 ¢ S5 and K ¢ S5 have PSPACE-complete
satisfiability problems.

Other combinators for modal logics are relevant (see e.g. [15,16]). We write
L1®c Lo to denote the smallest bimodal logic containing £1 @ £ and the axiom
schema [2]p = [1]p. It is not very difficult to design new operators since each re-
cursive set of bimodal formulae potentially induces a way to combine two logics.
The fusion operator @ is simply associated to the empty set of formulae. In the
paper, we investigate the complexity of bimodal logics obtained from monomodal



logics by application of @¢. To be more precise, we adopt a semantics-oriented
definition since we define an operator ©¢c on classes of monomodal frames. The
logics of the form £; @©¢c L2 are said to be simple dependent bimodal logics.
For instance, adding a universal modal operator to certain monomodal logics
corresponds exactly to operating with ¢¢. Unlike &, ¢¢ does not preserve de-
cidability since by [30], a Horn modal logic whose satisfiability is in NP, is shown
to be undecidable when extended with the universal modal operator. Complexity
neither transfers. Indeed, K ®¢c S5 has an EXPTIME-hard satisfiability prob-
lem [30] although K-satisfiability is PSPACE-complete and Sb-satisfiability is
NP-complete [22]. In this paper, we analyze the complexity of the logics £1®¢ Lo
for £1,L£, € {K,T, B, S4,55}. To establish the PSPACE upper bounds, we de-
sign Ladner-like algorithms [22,18,31] (see also [20, 26, 35] for proof-theoretical
analyses) that are known to be close to tableau-based procedures. We invite the
reader to consult [8] for understanding how the semantical analysis in [22] can
be given a proof-theoretical interpretation. Furthermore, the (semantical) anal-
ysis developed in the paper can be plug into a labelled tableaux calculus for the
logics. Actually, such a calculus is not difficult to define for such logics following
for instance [1].

One may wonder why the operator ©¢ deserves some interest. After all, any
bimodal formula generates an operator on logics. Actually, many logics can be
explained in terms of G¢c. Below are few examples:

— the propositional linear temporal logic PLTL with future F and next X:
PLTL-satisfiability is PSPACE-complete whereas the fragment with F' only
[resp. with X only] is in NP [29];

— the logic S44-5 is shown to have a satisfiability problem equal to the satisfi-
ability problem for S5 &¢ S4 [33];

— many other logics have valid formulae of the form [2]p = [1]p, from epistemic
logics to provability bimodal logics (see e.g. [36]) passing via variants of
dynamic logic approximating the Kleene star operator [7];

— information logics derived from information systems (see e.g. [34]).

Our contribution. The technical contribution of the paper is to characterize the
computational complexity of the satisfiability problem for the logics £1 &¢c L2
with £4,L2 € {K,T, B, 54,55} (see e.g. [27] for a thourough introduction to
complexity theory). The choice of the logics is a bit arbitrary since many other
standard modal logics would deserve such an analysis (the standard modal logics
D, K4, G, S4.3, S4.3.1 to quote a few of them). However, we felt that with
the present sample, we could reasonably show the peculiarity of ©c and how
the Ladner-like algorithms are precious to establish PSPACE upper bounds.
Moreover, many proofs can be adapted to other logics not explicitly studied
here. By way of example, D ©c K4 can be shown to be EXPTIME-complete.
In Table 1, we summarize the results. In the table, each problem in a given class



is complete for the class with respect to logarithmic space transformations!. A
generalization from the bimodal case to the case with n > 2 modal connectives
is sketched in Section 6 and is planned to be fully treated in a longer version.
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Table 1. Worst-case complexity of simple dependent bimodal logics

The second contribution consists in comparing the operators ¢ and ®c. Al-
though we know that @& preserves for instance decidability (see e.g. [21]), ®¢
does not, even if we restrict ourselves to logics with NP-complete satisfiabil-
ity problems (see e.g. [30]). It is known that for £q,Ls € {K,T, B, S4,55},
L1 & Lo has a PSPACE-complete satisfiability problem. By contrast, we show
that for (L4, Ls) € {K, T, B} x {54,55}, L1 ®¢ L2 is EXPTIME-complete. In
a sense, the EXPTIME-hardness of the minimal normal modal logic K aug-
mented with the universal modal connective, should not necessarily be explained
by the presence of the universal modal connective but rather as due to the de-
pendent combinaison of a logic between K and B and a logic between K4 and
Sh. This reinterpretation is another original aspect of our investigation.

The last but not least contribution stems in the design of parametrized
Ladner-like algorithms that allows to establish PSPACE upper bounds. We
shall come back to this point throughout the paper.

2 Bimodal logics

For any set X, we write X* to denote the set of finite strings built from elements
of X. X denotes the empty string. For any finite string s, we write |s| [resp.
last(s)] to denote its length [resp. the last element of s, if any]. For s € X*, for
JEe{1,...,|s|}, we write s(j) [resp. s[j]] to denote the jth element of s [resp.
to denote the initial substring of s of length j]. By convention s[0] = A. For any
s € X*, we write s* to denote the string composed of k copies of s. For instance,
(1.2)2=1.2.1.2 and |(1.2)% = 4.

Given a countably infinite set Fory = {py, py;Pa,-- -} of propositional vari-
ables the bimodal formulae ¢ are inductively defined as follows: ¢ = p, |

! In Table 1, we consider the satisfiability problem for £; @c L2 (or equivalently
the consistency problem). In order to get the table for the validity problem (or
equivalently the theoremhood problem), replace NP by coNP.



o1 Nd2 | —é | [1]¢ | [2]¢ for p, € Fory. The monomodal formulae are
bimodal formulae without occurrences of [2]. We write |¢| to denote the length
of the formula ¢, that is the length of the string ¢. We write md(¢) to denote the
modal degree of ¢, that is the modal depth of ¢. md is naturally extended to finite
sets of formulae, understood as conjunctions and by convention md(#) = 0. For
j €{1,2}, []¢ is inductively defined as follows: [j]°¢ = ¢ and [j]'t1¢ = [j][§]’¢
for i > 0. For s € {[1],[2]}*, an s-formula is defined as a formula prefixed by s.

A monomodal [resp. bimodal] frame F is a structure of the form (W, Ry)
[resp. (W, Ry, R2)] such that W is a non-empty set, R; is a binary relation on
W [resp. Ry and Ra are binary relations on W]. A monomodal [resp. bimodal]
model M is a structure of the form (W, Ry, m) [resp. (W, Ry, Ra, m)] such that
(W, R1) [resp. (W, R1, R»)] is a monomodal [resp. bimodal] frame and m is a
map m : Forg — P(W). M is said to be based on the frame (W, Ry) [resp.
(W, Ry, Ra)]- Most of the time we omit the terms ’monomodal’ and ’bimodal’
when it is clear from the context what kind of objects we are dealing with.

As is usual, the formula ¢ is satisfied by the worldw € W in M & M, w =0
where the satisfaction relation | is inductively defined as follows:

MuwuEp & we m(p), for every propositional variable p;
- Mwl[l]¢ & for every w' € Ri(w), M,w' £ ¢;
~ Mwl[2¢ & for every w' € Rao(w), M, w' |= ¢ when M is bimodal.

We omit the standard conditions for the propositional connectives. Let C be a
class of monomodal [resp. bimodal] frames. A monomodal [resp. bimodal] for-
mula is said to be C-satisfiable & there is a model M based a frame F € C
such that M, w = ¢ for some w € W. We write SAT(C) to denote the class of
C-satisfiable formulae. We write F |= ¢ to denote that for any model M based
on F and for w in M, M, w |= ¢. The following standard classes of monomodal
frames shall be used:

— Cg is the class of all the frames; Cj [resp. Cr, Cg4] is the class of frames
(W, Ry) such that R is irreflexive [resp. reflexive, transitive];

— Cp [resp. Cg4] is the class of frames (W, R;) such that R; is reflexive and
symmetric [resp. and transitive];

— Css [resp. C4s) is the class of frames (W, Ry) such that R, is an equivalence
relation [resp. Ry = W x W].

It is known that SAT(Cx) = SAT(Ck) and SAT(Cs5) = SAT(Chy). Let C;
for i = 1,2 be classes of monomodal frames. We write C; & Cy [resp. C; @c Cs]
to denote the class of bimodal frames (W, Ry, Rs) such that (W, R;) € C; for
i=1,2 [resp. and Ry C R»)].

A normal monomodal [resp. bimodal] logic is a set £ of monomodal [resp.
bimodal] formulae such that: £ contains all propositional tautologies, £ is closed
under substitution, [j](p = q) = ([jlp = [jla) for j € {1} [resp. for j € {1,2}],
L is closed under modus ponens and £ is closed under generalization, i.e. if
¢ € L, then [j]¢ for j € {1} [resp. for j € {1,2}]. Let K be the minimal

normal monomodal logic. Below are other standard normal modal logics: T =



def

K + [lp=p B = T + p= [1]-[l]-p 54 T + [lp = [[1p,
S5 =S4 4 p = [1]=[1]-p. A monomodal [resp. bimodal] logic £ is said to be
complete with respect to the class C of monomodal [resp. bimodal] frames E
for any monomodal [resp. bimodal] formula ¢, ¢ € SAT(C) iff =¢ ¢ L. For any
modal logic £, we write Cz to denote the class of frames F such that for ¢ € £,
F |= ¢. This notation C. is consistent with the classes of frames defined above.

Here is a first important difference between & and Dc. Corollary 3.1.3 in
[30] states that if Cy,C{,Ca,Ch are classes of monomodal frames closed under
disjoint unions and if SAT(C,) = SAT(C}) and SAT(Cy) = SAT(CS), then
SAT(C,8Cs) = SAT(C19CY). By constrast, SAT(Cr & Cy ) # SAT(Cr&cCk):
Cr &¢ Ck is empty whereas SAT(Cr &¢ Ck) is PSPACE-hard.

We write £1 &¢ L2 to mean the set Cc, ©c Cr, for any monomodal logic
L1, Ls. By way of example, S5 @ S5 equals Cs5 G Cs5 but not Cyy G Chy-

def

Lemma 1. For (£y,L2) € ({K,T,B,54,55} x {K,T, B,S4}) U (5S4, S5), the
problem SAT (L1 ©¢ L2) is PSPACE-hard.

We invite the reader to consult [9] for further topics on modal logic.

3 PSPACE Ladner-like algorithms

In this section, we show that SAT(L1 ©c L2) is in PSPACE for (£1,Ls) €
{54,55} x {T, B, S4,S5}. Observe that S4 &c K = S4 ®¢c T and Sb dc K =
S5 @&c T. In the rest of this section we assume that £; € {S4, 55} and £, €
{T, B, S4,55}. We shall define Ladner-like algorithms.

3.1 Preliminaries

We introduce a (very simple) closure operator for sets of bimodal formulae. Let
X be a set of bimodal formulae. Let sub(X) be the smallest set of formulae
including X, closed under subformulae and such that if [2]¢ € sub(X), then
[1]¢ € sub(X). A set X of formulae is said to be sub-closed E sub(X) = X.
Observe that for any finite set X of formulae, md(sub(X)) = md(X) and for
any formula ¢, card(sub({¢})) < 2 x |¢].

In order to determine the satisfiability of some formula ¢, we need to handle
sets of formulae. Actually all those sets shall be subsets of sub({¢}) and that
is why sub({¢}) has been introduced. In establishing the PSPACE complexity
upper bound, the fact that not only sub({¢}) is finite but also its cardinality
is polynomial in the size of ¢ plays an important role. In the present case, the
cardinality of sub({¢}) is even linear in |¢|.

In order to check whether ¢ is £; ©¢c Lo-satisfiable, we build sequences of
the form Xo #o X1 #1 X2 @2... where ¢ € Xy C sub({¢}) and for i € w, X;
is a consistent subset of sub({¢}) and x; € {1,2}. We extend a finite sequence
Xg wg Xy21 ... 21 X; with ;X1 whenever we need a witness of [z;]¢ € X;
for some formula ¢ (and ¥ € X;11). The intention is to build paths in some



L1 ®¢ Lo-model M = (W, Ry, Ry, m) such that for i € w, there is w; € W such
that M, w; = ¢ iff ¢ € X; and (w;, wiq1) € Ry,

In order to establish termination which is a necessary step to obtain the
PSPACE complexity upper bound, we shall define subsets sub(s, ¢) C sub({¢})
for s € {1,2}* such that for i € w, X; C sub(xg...xi_1,¢). For z; € {1,2},
sub(wq...x;_1 - x;,¢) contains all the formulae ¢ which we could possibly be
put in X;41 for o € sub(zq...x;-1,¢).

We are on the good track to get termination if there is some computable map
[ 1w — w such that for |s| > f(|$]), sub(s,$) = 0. To establish the PSPACE
complexity upper bound, f should preferably be bounded by a polynomial. Those
general principles may look quite attractive but in concrete examples of bimodal
logics they are seldom sufficient to show that the satisfiability problem is in
PSPACE. In 54 ¢ 54, since transitivity of Ry is required, if [2]Y € X;, then
M, w; = [2]¢, M, w; = [2][2]y and therefore one can expect that [2]¢ € X4
if z; = 2. So the formula [2]y € X; should be propagated for any “2” transi-
tion. However, this does not guarantee termination. Actually, as already known
from [22,31,8], duplicates can be identified in Xy x¢ X1 @1 X5 #2... which
corresponds to a cycle detection (see also [13]). Since card(P(sub({¢}))) is in
0(2"“), a finer analysis is necessary to establish the PSPACE complexity upper
bound as done in [22] (see also [31] for the tense extension of Ladner’s solution).

In order to conclude this introductory part that motivates the existence of the
sets of the form sub(s, ¢), let us say that once the set X; of formulae is built and
x; is chosen, the set X1 of formulae satisfies the following conditions: X;;; is a
consistent subset of sub(z ... 2;, ¢) and (X;, X;41) satisfies a syntactic condition
Cz; that guarantees that M is an £1 &c Lr-model and (wi, wit1) € Ry,

Let ¢ be a bimodal formula. For s € {1,2}*, let sub(s, ¢) be the smallest set
such that:

sub(X, @) = sub({¢}); sub(s, @) is sub-closed;

if [{]¢ € sub(s, ¢) for some i € {1,2}, then ¢ € sub(s.i, ¢);

if [1]¢ € sub(s, ¢), then [1]¢¥ € sub(s.1, ¢);

if L9 € {54,555} and [2]¢ € sub(s, ¢), then [2]¢ € sub(s.2,¢) and [2]¢ €
sub(s.1,8).

N N

Observe that for any initial substring s’ of the string s € {1,2}*, sub(s,¢) C
sub(s', ¢);for k > 1, sub(s-1,¢) = sub(s-1*,¢) and if L5 € {T, B} and s contains
more than k > md(¢) 4+ 1 occurrences of 2, then sub(s, ) = 0.

Definition 2. Let X,Y be subsets of sub({¢}). The binary relation C; on the
set P(sub({4})) is defined as follows: XC,;Y &

1.1. Lo € {T, B}: XCyY (see below);

1.2. Lo € {54,55}: for all 2] € X, [2]¢ € Y and for all [2]¢ € YV, [2]¢ € X;
21. £y =S4 forall [1]y € X, [1]Y €Y

22. Ly =5hforall[1]y € X, [1]Y € Y and forall 1]y € Y, [1]y € X.

def

The binary relation C, on P(sub({¢})) is defined as follows: XCrY &



. Lo =T: for all [2]3
. Lo = B: for all 2]y
. Lo = 54: for all [2]y

it

[
. Lo = S5: for all [2

Let clos be the set of subsets Y of sub({¢}) such that for ¢ € {1,2}, [i]¢ €
Y implies ¢ € Y. Observe that if £; € {T, B, 54,55} [resp. L; € {B, S5},
L; € {54,55}], then C; restricted to clos is reflexive [resp. C; is symmetric,
C; is transitive]. The logic £y is anyhow in {S4,55} throughout this section.
The careful reader may be puzzled by the point 1.2. in the definition of C; when
Lo = 54. Indeed, this seems to give an S5 flavour to [2]. However, observe that for
any bimodal frame (W, Ry, Ro) such that R; is symmetric, Ry is transitive and
Ry C Ry, for {(w,w’) € Ry, we have Ry(w) = Ra(w') which implies that w and
w' satisfy the same set of [2]-formulae in any model based on (W, Ry, Rs). This
gives us an additional reason to present the Ladner-like constructions for the

eX,Ypey;

eX,yeY andforall 2y €Y, € X;

e X, 2lvey;

€ X, 21 €Y and for all 2]¢ € Y, [2]4 € X.

O

logics studied in this section since this provides a rather uniform presentation.
Let X be a subset of sub(s, ¢) for some s € {1,2}* and for some formula ¢.

The set X is said to be s-consistent & for 1 € sub(s, ¢):

1. if ¢y = =, then p € X iff not ¢ € X

2. if ¢ = 1 Ao, then {p1, 02} C X iff ¥ € X;

3. if ¢y = [i]p for some i € {1,2} [resp. ¥ = [2]¢] and ¥ € X, then ¢ € X [resp.
1] € X].

Roughly speaking, the s-consistency entails the maximal propositional consis-

tency with respect to sub(s, ¢). The condition 3. above takes into account re-
flexivity and the inclusion R; C R».

Lemma 3. Let M = (W, Ry, Ro,m) be an Ly ®&c Lo-model, w,w' € W, s €
{1,2}%, 4,4 € {)\, 1,2} and ¢ be a bimodal formula. Let X,, < {3 € sub(s.i, ) :
Myw E ¢} and X 2 {4 € sub(s.é',¢) : M,w' = ¢}. Then, X, is s.i-
consistent, X,y is s.i'-consistent and if (i,1') € {{A\,A), (A, 1)} and (w,w') € R;
for some j € {1,2}, then X\, Cj Xy

The proof of Lemma 3 is by an easy verification.

Lemma 4. Let X; be an s;-consistent set and s; € {1,2}*, i = 1,2. Then,

(1) L1 = 54: X1C1 Xz and [2]y € X1 implies o € Xo;
(TT) £y = S5: X1(Cy UCTH)* Xy and [2]¢ € Xy implies € Xo;
(I[[) Lo = 54: Xl(Cl U Cg)*XQ and [2}1/) € X1 implies ¢ S Xg,'
(IV) Lo=55: X1(CLUCM UC,UC, Y Xy and [2]¢ € X, implies 1 € X.

3.2 The algorithms

In Figure 1, the function WORLD(X, s, ¢) returning a Boolean is defined. X is a
finite non-empty list of subsets of sub({¢}) and s € {1,2}*. Moreover, for any



function WORLD(X, s, ¢)

if last(X) is not s-consistent, then return false;

for [1]¢ € sub(s, ¢) \ last(X) do
if there is no X € XY such that Y = X, X5, s is of the form ;.52 with
|s2| = | 22| and s2 € {1}*, ¥ € X, last(2)C1 X, then
for each Xy C  sub(s.l,¢) \ {¢} such that last(2)C1Xy, call
WORLD(X. Xy, 5.1, ). If all these calls return false, then return false;

for [2]y) € sub(s, ¢) \ last(X) do
Ly € {T,B}: for each Xy C sub(s.2,¢) \ {¢} such that last(X)C2Xy, call
WORLD(X. Xy, 5.2, ¢). If all these calls return false, then return false;
Ly € {54, 55}: if there is no X € X such that ¢ € X and last(X)C; X, then
for each Xy C  sub(s.2,¢) \ {¢} such that last(X)CXy, call
WORLD(X. Xy, 5.2, ). If all these calls return false, then return false;

Return true.

Fig. 1. Algorithm WORLD

X C sub({¢}) and for any call WORLD(Y, s, ¢) in WORLD(.X, A, ¢) (at any recursion
depth), last(X) C sub(s, ¢). The function WORLD is actually defined on the model
of the function K-WORLD in [22] (see also [31,26, 35]).

Most of the ingenuity to guarantee that the algorithms terminate are in the
definition of sub(s, @), s-consistency and the conditions C;. Indeed, sub(s.i, ¢)
contains the formulae that can be possibly propagated from sub(s, ¢). In the
easiest case, sub(s.7,¢) C sub(s, @) but this is not the general case here. Then
C; and s-consistency further restrict the formulae that can be propagated. Still,
we may be in trouble to guarantee termination. That is why the detection of
cycles is introduced (see e.g. [22]). Tt is precisely, the appropriate combination
of all these ingredients that guarantees termination and in the best case the
PSPACE upper bound. What we present is a uniform formalization of Ladner-
like algorithms based on [31] and we believe it is the proper framework to allow
further extensions.

We prove that for any set X C sub({¢}), WORLD(X, A, ¢) always terminates
and requires polynomial space in |¢|. We shall take advantage of the fact that if
WORLD(Y, s, ¢) calls WORLD(X", s', ¢) (at any recursion depth), then |s’| > |s|.

Each subset X C sub({¢}) can be represented as a bitstring of length 2 x |¢|.
By implementing 3 as a global stack, each level of the recursion uses space in
O(]¢|). For instance, in the parts of WORLD of the form “for each Xy, C sub(s.i, ¢)\
{®} such that last(X)C; Xy, call WORLD(X . Xy, s.7,¢). If all these calls return
false, then return false” the implementation uses a bitstring of length 2 x || to
encode Xy, (this value is incremented for each new Xy ) and a Boolean indicating
whether there is a call returning true.

Theorem 5. Let (L1, L2) € {54,55} x {T, B, S4,55} and n’ be the number of
occurrences of S4 in (L1, Ls). Let X C sub({¢}).

(1) WORLD(X, A, ¢) terminates and requires at most space in (’)(|¢|3+",);



(II) Let WORLD(X s, ¢) be a call in the computation of WORLD(X A ¢). Then,
|X] < aand |s| < a witha = (2% |¢]+1)27" x (4x |2+ 1) .

The bounds in Theorem 5 are really rough since many optimizations can be
designed. Because of lack of place, this is omitted here.

Theorem 5 is certainly an important step to prove that satisfiability i1s in
PSPACE but this is not sufficient. Indeed, until now we have no guarantee
that WORLD is actually correct. This shall be shown in the next two lemmas.

Lemma 6. Let ¢ be a bimodal formula and Y C sub({¢}) such that ¢ € Y. If
WORLD(Y, A, ¢) returns true, then ¢ is L1 B¢ La-satisfiable.

Proof. Let n’ be the number of 54 in (£, L2). Assume that WORLD(Y, A, ¢) re-
turns true. Let us build an £; ®¢ Lo-model M = (W, Ry, Ry, m) for which there
is w € W such that for all ¥ € sub({¢}), M,w ¢ iff p €Y.

Let S be the set of strings s in {1,2}* such that |s| < (2 x |¢|+1)27" x (4 x
|12 + 1)”1. We define W as the set of pairs (X s) € clos x S for which there is
a finite sequence (X1, s1),..., (X%, sk) (k> 1) such that

1. 21 =Y; 51 = Ay last(Zg) = X; s = s
2. for i € {1,...,k}, WORLD(X}, s;, @) returns true;
3. forie {1,...,k — 1}, WORLD(X}, s;, ¢) calls directly WORLD(X; 41, Si41, ¢).

The conditions 2. and 3. state that we only record the pairs (X, s) € clos xS that
contribute to make WORLD(Y A, ¢) true. (Y, A} € W by definition. Furthermore,
for all (X,s) € W, X C sub(s,$) and X is s-consistent.

Let us define the auxiliary binary relations R} [resp. R5] on W as follows:
(X, s)RI(X",s") [resp. (X,s)Rh(X",s")] & there is a call WORLD(Y,s,¢) in
WORLD(Y, A, ¢) (at any depth of the recursion) such that

1. either

(a) last(X) = X

(b) WORLD(X, s, ¢) calls WORLD(Y",s’, ¢) in the “1” [resp. “2”] segment of
WORLD(X, s, ¢); last(X') = X';

2. or there is a finite sequence (X7, s1), ..., (X%, sg) such that:

(a) last(Xy) = X; last(Xh) = X5 Uy = X, si, = 55,81 = &5

(b) forie {1,...,k}, (last(X;),s;) € W;

(c) fori € {1,... k — 1}, WORLD(X}, s;, ¢) calls WORLD(X; 11, s;41,¢) in the
“1” [resp. in either the “1” or the “2”] segment of WORLD;

(d) the call WORLD(Y, sg, ¢) enters in the “1” [resp. “2”] segment of WORLD
and for some formula [1]¢ € sub(s, #) \ X [resp. [2]¢ € sub(s, $) \ X], no
recursive call to WORLD is necessary thanks to Xy, ¢ € X' XC; X' [resp.
XC X'].

If £5 € {1, B}, the second possibility in the definition of Rf above should not
be taken into account. The definition of M can be now completed:

def

— Ly =S4 Ry (R Ly =S5 Ry 2 (R URTY



def def

— Lo=T: Ry = Ry URIQ; Ly =B: Ry = Ry UR/2 U (Rl)_l U (Ré)_l;
Lo=S4: Ry = (R URY)*; Lo =S5 Ry = (R URYU(R)™" U (RY)™H)*;
— for p € Fory, m(p) = {(X,s) e W :p € X}.

M is an £y §c La-model. One can show (i) (X, s)Ri(X’,s") implies X¢1 X’
and (i) (X, s)R5(X’, s')y implies XC2X'. So, (iii) for j € {1,2}, (X, s)R; (X', s)
implies for all [j]y € X, ¢ € X’ (by Lemma 4). By induction on the structure of
1 we show that for all (X, s) € W, for all ¢ € sub(s, ¢), ¥ € X iff M, (X, s) |= 9.
The case when 1 1s a propositional variable is by definition of m.
Induction Hypothesis: for all ¢ € sub(¢) such that |[¢]| < n, for all (X, s) € W, if
¥ € sub(s, @), then ¢ € X iff M, (X, s) = .
Let 9 be a formulain sub(¢) such that |1/| < n+1. The cases when the outermost
connective of ¥ is Boolean is a consequence of the s-consistency of X and the
induction hypothesis. Let us treat the other cases.
Case 11 = [1]y'. Let (X, s) € W such that ¢ € sub(s, ¢). By definition of W,
there is X such that last(X) = X and WORLD(Y, s, ¢) returns true. If ¢» € X, then
by (iii), for all (X', s") € R1((X, s)), ¢’ € X'. One can show that ¢/ € sub(s’, ¢).
By the induction hypothesis, M, (X’ s') = ¢ and therefore M, (X, s) = .
Now, if ¥ € X, two cases are distinguished.
Case 1.1: there is X’ in X' such that XC1 X', ¢’ ¢ X’ and ¥ = X' X' Y5 sisof the
form s'.so with |Xs| = |s2| and s2 € {1}*. By definition of W, WORLD(X". X', s, ¢)
returns true (see the conditions 2. and 3. defining W). Hence, (X, s) R{ (X', s") by
definition and therefore (X, s)R1 (X', s'). One can show that ¢’ € sub(s’, ¢) since
s is of the form s’.1% for some k > 0. By induction hypothesis, M, (X', s’} [~ o
and therefore M, (X, s) £ 1.
Case 1.2: WORLD(X, s, ¢) calls successfully WORLD(X", s', @) in the “1” segment of
WORLD, last(X") = X' and ¢’ € last(X"), XC1 X', and X' C sub(s’, ¢). Moreover,
we have s’ = s.1. This is so since WORLD(Y, s, ¢) returns true. By definition of

1 (X, s)RI(X!, s'). Furthermore, one can easily show that ¢/ € sub(s’, ¢). By
the induction hypothesis, M, (X', s") £ ¢ and therefore M, (X, s) |~ 1.
Case 2: 7 = [2]¢'. This is analogous to the Case 1.

As a conclusion, since ¢ € Y and WORLD(Y, A, ¢) returns true, M, (Y, A) = ¢

and therefore ¢ is £; ©c Lo-satisfiable.

The proof of Lemma 6 can be viewed as a way to transform a successful call
WORLD(Y, A, ¢) into a quasi L1 @¢ Lo-model by analyzing the computation tree of
WORLD(Y, A, ¢). Then, this quasi £1 ®c Ls-model is appropriately completed in
order to get an £1 ®¢ Lo-model. The idea to construct a (standard) model from
different coherent pieces is very common to establish decidability and complexity
results for modal logics (see e.g. [22,28,5,23]). Mosaics technique uses such an
approach (see e.g. [23]).

Lemma 7. Let ¢ be a bimodal formula. If ¢ is L1 ©c Lo-satisfiable, then there
is Y C sub({¢}) such that ¢ €Y and WORLD(Y, X, ¢) returns true.

Since WORLD is correct, the proof of Lemma 6 provides the finite model prop-
erty for £1 ®©c £» and an exponential bound for the size of the models exists.



Theorem 8. For (£1,Ls) € {54,55} x {T,B,54,55}, SAT (L1 ®c L) is in
PSPACE.

For (L1, £s) € {54, S5} x {T, B, S4}U(S4, S5), SAT(L1 @ ¢ L») is PSPACE-
hard. So, in particular SAT(S5®¢ S4) is PSPACE-complete and the logic S4+5
introduced in [33] has consequently a PSPACE-complete satisfiability problem.
Until now, we have not yet established that SAT(S5 &¢ S5) is PSPACE-hard
as SAT(S54.55) [18]. Tt is unlikely since by [11, Proposition 4.8] SAT(S5&¢ Sb)
is NP-complete.

4 Reduction into a PSPACE guarded fragment

By FO2 we mean the fragment of first-order logic without equality or function
symbols using only two variables. In this section we show that for £,,£, €
{K,T,B}, SAT(L1 ®c L3) can be linearly translated into a known PSPACE
fragment of FO2, say WLGF2 standing for weak loosely guarded fragment with
two variables. The vocabulary of WLGF2 consists of: the symbols =, A, = ¥ for
propositional connectives and universal quantification; a countable set {P; : i €
w} of unary predicate symbols; a set {R1,Ro} of binary predicate symbols and a
set {xg,x1} of individual variables. The set of WLGF2-formulae is the smallest
set containing the set of atomic formulae built over this vocabulary, closed under
the standard rules for Boolean connectives and under the rule below: if ¢(x;)
and ¥(x;, x1_;) are WLGF2-formulae for some 7 € {0, 1} such that,

— the only variable free in ¢(x;) is x;;
¥(xi, x1-;) is a conjunction of atomic formulae of the form R(x, y) such that
for at least one conjunct {x,y} = {x0,x1};

then Vx; (¢(xi,%x1-;) = ¢(x;)) is a WLGF2-formula. WLGF2 is a fragment
of the loosely guarded fragment LGF (see e.g. [4]). Actually WLGF2 is even
a fragment of PGF5 defined in [23] and shown to be in PSPACE [23]. None
of the obvious FO2-formulae capturing reflexivity, symmetry and inclusion are
WLGF2-formulae. Instead of using such axioms, we introduce PGF,-modalities
in the sense of [23, Section 4.1.1].

For £1,L, € {K,T, B}, we define a map 1,4, such that Tz g c,(¢) is
of the form initz g2, A STz ec (9, %0) Where indlz oz, is a fixed WLGF2-
formula. Analogously to the standard translation ST [3], ST;, & ¢, encodes the
quantification in the interpretation of [i] into the language of WLGF2. We allow
ourselves only a restricted form of universal quantification that encodes appro-
priately the properties of the bimodal frames. The main idea of STz, gz, is to
visit only the successor worlds that satisfy the local constraints on the relations
of the frames. Indeed, reflexivity, symmetry and inclusion can be checked locally.
ST¢ @cr, is defined inductively as follows (7 € {0, 1});

- STL:]@Q»CQ(P]')XZ') d:de(xi);
= Meyecea(d1 A ¢2,%i) = STevace, (91,%) ANSTe g e, (P2, %i);



— STe qcca ([0, %) =V x1-i((Agegy,o) B (i, x1-1) A @’ZI@QQ(&',M—Z’)) =
STe gcr,(@,x1-;)) for j € {1,2} where the @’Zl@cﬁz(xi,xl_i)s are defined
in the table below. )

Li|Lo @ILI®C42(Xz‘7X1—i) SDZ)LI@CLQ(Xi,Xl—i)

K|K T T

KT T RQ(xl_i,xl_i)

K B T R2(X1_l‘,xz) /\RQ(Xl_i7X1_z)

TIK R1(X1_1,X1_i) Rl(xl—hxl—i)

T|T Ri(X1-i,%X1-¢) Ro(X1-¢,%1—-¢) AR1(X1-¢, X1—)

T|B Ri(x1—i,x1-i) Ro(x1—i,x1—¢) A Ri(®x1—i,x1-¢) ARa(x1-i, %)
B K |Ri(x1—i, xi) ARy (x1—4, X1 ;) Ri(X1-¢,X1-¢)

B|T Rl(xl_l,)h)/\Bl(xl_i,}(1_1) Rl(xl_i,xl_l)/\RQ(xl_i,xl_,‘)

B | B |Ri(x1—i, xi) ARy (%14, x1— )|R2(X1—i, X1—3) A R (X1-4, X1-¢) ARa(x1-1, %)

Let us define the initial formulae: initk g - x =T, nitrg K = NitBg K =

R1(x0,X0); inilka T = initke B = Ry (%0, x0); for £1, Lo € {T, B}, inite, g,
= Ri (%0, x0) A Ra(%o, X0).

Lemma 9. For L1, Ls € {K,T, B}, for any formula ¢, ¢ € SAT (L1 D¢ La) iff
inite,gee, A ST e (9, %) 18 WLGF2-satisfiable.

Since Tz, g, Is in linear-time,

Theorem 10. For L1, Ly in {K,T, B}, SAT(L, ®&¢ L2) is in PSPACE.

5 EXPTIME-complete bimodal logics

It remains to characterize the complexity of SAT(Ly ®¢ Ly) for (L1, L) €

{K,T, B} x {54, 55}. By using logarithmic space transformations into converse-

PDL (that is known to be in EXPTIME), for {£1,Ls) € {K,T, B} x {54, 55},

SAT(L1®c L5) can be shown to be in EXPTIME. Let C be a class of monomodal
frames. We write GSAT(C) to denote the set of monomodal formulae ¢ such that

there is a C-model M = (W, Ry, m) satisfying for all w e W, M, w = ¢.

Lemma 11. Let C, C' be classes of monomodal frames such that Cgs C C C
Cr4 and C' is closed under generated subframes, disjoint unions and isomorphic
copies. Then, for any monomodal formula ¢, ¢ € GSAT(C') if [2]¢ N ¢ €
SAT(C' ¢ C).

Proof. The idea of the proof has its origin in the proof of [32, Proposition 7]
where it is shown that the respective global satisfiability problems for S4 and
S5 are identical, that is GSAT(S4) = GSAT(S5). One can show that since
C’ is closed under generated subframes, disjoint union and isomorphic copies,
SAT(C' ®c Cs5) = SAT(C' ®c Csy). So in ' ®¢ Cgs, the modal connective [2]
behaves as a universal modal connective.



Let ¢ be a monomodal formula. Assume that ¢ € GSAT(C'). So, there is
an C' ®¢ Css-model M = (W, Ry, Rz, m) and w € W such that M, w = [2]¢.
Since Ry is reflexive, M, w [= [2]¢ A ¢. By hypothesis, ¢’ &¢ Cs5 C €' @¢ C, so
2]¢ A ¢ € SAT(C' & C).

Now assume that [2]¢ A ¢ € SAT(C’ ¢ C). So, there is a €’ B¢ C-model
M = (W, Ry, Ra, m) such that for some w € W, M, w = [2]¢ A ¢. Since R» is
transitive, for w’ € R(w), M, w’ |= ¢. In particular, for w’ € R} (w), M, v’ |= ¢.
Let M = (W' R}, Ry, m') be the €’ ¢ Css-model such that W' = R}(w) and,
R} and m’ are the respective restrictions of Ry and m to W' and Ry, = W’/ x W'.
Since €’ is closed under generated subframes, (W', R}) € C’. So, ¢ € GSAT(C').

Many examples of classes of frames between Cgx4 and Cgs can be found in

[17, Figure 4].

Theorem 12. Let L1, Ly be monomodal logics such that K C L, C B, K4 C
Ly C S5 and fori € {1,2}, £; is complete with respect to C,. Then, SAT(Cr, ®¢
C:,) is EXPTIME-hard.

Proof. By [10, Theorem 1] (see also [30]), GSAT(C.,) is EXPTIME-hard. By
Lemma 11, SAT(C;, ®cCr,) is EXPTIME-hard (C¢, is closed under generated

subframes, disjoint unions and isomorphic copies).

Hence, for (L1, L2) € {K,T, B} x {S4, 55}, SAT(L1 @&¢ L) is EXPTIME-
hard. Since K@ ¢ S4 is a fragment of the logic A introduced in [7], A-satisfiability
is EXPTIME-hard. A-satisfiability can be also translated in logarithmic space
into PDL (see also [6]).

6 Concluding remarks

We have characterized the computational complexity of simple dependent bi-
modal logics. Table 1 summarizes the main results. As a side-effect, we have
established that S4+5 [33] is PSPACE-complete whereas the logic A in [7] is
EXPTIME-complete. Unlike the fusion operator ¢, the situation with ®¢ is
not uniform since NP-complete, PSPACE-complete and EXP TIME-complete
dependent bimodal logics have been found. The only case of NP-complete logic
15 .SH Bc S5 and we conjecture that this can be generalized to extensions of 54.3.

The most interesting proofs are related to PSPACE upper bounds. We used
two proof techniques. The first one consists in translation SAT(Ly ®&¢ L) for
Ly, Ly € {K, T, B} into satisfiability for a fragment of M. Marx’s packed_guarded
fragment with only two individual variables PGF,. This approach has obvious
limitations as soon as transitive relations are involved.

The second technique consists in defining Ladner-like decision procedures
for (L£1,L5) € {54,55} x {I', B, 54,55} extending Ladner technique following
[31] and we have presented a uniform framework that can be easily reused to
study other polymodal logics. Indeed, it is the appropriate definitions of the
sets sub(s, ¢), the notion of s-consistency, the conditions C; and possibly the



mechanism of cycle detection that allows to obtain the PSPACE upper bounds.
This technique can be also used for £1, L2 € {K,T', B}. We took the decision to
use PGF, instead since it is an interesting fragment to equip with an analytic
tableau-style calculus (see in [25] a labelled tableaux calculus for the modal logic
M LR, of binary relations that corresponds roughly to WLGF2 augmented with
other binary predicate symbols). Last but not least, the decision procedures
we have defined could be straightforwardly (and more efficiently) reused in a
tableaux calculus for (£q, £a) € {54, 55} x {1, B, S4,S5}. For instance, we can
show that in a prefixed calculus one not need to consider prefixes of length
greater than (4 x |¢|? + 1)%. In a non-prefixed version, one does not need to
apply the “m-rule” more than (4 x |¢|? + 1)? times on a branch to show that ¢
is valid. An analysis similar to the one in [8] about results in [22,14] would be
the right way to formally establish such results.

Besides, it is natural to extend the operator ©¢c to an n-ary operator n > 2.
Let (Cz‘)ie{l,...,n} be n > 2 classes of monomodal frames. The class C1@®¢...®cCn
of n-modal frames is defined as the class of frames (W, Ry, ..., R,) such that for
iedl,...,n}, (W, R;) € C; and Ry C ... C R,. All the other notions can be
naturally defined. One can show the following generalization:

Theorem 13. Let Lq,..., L, be in {K,T,B,S4,55}, n > 2. If there exist i <
J€A{l,...,n} such that SAT(L; B¢ L;) is EXPTIME-hard then SAT (L1 ©¢
... ®c Ln) is EXPTIME-complete. Otherwise, if for i € {1,...,n}, £; = S5,
then SAT(Ly ®¢c ... D¢ L) is NP-complete otherwise SAT(Ly ®¢ ... B¢ Ly)
1s PSPACE-complete.

Acknowledgments. The author thanks the anonymous referees for useful remarks
and suggestions. Special thanks are due to one of the referees for finding a mistake
in the submitted version.
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