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ABSTRACT 

 

A weighting scheme jointly considering model performance and independence 

(PI-based weighting scheme) is employed to deal with multi-model ensemble of 

precipitation over China from 17 global climate models. Four precipitation properties 

including mean and extremes are used to evaluate model performance and independence. 

The PI-based scheme is also compared to a Rank-based weighting scheme and to the 

simple arithmetic mean (AM) scheme. It is shown that the PI-based scheme achieves 

notable improvements in western China, with biases decreasing for all parameters. 

However, improvements are small and almost insignificant in eastern China. After 

calibration and validation, the scheme is used for future precipitation projection under the 

1.5°C and 2°C global warming targets (above preindustrial level). There is a general 

tendency to wetness for most regions in China, especially in terms of extreme 

precipitation. The PI scheme shows larger inhomogeneity in spatial distribution. For total 

precipitation PRCPTOT (95th percentile extreme precipitation R95P), the land fraction 

for a change larger than 10% (20%) is 22.8% (53.4%) in PI, while 13.3% (36.8%) in AM, 

under 2°C global warming. Most noticeable increase exists in the central and east part of 

western China. 

Key words: model performance and independence, multi-model ensemble, mean and 

extreme precipitation, future projection, 1.5°C and 2°C global warming 
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1. Introduction 

Climate change under global warming is a major challenge for many natural 

ecosystems on the earth and for human societies (IPCC, 2013; WMO, 2019). The global 

average temperature is on increase and expected to continue increasing over the 21st 

century with a projected global temperature change about 1.4 °C to 4.8 °C under the 

medium and high emissions scenarios RCP 6.0 and RCP 8.5 at the end of the century 

(IPCC, 2013). Changes resulting from global warming may include rising sea levels due 

to the melting of glaciers and ice sheets, as well as an increase in severe climate events, 

such as extreme temperatures, extreme precipitation, and droughts etc. (Xu et al., 2013; 

Aslam et al., 2017; Guirguis et al., 2018). These extreme climate events provoke 

substantial economic losses and civilian casualties, which raises the urgency of searching 

adaptation and mitigation measures to combat climate change (Jones et al., 2014; Li et al., 

2018; Zhan et al., 2018; Chen et al., 2020). The Paris Agreement on climate change sets 

an ambitious target of holding the increase of global average temperature to well below 

2°C above preindustrial levels and recommends all efforts to limit the temperature 

increase to 1.5°C above preindustrial levels (UNFCCC, 2015), recognizing this would 

significantly reduce the risks and impacts of climate change (Schleussner et al., 2015; 

James et al., 2017; King and Karoly, 2017). 

Climate models play a crucial role in studying the potential impacts of climate 

change, the ability of GCMs to reproduce observed features of current climate and past 

climate change increase our confidence to correctly make projections (Palmer et al., 2005; 

Zhou et al., 2007; Semenov and Stratonovitch, 2010; Wang et al., 2018; Ren et al., 2019). 

Multi-model arithmetic mean is widely used to reduce multi-model uncertainties and to 

make climate projections more reliable (Knutti, 2010; Knutti et al., 2010). The underlying 

assumption of the multi-model ensemble mean practice is that all models are reasonably 

independent, equally plausible, and distributed around the reality (Sanderson et al., 2015a, 

2015b; Knutti et al., 2017). It also assumes that the range of models’ projections is 

representative of what we believe is the uncertainty. But these are all strong assumptions, 

not always satisfied. And the reality is that some models are worse than others in how 

well they represent the observed mean climate and trend (Eyring et al., 2015; 

Baumberger et al., 2017). So weighting schemes were proposed based on the 

performance of climate models. The common practice is using the ability of model’s 

simulated patterns against observations as a measure of model’s skill (Perkins et al., 2009; 

Qi et al., 2017). 

In the same line of weighting models based on their performance, the Rank-based 

scheme is widely applied in the evaluation of models and projection of future climate 

change (Chen et al., 2011). It constitutes simply of sorting models with well-defined 

criteria and using their rank to determine their weightings. This approach was shown to 

be quite efficient in reducing uncertainty from individual models and it usually 

outperforms any single model and the multi-model mean (Jiang et al., 2015; Li et al., 

2016). Most methods formulate weights based on the performance of the model. They 

constitute an improvement of the simple arithmetic mean, but they ignore the problem of 

models’ interdependence (Abramowitz and Bishop, 2015; Sanderson et al., 2015a, 

2015b). Various studies have pointed out that some model pairs are closely related due to 

the increasing replication of code across institutions and even sharing common module of 
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model is natural (Knutti et al., 2013; Masson and Knutti, 2013). For example, some 

models are submitted by the same institution only with different resolutions (e.g., MPI-

ESM-MR and MPI-ESM-LR), most institutions produce different models with similar 

configurations, or options for interactive atmospheric chemistry or carbon cycle (e.g., 

CMCC-CESM and CMCC-CM). So, it is important to consider the models 

interdependence in multi-model ensemble projections of climate change. However, few 

studies relative to this ensemble strategy are reported for future climate projection in 

China.  

In this paper, a weighting scheme proposed by Knutti et al. (2017) which 

considers both model performance and independence (PI-based weighting scheme) is 

applied to construct projections of mean and extreme precipitation over China under the 

1.5°C and 2°C warming targets. In Section 2, we describe the study area and datasets 

used. Section 3 introduces the PI-based weighting scheme and the Rank-based scheme. 

Followed in Section 4 are the performance comparation and projected changes in 

climatology and climate extremes indices. Finally, a summary of the major findings and 

conclusions are provided in Section 5. 

 

2. Data 

2.1 Observations and model datasets 

The daily gridded precipitation dataset CN05.1, covering a period of 1961-2005 

with 0.25° × 0.25° resolution is used in this study for evaluation of ensemble 

performance of the fifth phase of the Coupled Model Intercomparison Project model 

(Taylor et al., 2012). The CN05.1 dataset is merged from 2416 weather observing 

stations in China. The station data is quality controlled by the China Meteorological 

Administration (CMA). More details concerning the data can be found in Xu et al. (2009) 

and Wu and Gao (2013).  

Since climate in China is complex and atmospheric circulations between eastern 

and western China are quite different (Zhang et al., 1984; Jiang et al., 2015), the entire 

multi-model ensemble weighting procedure is carried out separately in eastern (east of 

105°E) and western China (west of 105°E) in this work. In the western area, observation 

stations are scarce and models generally have difficulties to take into account the 

complex topography, one should be precautionary in using the results of reproduction and 

projection of climate over this area. The topography and location of surface weather 

observation stations across China are shown in Fig.1, the lines of 105°E and 40°N 

helping understanding better for the latter. 
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 Fig. 1. Topography and location of surface weather stations in China. 

 

17 CMIP5 models’ historical simulations and future projections from 

Representative Concentration Pathways (RCPs) 8.5 are used to generate 1.5 and 2°C 

warming. These models were selected on the sole criterion of data availability for our 

purpose, especially with daily precipitation for our warming targets at 1.5 and 2 °C. All 

the datasets retrieved through data portals of the Earth System Grid Federation, which 

can be obtained from https://esgf-node.llnl.gov/search/cmip5/. Some basic characteristics 

of the used models are listed in Table 1. The situation is somehow heterogeneous, some 

institutions providing single model version while others multiple versions of their model 

with different resolutions, different physical packages, or different complexity of the 

earth system. We can thus expect to have a huge diversity for the CMIP5 multi-model 

ensemble simulations. And at the same time there is also a strong interdependence among 

them. For the 17 CMIP5 models that we selected following the sole criterion of data 

availability for our analysis, three models come from BCC, two models from IPSL, three 

models from MIROC, two models from MPI; and other seven models from seven 

different institutions. In our present work, we use only one realization from each model 

or model version. And we are aware that a full exploitation of the ensemble realizations 

would create a stronger interdependence. 

https://esgf-node.llnl.gov/search/cmip5/
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Table 1. Model name, modeling center and country, Institution identification (ID), and 

atmospheric resolution of 17 CMIP5 global climate models (Expansions of acronyms are 

available at http://www.ametsoc.org/PubsAcronymList) 

Model name Modeling center and country  
Institution 

ID 

Atmospheric 

resolution  

(lat × lon) 

BCC-CSM1-1 

Beijing Climate Center, China 

Meteorological Administration, 

China 

BCC 

2.81258°× 

2.81258° 

BCC-CSM1-1-

M 
1.125°×1.12° 

BNU-ESM 2.8°×2.8° 

CanESM2 
Canadian Centre for Climate 

Modelling and Analysis, Canada 
CCCMA 2.8°×2.8° 

CCSM4 
National Center for Atmospheric 

Research, United States 
NCAR 1.25°×0.94° 

CNRM-CM5 

Centre National de Recherches 

Météorologiques– Centre 

Européen de Recherche et de 

Formation Avancée en Calcul 

Scientifique, France 

CNRM–

CERFACS 
1.4°×1.4° 

CSIRO-Mk3-

6-0 

Commonwealth Scientific and 

Industrial Research Organization, 

Australia 

CSIRO-

QCCCE 
1.875°×1.875° 

GFDL-CM3 

NOAA/Geophysical Fluid 

Dynamics Laboratory, United 

States 

NOA/GFDL 2.5°×2.0° 

IPSL-CM5A-

LR 
L’Institut Pierre-Simon Laplace, 

France 
IPSL 

3.75°×1.895° 

IPSL-CM5A-

MR 
2.5°×1.27° 

MIROC5 
National Institute for 

Environmental Studies, The 
MIROC 

1.40625°×1.40625° 

MIROC-ESM 2.815°×2.815° 

http://www.ametsoc.org/PubsAcronymList
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MIROC-ESM-

CHEM 

University of Tokyo, Japan 
2.815°×2.815° 

MPI-ESM-LR 
Max Planck Institute for 

Meteorology, Germany 
MPI-M 

1.875°×1.875° 

MPI-ESM-MR 1.875°×1.875° 

MRI-CGCM3 
Meteorological Research Institute, 

Japan 
MRI 1.125°×1.125° 

NorESM1-M 
Norwegian Climate Centre, 

Norway 
NCC 1.8725°×2.5° 

 

2.2 Climate extreme indices 

Three extreme precipitation indices are investigated in this research, including the 

maximum 5-day precipitation (RX5DAY), maximum daily precipitation (RX1DAY), and 

strong precipitation events (R95P). In addition, the total precipitation (PRCPTOT) is used 

to represent the precipitation climatology. These indices are generally considered 

effective in extracting climate change information and have been widely used to identify 

and monitor extreme precipitation (Sillmann et al., 2013; Zhang et al., 2013; Zhou et al., 

2016). All extreme indices of models were calculated with the Expert Team on Climate 

Change Detection and Indices (ETCCDI) (Zhang et al., 2011). 

The extreme precipitation indices from different models and observation were 

first calculated at their original grids. To facilitate model intercomparing and evaluation 

against observations, all CMIP5 data and observation were interpolated onto the same 1° 

× 1° grid, using bilinear interpolation. 

 

3. Methodology 

3.1 PI-based weighting scheme 

The weighting scheme used here was first proposed by Knutti et al. (2017) 

considering both performance and independence of models (hereafter PI-based weighting 

scheme). It is based on two general considerations: models that agree poorly with 

observations for a selected set of diagnostics get less weight, and models that largely 

duplicate existing models also get less weight. 

As proposed by Knutti et al. (2017), the single model weight wi for model i is 

defined as 

( ) ( )
22 //

/ 1 ij si d
M SD

i j i
w e e

 −−



 
= + 

 
 .  (1) 

where M is the total number of models, Di is the distance of model i to observations, and 

Sij is the distance between model i and model j. The parameters σd and σs determine how 

strongly the model performance and similarity are weighted, which can be determined 
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through a cross-validation procedure. A large σd would effectively make the ensemble 

converge to the situation of model democracy, whereas a small σd puts important weights 

on only a few models; σs determines the typical distance by which a model would be 

considered similar to another. More details of the methodology can be found in Knutti et 

al. (2017). 

In this paper, model evaluation metrics include the assessment of both spatial 

pattern and temporal variability for precipitation, which allows us to deduce the distances 

Di  and Sij in Eq. (1) by using the average of two normalized values: normalized root-

mean-square error (RMSE) and normalized interannual variability score (IVS), the 

normalization being realized by their respective median values. 

The spatial root-mean-square error is defined as: 

2

1

1
RMSE( , ) ( )

N

k k

k

m o M O
N =

= − .  (2) 

where Mk and Ok denote the model pattern of a variable under investigation and the 

corresponding observed pattern, respectively. N indicates the number of spatial points. 

Smaller RMSE value represents a better agreement between the model and observation. 

The performance in interannual variation can be evaluated by a measure of skill 

score IVS (Interannual Variability Skill Score) described by Chen et al. (2011) as follows: 

2

STD STD
IVS( , )

STD STD

m o

o m

m o
 

= − 
 

.  (3) 

where STDm and STDo denote the interannual standard deviation of model and 

observation respectively. Smaller IVS value indicates a better agreement between the 

simulation and observation. Eq. (2) and (3) are shown in the form of a measure between a 

model and the observation. They can be easily converted into inter-model measures 

between models i and j (not shown). 

Since multiple (four in this study) precipitation indices are used in this study, we 

define a comprehensive distance D of performance to combine the four individual 

distances Dv as Eq. (4). Our choice was based on the fact that the reliability of future 

climate projection should rely on a comprehensive measure of the performance of climate 

models. The four precipitation indices PRCPTOT, RX1DAY, RX5DAY and R95P 

represent different characteristics of precipitation. Therefore, an integrated (or 

comprehensive, or combined) distance should be a good choice. Coefficients wv are set as 

1/4 to make their sum equal to 1. Different coefficients can be taken into account based 

on the practical applications in follow-up studies. 

4

1 v vv
D w D

=
= .  (4) 

When the PI-based weighting scheme is used, its free parameters σd and σs can be 

determined through a cross-validation procedure. It is actually a perfect model test in 

which each model is, in turn, treated as the truth (Brunner et al., 2019). It is to be noted 

that our perfect model test uses two distinct periods in the past and in the future 

respectively: the calibration is done for the past period, but the cross-validation is 
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evaluated for the future period. In other words, for each model (considered as truth in 

turn), a set of weightings for the remaining models are calculated to mimic the past 

values of the true model. Once calibrated, the PI-based weighting scheme is used to 

deduce the future values of the true model. Such a cross-validation strategy allows us to 

test the future projection capability of the weighting scheme. 

In practice, we followed the procedure of Knutti et al. (2017) and Brunner et al. 

(2019), and calculated the percentage of cases falling down to the 5th-95th percentiles 

range obtained from the true model. The good value of σd was then empirically 

determined as its minimum value making this percentage equal to 90%. Fig. 2 shows the 

percentage of cases, in function of prescribed σd values (with an incremental bin of 0.01), 

where the actual outcomes of the perfect model tests are in the 5th-95th percentiles range. 

This cross-validation is repeated for each of the four variables, as represented by the four 

curves in Fig. 2. By choosing the minimum value of the four curves when the threshold 

of 90% is reached, σd is estimated to be 0.54 in western China, and 0.46 in eastern China. 

These values are quite consistent with that obtained by Knutti et al. (2017) who also 

normalized their Euclidean distance by the median value. The dependence on the value of 

σs is rather weak relative to σd, so the value of σs is set as 0.5 as suggested in Knutti et al. 

(2017). The PI-based weighting scheme is now fully established after its free parameters 

are calibrated. 

 

Fig. 2. The fraction of cases for four indices when the actual outcomes of the 

perfect model tests are in the 5th-95th range weighted by all other models. For all 

indices, the minimum value of σd for the fraction expected to exceed 90%. 

 

3.2 Rank-based weighting scheme 

In order to assess the proposed weighting scheme, we evaluate it against two 

largely-used algorithms, the Rank-based weighting scheme (Chen et al., 2011; Jiang et al., 
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2015; Li et al., 2016) and arithmetic mean (hereafter called AM), the latter serving as a 

baseline. To ensure a fair comparison, the Rank-based weighting scheme uses the same 

evaluation metrics based on the spatial pattern and interannual variability of relevant 

precipitation indices. If Ri is the rank for model i after evaluation which can be based on 

multiple criteria, we can then calculate a performance indicator Pi and it can be ultimately 

converted into weight wi after normalization： 

1

M

ii

i

i

R
P

R

==


.  (5) 

and  

1

i

i M

ii

P
w

P
=

=


.  (6) 

Eq. (6) can guarantee the sum of all weights is equal to 1. 

 

3.3 Periods for calibration and evaluation, and determination of 1.5°C and 2°C global 

warming 

For all the three weighting schemes (PI-based, Rank-based and AM scheme), 

their calibration period is from 1961 to 1985. The validation is performed with 

independent samples from 1986 to 2005. After the calibration and validation, the three 

weighting algorithms are applied to future precipitation projection under the framework 

of 1.5°C and 2°C global warming targets. 

To determine the timing of the two warming targets, a 40-year period from 1861 

to 1900 is firstly selected as the pre-industrial reference. For each of the models in our 

investigation, the time series of annual global mean temperature is smoothed by a 21-year 

running-average operation, and we can then find the year when 1.5°C (2°C) warming is 

reach. A 21-year window centered on this year is then used to define the 1.5°C (2°C) 

world. The reference period 1985-2005 are used to represent nowadays to assess the 

changes in precipitation climate. 

 

4. Results 

4.1 Model skill and weights 

The final weights obtained by the two weighting schemes, sorted by descending 

order of PI-based scheme are shown in Fig. 3. For both western and eastern China, the 

PI-based weighting shows a larger range from strong weights to weak ones, which means 

models with a good performance and a large independence from others are more 

prominent in the PI algorithm.  

Although σd in western China is larger than its counterpart in eastern China, 

models closer to observation get higher weights, which indicates that the inconsistence 

among models in the west is more significant. For both areas, we can see that models 

from a same institution have generally closer weights, but they are not among the highest, 
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which may be the direct consequence of the PI algorithm with interdependence of models 

taken into account. We can observe that the models IPSL-CM5A-LR and IPSL-CM5A-

MR, both from IPSL, have a better performance above the average. However, the models 

BCC-CSM1-1 has a similar weight as BCC-CSM1-1-M in the east, but a quite different 

weight, compared to BNU-ESM from the same institution. In an idealized condition, if a 

second member happens to be identical to the first (that is, sij = 0), the two members 

would have half their original weight. We can generalize the example into the case of N 

identical members, each would have a weight scaled by 1/N. In reality, CMIP5 members 

are not perfectly independent and our work presented here uses only the first run from 

each model, which makes the members in our ensemble have a relative weak 

repeatability from each other.  

 

Fig. 3. The models’ weights obtained by PI-based weighting scheme (black 

squares) and Rank-based weighting scheme (gray circles) over (a) western and (b) 

eastern China. 

 

4.2 Evaluation of the weighting strategies 

Fig. 4 shows relative biases (areal mean in shaded bar, first and third quartiles in 

bar with whiskers) of the four indices reproduced by three weighting strategies, PI-based, 

Rank-based and AM, against observations during the evaluation period 1986-2005 in 

western and eastern China, respectively. We can see that areal-mean biases in the western 

area are (about 2 to 3 times) larger than those in the eastern area for all precipitation 

indices. This can be explained by the fact that most models have mediocre performance 

in reproducing extreme events related to the complex topography in western China (Jiang 

et al., 2015; Chen et al., 2017). 

In the western area, the areal-mean biases of PI-based scheme for the four indices 

PRCPTOT, RX5DAY, RX1DAY and R95P are 32, 79, 46 and 150%, respectively. 

Biases of the PI-based scheme are much lower than those from the other two schemes, 

and the regional interquartile bias ranges are also smaller. Take the most noticeable index 

R95P as example, on the basis of AM, the areal-mean relative bias decreases by 101%, 

and decreases by 78% if compared to the Rank scheme. The 25th and 75th percentile 

errors of AM are 81 and 327%, while only 32 and 195% reproduced by PI-based scheme. 

However, biases’ differences among indices in eastern China are not very prominent. 
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From the 25th and 75th percentile, we can see the higher dry and wet biases of extreme 

precipitation are better reduced in the weighting schemes.   

 

Fig. 4. The regional relative bias simulated by PI-based, Rank-based and AM 

schemes against observations for four precipitation indices during the period of 

1986-2005. Color bars are the mean biases and whiskers represent the first and 

third quartiles (unit: %). 

 

Among the four precipitation indices, the relative bias for R95P is the most 

noticeable, even the best performing PI scheme shows a relative bias of 150 and 29% in 

western and eastern China, respectively. So, the spatial distribution of R95P’s biases is 

illustrated in Fig. 5 for the three weighting strategies respectively to find more spatial 

details. It can be seen that large biases (>50%) are located in western China to the south 

of 40°N, especially in the periphery of the Tibetan Plateau where biases are about 150 to 

300%. In eastern China, an underestimate lower than 50% exists in south of the Yangtze 

River. Most areas in the north of the Yangtze River have wet biases about 100%. 

Comparing the three weighting schemes, we can find that areas with significant 

improvement in the PI-based weighting scheme are concentrated in the north and central 

Tibetan Plateau where we see the largest biases. They are largely reduced to a level 
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below 50%. In other parts of China, especially in eastern areas, the improvement of PI-

based scheme is relatively modest. Similar results are also found in other indices (not 

shown), with the largest biases concentrated in the periphery of the Tibetan Plateau. They 

are nevertheless smaller compared to the case of R95P. Biases in the western area are the 

mostly reduced. Although the relative bias reduction is large over the Tibetan Plateau, it 

should be noted that observation stations are sparse and unevenly distributed over the 

Plateau, which can generate spurious results with unproperly-designed interpolation 

algorithm. One should be precautionary in using the results of reproduction and 

projection of climate over this area. 

 

Fig. 5. Spatial distribution of relative bias for R95P from (a) PI-based (b) Rank-

based and (c) AM schemes against observations during the period 1986-2005 

(unit: %). Warm and cool colors indicate dry and wet bias respectively. 

 

Taylor diagram is now used to present a concise statistical analysis of the three 

weighting schemes in the evaluation period 1986-2005 (Fig. 6). It can display three 

pieces of information: pattern correlation coefficient, ratio of the centered standard 

deviations and root mean square error, two of them being independent and allowing to 

deduce the third one. There is generally a weak performance with the AM (gray markers). 

In western China, the spatial correlation coefficients of major indices between the 

simulations and observations are less than 0.8 and the maximum does not exceed 0.85; 

the standard deviations are also large. In eastern China, all markers representing the AM 

are the most distant from the ref-point. It is easy to see that the performance reproducing 

the spatial pattern by the weighted schemes is improved, and PI (red markers) is the best 

with pattern correlation coefficients higher than 0.85 and ratios of spatial variance closer 

to 1 for all the four precipitation indices in western China. In eastern China, the 

performance of three strategies are similar, all markers concentrating together with spatial 

correlation coefficients between 0.85 and 0.9, and standard deviation ratios between 0.5 

and 0.6. Again, R95P shows its weakest score compared to other indices. 
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Fig. 6. Taylor diagram showing the four precipitation indices under the three 

weighting schemes during the period 1986-2005. The solid and hollow markers 

represent western and eastern China respectively. 

 

In brief, the PI-based weighting strategy effectively enhances our capability of 

reproducing the precipitation spatial characteristic in China, especially in western China, 

all precipitation indices with the PI-based scheme show significant improvement. In 

eastern China, however, the improvements are small and insignificant. 

 

4.3 Projections under the 1.5 °C and 2°C warming 

In view of the added value of combining multi-model results, especially by the PI-

based scheme, a projection of future climate corresponding to 1.5°C and 2°C warming 

targets (relative to preindustrial) under RCP8.5 emission scenario was produced with the 

above weighting strategies. Fig. 7 displays boxplots showing the spatial distributions of 

relative changes for the four precipitation indices and for the three weighting schemes, 

respectively. Each boxplot allows to present the 10%, 25%, 50%, 75%, and 90% 

percentiles of relevant field across all spatial grids, and for the two warming targets at 

1.5 °C (blank boxes) and 2°C (hatched boxes), respectively. As a conventional practice, 

the plotted change is relative to 1985 – 2005, a common reference period, while the target 

warming levels (1.5°C and 2°C) are relative to preindustrial. Compared with the Rank-
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based scheme (blue box and whisker) and the AM scheme (gray box and whisker), the 

PI-based scheme (red box and whisker) shows larger dispersions (boxes and whiskers are 

longer), which means the projected fields have larger inhomogeneity in their spatial 

distribution, with more pronounced wet and dry conditions. The areal-mean values (gray 

dots) are relatively close from each other with those from the PI-based scheme slightly 

higher. 

 

Fig. 7. Boxplot for relative changes of total precipitation and extreme indices 

(compared to the period of 1985-2005) from PI-based, Rank-based weighting 

schemes and AM over China under 1.5°C and 2°C global warming (unit: %). 

 

To better illustrate the impact of weighting schemes on the projection of 

precipitation, results can also be displayed in the form of a cumulative distribution 

function (CDF) across China, as shown in Fig. 8. Such a graphic presentation is very 

useful since the CDF can be directly interpreted as the faction of the national territory 

where changes are inferior to the corresponding value of the abscissa. On the right side of 

the ordinate, we also indicated the complementary values (1-CDF) of what shown on the 

left side. It can be interpreted as the fraction of the national territory where changes are 

superior to the corresponding value of the abscissa. Each panel in Fig. 8 represents one of 

the four precipitation indices with curves corresponding to the three weighting schemes 

and to the 1.5°C and 2°C warming targets, respectively. For all indices, the Rank-based 

CDFs are almost congruent with the basic AM’s, while obvious distinctions can be 

detected for PI. 
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Fig. 8.  The spatial fraction CDFs of changes weighted by PI-based, Rank-based 

and AM under 1.5°C and 2°C global warming for the indices over China. The 

abscissa displays the changes of precipitation indices while the left ordinate 

shows the CDF values, the complementary values (1-CDF) shown on the right 

side. The changes are expressed by percentages (%) compared to the period of 

1985-2005. 

 

Firstly, we examine the changes of PRCPTOT, relative to present day (1985-

2005), the PI-based scheme shows that half of China would experience an increase larger 

than 3.8 and 5.7% in the 1.5°C and 2°C warmer climates, respectively. Under the same 

conditions, a quarter of China would experience an increase larger than 7.1% and 10.2%. 

Compared with the PI-based scheme, the increases in PRCPTOT are slightly smaller in 

AM, projecting that half of China would increase by 2.5 and 3.9%, and quarter of China 

by 4.6 and 6.8%, respectively. These characteristics show some similarity among the four 

precipitation indices, with a trend to larger values in the order of PRCPTOT, RX5DAY, 

RX1DAY and R95P. We remark large increases and large dispersions for R95P, under 

the 1.5°C and 2°C warming target, half of China may experience changes larger than 

17.1% (25.7%) in PI’s projection while 13.7% (21.3%) in AM’s. 

The CDF curves in Fig. 8 can also be examined from the vertical perspective, 

which gives the land fraction for a given change threshold. If we use a threshold of 10% 

for PRCPTOT, we can see that the fraction of national territory where PRCPTOT 

changes exceed the threshold of 10%, under the 1.5°C (2°C) global warming target, is 

10.6% (22.8%) with the PI-based scheme, while around 3.9% (12.5%) with the Rank-
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based scheme, and 2.8% (13.3%) with AM. Similarly, for R95P with a 20% threshold, 

the fraction of national territory is 26.7% (53.4%), 13.2% (37.8%), 9.7% (36.8%) for the 

three weighting schemes (PI, Rank and AM), respectively. If we use the threshold 0 for 

PRCPTOT, we can then evaluate the fraction of the national territory with mean rainfall 

increasing (or decreasing). It is certainly fortuitus to observe that the three weighting 

schemes and the two warming targets all converge to a situation of two thirds of China 

with rainfall increased and the remaining third with rainfall decreased. If we apply the 

threshold 0 to extreme indices, the majority of the national territory shows increases with 

RX5DAY by 86.4% (92.7%), RX1DAY by 92.5% (97.7%) and R95P by 91% (95.8%), 

respectively, for the warming target 1.5°C (2°C).  

The spatial distributions of PRCPTOT changes weighted by the three schemes are 

depicted in Fig. 9. Consistent with what shown by the boxplots and CDF curves, the 

spatial structure has a larger range with the PI-based scheme. Robust increases are 

detected in the central and east part of western China in all three projections, but the 

increase amount projected by the PI-based model exceeds 20% in the 1.5 ˚C global 

warming. Especially in the northern Tibetan Plateau, it is twice bigger than that projected 

by AM (about 10%). Under 2˚C global warming, the increase with the PI-based model 

exceeds 25%, while it is about 10% in AM. For the half-a-degree additional warming 

(right column), the difference among the three weighting models is not significant except 

for the center and east Tibetan Plateau and Inner Mongolia area, where the change 

amplitude is more noticeable with the PI-based model. Similar results can be found in 

RX5DAY, RX1DAY and R95P, but R95P shows more significant increases especially in 

the Tibetan Plateau and in northeastern China.  



Published manuscript, Li et al. 2021, J Meteo Res., doi: 10.1007/s13351-021-0067-5, page 18 

 18 

 

Fig. 9. Percent changes of PRCPTOT for the 1.5°C (first column), 2°C (second 

column) global warming under RCP 8.5 scenario compared to the period 1985-

2005 and the additional 0.5 °C warming (third column) from simulations of PI-

based (top), Rank-based (middle) weighting schemes and AM (bottom). Areas 

with significant changes above 95% confidence level are marked with black dots 

(unit: %). 

 

The reason resides certainly in the fact that the PI-based scheme has sharper 

transitions in the distribution of weights among models. That is, the final results are 

basically dominated by a few models having larger weights. In other words, “good” 

localized characteristics from these well-behaved models are less affected by other 

models. With the same argument, we can expect that the arithmetic mean algorithm (AM), 

which performs simple average over many models, would underestimate high-value 

regions. Sanderson et al. (2017) pointed out that some noticeable differences of the 

uncertainty range also exist with weighting of models, the underlying causes being the 

same as we evoked here. Similar conclusion is found in other researches on the weighting 

strategy, the projected changes made by weighted ensembles are generally comparable 
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from each other on the spatial patterns, but more pronounced amplitude in uncertainty 

regions (Langenbrunner and Neelin, 2017; Massoud et al., 2019).  

The projected changes with the PI-based strategy under the 1.5 °C and 2°C 

warming targets are depicted in Fig. 10 for the three extreme precipitation indices. It is 

obvious that all extreme precipitations increase across almost whole China. The mean 

increase for RX5DAY is by 5.8 and 9.3% under 1.5 ˚C and 2˚C global warming. 

Similarly, RX1DAY increases by 7.1 and 10.4%. The increase of strong precipitation 

R95P is the most noticeable, the national mean being by 17.5 and 26.6%, respectively. 

For all extreme indices, the Tibetan Plateau and northeastern China are areas with 

significant wetter conditions, especially in the 2˚C warming, higher than other areas 

about 5%. Meanwhile, there is no significant increase found in the middle reaches of the 

Yangtze River and the Yellow River, even a slight decrease can be observed. An 

additional 0.5 ᵒC warming may lead to increases in heavy precipitation over most areas, 

the national mean increases of RX5DAY and RX1DAY are 3.5 and 3.4%, respectively, 

the most significant response of R95P can reach 9.3%. The center and east of the Tibetan 

Plateau and the north of Inner Mongolia have been shown to be more significantly 

associated to the additional global warming. Although a precise comparison with 

previous works is out of scope of the present paper, most our findings are consistent with 

what reported in the current literature (Wu et al., 2015; Chen et al., 2017; Shi et al., 2018) 

showing reliable features, such as the increase of extreme precipitation indices in the 

Tibetan Plateau and northeast China, and their insignificant change in central China. 
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Fig. 10. Percentage changes of the three extreme precipitation indices projected 

by PI-based weighting scheme for the 1.5°C (first column), 2°C (second column) 

global warming under RCP 8.5 scenario compared to the period 1985-2005 and 

the additional 0.5 °C warming (third column). Areas with significant changes 

above 95% confidence level are marked with black dots (unit: %). 

 

5. Conclusions and discussion 

A weighting scheme considering both model performance and independence (PI-

based weighting scheme) is used to deal with multi-model ensemble of precipitation over 

China under the warming targets of 1.5°C and 2°C. To better appreciate its performance, 

a work of inter-comparison with the performance-only (Rank-based) scheme and a full-

model-democracy scheme (arithmetic mean, AM) was carried out. Main conclusions are 

as the following. 

(1) Compared to the Rank-based and AM strategies, the PI-based weighting 

scheme produces a better simulation of spatial patterns for the total precipitation and 

extreme indices, especially in western China over the Tibetan Plateau. From the baseline 

of AM, the western mean bias decreases about 38% for PRCPTOT, 18% for RX5DAY, 
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32% for RX1DAY and 101% for R95P. For all the four indices, the spatial pattern 

correlation coefficients are higher than 0.8, and the ratios of spatial variations are closer 

to 1. Nevertheless, no significant improvements are found in eastern China. 

(2) An inter-comparison of future climate projection among the three schemes 

shows that their spatial patterns are highly correlated but PI has larger inhomogeneity in 

spatial distribution. A few results under the 2°C global warming target can be detailed 

here for the total precipitation PRCPTOT and strong precipitation R95P. Their critical 

change values, allowing to divide whole China area into two equal halves under the 2°C 

global warming target, are 5.7% and 25.7% in PI, while 3.9% and 21.3% in AM. The 

land fraction of whole China’s territory with a change of PRCPTOT (R95P) larger than 

10% (20%) is 22.8% (53.4%) in PI, while 13.3% (36.8%) in AM. The difference shows 

an increase of 9.5% (16.6%). In the central and east part of western China, the increase 

for both PRCPTOT and R95P is the most noticeable in PI, which can exceed 20% and 

40% for PRCPTOT and R95P respectively, twice bigger than in AM. 

Our results show an obvious improvement in western China for the PI-based 

ensemble scheme. However, both observation and simulation are less reliable in western 

China due to limited observation stations and the presence of complex topography 

including high mountains and the Tibetan Plateau. So, results over this area should be 

regarded with precautions. 

It is to be noted that any weighting scheme of models are inevitably related to the 

choice of distance metrics and variables used, which implies intrinsic uncertainties for the 

methodology. In the present work, we used a combined set of diagnostics (PRCPTOT, 

RX5DAY, RX1DAY, R95P) and took the spatial and temporal features simultaneously 

into account to determine model performance and independence. Other performance 

metrics, not only for the mean state and extreme, but also for trends, or key physical 

process should be explored in future.  

The basic idea of PI-based scheme is generic and could be applied to a wider 

range of climate change issues by integrating a larger set of GCM simulations. It is 

particularly promising in the upcoming CMIP6 framework which includes larger 

members of a same model. 
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