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Abstract— There are many formal languages for modelling 
reasoning. Each captures several properties, but none of them 
manages to cover all of them. We propose an alternative 
solution with contextual logic. Its particularity is to remain 
strictly within monotonic syntactic framework of propositional 
logic while benefiting from a non-monotonic semantic 
interpretation function. It verifies a fallibilist and perspectivist 
behavior. This makes it possible to model and exploit 
incoherent, epistemic, predicate, and temporal knowledge. The 
guiding idea of our work is to consider that syntactic 
production is monotonic. Syntactic interpretation function is 
classically adequate and complete with respect to syntax. The 
non-monotonic property of reasoning is captured by a 
“semantic” interpretation function of knowledge set models. 

Keywords— Formal Language, Nonmonotonic Logic, Belief 
Revision, Knowledge Representation, Reasoning, Artificial 
Intelligence, Mathematical Philosophy, Fallibilism, 
Perspectivism, Cognitive Sciences 

I. INTRODUCTION 

Symbolic Artificial Intelligence is confronted with a 
major difficulty: to benefit from a unique formalism to model 
the different modes of human reasoning. Research on this 
topic has led to a multiplication of formal languages (modal, 
para-coherent, predicate, multivalued, adaptive, or default 
logics for examples). Each formalism captures particular 
properties, without however modelling the many modes of 
reasoning empirically observed in humans [2]. 

In this framework, we submit contextual logic Lc [9]. Its 
particularity is to keep strictly within the monotonic syntax 
of the propositional logic Lp, while benefiting from a non-
monotonic semantic interpretation function. It verifies a 
fallibilist and perspectivist behavior. 

After a reminder of the principles of Lc and its main 
properties, we present how to use it to model the notions of 
predicate, temporality and modal knowledge. A paragraph is 
devoted to the comparative study between Lc and other 
formalisms. An example of application is developed. It uses 
a knowledge base large enough to illustrate the non-
monotonic expressiveness of the language. We will conclude 
our presentation by discussing the relationship between Lc 
and some empirical results observed on human reasoning by 
the cognitive sciences. 

In this article, we will use the negation, disjunction, 
conjunction, implication, and equivalence connectors, 
denoted ¬, ∨, ∧, → and ↔ respectively. 

II. CONTEXTUAL LOGIC 

Let us consider a thought. We perceive it as a whole, in 
the sense defined by René Descartes: 

“By the name of thought, I understand all that is so much 
in us that we are immediately aware of it”, (translation) 
R. Descartes [5] 

and we describe it in a set of sentences. However, even if this 
description were ideally complete and perfect, we are 

immediately aware that it is not the thought it describes. We 
model this observation by distinguishing, for a given 
thought, two notions in the syntax of the language: a unitary 
sign c, which symbolize it, and a combination of signs f, 
which reproduces the sentences that describe it. This leads to 
the need to define a relationship between c and f. To this end, 
we consider the following postulate [9]: 

Contextual postulate Let L be a formal language with the 
functions of syntactic production ⊢L and the syntactic 
interpretation ⊨L. A well-formed formula f of L is a set of 
signs that has no meaning. Its meaning is carried by a 
thought, which is an elementary proposition of L “which is 
not pronounced”. For c symbolizing this thought, the 
relation between c and f is c ⊨L f. 

We thus agree with Ludwig Wittgenstein when he states: 

“We should not say: The complex sign aRb says that a is 
in the relation R with b, but: That a is in a certain 
relation R with b says that aRb”, (translation) L. 
Wittgenstein [18] 

So, the expression c ⊨L f, equivalent to ⊨L c → f if L is the 
propositional logic Lp, asserts neither the thought c nor the 
sentence f. It models that the sentence f expresses the thought 
c. The proposition c respects the syntactic properties of L. 

The application of the postulate to a formalism L 
produces the contextualized logic L. By language 
convention, we call contextual logic, denoted Lc, the 
contextualized propositional logic Lp. 

All contextual formulas take a form ci →  fi, for ci a 
thought (and also an atomic proposition) and fi a well-formed 
formula in the sense of Lp. No-contextual expressions are 
acceptable. They allow for ⊢Lp production and ⊨Lp syntactic 
interpretation but have only meaningless technical behavior, 
making them useless in the context of the language. 

The expressions in Lc accept a natural order. Formulas 
consisting of propositions in Lp are at rank 0. A thought c of 
rank n is expressed by a formula f of rank at most n-1. 

We will use a classical definition. 

Definition Let ELp be a theory of Lp, i.e., a set of well-
formed formulas of Lp. A model consists in associating to 
each propositional variable one truth value (true or 
exclusively false) such that the result verifies the logical 
constraints expressed by ELp. ELp is said to be consistent if it 
has at least one model and is said to be inconsistent 
otherwise. 

For example, the theory ELp = {a, b → c} is verified by 
the model {(a, true), (b, true), (c, true)}. We deduce that it is 
consistent in Lp. As a counter example, {a, ¬ a} does not 
accept a model. So, it is inconsistent. 

Given the syntax ci → fi of the contextual formulas, the 
set {(ci, false), ci are the thoughts} characterize some models 
that verify any contextual theory. The first consequence is 



that a contextual theory is always consistent: it admits at 
least one model. 

The second consequence is that contextual logic is unable 
to express certainty. Put differently, in Lc, any thought is 
possibly false, and, as a direct effect of the application of the 
form ci → fi, any formulae fi can be true or false: there is no 
certainty in Lc. Uncertainty is intrinsically embedded in the 
syntax. 

To remedy this problem, Lc adopts the following 
principles: 

 Since any formula can be true or false, there is no 
need to interrogate a contextual theory with a 
question such as “Is f true or false?”. The solution 
adopted is to ask the question in the form: “What can 
I conclude if I suppose that f (or ¬ f) is true ?”. 

Notation f is called the stimulus. It is possibly empty 
and is denoted SLc. 

 Since every thought is potentially false, we propose to 
relativize the semantic interpretation to the subset of 
thoughts identified as the most relevant. We cannot 
say “f is true (or false)”, but we can say “f is true (or 
false) with respect to this subset of thoughts”. 

We understand that sets of thoughts will play an 
important role in semantics of Lc, and that we need to define 
a method for selecting “relevant thoughts”. For this we need 
some definitions. 

Definitions Let ELc be a theory of Lc and i and j be 2 integers 
such that 0 < i ≤ j. 

A conjunction (or a set) of thoughts is called a context. 

A context is said to be of rank i to j if all the thoughts in 
it are of rank i to j. A context of rank i to i is said of rank i. 

A context that is verified by at least one model of ELc is 
called a possible context (or a consistent context). 

A context that does not check any model of ELc is called 
an impossible context (or an inconsistent context). 

An impossible context is called a strict impossible 
context if each of its strict subsets is possible. 

A possible context that has no strict extension that checks 
ELc is called a maximum context. 

A possible context is called the credible context if it has 
no join with a strict impossible context and if all its strict 
extensions have a join with a strict impossible context. 

Example Let ELc be a theory and C1 and C2 the only two 
strict inconsistent contexts, i.e., ELc ⊢Lp ¬ C1 and 
ELc ⊢Lp ¬ C2 and each of their strict subsets is possible. 

 The credible context is the largest set of thoughts that 
does not have a join with C1 or C2, 

 A maximal context is composed of the complete set of 
thoughts from which we remove one thought common 
to C1 or C2, or one thought from C1 and one different 
thought from C2. 

We note that, for a given theory, there are possibly 
several maximal contexts (potentially empty) and a single 
credible context (potentially empty), and that they are 
obtained by computing the inconsistent contexts. 

We have seen that it is not possible in Lc to conclude that 
a formula f is true or false. The way to do so is to define its 
semantic interpretation in relation to a context (a set of 
thoughts). A function using these definitions then identifies 
the contexts considered relevant for the semantic 
interpretation. 

Definition Let ELc be a theory of Lc, SLc be a stimulus and 
Tc and Tm be two integers such that 0 < Tc < Tm. The relevant 
contexts are defined as follows: 

 calculation of the maximal contexts of rank Tm and 
above on {ELc, SLc}. This defines a set of contexts 
{Ck}, 

 then enrichment of each maximal context Ck, by the 
credible context of rank Tc to Tm-1 on {ELc, SLc, Ck}. 

This defines the set of epistemic contexts. It denoted 
CELc, SLc, Tc, Tm. {ELc, SLc, C ∈ CELc, SLc, Tc, Tm} is said the set of 
semantic perspectives. 

The interpretation is now performed by considering the 
productions of each perspective. 

Definition Let ELc a theory, SLc a stimulus and Tc and Tm be 
two integers such that 0 < Tc < Tm. An expression f is: 

 possible if it is true from at least one perspective and 
false from at least one other perspective, 

 credible if it is true from at least one perspective and 
false from no perspective, 

 incredible if it is false from at least one perspective 
and true from no perspective, 

 not interpretable in other cases. 

This definition presents the basic semantic interpretation 
function of Lc. It can be made more complex [9], for example 
by distinguishing true formulas in all perspectives, or by 
using thought ranks to identify semantics according to pairs 
(Tc, Tm) and (Tc', Tm'). We use this, for example, to study the 
relationship between contextual semantics and the concept of 
possible worlds [10]. We will discuss this point in a later 
paragraph. 

Example By writing convention, we will henceforth note ci,j 
the thoughts. i singularizes the proposition and j indicates its 
rank. 

Let be a set of Lp’s propositions {a, b, c} and a set of 
thoughts {c10,1, c20,1, c30,1, c11,2, c12,2}. We consider the 
following theory: 

ELc = { c10,1 → (a → b), 
  c11,2 → c10,1, 
  c12,2 → ¬ c10,1, 
  c20,1 → (a → ¬ b), 
  c30,1 → c   } 
 
We suppose Tc=1 and Tm=2 and {a} is the stimulus. So, 

there are 2 maximum contexts of rank 2: {c11,2} and {c12,2}. 

We also have: 

  {c10,1, c20,1, a} ⊢Lp b ∧ ¬ b 

So: 



 {c20,1} is the only strict impossible context considering 
{ELc, a, c11,2}, so {c10,1, c30,1} is the credible context of 
the rank 1 in this case, 

 {c10,1} is the only strict impossible context considering 
{ELc, a, c12,2}, and {c20,1, c30,1} is the credible context 
in this. 

In fine, we obtain 2 semantic perspectives: 

 {ELc, a, (c11,2, c10,1, c30,1)} which produces {a, b, c}, 

 {ELc, a, (c12,2, c20,1, c30,1)} which produces {a, ¬ b, c}. 

We conclude that, taking a as the stimulus, c is true 
(or credible), and that b is true and false (or possible). 

We note that a perspective is always unitarily consistent, 
but an expression can be true and false from two different 
perspectives. 

Considering the definition of epistemic contexts, Tc and 
Tm can theoretically take any value. In this example we have 
used the levels 1 and 2. In the rest of this document, we use 
the thresholds 2 and 3, which are sufficient to cover the 
expected level of expressiveness expected in this article. 

To conclude this presentation, let note that Lc brings a 
reflexive capacity to reasoning by modelling a relation 
between the thought c and the sentence f which expresses it. 

III. PROPERTIES OF LC 

The properties of Lc will be presented briefly. We 
indicate them here as consequences of the contextual 
postulate. It is not the purpose of this article to discuss their 
relevance. These concepts have as many defenders as 
detractors in mathematical philosophy. The debates, very 
rich and always topical, would deserve a dedicated article. 

The syntax production function is monotonic 

Lc respects the syntax of propositional logic and is 
therefore syntactically monotonic : whatever f and g are 
contextually well-formed formulas, if a theory ELc produces f 
then {ELc, g} produces f. 

Note that the syntactic interpretation function is 
mechanically also monotonic. 

The semantic interpretation function is non-monotonic 

We note that CELc, Tc, Tm must be recalculated if a new 
knowledge is introduced. So Lc has a non-monotonic 
semantic: considering the same stimulus SLc, f can be 
credible considering {ELc, SLc} and incredible considering 
{(ELc, g), SLc}. 

The semantic is fallibilist 

Fallibilism [15] is a philosophical principle that assumes 
that absolute knowledge is probably impossible: all belief 
can, at any time, be questioned – and possibly contradicted. 

We note that the syntax of Lc is based on that of Lp. It is 
therefore based on axiomatic principles which it considers as 
absolute. However, a consequence of the contextual postulate 
is that every proposition is possibly false. Lc thus proposes 
the paradox of relying on a syntax considered as absolutely 
true to model knowledge interpreted semantically as 
absolutely uncertain. 

To avoid this, the solution is to consider that what is not 
explicitly false is credible and will remain so until it is 
explicitly contradicted or challenged. 

We will illustrate this with some examples which we will 
develop in the following paragraphs. 

The semantic is perspectivist 

Perspectivism [8] refers to philosophical doctrines that 
defend the idea that our perception of reality is composed of 
the sum of the perspectives we have on it. 

In Lc, the semantic interpretation is obtained by 
considering the interpretations, possibly contradictory, of 
each epistemic context: truth is not the consequence of a 
global point of view built on the whole of thoughts, but the 
juxtaposition of several points of view from distinct subsets 
of thoughts. 

Propositions are attributes, not assertions 

In the most adopted mathematical approach, a 
proposition is an assertion apprehended in its content. 
Considering a theory, its semantic interpretation admits a 
truth value: it is true, or false, or perhaps contradictory, etc. 

In Lc, a proposition is not considered true or false. This is 
a mechanical consequence of the application of the 
contextual postulate. The expression c → f does not say that 
c or f is true or false. It says that the thought c, considered as 
an atomic proposition, is expressed by the formula f. 
Consequently, a proposition (or a formula) is assumed to be 
credible in relation to a set of thoughts, called a context. It 
characterizes it. 

So, in Lc, a proposition is not an assertion in the strict 
sense of the term. It must be understood as a characteristic, 
or an attribute, of the context. 

Consider, for example, the sentence “If Tweety is a bird, 
then it flies”. Its modelling in predicate logic can be: 

  Bird(Tweety) → Flying(Tweety) 

In Lc, the precedent assertion is modelled by: 

   c1.j → (Tweety → Bird) 
   c2.j → (Bird → Flying) 

which allows for several readings, for example: attributes 
Bird and Flying are attributes of the context {c1.j, c2.j} if we 
consider the stimulus Tweety. 

Brief discussion of these properties 

The proposed languages are usually either completely 
monotonic (syntactically and semantically) or completely 
non-monotonic (syntactically and semantically). Contextual 
logic proposes a formalism that is syntactically monotonic 
and semantically non-monotonic. 

Given the principles of adequacy (what is produced is 
true) and completeness (what is true is produced), a 
completely non-monotonic language produces formulas only 
if nothing contradicts this production. This leads to the need 
to use recursive calculation algorithms. By maintaining 
syntactic monotonicity, contextual logic avoids this 
difficulty. 

Classically, formalisms focus on modelling knowledge 
that is deemed true. To deal with inconsistencies and 



semantic uncertainties, they are enriched to express levels of 
necessity (epistemic modal logics), quantification (predicate 
logics), inconsistency (para-consistent logics), new rules of 
syntactic production (such as default logic), multiple 
interpretation strategies (adaptive logics), or multi-valued 
interpretation (multivalued logics). 

These logics and contextual logic model reasoning 
according to completely different conceptions: demonstrative 
behavior for them (this formula is demonstrated considering 
this theory) and fallibilist and perspectivist behavior for Lc 
(considering this theory, this formula is credible because it is 
not incredible, or it can be true and false depending on how 
you look at it). 

This is one possible answer to the concept of non-
demonstrative inference, a property of human reasoning that 
emerges from empirical work carried out by researchers in 
cognitive science [2]. 

We will now present how to use Lc to model predicate, 
temporal, and epistemic information. 

IV. MODELLING A PREDICATE KNOWLEDGE 

Lp sees a proposition as a whole, to which a universal 
value is given. It is then necessary to decompose this whole 
when we wish to use a singular value. To this end, predicate 
logic meets this need by introducing a notion of 
quantification. It then becomes possible to model that All 
men are mortal, and to deduce that Socrates is mortal 
because He is a man. This syllogism uses the link between 
Man and Socrates to deduce the association with Mortal. In 
this context, Gottlob Frege [7] theorized the notion of 
universal quantifier. As a classical example of use : 

∀ x Man(x) → Mortal(x) 

which reads: Whatever x is, if x is a man then x is mortal. We 
note two enrichments with respect to the native modelling 
capabilities of propositional logic: 

 a notion of universal quantifier. In paragraph VII we 
will return to this point, 

 the possibility of breaking down a proposition into 
several singular instances. In our example, Men are 
mortal is modelled by using two distinct units, Man 
and x. The expression Man(x) creates a syntactic 
relationship, which formalizes a semantic link, 
between these two-unit elements. 

It is not possible to model a relation between two 
atomic propositions in Lp because the symmetric 
behavior of the connectors. Put more explicitly, 
f → (g → h) is equivalent to g → (f → h): f and g have 
the same behavior in the formula, and neither has a 
privileged relationship with h. 

We will present how this point can be solved in Lc. 
Suppose in Lp the set of propositions {a, b, c, d, e, f, g} 
and the following theory: 

 ELp  = { a → b, 
  c → a, 
  d → a, 
  d → ¬ b, 
  a → e, 
  f → (c → g) }  (pk) 

(pk) indicates a particular knowledge: we want to model 
that c → g is a predicate of f - to express, for example: “The 
cat (denoted f) attacks (denoted g) the sparrow (denoted c)”. 

The formula f → (c → g) is syntactically equivalent to 
c → (f → g), which says: the sparrow attacks the cat – which 
does not mean the same thing. 

Now, consider the following set in Lc: 

 ELc  = { c10,2 → (a → b), 
  c20,2 → (c → a), 
  c30,2 → (d → a), 
  c40,2 → (d → ¬ b), 
  c50,2 → (a → e), 
  c60,1 → (c → g), 
  c61,2 → (f → c60,1), 
  c62,3 → c61.2, 
  c63,3 → ¬ c61.2 } 

This transformation requires some comments: 

 there are many syntactic ways of modelling a body of 
knowledge in Lc. This raises the open question of 
learning. We present the one that seems most relevant 
based on our studies to date, 

 according to the contextual postulate, thoughts are 
propositions that are not pronounced: natural 
language is only expressed directly through 
propositions of Lp (i.e., of rank 0). Therefore, the 
transformation from ELp to ELc is based on an 
algorithm (which is presented in paragraph VIII). It 
offers an automatic translation to the ci,j. 

c60,1, c61,2, c62,3 and c63,3 model predicative knowledge. 
The semantic interpretation is obtained in several stages: 

 the first step interprets f and c as separate stimuli. We 
get two perspectives. The one that carries f uses c61,2, 
to associate c →  g (i.e., c60,1) with it, and thus 
memorize that c → g is true in models verifying f, 

 the second step consists in crossing the semantics of 
the two perspectives on the models that verify c62,3. 
The resultant products the proposition g and retains 
c61,2 which traces the relation between c → g and f. 

We now understand how Lc proposes to model a 
predicate. It uses the notion of thought for this. 
c60,1 → (c → g) syntactically associates c and g by c60,1. This 
association is preserved, and is interpreted as predicate 
information of f in the expression c61,2 → (f → c60,1). c60,1 
generate the necessary asymmetry for the syntax to model 
the predicate relation. 

The semantic interpretation we have just described 
extends the consumption of epistemic contexts by a recursive 
function (presented in paragraph VIII): 

The semantics of {f, c} is not obtained by computing the 
semantic of {f ∧ c}, but by crossing the semantics of {f} 
and {c}. 

This method enriches the semantic reading of the models of a 
contextual theory by allowing the modelling and exploitation 
of the notion of predicates. 



V. TEMPORAL LOGIC 

A theoretical subject seems to us important to be able to 
model the human reasoning within the framework of an 
approach in Artificial Intelligence. It is about capturing the 
notion of temporality in formal languages. 

To achieve this, we propose to exploit the predicative 
property of Lc by using two atomic propositions of Lp (i.e., of 
rank 0), Future and Past. Consider the following 
expressions: 

 f → (Future → g)    (pk) 
 f → (Past → g)    (pk) 
 ¬ Future ∨ ¬ Past 

The first (respectively second) expression can be read: “If 
f is true, then g is true in the Future (respectively Past) of f”. 

This modelling makes it possible to reason using a vision 
of “simplified time”, broken down into three blocks: Past, 
Future and Present (by default). We are studying this model 
to investigate the possibility of capturing a notion of linear 
temporality (e.g., if f is true, then g is true in the future of f, 
and h is true in the future of g) close to that of propositional 
temporal logic (PTL). For example, the notion of “Always” 
could be modelled by the following expression: 

   f → (Future → f)   (pk) 

The exercise requires an evolution of the semantic 
interpretation function to go beyond the "simplified time" 
view. We have not yet managed to identify the right 
definition. 

VI. MODELLING AN EPISTEMIC MODAL KNOWLEDGE 

Let in Lp the set of propositions {a, b, c, d, e}, and the 
following theory: 

 ELp  = { a → b,    (em) 
  c → a, 
  d → a, 
  d → ¬ b, 
  a → e, 
  f → (c → g) }  (pk) 

(em) indicates a particular knowledge that cannot be 
modelled in Lp: the belief a → b is not always true. It is a 
modal knowledge. For example, we want it to be true for c 
(allowing, from c, to produce b), and invalid for d (d 
produces ¬ b and must not produce b). Let consider the 
following set: 

 ELc  = { c10,2 → (a → b), 
  c11,3 → c10.2, 
  c12,3 → ¬ c10.2, 
  c20,2 → (c → a), 
  c30,2 → (d → a), 
  c40,2 → (d → ¬ b), 
  c50,2 → (a → e), 
  c60,1 → (c → g), 
  c61,2 → (f → c60.1), 
  c62,3 → c61.2, 
  c63,3 → ¬ c61.2 } 

The algorithm for this transformation is presented in 
paragraph VIII. c11,3 and c12,3 model the modal 

knowledge we wish to express. It is a generic 
transformation: it does not depend on c or d. The 
meaning that can be given to c11,3 is that a → b is, and to 
c12,3 that a → b is not. 

The semantic interpretation (the algorithm is 
presented in paragraph VIII) produces {a, b, e} for the 
stimulus c, and {a, ¬ b, e} for the stimulus d: 

 the maximal contexts of rank 3 identify the 
combinations of thoughts allowed by the modal 
knowledge. In the example, we get {c11,3}, which 
verifies a → b, and {c12,3}, which says nothing about 
a → b, 

 each maximal context is then enriched with its 
associated credible context on rank 2. Now c1.2, c5.2 
and c6.2 are inconsistent with d: 

  {c10,2, c30,2, c40,2, d} ⊢Lp b ∧ ¬ b 

So c30,2 and c40,2 are rejected from models verifying 
{c11,3, d} (because c11,3 → c10,2), but is found in {c12,3, d} 
(because c12,3 → ¬ c10,2, which solves the contradiction). 

As an example of application, this allows to model: 

 sparrows (denoted c) fly (denoted b), because 
sparrows are birds (denoted a, so c → a) and birds fly 
(i.e., a → b), 

 ostriches (denoted d) are birds (d → a) that do not fly 
(d → ¬ b). The knowledge that birds fly (a → b) is 
discarded from contexts carrying ostriches because of 
the contradiction flying and ¬ flying that it generates. 

Ostriches inherit all the characteristics associated with 
birds except the attribute flying. And, unless explicitly 
known otherwise, any other type of bird (e.g., a swallows) is 
treated like sparrows, and associated with the same 
attributes. 

VII. GAP BETWEEN LC AND OTHERS FORMALISMS 

Fallibilism and perspectivism properties are probably the 
main features of Lc as a formal language. They lead to 
substantial differences in the way Lc treats knowledge 
compared to other formalisms. 

We present below those we have identified. Our study is 
not exhaustive. There are many formalisms. All of which are 
probably relevant to the modelling they wish to do. We have 
selected some of them because they are sometimes general, 
and most often because they have the advantage of being 
more familiar to us than the others. 

Para-consistent logics 

Classical formalisms assume an assumption: syntactic 
rules are autonomous from the meanings of propositions. 
Combined with Aristotle's three principles (excluded third (a 
is true or false), non-contradiction (a is not both true and 
false), and identity (a is a)), it leads to the principle of 
explosion: syntactic inconsistency leads to the production of 
everything and its opposite: whatever f and g two assertions, 
f ∧ ¬ f ⊢Lp g. 

Para-consistent logics aim to tolerate inconsistencies by 
escaping the principle of explosion. The common approach 
is to weaken Aristotle's principles to limit the inference 
capabilities of language [11]. The path taken by Lc is to keep 



Aristotle's principles, and to circumvent the initial 
hypothesis: elementary propositions are all equal with 
respect to syntax, but not with respect to semantics. This uses 
the distinction that is made in the set of atomic propositions 
between thoughts and atomic propositions of Lp. 

Lc's perspectivist approach allows it to consider that a 
proposition can be true from one perspective and false from 
another, and that both perspectives (the reference contexts) 
are true simultaneously. 

It is therefore possible to capture in Lc the modelling of 
the claim that cheap horses are expensive, since they are rare, 
and that what is rare is expensive – and yet not expensive, 
since they are cheap. 

Lc is therefore not a para-consistent formalism. It can say 
that f is true and false in relation to two distinct contexts (i.e., 
possible according to the semantic vocabulary of Lc), but it 
does not escape the principle of explosion. If one retains a 
reference context that syntactically produces f ∧ ¬ f, then it 
will produce any belief g whatsoever. Inconsistency is 
accepted in the semantics of Lc, it remains non-tolerable in its 
syntax. 

Further information 

In general, non-contextual logics model that f is true or 
that f is false. In Lc, these two expressions read: I think f is 
true (implied by one epistemic context) and I think f is false 
(implied by another context). 

It is therefore possible to model I think that f is not true, 
and I think that f is not false, which do not say quite the same 
thing, or I do not think that f is true, which expresses even 
different information. 

So Lc offers an alternative to the problem of double 
negation, allowing one to express I think f is not true and, at 
the same time, I do not think f is false. It is the meaning of c’ 
in the set {c → f, c’ → ¬ c}: it assumes the possibility of ¬ f 
without expressing it. 

Modal epistemic logic 

To reason about the quality of the interpretation value, 
modal approaches extend the expressiveness of languages by 
adding a new connector. The most widely used epistemic 
modal connector is the alethic connector ◻. ◻ f usually 
expresses that f is necessary, and its dual ¬◻¬ f, denoted 
◇ f, that f is possible. The language relies on the semantics 
of possible worlds [10] to benefit from an interpretation 
function. 

Contextual logic retains the syntax of propositional logic 
and focuses the level of credibility on the interpretation 
function by exploiting a classification of elementary 
propositions (the ranks of thoughts). In the context of the K-
system, we propose the following relationship between the 
two formalisms: 

Let f be a formula. Let i be the highest rank of the 
elementary propositions that compose it. f is said to be 
possible (in the modal sense) if there exist two thoughts 
c1,i+1 and c2,i+1 such that c1,i+1 ⊨ f and c2,i+1 ⊨ ¬ f and is 
necessary if c1,i+1 exists and c2,i+1 does not. 

This translation requires the use of an enriched semantic 
interpretation function using thought ranks to capture ◻◻ f 
for example [9]. 

It models the set {◇ f, ◇¬ f} by {c1,i+1 ⊨ f, c2,i+1 ⊨ ¬ f}, 
but the set restricted to {◇ f} (translation {c1,i+1 ⊨ f}) is 
interpreted as {◻ f}. 

Lc is therefore less expressive than modal language. This 
is a consequence of its fallibilistic character: if there is a 
reasoning that justifies the possibility of f, then f is 
considered credible if the possibility of its opposite is not 
explicitly expressed. Provided that this behavior is 
acceptable, Lc's contribution to modal formalisms is its 
ability to model epistemic information within the framework 
of propositional syntax. 

Default logic 

Default logic, proposed by Raymond Reiter [17], extends 
production rules by expressions of the form: 

(a : b / c) 

which read: “if a is true and nothing contradicts b then c is 
produced”. We have seen in the previous example that Lc 
allows the modelling and exploitation of rules with 
exception. However, related to Raymond Reiter's syntax, Lc's 
expressiveness is limited to rules of the form [9]: 

(a : b ∧ c / b ∧ c) 

adding a → b ∧ c to all extensions (in Reiter's sense) that 
allow it. We are therefore back to the rules of so-called 
normal default. With this translation, the Reiter’s extension 
is enriched by b. 

Take the following example of Reiter's theory: 

{a, (a : b / c)} 

b is possible, so, the Reiter’s extension is {a, c}. In Lc, 
we obtain the perspective, {a, b, c}. The explanation of these 
results is the same as for modal languages: expressing a 
possibility (in this case “b is possible”) leads to considering 
it credible if the possibility of its opposite is not explicitly 
expressed. 

Now, if we consider the following example: 

{a, (a : b / c), (a : ¬ b / d)} 

b and ¬ b are possible, so, the Reiter’s extension is 
{a, c, d}. In Lc we obtain two perspectives, {a, b, c} and 
{a, ¬ b, d}: a, c and d are credible, and b is explicitly 
possible (i.e., true, and false). 

Adaptative logic 

To solve the various problems encountered by classical 
logics, Diderick Batens [3] proposes to consider that there 
are several reasoning strategies. It would be advisable to 
select the one best adapted to the knowledge base. Consider, 
for example, the following set of formulas: 

ELa = {¬ p, ¬ q, p ∨ q, p ∨ r, q ∨ r} 

It is incoherent, and therefore explosive in the context of 
propositional logic.  If one adopts a strategy favoring reliable 
reasoning, it is not possible to deduce r: it would be unwise 
to conclude anything using the first three formulas. However, 
if we adopt a strategy that minimizes abnormalities, and 
assume that at least two of the first three formulae are true, 
then r is produced. 

In contextual logic, the set becomes: 



Elp =  { c1,1 ⊨ ¬ p, 
  c2,1 ⊨ ¬ q, 
  c3,1 ⊨ p ∨ q, 
  c4,1 ⊨ p ∨ r, 
  c5,1 ⊨ q ∨ r } 

Assume that the stimulus is empty. {c1,1, c2,1, c3,1} being a 
minimal impossible context, {c4,1, c5,1} is the reference 
context. As far as we know, r is not interpretable. Using 
epistemic contexts that retain the maximal credible contexts 
at rank 1 is therefore a prudent strategy. Let's modify the 
definition of epistemic contexts and adopt the maximum 
possible contexts. In this case, we obtain three reference 
contexts: 

 {c1,1, c2,1, c4,1, c5,1}, that produces {¬ p, ¬ q, r}, 
 {c1,1, c3,1, c4,1, c5,1}, that produces {¬ p, q, r}, 
 {c2,1, c3,1, c4,1, c5,1}, that produces {p, ¬ q, r}. 

With this definition of the reference contexts, r is 
credible. 

However, Lc is not an adaptive logic: 

 Both formalisms share the ability to adapt the 
semantic interpretation to local characteristics: Lc 
chooses to use or not to use knowledge depending on 
the stimulus, 

 But its principle is not to adapt the definition of its 
reasoning in the face of a contradiction. It uses a 
single inference strategy, based on reference contexts, 
whose definition is definitively established according 
to general theoretical criteria. 

In the above example, a possible solution to retain the 
original definition of epistemic contexts would be to model, 
by a meta-thought, the strategic choice that at least two of the 
thoughts c1,1, c2,1 or c3,1 is true. This meta-thought could be: 

c6,3 → (c1,1 ∧ c2,1) 
c7,3 → (c1,1 ∧ c3,1) 
c8,3 → (c2,1 ∧ c3,1) 

In this case, the semantic function will maximize the 
possibilities, by considering the contexts (c1,1, c2,1), (c1,1, c3,1) 
and (c2,1, c3,1) separately to conclude that r is credible. 

In Lc, the choice of the reasoning strategy is not carried 
by the formalism. It is carried by the knowledge (or not) of 
complementary information that the agent uses (or not). 

Predicate logic 

A difference between predicate logic and contextual logic 
is that this latter has no quantifier. The formula: 

∀ x Bird(x) → Flying(x) 

is therefore not capturable in Lc and become: 

ci,j ⊨ Bird → Flying 

We use contextualized propositional logic. It would be 
possible to use contextualized predicate logic. The exercise 
may be interesting mathematically. Predicate logic is a very 
powerful tool, which has proved itself in mathematics. 

But we assume that the principle of quantification is 
contrary to the fallibilist conception of human reasoning. 
Indeed, it supposes that our belief at a given moment is built 
on what we know at that moment. It can be questioned at any 

time. On the other hand, from our point of view, new 
information does not modify the knowledge we have: the 
new knowledge is just added in the set of knowledge and 
modifies the semantic interpretation we have. These 
statements are evidently open to discussion. But if we accept 
them according to an absolute application of fallibilism, then 
nothing can be universal. 

In fact, Lc natively models a form of quantifier. For 
example, assume a knowledge base consisting of a single 
piece of information: 

  ELc = { ci,j ⊨ Bird → Flying } 

This information says that Bird fly. But, given this body 
of knowledge, it would be the same to say All birds fly. In 
fact, whatever x, if we consider that x is a bird: 

 ELc = { ci,j ⊨ Bird → Flying, 
  ck,j ⊨ x → Bird } 

then we conclude that x flies. Now suppose we receive the 
information that Not all birds fly - that is, formally in the 
sense of Lc, that the thought ci,j can be true or false. The 
knowledge base is enriched, and becomes: 

ELc = { ci,j ⊨ Bird → Flying, 
  ck,j ⊨ x → Bird 
  ci1,l ⊨ ci,j 

  ci2,l ⊨ ¬ ci,j } 

We also conclude that x flies. It is a consequence of the 
fallibilism behavior of Lc. To say that x does not fly, it is 
necessary to introduce this information explicitly: 

ELc = { ci,j ⊨ Bird → Flying, 
  ck,j ⊨ x → Bird 
  ci1,l ⊨ ci,j 

   ci2,l ⊨ ¬ ci,j, 
   ck2,j ⊨ x → ¬ Flying } 

It appears that, in Lc, the notion of universality is not 
carried by a syntactic quantifier. It is deduced from the 
semantic interpretation: a state is universal as long as it is not 
explicitly contradicted. Finally, let us note that Lc allows us 
to define and reason about theoretical sets, for example: if I 
assume that all birds fly (that is, in the sense of Lc, if I 
consider the stimulus ci1,l), what can I conclude? 

The critique of the universal quantifier just mentioned 
can be extended to epistemic modal connectors. If we 
consider that human reasoning is strictly and absolutely 
fallibilistic, then the syntax of formal language, because it 
carries the logic of thought [6], must not contain any element 
modelling a notion of absolute. This assertion is highly 
debatable and is still much discussed in mathematical 
philosophy (see [1] and [16] for example). 

Pending definitive argumentation one way or the other, 
we have chosen to remain within the framework of 
contextualized propositional logic, and not to use 
contextualized predicate logic or contextualized modal logic 
for example. This theoretical position is obviously open, and 
it may lead our work to a dead end. But it seems interesting 
to us to go to the end of the technical analysis of the 
hypothesis. 



VIII. EXAMPLE OF AN APPLICATION 

In this paragraph, we present an example of application. 
Our objective is certainly not to propose a definitive 
argument, but we hope that it will clarify our presentation 
and illustrate the capabilities of Lc for knowledge modeling. 

Beyond the school cases used to present contextual logic, 
let consider a more substantial body of knowledge to 
illustrate the global behavior of Lc and the possibility of 
expression that it offers. 

Example Consider the following knowledge: 

Birds and felines are animals (01 and 02). Birds are not 
felines (03). Animals are generally diurnal (04). Diurnal 
animals are not nocturnal (05). Birds usually fly (06). They are 
generally insectivorous (07) and gregarious (08). Felines are 
carnivorous (09) and usually solitary (10). Solitaires are not 
gregarious (11). Insectivores are generally not 
carnivorous  (12). 

Swallows, sparrows, ostriches, and owls are 
bird  (13, 14, 15  and 16). Swallows are not sparrows (17), 
ostriches (18), or owls (19). Sparrows are not ostriches (20) or 
owls (21). Ostriches are not owls (22). Ostriches do not fly (23). 
Owls are solitary (24), nocturnal (25), carnivorous (26), and 
insectivorous (27). 

Cats and lions are felines (28  and 29). Cats are not lions (30). 
Cats are nocturnal (31). Lions are gregarious (32). 

Carnivores are hunters (33). Herbivores are prey for 
hunters (34). Hunters generally attack prey (35). If the prey is 
larger than the hunter, the latter does not attack (36). 
Ostriches are bigger than cats (37) and owls (38). 

It might be possible to model this knowledge using a 
formalism other than Lc. The default predicate logic could 
probably do this, for example. We have not attempted this. 
Our aim is not to compare the capabilities of the formalisms. 
The objective of this article is to show that the syntax of 
propositional logic is sufficient to model certain knowledge 
that was, until now, deemed to escape it. 

We propose to translate this knowledge into Lp by the 
following formulas. 

01 Bird → Animal 
02 Feline → Animal 
03 Bird → ¬ Feline 
04 Animal → Diurnal   (em) 
05 Diurnal → ¬ Nocturnal 
06 Bird → Flying    (em) 
07  Bird → Insectivore   (em) 
08  Bird → Gregarious   (em) 
09 Feline → Carnivore 
10  Feline → Solitary   (em) 
11 Gregarious → ¬ Solitary 
12 Insectivore → ¬ Carnivore  (em) 
13 Swallow → Bird 
14 Sparrow → Bird 
15 Ostrich → Bird 
16 Owl → Bird 
17 Swallow → ¬ Sparrow 
18 Swallow → ¬ Ostrich 
19 Swallow → ¬ Owl 
20 Sparrow → ¬ Ostrich 
21 Sparrow → ¬ Owl 

22 Ostrich → ¬ Owl 
23 Ostrich → ¬ Flying 
24 Owl → Solitary 
25 Owl → Nocturnal 
26 Owl → Carnivore 
27 Owl → Insectivore 
28 Cat → Feline 
29 Lion → Feline 
30 Cat → ¬ Lion 
31 Cat → Nocturnal 
32 Lion → Gregarious 
33 Carnivore → Hunter 
34 Herbivore → (Hunter → Prey)  (pk) 
35 Hunter → (Prey → Attack) (em) and (pk) 
36  Hunter → (Prey → (Larger → ¬ Attack)) (pk) 
37  Ostrich → (Cat → Bigger)  (pk) 
38  Ostrich → (Owl → Bigger)  (pk) 

These formulas take up the whole statement. We are not 
in Lp because of the additional information (em – epistemic 
modality) and (pk – predicate knowledge). To fit into a 
strictly propositional syntax, it is necessary to translate them, 
respecting the principles of transformations presented in the 
previous paragraphs. We use for this the following 
conversion algorithm: 

For each formula fi 
If fi is of type pk (of the form a → (c → b)) 

Creating the thoughts ci0,1, ci1,2, ci2,3 et ci3,3 
Creating the formula ci0,1 → (c → b) 
Creating the formula ci1,2 → (a → ci1,1) 
Creating the formula ci2,3 → ci1,2 
Creating the formula ci3,3 → ¬ ci1,2 

Else if fi is of type em 
Creating the thoughts ci0,2, ci1,3 et ci2,3 
Creating the formula ci0,2 → fi 
Creating the formula ci1,3 → ci0,2 
Creating the formula ci2,3 → ¬ ci0,2 

Else 
Creating the thought ci0,2 
Creating the formula ci0,2 → fi 

This algorithm requires some comments: 

 It takes as input a list of formulas and the associated 
information (em) or (pk). We are not aware of a 
method to automatically identify whether a piece of 
information is modal or epistemic. Mechanisms can 
facilitate learning (automatic identification and 
questioning of the “instructor” in case of apparent 
semantic inconsistency). We will come back to this 
subject in a future article, devoted to the functional 
and technical description of the algorithms we have 
developed. 

 We restrict the expression of predicates to sentences 
of the type “f g h”, which we model as f → (h → g). f 
is the subject, g is the action verb and h is the 
complement. We have not developed the case in 
which f, g or h would carry a second predicative level. 
In fact, the general algorithm for translating a formula 
of type (pk) is complex and we have not yet managed 
to formalize it completely. To present our thoughts to 
date would have made our presentation unreadable. 
Limiting our work to simple affirmative sentences 
seems to us to be a promising basis for further work. 

 Hunter → (Prey → Attack) (formula number 35) has 
the particularity of being a predicate (pk) on an 



epistemic modality (em): it is false if the prey is large 
(formula number 36). Formula number 35 is 
translated as predicative knowledge. Indeed, predicate 
already verify, at rank 3, the em particularity of to be 
and not to be (see the proposals c352.3 and c353.3). 

 The translation algorithm uses the modelling of the 
initial formulas. So, the set {f, g, h} does not translate 
like the set {f ∧  g, h}. In some cases, this may 
change the result of the semantic analysis. This 
remark introduces, in a more general way, the subject 
of learning. We will discuss it in a future publication. 

After transformation, we obtain the following set. 

c010.2 → (Bird → Animal) 
c020.2 → (Feline → Animal) 
c030.2 → (Bird → ¬ Feline) 
c040.2 → (Animal → Diurnal) 
c041.3 → c040.2 
c042.3 → ¬ c040.2 
c050.2 → (Diurnal → ¬ Nocturnal) 
c060.2 → (Bird → Flying) 
c061.3 → c060.2 
c062.3 → c060.2 
c070.2 → (Bird → Insectivore) 
c071.3 → c070.2 
c072.3 → ¬ c070.2 
c080.2 → (Bird → Gregarious) 
c081.3 → c080.2 
c082.3 → ¬ c080.2 
c090.2 → (Feline → Carnivore) 
c100.2 → (Feline → Solitary) 
c101.3 → c100.2 
c102.3 → ¬ c100.2 
c110.2 → (Gregarious → ¬ Solitary) 
c120.2 → (Insectivore → ¬ Carnivore) 
c121.3 → c120.2 
c122.3 → ¬ c120.2 
c130.2 → (Swallow → Bird) 
c140.2 → (Sparrow → Bird) 
c150.2 → (Ostrich → Bird) 
c160.2 → (Owl → Bird) 
c170.2 → (Swallow → ¬ Sparrow) 
c180.2 → (Swallow → ¬ Ostrich) 
c190.2 → (Swallow → ¬ Owl) 
c200.2 → (Sparrow → ¬ Ostrich) 
c210.2 → (Sparrow → ¬ Owl) 
c220.2 → (Ostrich → ¬ Owl) 
c230.2 → (Ostrich → ¬ Flying) 
c240.2 → (Owl → Solitary) 
c250.2 → (Owl → Nocturnal) 
c260.2 → (Owl → Carnivorous) 
c270.2 → (Owl → Insectivore) 
c280.2 → (Cat → Feline) 
c290.2 → (Lion → Feline) 
c300.2 → (Cat → ¬ Lion) 
c310.2 → (Cat → Nocturnal) 
c320.2 → (Lion → Gregarious) 
c330.2 → (Carnivore → Hunter) 
c340.1 → (Hunter → Prey) 
c341.2 → (Herbivore → c340.1) 
c342.3 → c341.2 
c343.3 → ¬ c341.2 

c350.1 → (Prey → Attack) 
c351.2 → (Hunter → c350.1) 
c352.3 → c351.2 
c353.3 → ¬ c351.2 
c360.1 → (Prey → (Larger → ¬ Attack)) 
c361.2 → (Hunter → c360.1) 
c362.3 → c361.2 
c363.3 → ¬ c361.2 
c370.1 → (Cat → Fatter) 
c371.2 → (Ostrich → c370.1) 
c372.3 → c371.2 
c373.3 → ¬ c371.2 
c380.1 → (Owl → Larger) 
c381.2 → (Ostrich → c380.1) 
c382.3 → c381.2 
c383.3 → ¬ c381.2 

We are now completely and strictly compatible with the 
syntax of propositional logic. 

To obtain epistemic contexts is very tedious, so we have 
computerized the process to overcome this difficulty. To do 
this, we use a classical propositional logic solver and a 
classical combinatorial algorithm. These identify the 
epistemic contexts associated with the indicated stimulus. 

The algorithm of contextual semantic interpretation 
function is: 

Stimulus input, in the form of a set of atomic 
propositions; 

For each atomic proposition p in the stimulus 
Deletion if necessary, of the previous formula 
cs,3 → f; 

Creation of the formula cs,3 → p; 
Extraction of the subset of formulas of rank 3; 
Saturation of this set of formulas (we use a tool 
developed to take advantage of the c → f form, but 
any available Lp saturation tool will do; 
Identification of impossible contexts of rank 3 (i.e. 
the set of contexts C of rank 3 such that ⊢ ¬ C); 
Combinatorial production of maximum rank 3 
contexts; 

For each of these maximum context 

Extraction of the subset of formulas of rank 1 at 2; 
Adding the maximum context; 
Saturation of this set of formulas; 
Identification of impossible contexts of rank 2 or 3; 
Adding to the maximum rank 3 context the 
associated rank 2 credible context; 
Memorising the result (it is an epistemic context); 
Deletion of the formula carrying the stimulus; 

For each pair (p1, p2) of the stimulus 

Addition of the context composed of the 
conjunction of the 2 associated epistemic contexts; 
Production by saturation of all credible 
formulas; 
Deleting the pair (p1, p2); 

This operation is then carried out for the triplets 
((p1, p2), p3) resulting from the stimulus, then the 
quadruplets, etc., until all the possible combinations 
are obtained; 

We present the algorithm in its raw form. Its complexity 
is carried by two functions: saturation and combinatorial 
production.  It can be optimized, in particular by limiting the 
use of saturation functions, or by parallelizing the last steps 
(calculation of the productions on the peers, the triplets, etc.). 



Note that the formulas obtained by ((p1, p2), p3) are identical 
to those obtained by ((p1, p3), p2). The order in which the 
proposals are processed is not important. 

Here are some examples obtained by applying contextual 
semantic interpretation function: 

 if the stimulus is Bird or Swallow: birds (or swallows) 
are animals, diurnal, gregarious, insectivore, and fly, 

 if the stimulus is Ostrich: ostriches are birds, 
insectivore, gregarious, diurnal, and do not fly, 

 if the stimulus is Owl: owls are birds, carnivorous, 
solitary, nocturnal, and fly, 

 if the stimulus is {Cat, Sparrow}: the sparrow will be 
attacked, 

 if the stimulus is {Cat, Owl, Sparrow, Ostrich}: the 
sparrow is in a bad way, but the ostrich can go about 
its business. 
To obtain the set of knowledges from this stimulus, 
we need to interpret the relevant models of {Cat}, 
{Owl}, {Sparrow} and {Ostrich} separately, then the 
pairs {Cat, Owl}, {Cat, Sparrow}, {Cat, Ostrich}, 
{Owl, Sparrow}, {Owl, Ostrich} and {Sparrow, 
Ostrich} then the triplets, etc., 

 and if the stimulus is {Lion, Ostrich}, the ostrich 
would have some reason to be worried. 

To illustrate our work, we used the classical non-
monotonic example of the bird Tweety. It would obviously 
have been possible to do this with any other theme that could 
be modelled with logical rules of Lc (and the complement 
information em and pk). 

IX. OPENING TO COGNITIVE SCIENCES 

One trap in this work is to bias the studies by 
unintentionally selecting inferences that lead to the desired 
conclusions. It is easy to succumb to this in Lp. In Lc, the 
presence of thoughts multiplies the risk of error. To counter 
this, we have developed a tool that reproduces the semantic 
interpretation function of Lc. It allowed us to verify the 
conclusions announced by the theory. 

Lc guarantees to the syntactic consistency of any 
knowledge set, which solves the first step of belief revision. 
We took advantage of this property to implement learning 
functions and allow the system to absorb any knowledge. 

The tool is based on propositional logic algorithms. We 
use a classical propositional logic solver, which we have 
optimized to exploit the c → f form of contextual formulas. 
But the time saving is not significant. For the example 
presented, the computation times are of the order of a second 
when the stimulus consists of only one proposition - and of a 
few minutes when it contains more than three propositions. 

This is not acceptable in the context of an AI. The 
reasoning (and subsequent decision making) of a human 
being is obviously much faster. We do not take several 
seconds to decide to run away from a hungry lion (in fact, 
this may not be the most appropriate response to this 
situation, but that's another story). 

We use a personal computer from the supermarket, which 
does not have the capacity to parallelize tasks, for example. 
However, we do not believe that the solution lies solely in 
the use of force. 

To solve this problem, we propose to use the technical 
properties of Lc. They are well suited to model human 
memory [12]. Indeed, the guarantee of syntactic consistency 
allows a safe distinction between long-term and short-term 
memory. This makes it possible to integrate cognitive 
thresholds from cognitive science research into the 
algorithms (see [9]): 

 the minimal change in beliefs between tn and tn+1, 
 the evolution criterion, which favors the use of the 

most recent or “primitive” thoughts, 
 the technical incapacity threshold, which limits the 

number of simultaneous thoughts that can be used 
simultaneously, 

 the semantic thresholds: Jacques Pitrat's work [14] 
shows that a human is not able to reason on more than 
four levels of meta-knowledge, 

 the threshold of proportionate reasoning: when 
confronted with a stimulus, the objective is not to 
perform the best theoretical analysis, but to reach a 
level of analysis sufficient to cause a reaction. 

We see a three-level architecture emerging: 

 a long-term memory, in which knowledge is stored as 
it arrives, 

 a short-term memory, fed by a function that selects 
knowledge from the long-term memory using 
cognitive thresholds, 

 and a working memory, which semantically interprets 
the content of the short-term memory. 

This is a very simple first approach, but it already gives 
some results that we find interesting in the context of human 
reasoning - for example, deducing, because we have just 
passed an airport, that the object in the distance in the sky is 
a plane. 

We are currently enriching the algorithms to integrate 
these notions. The aim is to be able to study its behavior in 
the face of practical use cases. 

X. CONCLUSION 

Aristotle's three laws (the law of contradiction, the law of 
excluded middle, and the principle of identity) describe an 
amazingly simple syntax. Our aim in this paper is to show 
that they conceal a high degree of semantic complexity in 
their use, and a capacity for expression which has perhaps 
not yet been fully explored. 

The guiding idea of our work is that new information 
does not syntactically modify old knowledge: it changes our 
semantic interpretation of it. So syntactic production is 
monotonic, which solves some technical problems. It is 
backed up by an adequate and complete syntactic 
interpretation function, which is also monotonic. 

This assumption has two immediate consequences: 

 the formal language must guarantee the syntactic 
consistency of the knowledge base for any new 
information, 

 the non-monotonic property of reasoning is not 
captured by the syntactic interpretation function, 
which must be adequacy and completeness with the 
syntax production function. So, there is necessary a 



semantic interpretation function. This is done via an 
analysis of the models of the knowledge set. 

In this perspective, the contextual logic Lc strictly 
respects monotonic syntactic rules of propositional logic. 
However, by modelling reflexivity of reasoning in syntax 
and extending semantics by a recursive function, we 
associate to Lp a non-monotonic interpretation function. It 
adopts a fallibilist and perspectivist behavior which allows it 
to exploit incoherent, modal epistemic, temporal, and 
predicative knowledge. 

We are careful not to conclude that propositional syntax 
is sufficient to model all reasoning. 

An exhaustive study would be necessary, for example, 
based on the typology proposed by [2]. It will probably 
reveal other cases than those we have dealt with. 

Pending the results of this forthcoming study, and as of 
now, we hope that by showing the capacity of propositional 
syntax to model modal and predicative information, we open 
up new avenues of research, which reexamine some of the 
difficulties (see [4]) encountered in symbolic Artificial 
Intelligence. 

We have developed a tool to verify the conclusions 
announced by the theory. The algorithms are continuously 
enriched to integrate, and verify by use cases, the theoretical 
evolutions. 

We have added to the classical logic solver a layer 
integrating notions from the cognitive sciences. This 
dimension seems to us to be essential if we wish to model 
human reasoning. It is also the solution we prefer to solve 
problems generated by algorithmic complexities. 

In parallel, we analyze the subject of natural language, 
revisiting the semantic interpretation function of Lc through 
the theories of Jean Piaget [13]. 

REFERENCES 
[1] H. Albert, “Traktat über kritische Vernunft”, Utb Fuer Wissenschaft, 

1968 

[2] D. Andler, “Introduction aux sciences cognitives”, Gallimard, 2004. 

[3] D. Batens, “Une caractérisation générale des logiques adaptatives”, 
Logique & Analyse 173–174–175, 2001. 

[4] R. Bentz, “L’intelligence artificielle est bien aujourd’hui une 
escroquerie”, Le Monde, 24 novembre 2019. 

[5] R. Descartes, “Méditations métaphysiques. Objections et Réponses (I 
à VI)”, édition sous la direction de Jean-Marie Beyssade et de Denis 
Kambouchner, éd. Gallimard Tel (2018), 1641. 

[6] J. Fodor, “The Language of Thought”, Harvard University Press, 
1975. 

[7] G. Frege, “ Grundgesetze der Arithmetik”, 1903. 

[8] F. Kaulbach, “Philosophie des Perspektivismus: Wahrheit und 
Perspektive bei Kant, Hegel und Nietzsche”, Mohr Siebeck, 
Tübingen, 1990. 

[9] A. Kohler, “Proposition d’une structure de représentation de la 
connaissance pour les raisonnements non classiques”, Université 
d’Aix-Marseille I, France, thèse de doctorat en informatique, 1995. 

[10] S.A. Kripke, Saul Aaron, “Semantical considerations on modal logic”, 
Reference and Modality, L. linsky (éditeur), Oxford University Press, 
London, 1971. 

[11] J. Lukaszewicz, “Many-Valued Systems of Propositional Logic”, eds. 
S. Mc Call, polish Logic, Oxford University Press, Oxford, 1967 

[12] D. Norman, “Models of human memory”, Academic Press, New 
York, 1970. 

[13] J. Piaget, “Traité de logique : essai de logistique opératoire”, A. 
Colin, 1949. 

[14] J. Pitrat, “Méta-connaissance, Futur de l'Intelligence Artificielle”, 
Hermes, 1990. 

[15] K. Popper, “The Logic of Scientific Discovery”, Routledge, coll. 
“Routledge Classics ”, 1934. 

[16] W. Van Orman Quine, “From a logical point of view”, Harvard 
Univiersity Press, Cambridge, Massachussets and London, England, 
1980 

[17] R. Reiter, “A logic for default reasoning”, Artificial Intelligence 13, 
1980. 

[18] L. Wittgenstein, “Tractatus logico-philosophicus”, traduction Gilles 
Gaston Granger, éd. Gallimard Tel (1993), 1921. 

 


