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Abstract 

Many researchers in Artificial Intelligence today consider 
that human reasoning cannot be modelled by “one” formal 
language. Given its complexity and diversity, observed in the 
context of work done in cognitive science, it would even be 
possible that it escapes formal logic. Many convincing 
arguments have been put forward, and the various failures in 
this field suffered by logicians during the 20th century 
reinforce this conclusion. However, failures and arguments 
are not proof. We show in this article, through a concrete 
example, that it would be premature to bury the historical 
ambition of logic. It presents a formalism, noted Lc, which we 
call contextual logic. This remains strictly and scrupulously 
within the framework of the syntax of propositional logic. The 
set of atomic propositions is extended by what we call 
thoughts. They appear automatically and silently and carry 
the semantic interpretation function. This is defined by the 
analysis of the behaviour of the thoughts in the models of the 
theory. The originality of Lc is to model a totally fallibilistic 
and perspectivistic reasoning:  "Each piece of knowledge is 
uncertain. Belief is built by aggregating the different 
justifiable points of view, accepting the possibility that they 
are incomplete, incorrect, or inconsistent with each other". In 
contrast to the principle of proof inherited from mathematics, 
Lc models that nothing is provable, and adopts the principle 
of non-refutability to meet the need for decidability. 
Contextual logic captures notions of inconsistency, predicate, 
and epistemic modality, accepts abductive and inductive 
reasoning, and solves belief revision and epistemic rooting 
problems in a radical way. 
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1 Introduction 

Formalisms based on the propositional logic Lp 
classically focus on modelling knowledge that is deemed to 
be true or false. It is insufficient to model the full diversity 
and complexity of human reasoning, which obviously also 
exploits inconsistent or uncertain information. 

Another difficulty is to move from a monotonic 
semantic interpretation (what is supposed to be true at one 
moment remains true the next moment) to a non-monotonic 
semantic interpretation (what is supposed to be true at one 
moment can be false the next moment). 

Many propositions have been presented to address these 
needs: epistemic modal logics, paraconsistent logics, 

default logic, intuitionistic logic, adaptive logics, or 
multivalued logics for example. They each manage to 
capture different properties. But they have not succeeded in 
modelling the many modes of reasoning empirically 
observed in humans (D. Andler [2]). 

These formalisms address the problems according to the 
principle of proof inherited from mathematics. But in the 
context of Artificial Intelligence, more precisely in the 
branch of AI which aims to model human reasoning, we 
explain these failures by postulating that it is strictly based 
on a principle of non-refutability. To achieve this, we 
propose to model a faillibilistic reasoning:  

We are unable to prove that a piece of knowledge is 
true. They are all uncertain, and our belief is 
constructed by identifying those that are justifiable. 

Thus, a belief considered justifiable at a given moment can 
be contradicted and become unjustifiable following the 
appearance of a new piece of information. We obtain the 
contextual logic Lc. The exercise leads, mechanically, to a 
perspectivist reasoning: 

Belief is constructed by aggregating some different 
justifiable points of view, accepting the possibility 
that they are incomplete, incorrect, or inconsistent 
with each other. 

Lc remains strictly and scrupulously within the monotonic 
syntax of propositional logic Lp – formulas that are 
producible at one point in time remain producible, 
regardless of the new piece of knowledge that arises – and 
enrich the set of atomic propositions by silent propositions. 
We call them thoughts. 

Integrated and consumed automatically, they identify 
the formulae belonging to the set of knowledge. We use 
them to define a non-monotonic semantic interpretation 
function based on the analysis of their behaviour in models 
of the theory. 

We first present the propositional logic to share the 
vocabulary we use and the associated definitions. The 
supposed limits of the syntax of Lp are recalled. The 
principles of Lc and its main properties are described. The 
assumed limitations of the propositional logic are then 
revisited. 

We show how, while strictly preserving the syntax of 
Lp, thoughts can be used to model the notions of 
inconsistent knowledge and predicate. Lc also proposes 
solutions to the problem of producing a new piece of 
knowledge by induction and abduction and allows to 
circumvent the difficulty brought by the exponential 
complexity of Lp algorithms. 



To illustrate our point, we conclude our presentation by 
developing an example of application of Lc. It calls upon a 
sufficiently broad knowledge base to demonstrate, through 
a practical case, the non-monotonic expressiveness of the 
language and to give meaning to the various technical 
examples used throughout the text. It shows that belief 
revision and epistemic rooting are not syntactic problems. 

2 The propositional logic 

In this article, we refer to several formal languages. We 
do not detail them in general so as not to make the 
presentation unnecessarily heavy, inviting the reader to 
refer to the many documents available on these formalisms. 

However, we think it is useful to pause for a moment on 
the propositional logic Lp. This paragraph does not contain 
anything new. Its purpose is to share the definitions of the 
vocabulary and the symbols we use. 

The syntax of Lp 

The language of the propositional logic Lp is composed 
of the set PLp of atomic propositions, the negation connector 
¬, the implication connector →, and the parenthesis 
symbols, which are used according to classical 
mathematical rules. The rules for forming a well-formed 
formula are: 

 any atomic proposition is a well-formed formula, 
 if f and g are well-formed formulae, then the 

expressions (f), ¬ f and f → g are well-formed 
formulae, 

 a well-formed formula is obtained only by applying 
the two precedent rules a finite number of times. 

Let f, g and h be some well-formed formulae. The 
following formulae are some axioms: 

 f → (g → f) 
 (f → (g → h)) → ((f → g) → (f → h)) 
 (¬f → ¬g) → ((¬f → g) → f) 

These three axioms are sufficient to cover all the axioms of 
Lp. For example, f → f is another axiom, which can be 
demonstrated from these three using the theorem 
formation rules: 

 any axiom is a theorem, 
 let f and g be two well-formed formulae. If f and 

f → g are theorems, then g is a theorem (this rule is 
called the modus ponens), 

 a theorem can only be obtained by applying the two 
previous rules a finite number of times. 

The statement f is a theorem is denoted ⊢Lp f. 
A theory ELp is a set of well-formed formulae. The 

formulae f ∈ ELp represent the hypotheses of ELp. A formula 
f is said to be provable in ELp if, and only if, it can be 
produced from ELp by applying the theorem formation 
rules, for all hypotheses of ELp behaving as theorems. In this 
case, f is said a theorem of ELp, and this is denoted ELp ⊢Lp f: 

A theory is said to be inconsistent if it produces the 
negation of a theorem. Otherwise, it is said to be consistent. 

To simplify the expression of formulae, the language is 
extended to disjunction (denoted ∨), conjunction (denoted 

∧) and equivalence (denoted ↔) connectors. For f and g 
two well-formed formulae, they are defined by: 

 f ∨ g is equivalent to (¬ f → g), 
 f ∧ g is equivalent to ¬ (f → ¬ g), 
 f ↔ g is equivalent to (f → g) ∧ (g → f). 

A literal is an atomic proposition or the negation of an 
atomic proposition. A clause is a disjunction of literals. A 
formula is said to be in normal form if it is a conjunction 
of clauses. 

Any well-formed formula admits a logically equivalent 
rewriting in normal form (A. Thayse, [23]). For example, 
the normal form of the formula ((¬ f → g) → h) is 
((¬ f ∨ h) ∧ (¬ g ∨ h)). P. Siegel [22] proposes a linear 
complexity process that rewrites any well-formed formula 
into its normal form. 

The semantic of Lp 

Classically, the logician's attitude is to consider in 
formal language only mathematical symbols: 

“A formal language is, by definition, a language 
with only syntax and no semantics” – (translation) 

J. Hebenstreit, Enclycopedia Universalis 
What is relevant is the study of the mechanisms and laws 
of reasoning, modelled by syntactic rules. Any reference to 
semantic content is discarded. However, it is possible to 
attribute a meaning to connectors if it is strictly symbolic 
and univocal. 

Let ELp be a theory of Lp, and f and g two well-formed 
formulae. The syntactic interpretation function of Lp is 
defined by a function ILp such that: 

 ILp(ELp, f) = true or ILp(ELp, f) = false 
 If f is a hypothesis of ELp, then ILp(ELp, f) = true 

The meaning of the connectors is then defined by: 

 ILp(ELp, ¬ f) = true if, and only if, ILp(ELp, f) = false, 
 ILp(ELp, ¬ f) = false if, and only if, ILp(ELp, f) = true, 
 ILp(ELp, f → g) = true if, and only if, 

ILp(ELp, f) = false or ILp(ELp, g) = true, 
 ILp(ELp, f → g) = false if, and only if ILp(ELp, f) = true 

and ILp(ELp, g) = false. 

The symbol ⊨Lp is defined by: 

ELp ⊨Lp f if, and only if, ILp(ELp, f) = true 

The syntactic interpretation of an axiom is always true, 
and Lp is adequate and complete: everything that is 
produced (using ⊢Lp) is true (according to ⊨Lp), and 
everything that is true is produced: 

ELp ⊨Lp f if, and only if, ELp ⊢Lp f 

If the constraints of a theory do not allow the true or 
false truth value of a formula to be calculated, it is said to 
have an unknown value for this theory. For example, the 
value of ILp({a → b}, a) is not computable: a can be true 
(in this case, b is true) or false (in this case, b can be true 
or false). 

This remark introduces the last definition, with which 
we close this paragraph. Let ELp be a theory of Lp. A model 
of ELp is obtained by associating to each atomic proposition 
only one truth value (true or exclusively false) such that the 



result verifies the logical constraints expressed by ELp. ELp 
is consistent if it has at least one model. It is inconsistent 
otherwise. 

For example, the theory {a → b, c} is verified by three 
models: 

{(a, true), (b, true), (c, true)} 
{(a, false), (b, true), (c, true)} 
{(a, false), (b, false), (c, true)} 

So, it is consistent. As a counter example, {a, ¬ a} does not 
accept a model: if a is assumed to be true, ¬ a is not verified 
- and vice versa. a is true and false. It is inconsistent. 

3 The limits of Lp 

Modelling human reasoning with Lp faces several 
difficulties. We propose to group them into five themes. 

1) A difficulty is to move from a monotonic semantic 
interpretation (what is supposed to be true at one moment 
remains true the next moment) to a non-monotonic 
semantic interpretation (what is supposed to be true at 
one moment can be false the next moment). This topic is 
covered in paragraph 5. 

2) Human reasoning sometimes seems incoherent. But 
syntactic inconsistency leads to the production of 
everything and its opposite: whatever f and g two well-
formed formulae of Lp, {f, ¬ f} ⊢Lp g. This is the explosion 
principle. It forbids the appearance of a syntactic 
inconsistency in a theory. This topic is covered in 
paragraph 6. 

3) Human reasoning uses semantic links between 
propositions. But the symmetrical behaviour of connectors 
prohibits this type of modelling in Lp. Put more explicitly 
with an example, f → (g → h) is syntactically equivalent to 
g → (f → h): f and g have the same behaviour in the 
formula, and it is not possible to model a privileged 
relationship between one of them and h. This topic is 
covered in paragraph 7. 

4) Theory distinguishes three modes of reasoning found in 
humans: deduction (establishing a particular law from 
general facts), induction (establishing a general law from 
particular facts) and abduction (identification of the most 
likely cause of an observed event). Deduction is formalised 
by the modus ponens rule, but the other two modes escape 
the formalism of Lp. This topic is covered in paragraph 8. 

5) The computational algorithms associated with Lp are of 
exponential complexity. In practice, it takes several 
seconds to deduce knowledge using a base of a few dozen 
formulae. This is obviously not acceptable in the context of 
human reasoning, and more generally in the context of 
Artificial Intelligence. It requires a good level of 
responsiveness. This topic is covered in paragraph 9. 

The successive failures of logic researchers to solve 
these problems have led many to conclude that the 
modelling of human reasoning eludes Lp, and probably 
logical formalisms more generally (D. Andler [2]). We are 
going to show in the following paragraphs that this 

conclusion is hasty: the syntax of propositional logic is 
sufficient to resolve these questions. 

4 The contextual logic 

Let us consider a thought. We perceive it in the sense 
defined by R. Descartes [4]: 

“By the name of thought, I understand all that is so 
much in us that we are immediately aware of it” 
(translation) 

and we describe it with a set of sentences. However, even 
if this description were ideally complete and perfect, we are 
immediately aware that it is not the thought it describes. 

We model this observation by distinguishing two 
notions in the syntax of the language: a unit sign c, which 
symbolises a thought, and a combination of signs f, which 
reproduces the sentences that describe it. This leads to the 
need to define a relationship between c and f. 

To this end, we consider the following postulate [11]: 

Contextual postulate Let L be a formal language with the 
functions of syntactic production ⊢L and of syntactic 
interpretation ⊨L. A well-formed formula f of L is a set of 
signs that has no meaning. Its meaning is carried by a 
thought, which is an atomic proposition of L “which is not 
pronounced”. For c symbolising this thought, the relation 
between c and f is c ⊨L f. 

The expression c ⊨L f asserts neither the thought c nor 
the sentence f. It models that the sentence f expresses the 
thought c. c is an atomic proposition which respects the 
syntactic properties of L. 

For example, consider seven sentences f1, f2, …, f7 such 
that: 

  

ELp admits a syntactic behaviour, but it has no semantic 
meaning according to the contextual postulate. 

To overcome this, we need to consider the thoughts c1, 
c2, …, c7. c ⊨L f is equivalent to ⊨L c → f if L is Lp. So, after 
applying the contextual postulate, the set becomes: 

  



ELc models: “each thought ci is expressed by a sentence 
fi”. We thus agree with L. Wittgenstein when he states [26]: 

“We should not say: The complex sign aRb says that 
a is in the relation R with b, but: That a is in a 
certain relation R with b says that aRb” 
(translation). 

The application of the contextual postulate to a formalism 
L produces the contextualised logic L. By language 
convention, we call contextual logic, denoted Lc, the 
contextualised propositional logic. 

Each contextual formula of a theory of Lc takes a form 
c → f, for c a thought (and an atomic proposition) and f a 
well-formed formula in the sense of Lp. 

Expressions in Lc accept a natural order: 

 an atomic proposition that is not a thought is of rank 
0, 

 a thought is of rank 1 or higher. We will see later 
that we propose to automatically handle the 
assignment of a rank to a thought, 

 the rank of a well-formed formula in the sense of Lp 
is equal to the maximum rank of the atomic 
propositions (including thoughts) that compose it. 

We define a well-formed formula in the sense of Lc to 
be a formula c → f, for c a thought of rank n and f a well-
formed formula in the sense of Lp of rank m, such that 
n > m. No well-formed expressions are acceptable. They 
allow for ⊢Lp production and ⊨Lp syntactic interpretation. 
However, we only lend them meaningless technical 
behaviour, which makes them useless in the context of 
language. 

Given the syntax c → f of the contextual formulae, the 
set {(ci, false), ci are the thoughts} characterises some 
models that verify any contextual theory. For example, 
{(c1, false), (c2, false), …, (c7, false)} characterises some 
models that verify {c1 → f1, c2 → f2, …, c7 → g}. 

The first consequence is that each contextual theory 
admits at least one model. So, it is always consistent. 

The second consequence is that Lc is unable to produce 
certainty: any thought is possibly false, and any formula 
(except for axioms) can be false. In Lc, uncertainty is 
intrinsically embedded in the syntax. To remedy this 
problem, we adopt the following principles: 

 because any formula can be false, we cannot 
interrogate a contextual theory with a question such 
as “Is f true (or false)?”. But we can say: “What can 
I conclude if I suppose that f is true (or false)?”. 

Notation f is called the stimulus. It is possibly empty, 
and it is denoted SLc. 

 because every thought is possibly false, we propose 
to relativize the semantic interpretation to the 
subsets of thoughts identified as the most relevant. 
We cannot conclude that f is true or false, but we can 
say “f is true (or false) with respect to the most 
relevant sets of thoughts”. 

For example, let a and b be two atomic propositions of 
Lp, and c1, c2 and c3 be three thoughts. Consider the 
following set: 

ELc = {c1 → a, 
     c2 → ¬ a, 
     c3 → b} 

We cannot prove that a or b is true or false. But we can say 
that a is true considering {c1}, or that a is false and b is true 
considering {c2, c3}, etc. 

There are many possible combinations, so we should 
define a method for selecting “the most relevant sets of 
thoughts”. For this purpose, we need some definitions. 

Definitions Let ELc be a theory of Lc and i and j be 2 
integers such that 0 < i ≤ j. 

 A set of thoughts is called a context. 
 A context is said to be of rank i to j if all the thoughts 

in it are of rank i to j. A context of rank i to i is said 
of rank i. 

 A context that is verified by at least one model of ELc 
is called a possible (or a consistent) context. 

 A context that does not check any model of ELc is 
called an impossible (or an inconsistent) context. 

 An impossible context is called a strict impossible 
context if each of its strict subsets is possible. 

 A possible context that has no strict extension that 
checks ELc is called a maximal context. 

 A possible context is called the credible context if it 
has no join with a strict impossible context and if all 
its strict extensions have a join with a strict 
impossible context. 

In the following, and in accordance with common 
practice, we invariably use the notions of conjunction of 
formulae (for example: c1 ∧ c2) or of set of formulae (for 
example: {c1, c2}) to designate the same object. A 
conjunction of thoughts also means a context. 

Example Let a, b and c be three atomic propositions of Lp, 
and c1, c2, c3, c4 and c5 be five thoughts. Consider the 
following set: 

ELc = {c1 → a, 
     c2 → ¬ a, 
     c3 → b, 
     c4 → ¬ b, 
     c5 → c} 

c1 ∧ c2 and c3 ∧ c4 are the only two strict impossible 
contexts. So, c5 is the credible context, and there are four 
maximal contexts: {c1, c3, c5}, {c1, c4, c5}, {c2, c3, c5} and 
{c2, c4, c5}. 

We see that, for a given theory, there are possibly 
several maximal contexts (potentially empty) and a single 
credible context (potentially empty). They are obtained by 
calculating the strict impossible contexts in a first step. The 
different possible combinations of thoughts then produce 
them. 

We use these definitions to define the function that 
identifies the contexts considered most relevant for 
semantic interpretation. 



Definition Let ELc be a theory of Lc, SLc be a stimulus, Tc 
and Tm be two integers such that 0 < Tc < Tm, and T be the 
maximal rank of the thoughts of ELc. The relevant contexts 
are defined as follows: 

 calculation of the maximal epistemic contexts: if 
T < Tm then there is an empty maximal epistemic 
context, else calculation on {ELc, SLc} of the maximal 
contexts of rank Tm to T, 

 then enrichment of each maximal epistemic context 
C, by the credible context of rank Tc to Tm-1 on 
{ELc, SLc, C}. 

This defines the set of epistemic contexts. It is denoted 
CELc, SLc, Tc, Tm. 

This definition presents the notion of epistemic 
contexts. They are the most relevant sets of thoughts, which 
meets the need we identified earlier. Other definitions are 
possible, for example by using the ranks of thoughts more 
finely. Epistemic contexts are sufficient for the modelling 
needs presented in this article. 

We are now able to define the semantic interpretation 
function of Lc. 

Definition Let ELc be a theory, SLc be a stimulus and Tc and 
Tm be two integers such that 0 < Tc < Tm. Considering ELc, 
SLc, Tc and Tm, a sentence f, called a piece of belief, is said: 

 conceivable if there is at least one epistemic context 
C1 such that {ELc, SLc, C1} ⊨Lp f and there is at least 
one epistemic context C2 such that 
{ELc, SLc, C2} ⊨Lp ¬ f, 

 credible if there is at least one epistemic context C1 
such that {ELc, SLc, C1} ⊨Lp f and there is no 
epistemic context C2 such that {ELc, SLc, C2} ⊨Lp ¬ f, 

 improbable if there is at least one epistemic context 
C1 such that {ELc, SLc, C1} ⊨Lp ¬ f and there is no 
epistemic context C2 such that {ELc, SLc, C2} ⊨Lp f, 

 not interpretable in other cases. 

{ELc, SLc, C ∈ CELc, SLc, Tc, Tm} is said a semantic perspective. 

This definition presents the basic semantic 
interpretation function of Lc. It can be enriched, for example 
by distinguishing true formulae in all semantic 
perspectives. This version is sufficient for the modelling 
needs presented in this article. 

Example Let a and b be two atomic propositions of Lp, c1 
and c2 be two thoughts of rank 1, and c3 and c4 be two 
thoughts of rank 2. Consider the following set: 

ELc = {c1 → a, 
     c2 → ¬ b, 
     c3 → c1, 
     c4 → ¬ c1} 

Let Tc=1 and Tm=2, and we consider the stimulus is empty. 
{c3, c4} is incoherent, so {c3} and {c4} are the two maximal 
contexts of rank 2. Let's add to each the credible context of 
rank 1 associated with it to calculate the two epistemic 
contexts. We obtain: 

 {c3, c1, c2}. The associated semantic perspective 
says that a is true and b is false, 

 {c4, c2}. The associated semantic perspective says 
that b is false. 

So, according to the semantic vocabulary of Lc, a is 
credible and b is improbable. 

The semantic interpretation function has a 
mathematical definition and is therefore rigorous. This is 
not compatible with our natural language habits. Therefore, 
we will allow ourselves some linguistic shortcuts, for 
example: 

 a context is said to be a belief or a piece of 
knowledge, and vice versa,  

 a semantic perspective is said to be a perspective, 
 a conceivable expression is said to be true and false, 

or possible, 
 a credible expression is said to be true, conceivable, 

or possible, 
 and an improbable expression is said to be false, 

conceivable, incredible, or impossible. 

We will use them in a way that does not create confusion. 

5 The properties of Lc 

We now present the properties of Lc. We remain on a 
technical observation and not discuss their relevance. 

Indeed, each property echoes philosophical concepts 
and deserves a dedicated article. The debates are rich, and 
there are as many defenders as detractors. The interested 
reader will easily find in-depth presentations of these topics 
in the literature. We do not bring new philosophical 
elements to enrich these exchanges – only a few practical 
findings that we will share in paragraphs 6 to 9. 

To facilitate the understanding of what is to come, we 
propose to illustrate the principles of Lc with some small 
diagrams. Consider the following set: 

  

It is syntactically inconsistent, and it has no semantic 
meaning according to the contextual postulate. Let us apply 
it by enriching the set of atomic propositions with the 
thoughts c1, c2, c3, c4, c5, c6, c7 and c8 such that: 

  



The resulting set ELc is a kind of dictionary of thoughts: 
each thought ci is expressed by a formula fi. It is 
syntactically consistent even though the definitions may be 
semantically inconsistent with each other. This result is 
obtained at the cost of an absolute uncertainty: all thoughts 
are potentially false. 

To analyse a situation (formalised by a stimulus), Lc 
identifies the set of relevant thoughts concerning it. 

  

In this example (presented for illustrative purposes 
only), the stimulus S1 generates the semantic perspective 
P1. Its epistemic context is {c1, c2, c3}. c1, c2 and c3 are the 
most relevant thoughts considering S1. 

Assume another stimulus S2: 

  

S2 is seen through two mutually incoherent semantic 
perspectives P2 and P3. 

The syntax production function is monotonic 

Lc respects the syntax of the propositional logic and is 
therefore syntactically monotonic: whatever f and g are 
contextually well-formed formulae, if a theory ELc 
produces f then {ELc, g} produces f. Note that the syntactic 
interpretation function is mechanically also monotonic. 

The semantic interpretation function is non-monotonic 

Lc decorrelates the syntactic interpretation function 
from the semantic interpretation function. Syntax produces 
a set of formulae according to the rules of the 
contextualised formalism. Semantics then provides an 
interpretation by analysing the behaviour of the thoughts in 
the models of the theory. They are considered as they are 
produced by the syntax of Lp. We do not employ the 
concept of extension sometimes used by non-classical 
formalisms. 

The models of a theory can change if a new piece of 
knowledge is introduced. So, CELc, Tc, Tm must be 
recalculated in this case, and Lc has a non-monotonic 
semantic: considering the same stimulus SLc, a formula f 
can be credible considering {ELc, SLc} and incredible 

considering {(ELc, g), SLc}, for g a new piece of knowledge. 
We present some examples of use in the following 
paragraphs. 

The formalism adopts a de dicto behaviour 

De dicto and de re are two locutions that distinguish two 
modalities of statements and the reasoning behind them. De 
dicto means in Latin about what is said, and de re means 
about the fact. In Lc, a piece of knowledge (c → f) does not 
express a fact, but models that the thought c is expressed by 
the sentence f. 

Contextual logic thus distinguishes between the thought 
c, which is the whole that one wishes to express, and the 
sentence f, which is the way it is said. The reasoning then 
exploits the logical relations that appear in the sentence 
which is said. 

The semantic is faillibilistic 

Non-monotonicity is a matter of completeness of 
knowledge: a belief that is true in one state may be false in 
an enriched state. Faillibilism (K. Popper [18]) is a more 
radical philosophical principle. It assumes that absolute 
knowledge is impossible: all belief can, at any time, be 
questioned – and possibly contradicted. 

The syntax of Lc is that of Lp. It is therefore based on 
axiomatic principles which it considers as absolute. 
However, a consequence of the contextual postulate is that 
every proposition (which is not an axiom) is possibly false. 
Lc thus proposes the paradox of relying on a syntax 
considered as absolutely certain to model knowledge 
interpreted semantically as absolutely uncertain. 

To avoid this, the solution is to consider that what is not 
explicitly false is credible and will remain so until it is 
explicitly contradicted or challenged. We illustrate this 
with some examples which we develop in the following 
paragraphs. 

The semantic is perspectivistic 

Perspectivism (F. Kaulbach [10]) refers to 
philosophical doctrines that defend the idea that our 
perception of reality is composed of the sum of the 
perspectives we have on it. 

In Lc, the semantic interpretation is obtained by 
considering the interpretations, possibly contradictory, of 
each epistemic context: belief is not the consequence of a 
global point of view built on the whole of thoughts, but the 
juxtaposition of several points of view built from distinct 
subsets of thoughts each considered to be relevant. 

Atomic propositions of Lp are attributes and not assertions 

In the most adopted mathematical approach, an atomic 
proposition is an assertion apprehended in its content. 
Considering a theory, its semantic interpretation admits a 
truth value: it is true or false (or possibly another value in 
the case of multi-valued formalisms). 

In Lc, it is not possible to deduce that a proposition is 
true or false according to Lp. A proposition (or a formula) 
can only be interpreted in relation to a set of thoughts, 
called a context. It characterises it. This is a mechanical 
consequence of the application of the contextual postulate. 



So, in Lc, a proposition is not an assertion in the strict 
sense of the term. It must be understood as a characteristic, 
or an attribute, of the context or of the stimulus. 

Consider, for example, the sentence: 

“If Tweety is a bird, then it flies”. 

Its modelling in predicate logic can be: 

Bird(Tweety) → Fly(Tweety) 

In Lc, this assertion is modelled by: 

{c1 → (Tweety → Bird), c2 → (Bird → Fly)} 

which allows for several readings - for example: attributes 
Bird and Fly are attributes of the stimulus Tweety if we 
consider the context {c1, c2}. 

Reasoning is introspective 

We end this paragraph with probably the most 
important property of the contextual logic. By 
distinguishing expression and thought, and by modelling a 
relationship between them, the contextual postulate brings 
a capacity for introspective reasoning to the formal 
language: the thoughts can reason about themselves using 
the constraints carried by the sentences that express them. 

It thus brings formal language closer to natural 
language: formalism is used as a means of expression. The 
properties carried by the syntax of language model the 
reasoning mechanisms of thought (J. Fodor [6]). They 
generate, by opportunity, the ability to reason about what is 
said. 

We have finished with the presentation of Lc. The 
following sections show how to use its properties to provide 
answers to the four last difficulties identified in paragraph 
3 (the first being covered as we have just observed). 

Considering the definition of epistemic contexts, Tc and 
Tm can theoretically take any value. According to the work 
of J. Pitrat [17], there are probably cognitive thresholds 
limiting the capacities of human reasoning (see paragraph 
9). In the rest of this document, we use the thresholds 2 and 
3, which are sufficient to cover the expected level of 
expressiveness expected in this article. 

And by writing convention, we now note ci,j the 
thoughts. i singularizes the atomic proposition and j 
indicates its rank. 

6 Modelling an inconsistent information 

 For example, consider a set of Lp’s propositions 
{a, b, c} and let be the following set: 

 ELp = {a → b, 
     a → ¬ b, 
     c, 
     a} 

It is inconsistent because ELp ⊢Lp b ∧ ¬ b. According to the 
explosion principle, whatever f a well-formed formula, 
ELp ⊢Lp f. This is not acceptable. 

ELp has no meaning according to the contextual 
postulate. Let us now place ourselves in the contextual 
logic framework. Considering the set of thoughts 
{c10,2, c20,2, c30,2, c40,2}, we assume the following theory: 

 ELc = {c10,2 → (a → b), 
     c20,2 → (a → ¬ b), 

    c30,2 → c, 
    c40,2 → a} 

Note that thoughts name formulas, which will allow us to 
carry out introspective reasoning. ELc is consistent, and 
there is an incoherence between the three thoughts c10,2, 
c20,2, and c40,2 because: 

{ELc, c10,2, c20,2, c40,2} ⊢Lp b ∧ ¬ b 

{c10,2, c20,2, c40,2} is a strict impossible context. So, {c30,2} is 
the only epistemic context. If the stimulus is empty, we 
obtain one perspective which says {c}, and {a, c} if the 
stimulus is {a}. 

This is a first result showing the possibility of exploiting 
inconsistent beliefs in Lc. The solution is to get around the 
problem by considering that the thoughts c10,2, c20,2 and c40,2 
are not credible because they produce an inconsistency. 

We now want to address this inconsistency, by 
modelling that a → b (i.e., the thought c10,2) is not always 
true - or, put differently, is sometimes true and sometimes 
false. Let's use two new thoughts, c11,3 and c12,3: 

ELc = {c10,2 → (a → b), 
  c11,3 → c10,2, 
  c12,3 → ¬ c10,2, 
    c20,2 → (a → ¬ b), 
    c30,2 → c, 
    c40,2 → a} 

Considering a is the stimulus, let's calculate the epistemic 
contexts. There are 2 maximum contexts of rank 3: {c11,3} 
and {c12,3}. Let us extend each of them to their associated 
credible contexts of rank 2: 

 considering {ELc, a, c11,3}, {c20,2, c40,2} is the only 
strict impossible context, so {c10,2, c30,2} is the 
credible context of the rank 2 in this case, 

 considering {ELc, a, c12,3}, {c10,2} is the only strict 
impossible context, and {c20,2, c30,2, c40,2} is the 
credible context in this. 

In fine, considering the stimulus {a}, we obtain two 
epistemic contexts: 

 {c11,3, c10,2, c30,2} which says {a, b, c} is true, 
 {c12,3, c20,2, c30,2, c40,2} which says {a, ¬ b, c} is true. 

Taking a as the stimulus, we conclude that c is credible (or 
true), and that b is conceivable (or true and false). The 
formalism does this by modelling an epistemic 
information: the belief a → b (i.e., c10,2) is true (what c11,3 
formalises) and false (what c12,3 formalises). 

We have used a single contradiction {c11,3, c12,3} to 
illustrate our point. If multiple contradictions (two 
contradictions {cx1,3, cx2,3} and {cy1,3, cy2,3} for example), 
the different cases are managed on the maximal epistemic 
contexts ({cx1,3, cy1,3}, {cx1,3, cy2,3}, {cx2,3, cy1,3}, and {cx2,3, 
cy2,3} with the example). 

We obtain by combination the set of relevant 
perspectives. This is illustrated in the example that we 
develop at the end of this article. 



Comparison with other formalisms 

In this section, we point out the major gaps in the 
treatment of inconsistent or incomplete information 
between Lc and other non-classical formalisms. 

The first and, from our point of view, the main 
difference is that contextual logic strictly respects the 
syntax of propositional logic. Contrary to what is 
commonly shared, it is not necessary to add new connectors 
or to modify the syntactic rules of Lp to model a notion of 
inconsistency. But there is not just this gap. 

Paraconsistent and multivalued logics aim to tolerate 
inconsistencies by escaping the principle of explosion. The 
approach, theorised by J. Lukaszewicz [13], is either to 
weaken Aristotle's principles to limit the inferential 
capacities of language or to add a third truth value to 
indicate that the piece of knowledge concerned is both true 
and false. 

Lc addresses the issue of uncertainty and inconsistency 
through its perspectivistic property: it models that 
something is simultaneously true according to some 
thoughts and false according to others. Lc is therefore not a 
paraconsistent or a multivalued formalism: it strictly 
preserves the syntax of Lp. Therefore, it does not escape the 
principle of explosion. If one retains a reference context 
that syntactically produces f ∧ ¬ f, then it produces any 
belief g whatsoever. 

Inconsistency is accepted in the semantic interpretation 
of Lc. It remains non-tolerable in its syntax. 

Another difference between Lc and other non-classical 
formalisms is its faillibilistic property: noting that there is 
no certainty, it takes as credible what is not explicitly false. 
In other words, it takes as true everything that is possible 
and not clearly impossible. This property gives Lc a 
particular behaviour, which does not allow it to fully 
capture modal logics or default logics, for example. 

Default logic is proposed by R. Reiter [20]. To reason 
with uncertain information, he extends production rules by 
expressions of the form (a : b / c) which read: 

If a is true and if b is possible then c is produced 

In Lc, the thought that b is possible “generates the thought 
b”. However, related to R. Reiter's syntax, Lc's 
expressiveness is limited to normal default rules, of the 
form (a : c / c) [11] (the link with a normal default is that 
“b is included in c”). 

Modal epistemic logics extend the expressiveness of 
languages by adding a new connector for reasoning about 
the quality of the interpretative value. The most widely 
used epistemic modal connector is the alethic connector ◻. 
◻ f usually expresses that f is necessary, and its dual ¬◻¬ f, 
denoted ◇ f, that f is possible. The language relies on the 
semantics of possible worlds of S.A. Kripke [12] to benefit 
from a syntactic interpretation function of ◻. 

We have proposed a relationship between modal 
epistemic logics and Lc [11]. This requires an evolution of 
the definition of epistemic context, using ranks to capture 
the imbrications of the monadic connector (rank i for ◻, 
rank i+1 for ◻◻, etc.). It models the sets {◻ f} and 
{◇ f, ◇¬ f}, but the set restricted to {◇ f} is interpreted as 

{◻ f}: f is considered necessary if the possibility of its 
opposite is not explicitly expressed. 

The behaviour of Lc is equivalent to adding a default 
rule to the K system: {◇ f  : ◻ f / ◻ f}. In the framework of 
Kripke's semantics, this expression can be understood as: 

If I know an accessible world in which f is true, and 
if I do not know an accessible world in which ¬ f is 
true, then I consider that f is true in all accessible 
worlds 

Paraconsistent, default and modal epistemic logics deal 
with the issue of incoherence by evolving the syntactic 
capabilities of the language. D. Batens proposes another 
approach [3]. He considers that there are several reasoning 
strategies, and that the solution consists in choosing the one 
that is best adapted to the situation. These are adaptive 
logics. For example, let be the following set of formulae: 

 ELa = {¬ p, 
     ¬ q, 
     p ∨ q, 
     p ∨ r, 
     q ∨ r} 

It is incoherent, and therefore explosive in the context of 
propositional logic because {¬ p, ¬ q} contradicts p ∨ q.  If 
one adopts a strategy favouring reliable reasoning, it is not 
possible to deduce r: it would be unwise to conclude 
anything using the first three formulae. However, if we 
choose a strategy that minimises abnormalities, and assume 
that at least two of the first three formulae are true, then r 
is produced. 

In contextual logic, the set becomes: 

 ELc = {c1,2 → ¬ p, 
     c2,2 → ¬ q, 
     c3,2 → p ∨ q, 
     c4,2 → p ∨ r, 
     c5,2 → q ∨ r} 

Assume that the stimulus is empty. {c4,2, c5,2} is the 
reference context because {c1,2, c2,2, c3,2} is a minimal 
impossible context. As far as we know, r is not 
interpretable. Using epistemic contexts that retain the 
maximal credible contexts at rank 2 is therefore a prudent 
strategy. 

So, Lc is not an adaptive logic. Both formalisms have 
the capacity to adapt their semantic interpretation to local 
characteristics: Lc chooses to use or not a thought 
depending on the stimulus. But its principle is not to adapt 
its reasoning according to the typology of the situation. It 
uses a unique analysis strategy, based on the definition of 
epistemic contexts. 

We end this comparative section with the 
circumscription logic of J. McCarthy [14]. It consists in 
extending the set of atomic propositions by some atomic 
propositions that indicate the epistemic character of a 
formula. For example, “a → b is true except in atypical 
cases” is modelled by ((a → b) ∨ abnormal). 

The atomic proposition abnormal carries the 
exceptional behaviours when needed. The models of the 



theory are then analysed to select those that minimise the 
abnormalities. 

This approach, which consists in seeking a solution by 
enriching the set of atomic propositions and then analysing 
the models of the theory, is most certainly the closest to 
ours. We have shown that contextual logic can capture its 
expressive capacity by adapting the definition of epistemic 
contexts to meet the minimality criterion [11]. 

However, beyond this result, the choice to minimise 
abnormalities seems reasonable but can easily be 
questioned with use cases. This difficulty is shared with 
adaptive logics, or more generally with the concept of 
epistemic rooting proposed by P. Gardenfors and D. 
Makinson [7]. 

Indeed, these methods suppose the existence of an order 
relation (on pieces of knowledge or on reasoning strategies) 
which would oversee selecting the information in case of 
incoherence. In Lc, syntactic consistency is guaranteed. It is 
therefore not necessary to manage this in the formalism. 

7 Modelling a predicate information 

Lp sees a proposition as a whole, which is given a 
universal value. It is necessary to decompose this whole 
when we wish to use a singular value. To this end, predicate 
logic meets this need by allowing the desired relationship 
to be modelled directly in the elementary proposition. 

It then becomes possible to model that Socrates is a 
man, and to deduce that Socrates is mortal because a man 
is mortal: 

Man(Socrates) 
Man(Socrates) → Mortal(Socrates) 

This syllogism uses the link between Man and Socrates to 
deduce the association with Mortal. In this context, G. 
Frege [5] theorised the notion of universal quantifier. 

As a classical example of use: 

∀ x Man(x) → Mortal(x) 

which reads: whatever x is, if x is a man then x is mortal. 
We note two enrichments with respect to the native 
modelling capabilities of the propositional logic: 

 the notion of the universal quantifier ∀. We will 
come back to the subject of universal connectors at 
the paragraph 11, 

 the possibility of breaking down an atomic 
proposition of Lp into several singular instances. In 
our example, the proposition he is a man is modelled 
by using two distinct units, Man and x. The 
expression Man(x) creates a syntactic relationship, 
which formalises a semantic link, between these 
two-unit elements. x then allows to create a semantic 
link between the two propositions Man(x) and 
Mortal(x). 

We have seen in paragraph 3 that it is not possible to model 
a relation between two atomic propositions in Lp because of 
the symmetric behaviour of connectors. We now present 
how this point can be solved in Lc. 

Suppose in Lp the set of propositions {a, b, c, d, e, f} 
and the following theory: 

 ELp = {a → b, 
     c → d, 
     a → ¬ c, 
     c → (a → e), 
     c → (a → f)} 

We want to model that a → e is a predicate of c – i.e., c is 
the subject of a → e. The problem is that the formula 
c → (a → e) is syntactically equivalent to a → (c → e). 
Now, consider the following set in Lc: 

 ELc = {c10,2 → (a → b), 
     c20,2 → (c → d), 
     c30,2 → (a → ¬ c), 
   c40,2 → (c → c41,1), 
   c41,1 → (a → e), 
     c50,2 → (c → (a → f))} 

c40,2 and c41,1 model the predicative piece of knowledge. 
They break the syntactic symmetry and introduce two new 
pieces of information: the predicate is syntactically 
distinguished by the thought c41,1, and c40,2 says that c41,1 is 
true if the subject c is true. It is important to note that c41,1 
is of rank 1, so, by definition, it does not participate in the 
calculation of epistemic contexts. It only appears later, in 
the contexts in which c40,2 is true. 

Let c ∧ a be the stimulus. {c10,2, c20,2, c40,2, c50,2} is its 
epistemic context. The perspective associated says 
{c, a, b, d, e, f, c41,1}. The presence of c41,1 indicates that 
a → e is a predicate, but the relationship with its subject c 
is not apparent. It can be found by applying the following 
method: 

 calculate the perspectives of the stimulus c. It says 
{c, ¬ a, d, c41,1}. The predicate c41,1 is obtained by 
c40,2, 

 calculate the perspectives of the stimulus a.  It says 
{a, ¬ c, b}. The thought c41,1 is not syntactically 
produced, 

 apply the predicates associated with each 
perspective to the other perspectives. This produces 
{e} by applying c41,1 to the perspective of a. e is 
associated with the stimulus c associated with the 
applied predicate, 

 and finally, calculate the perspectives of the 
stimulus c ∧ a. This produces {f}. 

If the thought of a predicate appears in a perspective, then 
it expresses that its subject is its stimulus. Unlike in 
predicate logic, the notion of predicate is not carried by the 
syntax of Lc. It is interpreted from the semantics of 
perspectives. This method extends the consumption of 
epistemic contexts by a recursive function: 

The semantics of a complex universe is obtained by 
crossing the semantics of the objects that compose 
it. 

The semantics of a universe composed of three objects A, 
B and C can only be partially obtained by analysing the 
perspectives of A ∧ B ∧ C. To obtain a complete 
perception, we must analyse {A}, {B}, {C}, {A, B}, {A, C}, 
{B, C} and {A, B, C} separately, and cross-reference the 
properties associated with these seven different objects. 



We call this method the generalised contextual 
semantics. It allows exhaustively capturing the 
characteristics of each object, of each combination of 
objects, and to calculate cross-predictive inferences. It 
seems to produce redundancies. We have not studied 
whether technical optimizations are possible. 

8 Modelling the imagination 

There is a long established and commonly accepted 
point that contextual logic visualises well. Consider the 
following set of knowledge: 

 ELc = {c1 → a, 
     c2 → (a → b)} 

The application of the modus ponens leads to the 
production of the formula (c1 ∧ c2) → b. We see that the 
“theorem” b is not a new piece of knowledge. Lc formalizes 
and preserves the information that b is the result of two 
existing thoughts. It is the consequence of its introspective 
capacity to reason. 

In fact, the modus ponens rule is incapable of producing 
anything new. This finding sums up the limit of the 
principle of proof: it only generates what is already known. 
This is the essential condition to guarantee the maintenance 
of the syntactic coherence of a theory of Lp – and, more 
generally, of a mathematical theory. 

This observation led early on to the need to identify the 
mechanics of human imagination. Reflections on this 
subject resulted in the theorization of two concepts: 
abduction and induction. 

Abduction (identification of the most likely cause of an 
observed event) has been formalised by C.S. Peirce [24]. In 
common sense logic, it can be expressed as follows: 

If a → b and b are both true and if a is possible then 
a is true 

For example: 

If I see something flying and if it could be a bird, 
then I guess it is a bird because birds fly”. 

This conclusion is often true, but it can sometimes be false. 
Induction (establishing a general law from particular 

facts) has been identified and studied in a logical approach 
since Aristotle. In common sense logic, it can be expressed 
as follows: 

If a → b and a → c are both true then b → c is true. 

For example: 

If it rains, then there are clouds, and if it rains, then 
the sky is grey, so, if there are clouds, then the sky 
is grey. 

This production rule seems interesting. Unfortunately, 
Aristotle showed that this is not correct and can lead to false 
conclusions: 

The donkey, the mule and the horse live long; they 
are animals without gall; therefore, animals without 
gall live long”. 

In fact, any inductive or abductive production is potentially 
false. It's a direct consequence of the imagination. The 

explosion principle makes it impossible to model them in 
the context of Lp. 

In Lc, syntactic consistency is guaranteed as soon as the 
new piece of knowledge is associated with a new thought 
(see pictures 3 and 4), even if it is completely meaningless. 
This solves the problem, and we propose the following 
principles: 

Definitions 
Production by abduction If b is the stimulus and is 

credible, if a → b is a belief that describes a thought 
belonging to an epistemic context in which b is true, and if 
a is not improbable or conceivable, then a new thought ci,2 
expressed by a is produced. 

Production by induction If a is the stimulus and is 
credible, if a → b and a → c are two beliefs that describe 
two thoughts belonging to an epistemic context in which a 
is true, and if b and c are not improbable or conceivable, 
then a new thought cj,2 expressed by b → c is produced. 

We assume that the production by induction or 
abduction is initiated by a stimulus and is conditional on 
the absence of contradiction of the thought produced in the 
associated perspectives. 

Given its fallibilistic property, Lc will consider the new 
thought introduced by abduction or induction to be 
possible. Its appearance in ELc leads to a recalculation of 
the semantic interpretation function, in accordance with the 
non-monotonic character of Lc. The relevant sets of 
contexts are then subject to change. The new thought, 
imagined the moment before, may eventually turn out to be 
finally not credible. 

So, the questions of abduction or induction can be 
modelled in Lc. Within the context of contextual logic, they 
are not linked to a possible limitation of formalism. 

The definition that we propose would need to be 
deepened by studies associating the cognitive sciences. We 
will not comment on them anymore. It would be possible 
to study their mathematical properties, and to illustrate 
them with use cases, but this would not validate their 
relevance. None can be representative of the complexity of 
human reasoning. 

Turing's test [25] is sometimes criticised. The 
arguments advanced by its detractors are understandable - 
and, according to the contextual approach, it would be 
impossible to contradict them definitively: nothing is 
provable. Anyway, no algorithm has yet managed to pass 
it. However, we consider with Alan Turing that only a 
behavioural test carried out “blind” and based on a 
substantial body of knowledge would make it possible to 
form a relevant opinion. 

This remark introduces the subject of algorithmic 
complexity. 

9 The algorithmic complexity 

We use the well-known algorithms of Lp, which are of 
exponential complexity. 

But let us return to our objective. It is not to model a 
formal mathematical language, but to capture human 
reasoning through a mathematical formalism. In this 



context, the question becomes: why does algorithmic 
complexity cause a problem in the use of a formal language 
in Artificial Intelligence? 

A first need is to integrate a new piece of knowledge. 
For example: 

  

With ¬ f1, Lp faces the problem of the epistemic rooting [7]: 
what to do? What to choose? 

In fact, this set makes no sense according to the 
contextual postulate. If we apply it, ELp becomes: 

  

The arrival of new information is no longer a problem. The 
contextual postulate guarantees the maintenance of the 
syntactic consistency of the database, whatever the new 
thought integrated. The topic of epistemic rooting is 
resolved, and the first need is therefore covered. 

The second need is to be able to analyse the 
information, and its semantic impact. Lc must calculate 
inconsistent contexts, which requires the use of the 
algorithms of Lp. The application of the semantic 
interpretation function on a few dozen formulae will 
therefore lead to a response time problem. But it is possible 
to take advantage of the properties of Lc to concentrate the 
semantic analysis on a few selected pieces of knowledge. 

Let us illustrate our point by taking the example of 
picture 6. We consider that the semantic interpretation is 
only performed using a subset of ELp. We obtain: 

  

The semantic result is incorrect (see the gap with the 
picture 6). However, we agree with D. Battens [3]: 

“Humans decide on provisional and fallible 
intuitions, even in logical matters”. 

We constantly make decisions based on approximate 
reasoning, even though we have in memory all the 
information necessary to solve the problem. 

In the context of Artificial Intelligence, this second need 
can therefore be covered if we accept that human reasoning 
is imperfect. In this case, it is sufficient to define a function 
that selects, for a given stimulus, a “relevant” subset of 
knowledge. The semantic interpretation is computed only 
on this subset, and not on the whole knowledge base. 

To achieve this, we propose to exploit the results 
obtained by cognitive science. Lc is well suited to model 
human memory (D. Norman [15]). Indeed, the guarantee of 
syntactic consistency allows a safe distinction between 
long-term and short-term memory. This makes it possible 
to integrate into the algorithm cognitive thresholds from 
cognitive science research: 

 the minimal change in thoughts between tn and tn+1, 
 the evolution criterion, which favours the use of the 

most recent or “primitive” thoughts, 
 the technical incapacity threshold, which limits the 

number of thoughts that can be used simultaneously, 
 the semantic thresholds: J. Pitrat shows that a human 

is not able to reason on more than four levels of 
meta-knowledge [17] (this threshold limits the 
number of different ranks of thoughts that can be 
used simultaneously), 

 the threshold of proportionate reasoning: when 
confronted with a stimulus, the objective is not to 
perform the best theoretical analysis, but to reach a 
level of analysis sufficient to cause a reaction. 

We see a three-level architecture emerging: 

 a long-term memory (LTM), in which knowledge is 
stored as it arrives. It is ELc, 

 a short-term memory (STM) fed by a function that 
selects some pieces of knowledge from the long-
term memory using cognitive thresholds. It is the 
subset of ELc, on which the semantic interpretation 
is performed, 

 and a working memory (WM), which carries the 
computational requirements for calculating the 
semantic interpretation of the content of short-term 
memory - in particular the set of formulas obtained 
by saturation of the STM. 

This is a very simple first approach. It does not incorporate 
the latest discoveries in this area. Our presentation is 
illustrative, the principle can be enriched. We regularly 
update the algorithms we develop to test their behavioural 
relevance against the various tests and practical cases 
identified by cognitive science. 

10 An example of application 

After presenting the theoretical principles of contextual 
logic, we propose to develop an example of application to 



clarify our purpose, and to illustrate the knowledge 
modelling capabilities of Lc. To do this, we use the example 
of the bird Tweety, a classical case study in the literature 
on non-monotonicity and belief revision. 

Example Consider the following knowledge, which we call 
the ENL (for Natural Language) set: 
Birds and felines are animals (01 and 02). Birds are not felines 

(03). Animals are diurnal (04). Diurnal animals are not 
nocturnal (05). Birds fly (06). They are insectivorous (07) and 
gregarious (08). Felines are carnivorous (09) and solitary (10). 
Solitaires are not gregarious (11). Insectivores are not 
carnivorous (12). Swallows, sparrows, ostriches, and owls 
are birds (13, 14, 15 and 16). Swallows are not sparrows (17), 
ostriches (18), or owls (19). Sparrows are not ostriches (20) or 
owls (21). Ostriches are not owls (22). Ostriches do not fly (23). 
Owls are solitary (24), nocturnal (25), carnivorous (26), and 
insectivorous (27). Cats and lions are felines (28 and 29). Cats 
are not lions (30). Cats are nocturnal (31). Lions are 
gregarious (32). Carnivores are hunters (33). Herbivores are 
prey for hunters (34). Hunters attack prey (35). If the prey is 
larger than the hunter, the latter does not attack (36). 
Ostriches are larger than cats (37) and owls (38). 

ENL contains a lot of inconsistent, epistemic, and 
predicative information - for example: birds fly and do not 
fly, birds are usually insectivores and sometimes 
carnivorous, and hunters attack prey (and not the reverse). 
This knowledge is deemed to escape the syntax of 
propositional logic. We are however going to show that Lp 
is sufficient to model and exploit them. 

In a first time, we propose to translate it into the syntax 
of Lp by the following formulae. 

01 Bird → Animal 
02 Feline → Animal 
03 Bird → ¬ Feline 
04 Animal → Diurnal)   (em) 
05 Diurnal → ¬ Nocturnal 
06 Bird → Fly   (em) 
07 Bird → Insectivore   (em) 
08 Bird → Gregarious   (em) 
09 Feline → Carnivore 
10 Feline → Solitary   (em) 
11 Gregarious → ¬ Solitary 
12 Insectivore → ¬ Carnivore  (em) 
13 Swallow → Bird 
14 Sparrow → Bird 
15 Ostrich → Bird 
16 Owl → Bird 
17 Swallow → ¬ Sparrow 
18 Swallow → ¬ Ostrich 
19 Swallow → ¬ Owl 
20 Sparrow → ¬ Ostrich 
21 Sparrow → ¬ Owl 
22 Ostrich → ¬ Owl 
23 Ostrich → ¬ Fly 
24 Owl → Solitary 
25 Owl → Nocturnal 
26 Owl → Carnivore 
27 Owl → Insectivore 
28 Cat → Feline 
29 Lion → Feline 
30 Cat → ¬ Lion 
31 Cat → Nocturnal 
32 Lion → Gregarious 
33 Carnivore → Hunter 

34 Herbivore → (Hunter → Prey)  (pk) 
35 Hunter → (Prey → Attack)  (em) and (pk) 
36  Hunter → (Prey → (Larger → ¬ Attack)) (pk) 
37  Ostrich → (Cat → Larger)  (pk) 

 38  Ostrich → (Owl → Larger)  (pk) 
We have introduced two new pieces of information, 
denoted by (em) and (pk). The explanations will come later. 
For the time being, we assume that there is a learner and an 
accompanying instructor. Let us consider that the 
knowledge is entered in the order in which it appears, 
according to the following algorithm: 

For each formula fi 
If fi has a subject, then PK 
Else 

Creating the thought ci0,2 
Creating the formula ci0,2 → fi 

If there is a contradiction, then EM 

The sentences are processed one after the other. 
01 c010.2 → (Bird → Animal) 
02 c020.2 → (Feline → Animal) 
03 c030.2 → (Bird → ¬ Feline) 
04 c040.2 → (Animal → Diurnal) 
05 c050.2 → (Diurnal → ¬ Nocturnal) 
06 c060.2 → (Bird → Fly) 
07 c070.2 → (Bird → Insectivore) 
08 c080.2 → (Bird → Gregarious) 
09 c090.2 → (Feline → Carnivore) 
10 c100.2 → (Feline → Solitary) 
11 c110.2 → (Gregarious → ¬ Solitary) 
12 c120.2 → (Insectivore → ¬ Carnivore) 
13 c130.2 → (Swallow → Bird) 
14 c140.2 → (Sparrow → Bird) 
15 c150.2 → (Ostrich → Bird) 
16 c160.2 → (Owl → Bird) 
17 c170.2 → (Swallow → ¬ Sparrow) 
18 c180.2 → (Swallow → ¬ Ostrich) 
19 c190.2 → (Swallow → ¬ Owl) 
20 c200.2 → (Sparrow → ¬ Ostrich) 
21 c210.2 → (Sparrow → ¬ Owl) 
22 c220.2 → (Ostrich → ¬ Owl) 
23 c230.2 → (Ostrich → ¬ Fly) 
24 c240.2 → (Owl → Solitary) 

For each sentence, the system asks if there is a subject, and 
the instructor's answer is no. The formula is integrated, and 
the system tested its semantic consistency. Until formula 
23, there is no question. 

The formula 24 is then integrated, and a potential 
inconsistency is detected: owls are birds (16), birds are 
gregarious (08), owls are solitary (24) and gregarious is not 
solitary (11). So, owls do not exist, or they are solitary and 
not solitary. The instructor is questioned, and has three 
possible answers: 

 he does not know, or he considers it is normal: the 
semantic inconsistency is accepted, and the system 
moves on to the next step. Note that it is the 
maintenance of syntactic consistency that allows 
this, 

 he indicates that one of the pieces of knowledge 
involved in the inconsistency is false. In this case, 
the system applies the EM module to the indicated 
formula, 

 he indicates that one of the pieces of knowledge 
involved in the inconsistency is true and false. In 
this case, birds are gregarious (08) is sometimes true 



and sometimes false. Then the system applies the 
EM module to the indicated formula. 

The EM module is: 
if fi is of type em 

if fi is false 
 Creating the thoughts ci2,3 

 Creating the formula ci2,3 → ¬ ci0,2 
 // The combinatorics on the maximal contexts 
 // of Tm means that ci0,2 will no longer be 
 // retained in the epistemic contexts 
else if fi is true and false 
 Creating the thoughts ci1,3 et ci2,3 
 Creating the formula ci1,3 → ci0,2 
 Creating the formula ci2,3 → ¬ ci0,2 

We have previously identified by (em) the formulae that 
are affected by this module. We will only use the “true and 
false” last case which is the most interesting. Let's continue 
the treatment. We obtain: 

01 c010.2 → (Bird → Animal) 
02 c020.2 → (Feline → Animal) 
03 c030.2 → (Bird → ¬ Feline) 
04 c040.2 → (Animal → Diurnal) 

c041.3 → c040.2 
c042.3 → ¬ c040.2 

05 c050.2 → (Diurnal → ¬ Nocturnal) 
06 c060.2 → (Bird → Fly) 

c061.3 → c060.2 
c062.3 → c060.2 

07 c070.2 → (Bird → Insectivore) 
c071.3 → c070.2 
c072.3 → ¬ c070.2 

08 c080.2 → (Bird → Gregarious) 
c081.3 → c080.2 
c082.3 → ¬ c080.2 

09 c090.2 → (Feline → Carnivore) 
10 c100.2 → (Feline → Solitary) 

c101.3 → c100.2 
c102.3 → ¬ c100.2 

11 c110.2 → (Gregarious → ¬ Solitary) 
12 c120.2 → (Insectivore → ¬ Carnivore) 

c121.3 → c120.2 
c122.3 → ¬ c120.2 

13 c130.2 → (Swallow → Bird) 
14 c140.2 → (Sparrow → Bird) 
15 c150.2 → (Ostrich → Bird) 
16 c160.2 → (Owl → Bird) 
17 c170.2 → (Swallow → ¬ Sparrow) 
18 c180.2 → (Swallow → ¬ Ostrich) 
19 c190.2 → (Swallow → ¬ Owl) 
20 c200.2 → (Sparrow → ¬ Ostrich) 
21 c210.2 → (Sparrow → ¬ Owl) 
22 c220.2 → (Ostrich → ¬ Owl) 
23 c230.2 → (Ostrich → ¬ Fly) 
24 c240.2 → (Owl → Solitary) 
25 c250.2 → (Owl → Nocturnal) 
26 c260.2 → (Owl → Carnivorous) 
27 c270.2 → (Owl → Insectivore) 
28 c280.2 → (Cat → Feline) 
29 c290.2 → (Lion → Feline) 
30 c300.2 → (Cat → ¬ Lion) 
31 c310.2 → (Cat → Nocturnal) 
32 c320.2 → (Lion → Gregarious) 
33 c330.2 → (Carnivore → Hunter) 

We come to the formula number 34: 
Herbivore → (Hunter → Prey). Before integration, the 
system asks if it contains a subject. The answer is yes, for 
Herbivore. The PK module is then applied: 

if fi is of type pk 
// fi is a clause, so it is of type g → h 
// with g is a conjunction of literals 
// and h is a disjunction of literals 
// g is indicated by the instructor 
Creating the thoughts ci0,2 et ci3,1 
Creating the formula ci0,2 → g → ci3,1 
Creating the formula ci3,1 → h 

We have previously identified by (pk) the formulae that 
are affected by this module. After application to the whole 
of ENL, we obtain: 

01 c010.2 → (Bird → Animal) 
02 c020.2 → (Feline → Animal) 
03 c030.2 → (Bird → ¬ Feline) 
04 c040.2 → (Animal → Diurnal) 

c041.3 → c040.2 
c042.3 → ¬ c040.2 

05 c050.2 → (Diurnal → ¬ Nocturnal) 
06 c060.2 → (Bird → Fly) 

c061.3 → c060.2 
c062.3 → c060.2 

07 c070.2 → (Bird → Insectivore) 
c071.3 → c070.2 
c072.3 → ¬ c070.2 

08 c080.2 → (Bird → Gregarious) 
c081.3 → c080.2 
c082.3 → ¬ c080.2 

09 c090.2 → (Feline → Carnivore) 
10 c100.2 → (Feline → Solitary) 

c101.3 → c100.2 
c102.3 → ¬ c100.2 

11 c110.2 → (Gregarious → ¬ Solitary) 
12 c120.2 → (Insectivore → ¬ Carnivore) 

c121.3 → c120.2 
c122.3 → ¬ c120.2 

13 c130.2 → (Swallow → Bird) 
14 c140.2 → (Sparrow → Bird) 
15 c150.2 → (Ostrich → Bird) 
16 c160.2 → (Owl → Bird) 
17 c170.2 → (Swallow → ¬ Sparrow) 
18 c180.2 → (Swallow → ¬ Ostrich) 
19 c190.2 → (Swallow → ¬ Owl) 
20 c200.2 → (Sparrow → ¬ Ostrich) 
21 c210.2 → (Sparrow → ¬ Owl) 
22 c220.2 → (Ostrich → ¬ Owl) 
23 c230.2 → (Ostrich → ¬ Fly) 
24 c240.2 → (Owl → Solitary) 
25 c250.2 → (Owl → Nocturnal) 
26 c260.2 → (Owl → Carnivorous) 
27 c270.2 → (Owl → Insectivore) 
28 c280.2 → (Cat → Feline) 
29 c290.2 → (Lion → Feline) 
30 c300.2 → (Cat → ¬ Lion) 
31 c310.2 → (Cat → Nocturnal) 
32 c320.2 → (Lion → Gregarious) 
33 c330.2 → (Carnivore → Hunter) 
34 c340.2 → (Herbivore → c343.1) 

c343.1 → (Hunter → Prey) 
35 c350.2 → (Hunter → c353.1) 

c351.3 → c350.2 
c352.3 → ¬ c350.2 

 c353.1 → (Prey → Attack) 
36 c360.2 → (Hunter → c363.1) 

c363.1 → (Prey → (Larger → ¬ Attack)) 
37 c370.2 → (Ostrich → c373.1) 

c373.1 → (Cat → Larger) 
38 c380.2 → (Ostrich → c383.1) 

c383.1 → (Owl → Larger) 



We have converted ENL into a set ELc that is fully 
compatible with the syntax of propositional logic. It is Lp 
consistent. Here are some examples obtained by applying 
the generalised contextual semantic and considering that 
there is no cognitive threshold: 

 if the stimulus is Bird: birds are animals, diurnal, 
gregarious, insectivore, and fly, 

 if the stimulus is Swallow: swallows are birds, 
animals, diurnal, gregarious, insectivore, and fly, 

 if the stimulus is Ostrich: ostriches are birds, animal, 
diurnal, gregarious, insectivore, and do not fly, 

 if the stimulus is Owl: owls are birds, animals, 
nocturnal, solitary, carnivorous, and fly, 

 if the stimulus is Cat: cats are feline, animals, 
diurnal, carnivorous and solitary, 

 if the stimulus is Lion: lions are feline, animals, 
diurnal, carnivorous and gregarious, 

 if the stimulus is {Cat, Sparrow}: the sparrow is 
attacked, 

 if the stimulus is {Cat, Owl, Sparrow, Ostrich}: the 
sparrow is in a bad way, but the ostrich can go about 
its business, 

 and if the stimulus is {Lion, Ostrich}: the ostrich 
would have some reason to be worried. 

11 Some points of clarification and opening 

In the previous paragraph, we have certainly not 
answered all the questions that our presentation raises. But 
there are also some topics that we have deliberately 
skimmed over so as not to make our remarks totally 
indigestible. 

We are not going to develop them, for the same reason. 
But, for readers who wish to explore these concepts in more 
depth, we offer to list them below, in a thought-provoking 
format. 

Informatic tool 

In paragraph 10, the different steps are described in 
detail, which probably makes reading tedious at times. The 
goal is to allow the readers to control and to reproduce the 
process if they wish. 

We use a classical propositional logic solver to calculate 
the minimum inconsistent contexts, and a classical 
combinatorial algorithm using the minimum inconsistent 
contexts to calculate the epistemic contexts. 

These tools are common and very easily accessible. We 
hold those which we developed at the disposal of the 
readers who would like it. 

Use case 

We use the example of Tweety, which may seem 
simplistic or even naive. Its first interest is to be 
understandable by all, while illustrating all the theoretical 
problems of non-monotonicity and of belief revision. 

Any other subject could have done the trick. The 
syntactic and semantic rules used were defined by the 
theory, and we did not integrate any behavioural rules 
specific to the subject. 

Modelled information 

While strictly preserving the syntax of the propositional 
logic, Lc allows us to define a semantic function on the 
models of the theories of Lp. It exploits: 

  semantically incoherent pieces of knowledge: 

Birds fly. Ostriches are birds. Ostriches do not fly 
(Thoughts c060,2, c150,2 and c230,2) 

 predicative pieces of knowledge: 

Herbivores are prey for hunters 
(Thoughts c340,2 and c343,1) 

 and epistemic modal pieces of knowledge: 

Birds are generally insectivorous 
(Thoughts c070,2, c071,3 and c072,3) 

The example contains several different cases to 
illustrate their use thanks to the combinatorics calculated 
for the identification of reference contexts. And we have 
adjoined a case which simultaneously uses a predicate and 
an epistemic modality: 

Hunter → (Prey → Attack) 
(Thought c350,2) 

It is false if the prey is large (thought c360,2). 

The notion of subject 

We do not use the notion of subject on all formulas. In 
absolute terms, this should have been done in the first 
sentence. But the result would have been unreadable, 
without any contribution to what we wished to demonstrate. 

In fact, this remark is not insignificant. It raises some 
questions as: are we saying the same thing with a → b and 
¬ b → ¬ a? The question is about the meaning of 
connectors. It has been extensively studied, notably by J. 
Lukaszewicz [13]. 

Without elaborating on the subject, let us point out to 
readers interested in this topic that Lc proposes an answer. 
c → f says that if c is true then f is true. But if c is false, 
then f can be true or false. The fact that a thought is false 
does not imply that the expression that describes it is false 
in the sense of syntactic interpretation. 

Thoughts 

They are indeed silent atomic propositions. They appear 
completely automatically in the syntax. In the algorithms of 
paragraph 10, the communication interface with the 
instructor does not see them, and only acts through the 
propositions of Lp. 

Thought carries semantics. Any other proposition is a 
set of meaningless signs. This conception individualises 
semantics: the same expression is associated with the 
thoughts specific to everyone. They can therefore have 
different meanings for each other. 

Our approach questions the semantic principles 
theorised by G. Frege, who propose to associate each 
atomic proposition with a precise and unambiguous 
meaning. 



Belief revision 

The properties of Lc significantly simplify the belief 
revision: it is only done by adding some new pieces of 
knowledge, without ever modifying the knowledge already 
entered in the system. 

In case of error, it is possible to “cancel” a knowledge 
ci,2 → f by creating a thought cix,3, and integrating the 
formula cix,3 → ¬ ci,2. The combinatorics on the maximal 
contexts of Tm means that ci,2 is not retained in the epistemic 
contexts. The reader has probably noted that this 
“cancellation” is systematic only if there is no cognitive 
threshold. 

Epistemic rooting 

There is no subject of epistemic rooting at the syntactic 
level: semantically incoherent information is memorised as 
it arrives. Incidentally, the system registers that it is “true 
and false” if this information is transmitted to it by the 
instructor. 

We mentioned in paragraph 6 that the principle of 
epistemic rooting is not useful in the context of contextual 
logic. However, experimental studies on human reasoning 
have shown that it responds to a behavioural reality. 

In Lc, the purpose of epistemic rooting is not to answer 
a problem of modelling inconsistency. It finds its 
operational reality in cognitive thresholds (see paragraph 
9). We purpose it is the mechanical solution that nature has 
put in place in response to the problem posed by the 
calculation limits imposed by physics. 

Normal form 

In paragraph 10, we have chosen to associate a new 
thought with each clause of the normal form of the theory. 
This has an impact on the semantic interpretation: for the 
same stimulus, the interpretation of the set 
{c1 → f, c2 → g} may be different from that which would 
be obtained on the set {c → f ∧ g}. 

Our choice has no theoretical basis. It is pragmatic: the 
conversion of a set of formulae into its normal form is 
achieved by a linear algorithm, and each clause identifies a 
unique formula and therefore a unique thought. We have 
chosen the simplest technical solution. 

Epistemic context 

Concerning the semantic interpretation function, we 
propose the definition of epistemic contexts to identify the 
relevant sets of thoughts. Other definitions are possible. 

Another method, perhaps more purist, would have 
consisted in giving the different possible definitions and 
comparing their mathematical properties. It requires a lot of 
methodical work that we have not done. 

Universal connector 

A difference between predicate logic and contextual 
logic is that the latter has no universal quantifier. 

In fact, Lc natively models a form of quantifier. For 
example, assume a knowledge base consisting of a single 
piece of information: {c → (Bird → Fly)}. This says that 
Birds fly. Given this piece of knowledge, it would be the 
same to say All bird fly. 

Lc is faillibilistic. So, asserting that a state is universal 
does not make sense: a state is universal as long as it is not 
contradicted. In Lc, the notion of universality cannot be 
carried by a syntactic connector. It is deduced from the 
semantic interpretation: a thought c is interpreted as 
universal long as a there does not appear a thought c' 
expressed by ¬ c. 

In the same vein, epistemic modalities are not expressed 
by a dedicated connector, but are deduced from a semantic 
interpretation. 

Birds fly is modelled by ci → (Bird → Fly). Two 
thought ci1,3 and ci2,3 such that ci1,3 → ci and ci2,3 → ¬ ci 
indicates that Birds fly in general. Indeed, they identify two 
types of epistemic contexts: one (ci1,3) in which Birds fly, 
and the second (ci2,3) in which nothing is said about 
whether birds fly or not. 

Stimulus 

Contextual logic introduces the notion of stimulus. Its 
concept is necessary to generate a possible reaction. We use 
it in the different examples as an imposed external event f. 
Relations with facts are carried by thoughts, according to 
an anchoring principle that remains to be defined. 

This remark indirectly raises the question of the role of 
emotions. This comment refers to the many ongoing 
debates around the notion of strong Artificial Intelligence 
(see J. Searle [21]). 

Stimulus can also be used to analyse a hypothesis in a 
form c → f. The semantic interpretation will then look for 
the different perspectives that verify or not verify c. This is 
the principle we use in induction or abduction production. 
The imagined thought is syntactically and automatically 
produced, and just as automatically generates the 
production of a new semantic interpretation. 

Natural language 

A formal language seems to be a language “like any 
other” as soon as it is used in its contextual form. The 
ability to reason takes a back seat, as an opportunity effect 
of the properties of the language. We are currently studying 
the work of J. Piaget [16] to challenge this intuition. 

Algorithm complexity 

We propose to use some results from cognitive science 
to get around the problem of algorithmic complexity. In 
parallel, we are working on a technical solution that uses 
the properties of Horn clauses (A. Horn [9], used for 
example by A. Colmerauer and his teams [8] for the Prolog 
programming language). 

We have indicated that we transform the formulae to 
their normal form, and then consider the individual clauses. 
Each has a form f → g, for f a conjunction of positive literals 
and g a disjunction of positive literals. We propose to 
decompose f → g by a set of formulae f → ai, for ai each 
literal of g. 

Thus, a formula like a → (b ∨ c) is expressed by two 
distinct knowledges c1 → (a → b) and c2 → (a → c). The 
sense of this operation is: 



If a is true and if a → (b ∨ c) is true, then b and c 
are, considered individually, true or conceivable 
unless explicitly contradicted. 

This amounts to a form of weakening of the disjunction 
principle. Its formal application requires a prior in-depth 
study. We analyse the level of loss of expression that this 
induces to evaluate its semantic relevance in the context of 
human reasoning. 

Its technical contribution would be considerable: at the 
cost of a linear multiplication of the size of the theory, we 
would benefit from a resolution algorithm of polynomial 
complexity – versus the exponential complexity of the 
original algorithms of Lp. 

Sub-symbolic AI 

We have dealt with the subject of inconsistency in the 
context of symbolic languages. It is shared with Sub-
symbolic AI. 

Being able to establish that two strictly incompatible 
events have a probability of occurrence of 49% and 51% 
respectively makes it possible to refine the understanding 
of a situation. But it is not inconsistent. This occurs when 
these two events each have a probability of occurrence 
greater than 50% for example.  This case is not possible in 
a statistical model, which is based on a strict mathematical 
principle of proof. 

It may seem paradoxical, but the faillibilistic notion 
cannot be modelled in statistics. Indeed, it does not consist 
in asserting that an event is x% possible. It consists in 
asserting and exploiting at the same time the fact that this 
probability itself is fallible. 

This is the reason why we believe that Sub-symbolic AI 
is not enough and needs Symbolic AI to cover all possible 
reasoning done by a human. 

12 Conclusion 

Contextual logic is obtained by applying the contextual 
postulate on propositional logic. It proposes to formalise a 
relation between thoughts and languages. This brings the 
possibility of modelling an introspective reasoning. 

The principle of proof is the foundation of mathematical 
philosophy. But introspective reasoning automatically 
generates the inability to access certainty. Faced with the 
need for decidability, Lc uses the principle of non-
refutability, which is backed by faillibilism and 
perspectivism. 

These are some old and still open subjects (H. Albert 
[1] and W. Quine [19] for example). Our work reconciles 
the different theories, by an answer based on an absolutely 
uncertain semantic modelled by an absolutely certain 
syntax. 

The historical ambition of logic is to model the process 
of human reasoning. Contextual logic models inconsistent 
and predicative information, absorbs imaginary thoughts, 
and solves belief revision and epistemic rooting problems 
in a radical way by staying scrupulously and strictly within 
the syntax of propositional logic. 

In the context of Artificial Intelligence, this result 
invites us to relaunch (see paragraph 11), around expert 
systems, work in natural language and in strong AI, by 
combining studies carried out around cognitive sciences. 
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