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Abstract—This paper focuses on the mechanics of a 
compliant serial manipulator composed of the new type of 
dual-triangle elastic segments. Both the analytical and 
numerical methods were used to find the stable and unstable 
equilibrium configurations of the manipulator, and to 
predict the corresponding manipulator shapes. The stiffness 
analysis was carried on for both loaded and unloaded modes, 
the stiffness matrices were computed using the Virtual Joint 
Method (VJM). The results demonstrate that either 
buckling or quasi-buckling phenomenon may occur under 
the loading if the manipulator initial configuration is 
straight or non-straight one. Relevant simulation results are 
presented at last, which confirm the theoretical study.  
 
Index Terms—component, compliant manipulator, stiffness 
analysis, equilibrium, robot buckling, redundancy 
 

I. INTRODUCTION 

Currently, compliant serial manipulators are used more 
and more in many applications (such as inspection in 
constraint environment, medical fields etc.), because of 
their sophisticated motions and low weights. 
Conventional compliant manipulators are usually 
composed of rigid links and compliant actuators, like 
hinges, axles, or bearings. However, there is a lot of 
research in this area dealing with some new mechanical 
structures [1][2][3][4], which achieve compliant motions 
through tensegrity mechanisms. And one of them will be 
studied here. 

In general, the robotic manipulators are usually 
classified into three types [5], conventional discrete, 
serpentine, and continuum robots.  The first one is made 
of traditional rigid components. The second one uses 
discrete joints but combine very short rigid links with 
large density joints, which produce smooth curves and 
make the robot similar to a snake or elephant trunk [6]. 
While the continuum robots do not contain any rigid links 
or joints, they are very smooth and soft, bending 
continuously when working [7]. Many researchers have 
done studies on serpentine and continuum robots in 
recent years, designed flexible mechanisms for many 
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applications [8]. However, the pure soft continuum robot 
received little attention, as its small output force and 
design difficulty. Thus, combining rigid and elastic or 
soft components becomes a popular practice in designing 
a robot manipulator. The typical earlier hyper-redundant 
robot designs and implementations can be date back to 
the 1970s [9], which includes a series of plates 
interconnected by universal joints and elastic control 
components for pivotable action to one another. 
[10][11][12]  

Nowadays, a very promising trend in designing 
compliant robots is using a series of similar segments 
based on various tensegrity mechanisms, which are 
composed in an equilibrium of compressive elements and 
tensile elements (cables or springs) [13][14]. Some kinds 
of tensegrity mechanisms have been already studied 
carefully. Such as [15], the authors dealt with the 
mechanism composed of two springs and two length-
changeable bars. They analyzed the mechanism stiffness 
using the energy method, demonstrated that the 
mechanism stiffness always decreasing under external 
loading with the actuators locked, which may lead to 
“buckling”. And in [16][17], the cable-driven X-shape 
tensegrity structures were considered, the authors 
investigated the influence of cable lengths on the 
mechanism equilibrium configurations, which may be 
both stable and unstable. The relevant analysis of the 
equilibrium configurations stability and singularity can be 
seen in [18]. 

A new type of compliant tensegrity mechanism was 
proposed in our previous papers [19][20]. It is composed 
of two rigid triangle parts, which are connected by a 
passive joint in the center and two elastic edges on each 
side with controllable preload. The stiffness analysis of a 
basic dual-triangle was carried on, and the stable 
condition of the equilibrium was obtained. The results 
also showed that there may be a buckling phenomenon. 
Usually, while designing a robot, researchers always try 
to avoid buckling, but such behavior can make 
improvements in some fields [21]. So this phenomenon 
must be taken into account. In this paper, we study a 
compliant serial manipulator composed of the dual-
triangle segments mentioned above, concentrate on the 



 
Figure 1.  Geometry of a single dual-triangle mechanism. 

equilibrium configurations and their transformations 
under the loading, which may be either continuous or 
sporadic that leading to buckling phenomenon. Both 
loaded and unloaded stiffness model of this manipulator 
were analyzed. The simulation of the manipulator 
behavior after buckling was obtained, which provides a 
good base of the design and relevant control algorisms of 
such manipulator 

II. MECHANICS OF DUAL-TRIANGLE MECHANISM 

Let us consider first a single segment of the compliant 
serial manipulator. It consists of two rigid triangles 
connected by a passive joint whose rotation is constrained 
by two linear springs as shown in Fig. 1. It is assumed 
that the mechanism geometry is described by the triangle 
parameters (a1, b1) and (a2, b2), and the mechanism shape 
is defined by the central angle, which is adjusted through 
two control inputs influencing on the springs L1 and L2. 
Let us denote the spring lengths in the non-stress state as 

0
1L and 0

2L ，and the spring stiffness coefficients k1 and k2. 

To find the mechanism configuration angle q 
corresponding to the given control inputs 0

1L and 0
2L , let 

us derive first the static equilibrium equation. From 
Hook’s law, the forces generated by the springs 
are 0( )i i i iF k L L   (i =1, 2), where L1 and L2 are the 

spring lengths |AD|, |BC|. These values can be computed 

using the formulas 2 2
1 2 1 2( ) 2 cos( )i i iL c c c c     (i=1, 

2). Here 2 2
i i ic a b   (i=1, 2), and the angles 1 , 2   are 

expressed via the mechanism parameters as 1 12 q   , 

2 12 q   , and 12 1 1 2 2atan( / ) + atan( / )a b a b  . The 

torques M1=F1·h1, M1=F2·h2 in the passive joint O can be 
computed from the geometry, so we can get  

0
1 1 1 1 1 1 2 1

0
2 2 2 2 2 1 2 2

( ) (1 ( )) sin( )
( ) (1 ( )) sin( )

M q k L L c c
M q k L L c c

 
 

  
  

 

where the difference in signs is caused by the different 
direction of the torques generated by the forces F1, F2. 
Further, taking into account the external torque Mext 
applied to the moving platform, the static equilibrium 
equation for the considered mechanism can be written as  
M1(q)+ M2(q)+Mext =0.  

Let us now evaluate the stability of the mechanism 
under consideration. In general, this property highly 
depends on the equilibrium configuration defined by the 
angle q, which satisfies the equilibrium equation M(q)+ 

Mext =0. As follows from the relevant analysis, the 
function M(q) can be either monotonic or non-monotonic 
one, so the single-segment mechanism may have multiple 
stable and unstable equilibriums, which are studied in 
detail [19][20]. As Fig. 2 shows, the torque-angle curves 
M(q) that can be either monotonic or two-model one, the 
considered stability condition can be simplified and 
reduced to the derivative sign verification at the zero 
point, i.e. 

 
0

0
q

M q


      (2) 

which is easy to verify in practice. It represents the 
mechanism equivalent rotational stiffness for unloaded 
configuration with q=0. 

Let us also consider in detail the symmetrical case, for 
which a1=a2=a, b1=b2=b, k1=k2, 0

iL = 0L . Then as follows 

from the mechanism geometry, to distinguish the 
monotonic and non-monotonic cases presented in Fig. 2, 
we can omit some indices and present the torque-angle 
relationship as well as the stiffness expression in more 
compact forms: 

  0
12 1

0
121

2

2

2 cos sin cos( 2)s

2 cos cos cos c

in( 2)

( ) ( 2 )s) o ( 2

M q ck c q L q

M ck c q qLq 
 


 

  
 

 



  (3) 

it is also necessary to compute M’(q) for unloaded 
equilibrium configuration q=0, that let us obtain the 
condition of the torque-angle curve monotonicity: 

 0 22 1 ( )L b a b   for the further analysis. 

III. MECHANICS OF SERIAL MANIPULATOR 

A. Manipulator Geometry and Kinematics 

Let us consider a manipulator composed of three 
similar segments connected in series as shown in Fig. 3, 
where the left hand-side is fixed and the initial 
configuration is a “straight” one (q1=q2=q3=0). This 
configuration is achieved by applying equal control 
inputs to all the mechanism segments. For this 
manipulator, it is necessary to investigate the influence of 
the external force Fe=(Fx, Fy), which causes the end-
effector displacements to a new equilibrium location 
( , ) (6 , )T T

x yx y b     , which corresponds to the 

nonzero configuration variables (q1, q2, q3). It is also 
assumed here the external torque Mext applied to the end-
effector is equal to zero. It can be easily proved from the 
geometry analysis that the configuration angles satisfy the 
following direct kinematic equations 

1 12 123

1 12 123

2 2
2 2

x b bC bC bC
y bS bS bS

   
     (4) 

where  123 1 2 3cosC q q q   ,  123 1 2 3sinS q q q   , 

 12 1 2cosC q q  ,  12 1 2sinS q q  , 1 1cosC q , 

1 1sinS q . These two equations include three unknown 

variables, and it allows us to compute two of them if the 
third one was known. For instance, if the angle 1q  is 



 

Figure 3.  The torque-angle curves and static equilibriums for 0 0
1 2L L  ( 0 0q  ). 

 

Figure 2.  The torque-angle curves and static equilibriums for 0 0
1 2L L  ( 0 0q  ). 

assumed to be known, the rest two angles 2q , 3q  can be 

computed from the classical inverse kinematics of the 
two-link manipulator as follows 

 
 3 3 3

31
2 1

1 3

atan
2

atan( ) atan( )
2 2

q S C
bSy bS

q q
x b bC b bC




  
  

 (5) 

where    2 2 2 2
3 1 12 2 5 4C x b bC y bS b b        , 

2
3 31S C   . The latter expressions provide two 

groups of possible solutions, which correspond to the 
positive /negative configuration angles 3 0q  and 3 0q  . 

To find a stable manipulator configuration under the 
loading, let us apply the energy method. It is clear that the 
end-effector displacement caused by the external loading 
leads to the deflections of mechanism springs, which 
allows us to compute the manipulator energy as 

 
3 2 20

1 1

1

2 ij ij
i j

E k L L
 

     (6) 

where ijL and o
ijL  are the spring lengths in current and 

initial (unextended) states respectively. The above energy 
can be expressed via one of the three variables q1, q2 or q3. 
Assuming that variable q1 is chosen as an independent 
one, the desired stable configurations can be found by 
computing local minima of the energy function 

 
1

1( ) min
q

E q      (7) 

Examples of such energy curves 1( )E q for several typical 

cases are presented in Fig. 4. 

B. Manipulator Stiffness Behavior 

An alternative way to compute the configuration 
angles q1, q2, q3 at the equilibrium state is based on the 
torque equation Me(q1)=0, which is implicitly used in the 

energy method. The latter is illustrated by combined plots 
of the energy-torque curves computed for the initial 
“straight” configuration presented in Fig. 5, which shows 
that the max/min of the energy E(q1) correspond to zeros 
of the torque Me(q1)=0. Further, to find the external 
forces corresponding to this end-point location, it is 
necessary to use the force-torque equilibrium equation  

 0M J FT
q      (8) 

where M=(Mq1, Mq2, Mq3)T,  F=(Fx, Fy, Me)T. They denote 
the internal torques Mq1, Mq2 and Mq3 in all manipulator 
segments and the force/torque at the end-point. In this 
equation, the internal torques can be computed using the 
previously derived expression from section II, 

2 2 02 ( )sin sin(0.5 ) ; 1,2,3qi i iM k b a q bL q i       (9) 

and the Jacobian matrix Jq can be computed using the 
standard technique for the three-link manipulator 
presented as follows 

1 12 123 12 123 123

1 12 123 12 123 123

2 2 2
2 2 2

1 1 1
q

bS bS bS bS bS bS
bC bC bC bC bC bC
      
    
  

J   (10) 

where S and C with corresponding indices have the same 
meaning as in (4). Assuming that the Jacobian is non-
singular (i.e. the loaded manipulator is already out of the 
straight configuration), the external force/torque can be 
expressed directly as T

q
 F J M , where the transport 

inverse matrix -T
qJ  can be computed analytically. Then we 

can get the following expression 

112 1 12 1

12 1 12 1 2
2 3 23 3 2 23 3

1

2 2

qx

y q

e q

MF C C C C
F S S S S M

bS bS bS bS bS bSM M

     
       
          

(11) 

The latter allows us to rewrite the system of the 
equilibrium equation (4) in the following extended form 



 
Figure 4.  Energy curves 1( )E q  for different combinations of manipulator geometric parameters a/b, Lo/b: 

 “blue curves”─ positive configuration with q3>0;  “green curves” ─ negative configuration with q3<0;  
● ─ stable equilibrium;  ● ─ unstable equilibrium 

 
Figure 5.  Correspondence between the maxima/minima of the 

energy curves 1( )E q  and zeros of the external torque 1( )eM q . 

   

1 12 123

1 12 123

3 1 23 3 2 2 23 q3

2 2 0
2 2 0

2 0q q
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S M S S M S S M

         
     

 (12) 

whose solution (q1, q2, q3) may correspond to either stable 
or unstable equilibriums of the manipulator configuration. 
Then, using expressions Fx (q1, q2, q3) and Fy (q1, q2, q3) 
obtained from (11), one can get the external loading (Fx , 
Fy) corresponding to the end-effector position (x, y), 
which finally allows us to generate the desired force-
deflection curves. Examples of such curves for several 
case studies are presented in Fig. 6, where it is assumed 
that under the loading the manipulator moves along with 
x-axis, i.e. varx  , 0y  . As follows from this figure, 

in general cases (Fig. 6a), the force-deflection curves are 
quasi-linear, but some of them may do not pass through 
the zero point. The latter means that the corresponding 
manipulator possesses very specific particularity known 
as the “buckling” property [19][20][21], for which the 
configuration angles may suddenly change while the 
external force increasing gradually. Besides, in the case 
presented in Fig. 6b, there is the “jumping” phenomenon, 
because of the unstable geometrical parameters of the 
manipulator segment (see section II and stable condition ), 
and the manipulator suddenly changes its shape even for 
extremely small loading. 

To compute the critical force 0
xF of the buckling, let us 

assume that the configuration angles (q1, q2, q3) are small 
enough but not equal to zero. This allows us to derive a 
linearized stiffness model in the neighborhood of qi=0 
(i=1, 2, 3). Under such assumptions, the first and second 
equations from (3.15) can be presented in the following 
form  

 
2 2 2
1 12 123

1 12 123

( 0.5 )
2 ( 0.5 )

x

y

b q q q
b q q q




  
  

   (13) 

which allows us to present the condition δy=0 as q1+q12+ 
q123/2=0. Applying similar linearization to the third 
equation from (12), one can get the additional relation of 
the configuration angles 2 2

1 3 2 2 3 3 0q q q q q q    , which 

ensures the equality Me=0. Further, combining these two 
obtained relations and considering q2 as an independent 

variable, it is possible to express q1, q3 in the way 

1 1 2q q  , 3 3 2q q  , where 

   1 321 11 20; 21 1 4          (14) 

The latter gives us four possible manipulator geometric 
configurations corresponding to the static equilibrium, 
two with U-shape and two with Z-shape (see Table 1). 
The corresponding external forces Fx, Fy can be 
linearized for small configuration angles, which yields 

2 2 0
1 3 2

2

2( ) ( 2 ); 0
2x y

k
F b a bL q q q F

bq
          (15) 

Further, taking into account (13) the desired critical force 
can be expressed in the following way 

 2 2 0

0
lim 2( )

i

o
x x

q

k
F F b a bL

b



         (16) 

where ( 21 14) 10 0.9417     for U-shape, and 

( 21 14) 10 1.8583      for Z-shape. 

It is worth mentioning that the obtained expression 
allows us to derive the static stability condition for the 
straight configuration. In fact, this configuration is stable 
if and only if 0 0xF  , which is equivalent to 



TABLE I.  POSSIBLE MANIPULATOR SHAPES IN STATIC EQUILIBRIUM 

 q1 q2 q3 Geometric configuration Stability  

Case of  “+√”  
‒ + + U-shape:   

q1

q2

q3
 Stable 

+ ‒ ‒ U-shape:      q1

q2
q3  Stable 

Case of  “-√” 
‒ + ‒ Z-shape:   

q1
q2

q3

 Unstable 

+ ‒ + Z-shape: q1
q2

q3  Unstable 

 

 
Figure 6.  Force-deflection curves and stiffness coefficients for the “straight” initial configuration. 

 2 2 02 b a bL  . It defining the monotonicity of the 

torque-angle curves for the manipulator segments. 
Finally, let us compare the U-shape and Z-shape 

equilibrium configurations for their static stability. It can 
be easily proved that for the small configuration angles qi, 
the end-effector deflection δx can be expressed in the 
following way 

2
2x q     (17) 

where ( 21 21) 20 1.2791    for U-shape, and 

( 21 21) 20 0.8209     for Z-shape. The latter 

means that for the similar deflections δx, the U-shape has 
the smaller configuration angles qi than the one of Z-
shape, which ensures smaller energy in agreement with 
(7). 

Let us consider now when the manipulator initial 
configuration is non-straight, which corresponds to the 

angles ( 0 0, 1,2,3iq i  ). Similar to the above section, 

the equilibrium is defined by three equations (12), which 
are derived from the direct kinematics and the zero 
external torque assumption Me=0. It can be proved that 
the energy curves have the “∞-shape” similar to the 
straight configuration considered before. However, 
depending on the initial end-effector location (x, y), these 
energy curves may be non-symmetrical and can be even 
discontinuous and include cusp points. Typical examples 
of such curves corresponding to the end-point location 

T T( , ) (5.5 , 0)x y b are presented in Fig. 7, where the 

discontinuity caused by the geometric constraint is visible. 
In particular, the energy curve of cases (a) consists of two 
separate U-shape parts that yield two symmetrical stable 
equilibriums and four unstable ones. Such separation is 

caused by the geometric constraints max
i iq q . However, 

the energy curves for the case (b) cannot be treated in the 
same way, because the combination of a, b, 0

iL  provides 

non-monotonic torque-angle curves for the segments and 
even separate parts of the manipulator are unstable here. 
It should be stressed that in the cases (a), each segment of 
the mechanism is statically stable. It should be also noted 
that there are some unfeasible sections (black lines) 
inside of the curve, where at least one of the angles q2 or 
q3 is out of the allowable geometric limits. 

The above-presented case studies, corresponding to the 

end-effector initial position T T( , ) (5.5 , 0)x y b , can be 

also illustrated by the force-deflection curves presented in 
Fig. 8. As follows, there is no buckling phenomenon in 
the case (a), the curve is quasi-linear and passes through 
the zero point. Besides, the buckling detected in the case 
(b) cannot be observed in practice because of the non-
stability of the separate manipulator segments. 

To evaluate the manipulator stiffness matrix for the 
non-straight configuration, let us first find the joint 
torques for all manipulator segments using the method 
from section II,  

 
 

2 2 0
1

0
2

2 ( )sin( ) cos( 2) sin( 2)
cos( 2) sin( 2) ; 1,2,3

qi i i i i

i i i

M k b a q kL a q b q
kL a q b q i

   
  

 

(18) 

and compute the derivatives providing equivalent 
stiffness coefficients in the joints qi qi i

K dM dq  

 2 2 0
1

0
2

2 ( )cos( ) cos( 2) sin( 2) 2
sin( 2) cos( 2 ) 2; 1, 2, 3

qi i i i i

i i i i

K k b a q kL b q a q
kL a q b q i

   
     

(19) 



 
Figure 7.  Energy curves 1( )E q  for different (a, b, Lo ) for non-straight initial configuration and displacement    , 2,0x y b    

 “blue curves” ─ feasible configuration with q3>0;  “green curves” ─ feasible configuration with q3<0;   
“black curves”─ unfeasible configuration;  “red point ●”─ stable equilibrium;  “black point ●” ─ unstable equilibrium.. 

 
Figure 8.  Force-deflection curves and stiffness coefficients for “non-straight” initial configuration  

with different parameters (a, b, Lo ) and displacement    , 2,0x y b   . 

This allows us to apply the VJM method and to express 
the unloaded stiffness matrix of the considered 
manipulator as 

  10 1 T
F o qo o

K J K J   (20) 

where the subscript “o” denotes the variables 
corresponding to the unloaded initial configuration. 
Further, if we express the 2x3 submatrix of the (10) for 
this configuration as 

 11 12 13

21 22 23 2 3

o

J J J

J J J


 
  
 

J   (21) 

The desired compliance matrix of the unloaded mode can 
be expressed analytically in the following way 

22 2
1311 12

0 1 1 2 3 22 2
2321 22

1 2 3

*

*

T q q q
F o qo o

q q q

JJ J

K K K
JJ J

K K K



 
  

   
  
  

C J K J (22) 

where 1 2 3( , , )qo q q qdiag K K KK is the matrix of size 3×3. 

For the loaded mode, the manipulator stiffness matrix 
can be computed using the extended VJM technique 
proposed in [22]. Within this technique, let us assume 
that there is a non-negligible deflection T( , )x y     

caused by the external force T( , )x yF FF , and there is a 

small deflection T( , )x y   caused by this force 

variation T( , )x yF F  F  that corresponds to the joint 

angle variations T
1 2 3( , , )q q q q    . As follows from 

the equilibrium equation T= M J F , the corresponding 
variation of the joint torque can be expressed as 

 
T

Td

d
  

 
    
 

J
M q F J F

q
 (23) 

where the part Td dqJ , which includes the Jacobian 

derivative, can be rewritten as 

3T T

1
i g

i i

d
q

d q
  



   
         

J J
q F = F K q

q
 (24) 

where gK  is the 3×3 matrix describing the influence of 

loading F on the manipulator Jacobian J 

1 2 3 3 3

T T T

g
q q q 

   
       

J J J
K F F F   (25) 

that can be also written in the extended form as 

21 11 22 12 23 13

22 12 22 12 23 13

23 13 23 13 23 13 3 3

x y x y x y

g x y x y x y

x y x y x y

J F J F J F J F J F J F
J F J F J F J F J F J F
J F J F J F J F J F J F



      
       
       

K (26) 

Further, after expressing the virtual joint torque variation 
as q  M K q  and its substitution to (23), the variable 

q can be presented as 



 
Figure 9.  Force-deflection relations of three-segment mechanism 

for non-straight initial configuration with    , 5.5 , 0
o

x y b . 

 
Figure 10.  Evolution of the manipulator configuration under the loading. 

  1
T

q g 


   q K K J F   (27) 

which allows us to find the end-effector deflection 
 J q , and finally to obtain the desired loaded 

compliance and stiffness matrices 

 
 

1 T

11 T

F q g

F q g





 
   

C J K K J

K J K K J
  (28) 

It is worth mentioning that all the Jacobian and the joint 
stiffness matrices Kq, Kg must be computed for the 
loaded equilibrium configuration, which is different from 
the initial unloaded one (It requires relevant solutions of 
the non-linear equations considered above). 

To illustrate the importance of the loaded stiffness 
analysis, the obtained expressions were applied to several 
cases study, which focusing on the manipulator stiffness 
changing under the external loading. For all considered 
cases, it was assumed that the initial manipulator 
configuration is a non-straight one, with the endpoint 
location (x0, y0)=(5.5b,0). Under the loading the 
configuration angles corresponding to the external force 
F=(Fx, Fy)T were computed from (11) numerically (using 

Newton’s Method). There are three combinations of the 
geometric parameters a/b ϵ{0.75; 0.9; 1.1}, relevant 
results are presented in Figs. 9 and 10. As follows from 
these figures, in most cases the manipulator stiffness 
essentially changes if the external loading is applied. In 
particular, the manipulator resistance in the x-direction 
becomes lower and lower while the force Fx is increasing 
(see Fig. 9a). In contrast, the resistance in the y-direction 
with respect to the force Fy becomes higher and higher 
while this force is increasing (see Fig. 9b). These results 
are also confirmed by the Kxx and Kyy plots presented in 
Fig. 10, which show an enormous loss of x-direction 
resistance under the Fx loading (it can be treated as a 
“quasi-buckling”, see Fig. 10a for the stiffness coefficient 
Kxx). On the other side, while increasing the force Fy, the 
stiffness coefficient Kyy is very small at the beginning, 
then it is increasing until reaches the maximum value, 
and then it is decreasing (see Fig. 10b). In this figure, an 
evolution of the manipulator configuration under the 
loading are also presented, with relevant stiffness 
coefficients Kxx and Kyy plots (corresponding to the case 
a/b=0.75). They demonstrate the above mention results 
from the geometrical and physical point of view, which 
are corresponded to the stiffness coefficient and force 
relation. There are four representative configurations 
presented here, which showing the shapes of all segments 
and their position with respect to the joint limits. As 
follows from them, the observed sudden change of the 
stiffness (see Figs. 9 and 10) occurs if one of the 
segments is close to its joint limits, where the equivalent 
rotational stiffness coefficient is very low. Hence, in 
practice, it is necessary to avoid applying too high 
loading, or the manipulator will approach its joint limits 
and lose stiffness. 

Therefore, as follows from the above study, the 
mechanical properties of a serial manipulator based on 
dual-triangle segments have several particularities, which 
are different from a classical serial structure composed of 
rigid links and compliant components. These 
particularities must be obligatory taken into account in 
control algorism, for ensuring desired motions of such 
manipulator, which is in the focus of our future research. 

IV. CONCLUSION 

The paper focuses on the compliant serial manipulator 
composed of a new type of dual-triangle tensegrity 
mechanism, which is composed of rigid triangles 



connected by passive joints. In contrast to conventional 
cable-driven mechanisms, here there are two length-
controllable elastic edges that can generate internal 
preloading. So, the mechanism can change its equilibrium 
configuration by adjusting the initial lengths of the elastic 
components.  

The energy method was used to find the equilibrium 
configurations for different combinations of geometrical 
and mechanical parameters.  The results show that both 
stable and unstable equilibriums may exist, and the 
manipulator shape will be an essential evolution if the 
external loading is applied. Some analytical results are 
presented, which allow us to find the manipulator shape 
under the loading and to estimate the stability of the 
corresponding configuration. 

The manipulator stiffness analysis for both loaded and 
unloaded mode was done using the VJM method, and the 
relations between the end-effector deflection and the 
external force were obtained. Similar to the single dual-
triangle segment, the buckling phenomenon occurs if the 
manipulator initial configuration is straight. Besides, for 
the non-straight initial configuration, the sudden change 
in deflection was also observed in some cases, which was 
treated as quasi-buckling. These particularities of the 
manipulator stiffness behavior were also observed in 
simulation.  

The obtained results allowing to predict manipulator 
complicated behavior under the loading, and to avoid the 
buckling or quasi-buckling phenomenon by proper 
selection of the mechanical parameters, which will be 
used in the future for the development of relevant  control 
algorisms and redundancy resolution. 
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