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Abstract

We define display calculi for nominal tense logics extending the minimal nominal tense logic

(MNTL) by addition of primitive axioms. To do so, we use the natural translation of MNTL

into the minimal tense logic of inequality (L6=) which is known to be properly displayable

by application of Kracht’s results. The rules of the display calculus δMNTL for MNTL mimic

those of the display calculus δL6= for L 6=. We show that every MNTL-valid formula admits a

cut-free derivation in δMNTL. We also show that a restricted display calculus δ−MNTL, is not

only complete for MNTL, but that it enjoys cut-elimination for arbitrary sequents. Finally, we

give a weak Sahlqvist-type theorem for two semantically defined extensions of MNTL. Using

Kracht’s techniques we obtain sound and complete display calculi for these two extensions

based upon δMNTL and δ−MNTL respectively. The display calculi based upon δMNTL enjoy

cut-elimination for valid formulae only, but those based upon δ−MNTL enjoy cut-elimination

for arbitrary sequents.

1 Introduction

Background. The addition of names (also called nominals) to modal logics has
been investigated recently with different motivations (see e.g. [Or lo84, PT85, Gar86,
Bla90]). A name is usually understood as an atomic proposition that holds true in
a unique world of a Kripke model. Usually, the addition of names is intended to
increase the expressive power of the initial logics. For instance, although there is no
tense formula that characterises the class of irreflexive frames, there is a tense for-
mula with names that characterises this class of frames [Bla93]. Another remarkable
breakthrough due to the inclusion of names is the ability to define the intersection
operator (see e.g. [PT91]) although it is known that intersection is not modally de-
finable in the standard modal language [GT75]. Names have also been introduced
in information logics [Or lo84, Kon97b, Kon97a] derived from Pawlak’s rough set the-
ory [Paw81] where the motivations concern both definability and axiomatisability.
Adding the difference operator [6=], which allows access to worlds different from the
current world, is another way to obtain names (see e.g. [Sai88, Koy92, Rij92, Ven93]).
As far as expressive power is concerned, adding [ 6=] is more powerful than adding
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only names: in [GG93], the relationships between names and [ 6=] are fully established
with respect to definability. For instance, all universal first-order conditions on the
Kripke reachability relation R (read as a binary predicate symbol) and = (identity)
are definable in the bimodal language with the standard necessity operator and the
difference operator [Gor90]. In the literature for modal logics with names, much work
has been dedicated to the study of their expressive power, decidability, complexity
(see e.g. [Bla90, Rij93, GG93, PT91, ABM00]) and to the definition of proof systems
[Bla90, PT91, Ven93, Rij93, Sel97, Dem99, Tza99, Are00].

Our contribution. Our main goal is to define cut-free display calculi (see e.g.
[Bel82]) for nominal tense logics and therefore to provide a complementary approach
to existing proof systems. In particular, we wish to extend previous results for dis-
playing tense logics (see e.g. [Wan94, Kra96, Wan98]) to nominals. Display Logic (ab-
breviated by DL) is a proof-theoretical framework introduced by Belnap [Bel82] that
generalises the structural language of Gentzen’s sequents by using multiple structural
connectives instead of Gentzen’s comma. A nice property of DL is its very general
cut-elimination theorem [Bel82]. Furthermore, in the rules introducing logical connec-
tives, the principal formula is alone as an antecedent or succedent thereby making the
introduction rule a definition of that connective. In that sense, interactions between
logical connectives are reduced to the minimum. This can be done since any occur-
rence of a structure in a sequent can be displayed either as the entire antecedent or as
the entire succedent of some sequent “structurally equivalent” to the initial sequent.

So, the first contribution of the paper is the definition of display calculi for certain
extensions of the minimal nominal tense logic (MNTL) [Bla90], by addition of primitive
axioms in the sense of [Kra96]. Our first stage consists in defining the display calculus
δMNTL by using the natural translation from MNTL into MTL6=, the minimal tense logic
augmented with the difference operator. Indeed, MTL6= is properly displayable1 in
the sense of [Kra96] thanks to the Hilbert-style axiomatisation given in [Rij92, Rij93]
(see also [Seg81, Koy92]). The powerful and sometimes redundant irreflexivity rule
(see e.g. [Gab81, Ven93, Bal99]) is not needed to axiomatise MTL6=. The rules for
δMNTL mimic those of δMTL6=, the display calculus for MTL6=. Completeness of δMNTL
is first proved by backward translation. The proof also shows that every MNTL-valid
formula admits a cut-free derivation in δMNTL. However, to extend δMNTL, the above
technique requires Hilbert-style axiomatisations that may contain the irreflexivity
rule to appropriately extend MTL6=. The corresponding rule in DL lacks various nice
properties of the standard display calculi for tense logics. Furthermore, it is not
always known when the irreflexivity rule is really needed. We therefore provide a
second completeness proof of δMNTL from the Hilbert-style calculus `MNTL for MNTL

given in [Bla90] for which the irreflexivity rule is never needed. The second proof
happens to be much more informative since it provides a means to understand the
rôle of various structural rules.

Cut-elimination cannot be proved by the technique of the second proof since it
relies on the simulation of the modus ponens rule. An interesting, and at first glance
very unpleasant, feature of δMNTL is that it does not satisfy the condition (C8) [Bel82].
This condition is central in cut-elimination proofs from [Bel82, Wan98]. Nevertheless,

1This partly answers some open questions stated in [Wan98] and also suggests a general proof-
theoretical framework for the [ 6=] operator (see also the questions in [Rij93, p.47]).

2



we prove that a slight variant of δMNTL admits cut-elimination for arbitrary sequents
by Belnap’s conditions while preserving completeness.

Finally, although many extensions of MNTL are not canonical [Bla90], we show a
weak Sahlqvist-style theorem for nominal tense logics. This paves the way to define
cut-free display calculi for any extension of `MNTL by addition of primitive axioms (by
using [Kra96]). Furthermore, we can characterise the semantical extensions of MNTL
which correspond to these calculi.

Related work. Most of the proof systems for nominal tense logics are Hilbert-
style ones [Bla90, Bla93, Gor96a]. The situation is similar for modal logics with the
difference operator [Seg81, Koy92, Rij92, Rij93, Ven93]. However, prefixed tableaux
for several modal logics with the difference operator have been defined in [Dem96,
BD97]. Decision procedures have been designed from these calculi [BD97] but a cut
rule present in those calculi is not eliminable in many cases for reasons similar to
those that apply to calculi from [dM94]. Sequent-style calculi for modal logics with
names have been defined in [Kon97a, Kon97b] for the so-called similarity logics based
on Pawlak’s rough set theory [Paw81]. In [Kon97a, Kon97b], the nominals play the
rôle of prefixes in an elegant manner, although the calculi have no prefixed formulae
and only the language of the logic is used. In [Bla00], sequent calculi for nominal
tense logics are given in which the nominals roughly play the role of labels; see also
[Sel97, Dem99, Tza99, Are00].

Our treatment of nominals in our DL calculi is completely different since we
instead use the dual nature of a nominal: as atomic proposition and as necessity
formula. In that sense, it is similar to the treatment of atomic propositions in display
calculi for intuitionistic logic in [Gor95].

A Sahlqvist theorem for tense logics with the difference operator is given in [Ven93],
but the calculi use the irreflexivity rule; see also [Rij93].

Other general proof-theoretical frameworks also exist for non-classical logics: La-
belled Deductive Systems [Gab96], Relational Proof Systems [Or lo88, Or lo91, Or lo92]
to quote two. But DL has already shown its generality since cut-free display calculi
have been defined for substructural logics [Res98, Gor98b, Gor98a], for modal and
polymodal logics [Wan94, Kra96, Wan98], for intuitionistic logics [Gor95], for rela-
tion algebras [Gor97, DG98], for logics with relative accessibility relations [DG00a]
and for modal provability logics [DG00b, DG01b].

Plan of the paper. The rest of the paper is structured as follows. In Section 2,
we recall the definitions of the logics under study [Bla90, Rij92, Ven93]. In Section 3,
we introduce the modal logic of inequality MTL6= [Rij92] and formulate its (cut-free)
display calculus δMTL6= using the methodology of [Kra96]. In Section 4, we define
the display calculus δMNTL for MNTL, show its soundness and completeness, and prove
it enjoys a weak form of cut-elimination. Section 5 contains a second independent
completeness proof that easily extends to extensions of MNTL. In Section 6, we show
how cut-elimination can be obtained from Belnap’s conditions for a slight variant of
δMNTL. Section 7 establishes a weak Sahlqvist-style theorem and by using [Kra96],
defines cut-free display calculi for extensions of MNTL.

This paper is a completed and corrected version of [DG99].
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2 Nominal Tense Logics

Given a set Prp = {p0, p1, p2, . . .} of propositional variables and a set Nom =
{i0, i1, . . .} of names, the set NTL(G,H, [ 6=]) is the smallest set containing all formu-
lae φ defined as below for all pj ∈ Prp and all ik ∈ Nom:

φ ::= > | ⊥ | pj | ik | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2 | ¬φ | Hφ | Gφ | [ 6=]φ.

Standard abbreviations include ⇔, 〈6=〉, F , P . For instance, Fφ
def
= ¬G¬φ. Following

standard notation, for any sequence OP from {H,G, [6=]} we write NTL(OP ) to denote
the fragment of NTL(G,H, [ 6=]) with the unary modal operators from OP . Similarly,
TL(OP ) denotes the fragment of NTL(OP ) with no names. In the rest of the paper, we
shall study logics whose languages are strict fragments of NTL(G,H, [ 6=]): the whole
language contains all that we need. For any φ ∈ NTL(G,H, [6=]), we write r(φ) to
denote the rank of φ; that is, the number of occurrences of members of

Prp ∪ Nom ∪ {>,⊥} ∪ {¬,∧,∨,⇒, G,H, [6=]}.

For example r(⊥⇒ (i0 ∨ ¬p1)) = 6.
Following [Kra96], a formula is primitive iff it is of the form φ⇒ ψ where both

φ and ψ are built from Prp ∪ {>} with the help of ∧, ∨, F , P and 〈6=〉 only, and φ
contains each propositional variable at most once.

A modal frame F = (W,R) is a pair where W is a non-empty set and R is a binary
relation over W . We write Fr for the set of all modal frames and define

R(w)
def
= {v ∈W | (w, v) ∈ R} R−1(w)

def
= {v ∈W | (v, w) ∈ R}.

A model M is a structure M = (W,R,m) such that (W,R) is a frame and m is a
mapping m : Prp∪Nom→ P(W ) where for any i ∈ Nom, m(i) is a singleton, and where
P(W ) is the set of all subsets of W . Let M = (W,R,m) be a model and w ∈W . As
usual, the formula φ is satisfied by the world w ∈ W in M iff M, w |= φ where
the satisfaction relation |= is inductively defined as below:

M, w |= p if w ∈ m(p), for every p ∈ Prp ∪ Nom
M, w |= Gφ if M, v |= φ for every v ∈ R(w)
M, w |= Hφ if M, v |= φ for every v ∈ R−1(w)
M, w |= [6=]φ if M, v |= φ for every v 6= w.

We omit the standard conditions for the propositional connectives and the logical
constants. A formula φ is true in a model M (written M |= φ) iff M, w |= φ for
every w ∈ W . A formula φ is true in a frame F (written F |= φ) iff φ is true in
every model based on F .

By a logic L we mean a pair 〈L, C〉 such that L ⊆ NTL(H,G, [6=]) and ∅ 6= C ⊆ Fr.
A formula φ ∈ L is L-valid iff φ is true in all the models based on the frames in C.
A formula φ ∈ L is L-satisfiable iff ¬φ is not L-valid. A class C of modal frames
is closed under disjoint unions iff for every (W,R), (W ′, R′) ∈ C: if W ∩W ′ = ∅
then (W ∪W ′, R∪R′) ∈ C. A class C of modal frames is closed under isomorphic
copies iff for any (W,R) ∈ C and for any 1-1 mapping g : W → W ′, the frame
(W ′, {〈g(w), g(w′)〉 | 〈w,w′〉 ∈ R}) ∈ C.
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We write MNTL to denote the minimal nominal tense logic

MNTL
def
= 〈NTL(H,G), F r〉.

Moreover, for any formula φ of some language L with names [resp. without names],
we write NTLφ [resp. TLφ] to denote the logic 〈L, {F ∈ Fr : F |= φ}〉.

To conclude this section, we recall the definitions of various Hilbert-style systems
for the minimal nominal tense logic from [Bla90]. By a universal modality [resp.
existential modality] σ, we mean a (possibly empty) finite sequence of elements
from {G,H} [resp. from {F, P}]. Let `MNTL be the smallest subset of NTL(G,H) such
that `MNTL is closed under the inference rules of modus ponens and necessitation for G
and H; `MNTL contains the tautologies of the propositional calculus; and `MNTL contains
every formula of the forms below:

(G(φ⇒ ψ) ∧Gφ)⇒ Gψ (H(φ⇒ ψ) ∧Hφ)⇒ Hψ
φ⇒ HFφ φ⇒ GPφ
i ∧ φ⇒ σ(i⇒ φ) where i ∈ Nom and σ is a universal modality.

We write `MNTL φ or φ ∈ `MNTL interchangeably. Let `′MNTL be `MNTL with the last axiom
schema replaced by i ∧ σ(i ∧ φ)⇒ φ where σ is an existential modality.

Theorem 1 Any φ ∈ NTL(H,G) is MNTL-valid iff `MNTL φ iff `′MNTL φ [Bla90].

We write ` + φ to denote the minimal extension of the axiomatic system ` by
adding all formulae of the form φ; so φ is just an axiom schema.

3 A Logic Axiomatised by Primitive Axioms

We now give a Hilbert-style calculus for the minimal tense logic of inequality
MTL6= and a cut-free display calculus δMTL6= for it using Kracht’s method [Kra96].

3.1 Hilbert-style Axiomatisation for MTL6=

In [Rij93], a complete Hilbert-style proof system is given for the logic

MTL6=
def
= 〈TL(G,H, [ 6=]), F r〉.

Let 6̀= be the smallest set of TL(G,H, [6=]) containing the tautologies of the propo-
sitional calculus such that ` 6= is closed under modus ponens, necessitation for G, H
and [ 6=], and where ` 6= contains every formula of the forms:

(G(φ⇒ ψ) ∧Gφ)⇒ Gψ φ⇒ HFφ Fφ⇒ φ ∨ 〈6=〉φ
(H(φ⇒ ψ) ∧Hφ)⇒ Hψ φ⇒ GPφ Pφ⇒ φ ∨ 〈6=〉φ
([6=](φ⇒ ψ) ∧ [6=]φ)⇒ [6=]ψ φ⇒ [6=]〈6=〉φ 〈6=〉〈6=〉φ⇒ φ ∨ 〈6=〉φ.

Theorem 2 Any φ ∈ TL(G,H, [6=]) is MTL6=-valid iff 6̀= φ [Rij93].
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(Id) p ` p X ` φ φ ` Y
X ` Y (cut)

Figure 1: Fundamental logical axioms and cut rule

3.2 A Display Calculus for MTL6=

There are numerous existing display calculi so we extend Wansing’s [Wan94] for-
mulation since it is tailored for classical modal logics. To follow Kracht’s method-
ology [Kra96], MTL6= must be axiomatised by a set of primitive axioms. To do
so, we replace the non-primitive axiom φ ⇒ [ 6=]〈6=〉φ by its primitive equivalent
φ∧〈6=〉ψ ⇒ 〈6=〉(ψ∧〈6=〉φ). By applying [Kra96, Theorem 21], MTL6= can be “properly
displayed”: that is, MTL6= has a sound and complete display calculus δMTL6= for which
the cut-elimination theorem holds because δMTL6= satisfies Belnap’s conditions (C1)-
(C8) [Bel82]. Moreover, axioms from the definition of 6̀= are encoded in δMTL 6= by
structural rules: rules that involve only structure variables. In the rest of this section,
we explicitly formulate the display calculus δMTL6= for MTL6= obtained by application of
Kracht’s results. We also use this opportunity to introduce smoothly various notions
and to state basic facts that are used to define the display calculi for nominal tense
logics. Hence, this section is mainly included to make the paper self-contained.

On the structural side, we have the structural connectives ∗ (unary), ◦ (binary),
I (nullary), • (unary) and •6= (unary). A structure X ∈ struc(δMTL6=) is inductively
defined as below for φ ∈ TL(G,H, [6=]):

X ::= φ | I | ∗X | •X | • 6=X | X1 ◦ X2

A sequent is an expression X ` Y, built from two structures X and Y, with X the
antecedent and Y the succedent. Figures 1-5 contain the rules of δMTL6=.

The display postulates (reversible rules) in Figure 2 deal with the manipulation of
structural connectives. In what follows, we write

s′
s (dp)

to denote that the sequent s is obtained from the sequent s′ by an unspecified finite
number (possibly zero) of applications of display postulates.

In any structure X, the structure Z occurs negatively [resp. positively] iff Z occurs
in the scope of an odd number [resp. an even number] of occurrences of ∗ [Bel82]. In
a sequent X ` Y, an occurrence of Z is an antecedent part [resp. succedent part]
iff it occurs positively in X [resp. negatively in Y] or it occurs negatively in Y [resp.
positively in X] [Bel82]. Two sequents X ` Y and X′ ` Y′ are structurally equivalent
iff there is a derivation of the first sequent from the second using the display postulates
from Figure 2.

Theorem 3 (Belnap) For every sequent X ` Y and every antecedent [resp. succedent]
part Z of X ` Y, there is a structurally equivalent sequent Z ` Y′ [resp. X′ ` Z] that has
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X ◦ Y ` Z

X ` Z ◦ ∗Y

X ◦ Y ` Z

Y ` ∗X ◦ Z

X ` Y ◦ Z

X ◦ ∗Z ` Y

X ` Y ◦ Z

∗Y ◦ X ` Z

∗X ` Y

∗Y ` X

X ` ∗Y

Y ` ∗X

∗ ∗ X ` Y

X ` Y

X ` ∗ ∗ Y

X ` Y

X ` •6=Y

•6=X ` Y

X ` •Y

•X ` Y

Figure 2: Display postulates

I ` > (` >) I ` X
> ` X (> `) X ` I

X `⊥ (`⊥) ⊥` I (⊥`)

X ` ∗φ
X ` ¬φ (` ¬)

∗φ ` X
¬φ ` X (¬ `)

X ` φ Y ` ψ
X ◦ Y ` φ ∧ ψ (` ∧)

φ ◦ ψ ` X
φ ∧ ψ ` X (∧ `)

X ◦ φ ` ψ
X ` φ⇒ ψ

(`⇒)
X ` φ ψ ` Y
φ⇒ ψ ` ∗X ◦ Y (⇒`)

X ` φ ◦ ψ
X ` φ ∨ ψ (` ∨)

φ ` X ψ ` Y
φ ∨ ψ ` X ◦ Y (∨ `)

φ ` X
Gφ ` •X (G `)

X ` •φ
X ` Gφ (` G)

φ ` X
Hφ ` ∗ • ∗X (H `)

X ` ∗ • ∗φ
X ` Hφ (` H)

φ ` X
[ 6=]φ ` •6=X

([6=] `)
X ` •6=φ
X ` [6=]φ

(` [6=])

Figure 3: Operational rules

Z (alone) as its antecedent [resp. succedent]. The structure Z is displayed in Z ` Y′

[resp. X′ ` Z] [Bel82].

In Figure 5, “alio” stands for aliotransitivity where a binary relation R over W is
aliotransitive iff for any x, y, z ∈ W , (x, y) ∈ R and (y, z) ∈ R and x 6= z implies
(x, z) ∈ R (see e.g. [Seg81]). The structural rules defined in Figure 5 are translations
of the primitive axioms of 6̀= into structural rules following [Kra96]. This is done
modulo the rule (sym) as shown below.

Lemma 4 Let X ` Y and X′ ` Y′ be sequents such that X′ ` Y′ can be obtained
from X ` Y by replacing some occurrences of ∗ •6= ∗Z by • 6=Z and by replacing some
occurrences of • 6=Z′ by ∗•6= ∗Z′. Then, in any display calculus δ containing the display
postulates from Figure 2, (sym), (contrr), (weakr) and (weakl), the sequent X ` Y is
[cut-free] derivable in δ iff X′ ` Y′ is [cut-free] derivable in δ.

Proof Thanks to the display property, it is sufficient to show:

1. If ∗ • 6= ∗Z ` X is [cut-free] derivable in δ, then so is • 6=Z ` X.

7



X ` Z

I ◦ X ` Z
(Il)

X ` Z

X ` I ◦ Z
(Ir)

I ` Y

∗I ` Y
(Ql)

X ` I

X ` ∗I
(Qr)

X ` Z
Y ◦ X ` Z (weakl)

X ` Z
X ◦ Y ` Z (weakr)

X1 ◦ (X2 ◦ X3) ` Z

(X1 ◦ X2) ◦ X3 ` Z
(assocl)

Z ` X1 ◦ (X2 ◦ X3)

Z ` (X1 ◦ X2) ◦ X3
(assocr)

Y ◦ X ` Z
X ◦ Y ` Z (coml)

Z ` Y ◦ X
Z ` X ◦ Y (comr)

X ◦ X ` Y
X ` Y (contrl)

Y ` X ◦ X
Y ` X (contrr)

I ` X
•I ` X (neclG)

X ` I
X ` •I (necrG) I ` X

•6=I ` X
(necl[6=])

X ` I
X ` •6=I

(necr[ 6=])

Figure 4: Other basic structural rules

X ` Y • 6= X ` Y
• 6= •6= X ` Y (alio)

∗ • 6= ∗(Z ◦ ∗ • 6= ∗X) ` Y
X ◦ ∗ • 6= ∗Z ` Y

(sym)

X ` Y • 6= X ` Y
∗ • ∗X ` Y (uni1)

X ` Y •6= X ` Y
•X ` Y (uni2)

Figure 5: Other structural rules

2. If •6=Z ` X is [cut-free] derivable in δ, then so is ∗ • 6= ∗Z ` X.

Remember also that the following are derivable using the display postulates:

∗ • 6= ∗Z ` X
Z ` ∗ •6= ∗X

(dp)
•6=Z ` X
Z ` •6=X

(dp)

We show (1) below left and (2) below right:

....
∗ • 6= ∗Z ` X

∗ • 6= ∗Z ◦ • 6= ∗ • 6=X ` X
(weakr)

∗ • 6= ∗(∗X ◦ ∗ • 6= ∗Z) ` •6=X
(dp)

Z ◦ ∗ • 6= ∗ ∗ X ` •6=X
(sym)

Z ` •6=X ◦ • 6=X
(dp)

Z ` •6=X
(contrr)

•6=Z ` X
(dp)

....
• 6=Z ` X
Z ` •6=X

(dp)

• 6= ∗ X ◦ Z ` •6=X
(weakl)

∗ • 6= ∗(Z ◦ ∗ • 6= ∗ ∗ X) ` X
(dp)

∗X ◦ ∗ • 6= ∗Z ` X
(sym)

∗ • 6= ∗Z ` X ◦ X
(dp)

∗ • 6= ∗Z ` X
(contrr)
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In Lemma 4 we can replace the rule (sym) by the rule (sym′) shown below left.
Lemma 4 is unsurprising since (sym) is the structural rule obtained from Kracht’s
methodology from the axiom schema F φ ⇔ P φ characterising symmetric models.
But, Lemma 4 is purely syntactic since it contains no reference to any interpretation
of the structures. We make extensive use of the derivable invertible rule (sym) shown
below right which encapsulates Lemma 4:

•6=(Z ◦ • 6=X) ` Y
X ◦ • 6=Z ` Y

(sym′)

∗ • 6= ∗Z ` X

•6=Z ` X
(sym)

We abuse notation since we also use (sym) for the rule that consists of replacing
any occurrence of •6= [resp. ∗ •6= ∗] in a sequent by ∗ •6= ∗ [resp. • 6=] by displaying the
“target”, applying (sym), and then “undisplaying”. Such inferences may require the
“right-handed” analogues of our structural rules, which are left unspecified, but which
are derivable. The correct form of these “right-handed” analogues is not always the
rule obtained by simply switching the antecedents and conclusions of the sequents in
the “left-handed” version.

Primitivity of the axioms guarantees a sound and complete display calculus satis-
fying conditions (C1)-(C8) [Bel82] and therefore enjoying cut-elimination.

Theorem 5 (Soundness, Completeness) For any formula φ ∈ NTL(G,H, [6=]), the
sequent I ` φ is derivable in δMTL6= iff 6̀= φ [Kra96].

Theorem 6 (Cut-elimination) If there is a derivation of X ` Y in δMTL6=, then there
is a cut-free derivation of X ` Y in δMTL6= [Bel82].

We write δ +R for display calculus δ augmented with the set R of rules.

4 A Display Calculus for MNTL

We use a standard embedding of MNTL into MTL6= to obtain a display calculus δMNTL
from the display calculus δMTL6=. We prove soundness and completeness of δMNTL
with respect to MNTL by using the soundness and completeness of δMTL6= with respect
to MTL6=. We also prove a weak cut-elimination theorem for δMNTL by using the cut-
elimination theorem for δMTL6=. Actually, we show that for every φ ∈ NTL(H,G), I ` φ
is derivable in δMNTL iff I ` φ has a cut-free derivation in δMNTL. “Weak” because
cut-elimination is couched using arbitrary sequents X ` Y rather than sequents of the
form I ` φ. In Section 5 we then prove completeness of δMNTL directly with respect
to the Hilbert-style calculus `MNTL.

4.1 Definition of δMNTL

The display calculus δMNTL defined below is composed of axioms and inference rules
from δMTL6= defined in Section 3.2. The set struc(δMNTL) of structures is the same as
struc(δMTL6=) except that only formulae from NTL(H,G) can occur as substructures
although the structural connectives are identical. The fundamental logical axiom and
cut rule (Figure 1), the structural rules (Figures 2, 4 and 5) and the operational
rules (Figure 3) for δMNTL are by definition those for δMTL6= except that the rules
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i ` •6= ∗ X
X ` i (` i) X ` i

i ` •6= ∗ X
(i `) (Id′) i ` i

Figure 6: Axioms and rules for δMNTL

introducing [ 6=]φ, as antecedent and succedent, are replaced by the rules introducing
the nominals, as antecedent and succedent, described in Figure 6. The fundamental
axiom (Id′) for nominals is also added.

An easy way to understand the way the rules in Figure 6 work is to observe that
the formula from NTL([6=]) shown below is valid in any model:

i⇔ [6=]¬i.

The rules (i `) and (` i) use the intensional nature of a name whereas the fundamental
axiom i ` i uses its atomic nature.

Using the display postulates and the derived rule (sym), we can alternatively define
the “introduction” rules for nominals as follows:

X ` •6= ∗ i
X ` i

X ` i
X ` •6= ∗ i

Following [Kra96], it is easy to establish that both rules (∗ `) and (` ∗) below are
admissible in δMNTL:

¬ψ ` X
∗ψ ` X (∗ `)

X ` ¬ψ
X ` ∗ψ (` ∗)

In particular, if ¬ψ ` X [resp. X ` ¬ψ] has a cut-free derivation in δMNTL, then ∗ψ ` X
[resp. X ` ∗ψ] also has a cut-free derivation in δMNTL.

4.2 Soundness and Completeness

To prove soundness of δMNTL with respect to MNTL-validity we use the mappings a :
struc(δMNTL) → TL(H,G, [6=]) and c : struc(δMNTL) → TL(H,G, [6=]) defined below
which are are slight variants of standard mappings; see e. g. [Kra96]:

a and c are homomorphic for ∧, ∨, ⇒, ¬, H and G
ik ∈ Nom pj ∈ Prp

a(ik)
def
= p2×k+1 ∧ [ 6=]¬p2×k+1 c(ik)

def
= p2×k+1 ∧ [6=]¬p2×k+1

a(pj)
def
= p2×j c(pj)

def
= p2×j

a(I)
def
= > c(I)

def
= ⊥

a(⊥)
def
= ⊥ c(⊥)

def
= ⊥

a(>)
def
= > c(>)

def
= >

a(∗X)
def
= ¬c(X) c(∗X)

def
= ¬a(X)

a(X ◦ Y)
def
= a(X) ∧ a(Y) c(X ◦ Y)

def
= c(X) ∨ c(Y)

a(•X)
def
= P a(X) c(•X)

def
= G c(X)

a(• 6=X)
def
= 〈6=〉a(X) c(•6=X)

def
= [ 6=]c(X).
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For any finite set S of structures, we write Nom(S) for the set of names from Nom

that occur in S. We also define the formula φS from TL(G,H, [ 6=]) below:

ϕS
def
=

∧
ik∈Nom(S)

(p2×k+1 ∧ [ 6=]¬p2×k+1) ∨ 〈6=〉(p2×k+1 ∧ [ 6=]¬p2×k+1).

In the case when Nom(S) is empty, ϕS takes the value >. For any finite set S and for
any MTL6=-model M = (W,R,m), M |= ϕS iff M, w |= ϕS for some w ∈W .

Lemma 7 easily follows from the definition of the formulae of the form ϕS .

Lemma 7 Let S, S′ be finite sets of structures, ψ be in NTL(G,H) and ψ′ be in
TL(G,H, [6=]). Then,

1. if S′ ⊆ S, then ϕS ⇒ ϕS′ is MTL6=-valid;

2. if for all k ∈ ω, the propositional variable p2×k+1 occurs in ψ′ only if ik occurs
in S, then ϕS ⇒ ψ′ is MTL6=-valid iff ϕS∪{ψ} ⇒ ψ′ is MTL6=-valid.

Lemma 8 below relates the formulae of the form ϕS with the map a(.).

Lemma 8 For some class of frames C, let L = 〈NTL(G,H), C〉 be the nominal tense
logic of C-frames and let L 6= = 〈TL(G,H, [6=]), C〉 be the tense logic of inequality of
C-frames. Then, for any φ ∈ NTL(G,H), statements (1) and (2) below are equivalent:

(1) φ is L-valid (2) ϕ{φ} ⇒ a(φ) is L6=-valid.

Since a(¬φ) = ¬a(φ), it suffices to prove that statements (3) and (4) below are
equivalent:

(3) φ is L-satisfiable (4) ϕ{φ} ∧ a(φ) is L6=-satisfiable.

Proof (3)⇒(4): Suppose φ is L-satisfiable. So there is an L-modelM = (W,R,m)
and w0 ∈W such thatM, w0 |= φ. LetM′ = (W,R,m′) be the L 6=-model such
that for all k ∈ ω:

m′(p2×k)
def
= m(pk) m′(p2×k+1)

def
= m(ik).

For w ∈W and for k ∈ ω it is obvious that:

M, w |= pk iff M′, w |= p2×k

M, w |= ik iff M′, w |= p2×k+1 ∧ [ 6=]¬p2×k+1

M′, w |= ϕ{φ}.

These are the base cases to show by induction on the structure of any sub-
formula ψ of φ that for any w ∈ W : M, w |= ψ iff M′, w |= a(ψ). Hence,
M′, w0 |= ϕ{φ} ∧ a(φ).

(4)⇒(3): Suppose ϕ{φ} ∧ a(φ) is L6=-satisfiable. So there is an L6=-model M =
(W,R,m) and w0 ∈ W such that M, w0 |= ϕ{φ} ∧ a(φ). Let M′ = (W,R,m′)
be the L-model such that for every k ∈ ω:
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m′(pk)
def
= m(p2×k)

m′(ik) = {x} if ik occurs in φ and M, x |= p2×k+1 ∧ [ 6=]¬p2×k+1

m′(ik) = {w0} (arbitrary value) if ik does not occur in φ.

In the second clause above, a unique such x ∈W always exists becauseM, w0 |=
ϕ{φ}. For w ∈W and for k ∈ ω it is obvious that:

M′, w |= pk iff M, w |= p2×k

if ik occurs in φ then: M′, w |= ik iff M, w |= p2×k+1 ∧ [6=]¬p2×k+1.

These are the base cases to show by induction on the structure of any subformula
ψ of φ that for any w ∈W : M′, w |= ψ iff M, w |= a(ψ). Hence, M′, w0 |= φ.

Lemma 9 below allows us to get rid of ϕ{φ} in ϕ{φ} ⇒ a(φ).

Lemma 9 For some class of frames C which is closed under disjoint unions and
isomorphic copies, let L = 〈NTL(G,H), C〉 be the nominal tense logic of C-frames, and
let L6= = 〈TL(G,H, [6=]), C〉 be the tense logic of inequality of C-frames. For every
φ ∈ NTL(G,H), the statements (1) and (2) below are equivalent:

(1) φ is L-valid (2) a(φ) is L 6=-valid.
Since a(¬φ) = ¬a(φ), it suffices to prove that the statements (3) and (4) below are
equivalent:

(3) φ is L-satisfiable (4) a(φ) is L 6=-satisfiable.

Proof (3)⇒(4): Similar to the part (3)⇒(4) in the proof of Lemma 8.

(4)⇒(3): Suppose a(φ) is L6=-satisfiable. So there is an L6=-model M = (W,R,m)
and w0 ∈ W such that M, w0 |= a(φ). Here, we cannot guarantee that for any
ik occurring in φ, the set Uk = {x ∈ W | M, x |= p2×k+1 ∧ [6=]¬p2×k+1} is a
singleton.

However, to see that Uk is a singleton assume that there are w1 6= w2 ∈W such
that {w1, w2} ⊆ Uk. Since M, w1 |= p2×k+1 ∧ [ 6=]¬p2×k+1 and w1 6= w2, we
must have M, w2 |= ¬p2×k+1, contradicting the definition of Uk. So, for any ik
occurring in φ, either Uk = ∅ or Uk is a singleton.

Let M′ = (W ′, R′,m′) be the triple such that:

1. W ′ = W × {1, 2}
2. 〈w, j〉R′〈w′, j′〉 def⇔ j = j′ and wRw′

3. m′(pk)
def
= {〈w, j〉 | w ∈ m(p2×k), j ∈ {1, 2}} for every k ∈ ω

4. for every k ∈ ω such that ik occurs in φ,

m′(ik) =

{
{〈x, 1〉} if Uk 6= ∅ and M, x |= p2×k+1 ∧ [6=]¬p2×k+1

{〈w0, 2〉} if Uk = ∅.

5. for k ∈ ω where ik does not occur in φ, m′(ik) = {〈w0, 2〉}.
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In clause 4, such a unique x ∈ W is guaranteed to exist and in clause 5, the
world 〈w0, 2〉 is just an arbitrary value from the second copy of M.

Since C is closed under isomorphic copies and disjoint unions, (W ′, R′) ∈ C and
M′ is an L-model since the nominals are interpreted as singletons. For w ∈W
and for k ∈ ω it is obvious that:

M′, 〈w, 1〉 |= pk iff M, w |= p2×k

if ik occurs in φ, then:
M′, 〈w, 1〉 |= ik iff M, w |= p2×k+1 ∧ [6=]¬p2×k+1.

These are the base cases to show by induction on the structure of any subfor-
mula ψ of φ that for any w ∈ W : M′, 〈w, 1〉 |= ψ iff M, w |= a(ψ). Hence,
M′, 〈w0, 1〉 |= φ.

Theorem 10 If X ` Y is derivable in δMNTL, then ϕ{X,Y} ⇒ (a(X) ⇒ c(Y)) is MTL6=-
valid.

Proof The proof is by induction on the length of the given derivation of X ` Y.
The base case with instances of (Id) and (Id′) and (` >) and (⊥ `) are immediate.
Assume that the theorem holds for all δMNTL derivations of length less than some
natural number n > 0, and consider a derivation of length n. We now consider the
bottom-most rule application in this derivation.

Cut Rule: Assume ϕ{X,φ} ⇒ (a(X) ⇒ c(φ)) and ϕ{Y,φ} ⇒ (a(φ) ⇒ c(Y)) are MTL6=-
valid. By Lemma 7(1), ϕ{X,Y,φ} ⇒ (a(X) ⇒ c(φ)) and ϕ{X,Y,φ} ⇒ (a(φ) ⇒ c(Y))
are also MTL6=-valid. Since a(φ) = c(φ), we obtain ϕ{X,Y,φ} ⇒ (a(X) ⇒ c(Y)) is
MTL6=-valid. By Lemma 7(2), ϕ{X,Y} ⇒ (a(X)⇒ c(Y)) is also MTL6=-valid.

Rule
X ` •Y

•X ` Y
Let us consider the proof for the direction from top to bottom.

Suppose ϕ{X,Y} ⇒ (a(X)⇒ Gc(Y)) is MTL6=-valid and suppose ϕ{X,Y} ⇒ (Pa(X)⇒
c(Y)) is not MTL6=-valid. There exist an MTL6=-model (W,R,m) and w ∈W such
that M, w |= ϕ{X,Y} ∧ Pa(X) ∧ ¬c(Y). So there is w′ ∈ R−1(w) such that
M, w′ |= a(X), and M, w′ |= ϕ{X,Y}. By supposition, M, w′ |= Gc(Y) and hence
M, w |= c(Y), a contradiction.

(` i)-rule: Assume ϕ{ik,X} ⇒ ((p2×k+1 ∧ [6=]¬p2×k+1) ⇒ [6=]¬a(X)) is MTL6=-valid
and suppose ϕ{ik,X} ⇒ (a(X)⇒ (p2×k+1∧ [6=]¬p2×k+1)) is not MTL6=-valid. Thus
there exists an MTL6=-model (W,R,m) and w ∈ W such that M, w |= ϕ{ik,X} ∧
a(X) ∧ ¬(p2×k+1 ∧ [6=]¬p2×k+1). Let w′ be the unique element of W such that
M, w′ |= (p2×k+1 ∧ [6=]¬p2×k+1). Such an element w′ ∈W exists and is unique
sinceM |= ϕ{ik,X}. Hence,M, w′ |= ϕ{ik,X}∧(p2×k+1∧ [6=]¬p2×k+1). Obviously
w′ 6= w and by supposition, M, w′ |= [ 6=]¬a(X). Hence, M, w |= ¬a(X), a
contradiction.

(necl[6=])-rule: Assume ϕ{X} ⇒ (a(I)⇒ c(X)) is MTL6=-valid and suppose that ϕ{X} ⇒
(〈6=〉a(I)⇒ c(X)) is not MTL6=-valid. There exists an MTL6=-model (W,R,m) and
w ∈W such that M, w |= ϕ{X} ∧ 〈6=〉> ∧ ¬c(X). By assumption, ϕ{X} ⇒ c(X) is
MTL6=-valid, so M, w |= c(X), a contradiction.
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(uni1): Assume (i) ϕ{X,Y} ⇒ (a(X) ⇒ c(Y)) and (ii) ϕ{X,Y} ⇒ (〈6=〉a(X) ⇒ c(Y)) are
MTL6=-valid. Suppose ϕ{X,Y} ⇒ (Fa(X) ⇒ c(Y)) is not MTL6=-valid. There exists
an MTL6=-model (W,R,m) and w ∈W such thatM, w |= ϕ{X,Y}∧Fa(X)∧¬c(Y).
So, there is w′ ∈ R(w) such that M, w′ |= ϕ{X,Y} ∧ a(X). By validity of (i),
M, w′ |= c(Y). So w 6= w′. That is, there is w′ 6= w such that M, w′ |=
a(X). Hence, M, w |= ϕ{X,Y} ∧ 〈6=〉a(X). By validity of (ii), M, w |= c(Y), a
contradiction.

Corollary 11 (Soundness) If I ` φ is derivable in δMNTL, then φ is MNTL-valid.

Proof It is sufficient to observe that any formulae φ ∈ NTL(H,G) is MNTL-valid iff
a(φ) is MTL6=-valid iff ϕ{φ} ⇒ a(φ) is MTL6=-valid.

To prove completeness, we define a partial function

g : struc(δMTL6=)→ struc(δMNTL)

as follows:

g(X) is undefined if X contains any formula occurrence [ 6=]ψ with ψ not of the
form ¬p2×k+1 for any k ∈ ω; otherwise

g is homomorphic for the Boolean connectives, for H and for G

g(p2×k+1)
def
= g([6=]¬p2×k+1)

def
= ik for any k ∈ ω

g(p2×j)
def
= pj for any j ∈ ω

g(⊥)
def
=⊥ g(>)

def
= > g(I)

def
= I

g is homomorphic for the structural connectives.

It is easy to check that for any formula φ ∈ NTL(H,G) the formula g(a(φ)) is
MNTL-valid iff φ is MNTL-valid. The following lemmata are used later.

Lemma 12 Suppose formulae φ′ from NTL(H,G) is obtained from φ by replacing
some occurrences of the subformula ψ of φ by ψ ∧ ψ. Then, I ` φ has a cut-free
derivation in δMNTL iff I ` φ′ has a cut-free derivation in δMNTL.

Lemma 13 For any formula φ from NTL(H,G), the sequent I ` φ has a cut-free
derivation in δMNTL iff I ` g(a(φ)) has a cut-free derivation in δMNTL.

Proof It is a routine task to check that g(a(φ)) can be obtained from φ by replacing
every occurrence of a name ik by ik ∧ ik. By Lemma 12, the desired result follows.
The extra copy is introduced by the translation a(.).

Theorem 14 (Completeness and Weak Cut-elimination) If a formula φ from the
language NTL(H,G) is MNTL-valid, then I ` φ has a cut-free derivation in δMNTL.

We denote that the sequent s has a derivation Π as shown below:

.... Π
s
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Proof Let φ be a formula of NTL(G,H). We must show that if φ is MNTL-valid, then
I ` φ has a cut-free derivation in δMNTL. There are five parts to the proof:

1. If φ is MNTL-valid, then a(φ) is MTL6=-valid by Lemma 9.

2. If a(φ) is MTL6=-valid, then I ` a(φ) has a cut-free derivation in δMTL6= by
Theorem 5 and Theorem 6.

3. If I ` a(φ) has a cut-free derivation in δMTL6=, then I ` g(a(φ)) has a cut-free
derivation in δMNTL.

4. I ` g(a(φ)) has a cut-free derivation in δMNTL iff I ` φ has a cut-free derivation
in δMNTL by Lemma 13.

5. Hence, if φ is MNTL-valid, then I ` φ has a cut-free derivation in δMNTL.

It remains to prove point (3). We show that in the given cut-free derivation of
I ` a(φ), for every sequent X ` Y with cut-free derivation Π, the sequent g(X) ` g(Y)
admits a cut-free derivation, say g(Π), in δMNTL. It is worth observing that thanks to
the subformula property of δMTL 6=, g(X) and g(Y) are always defined.

The proof is by induction on the length of the derivations. When X ` Y is a fun-
damental logical axiom, or an instance of (` >) or (⊥ `), the base case is immediate.
Similarly, the proof poses no difficulty when the last rule is a structural rule from
Figure 2, Figure 4 and Figure 5, or an operational rule introducing a Boolean con-
nective, H or G since g is homomorphic for the Boolean connectives, H, G and the
structural connectives.

Now let us treat the case when the last rule is (` [6=]). The derivation shown
below left is transformed into the derivation shown below right:

.... Π

X ` •6=¬p2×k+1

X ` [6=]¬p2×k+1
(` [6=])

.... g(Π)

g(X) ` •6=¬ik
• 6=g(X) ` ¬ik

(dp)

•6=g(X) ` ∗ik
(` ∗)

ik ` ∗ •6= ∗ ∗ g(X)
(dp)

ik ` •6= ∗ g(X)
(sym)

g(X) ` ik
(` i)

Observe that the inference (` ∗) in the above derivation is correct because by
induction hypothesis, g(Π) is cut-free; see the proof of admissibility of (` ∗) and (∗ `)
in [Kra96] which requires cut-free derivations. Note that the proofs from [Gor96b]
which derive (` ∗) and (∗ `) rather than show them admissible are not applicable
here, since they assume cut-elimination holds.

Similarly, let us treat the case when the last rule is ([6=] `). The derivation shown
below left is transformed into the derivation shown below right:

.... Π

¬p2×k+1 ` X
[6=]¬p2×k+1 ` •6=X

(` [6=])

.... g(Π)

¬ik ` g(X)

∗ik ` g(X)
(∗ `)

∗g(X) ` ik
(dp)

ik ` •6= ∗ ∗g(X)
(i `)

ik ` •6=g(X)
(dp)
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Corollary 15 For any formula φ ∈ NTL(H,G), if Π is a cut-free derivation of I ` a(φ)
in δMTL6=, then I ` φ has a cut-free derivation Π′ in δMNTL of size O(|Π|).

The proof of Corollary 15 also relies on the fact that if ¬ψ ` X [resp. X ` ¬ψ] has
a cut-free derivation Π in δMNTL, then ∗ψ ` X [resp. X ` ∗ψ] has a cut-free derivation
Π′ of size O(|Π|) in δMNTL.

The rules (i `) and (` i) are obviously equivalent to the reversible rule below:

X ` i

i ` •6= ∗ X
As for the display postulates, or for any reversible rule, naive backward applications of
such rules may lead to loops in proof search. As a corollary of the proof of Theorem 14,
if we apply (i `) [resp. (` i)] upwards, we never need to apply (` i) [resp. (i `)] to
the name “introduced” into the premiss by these rules. Thus rules (i `) and (` i)
themselves need not lead to loops in proof search.

The natural translation (restriction of a) from MNTL into MTL6= has led to a rel-
atively easy proof of Theorem 14 using strong existing results from the literature.
However, extending this technique to extensions of MNTL by using the appropriate
extensions of MTL6= is problematic because we cannot guarantee that these latter ex-
tensions are axiomatisable using a set of primitive axioms. In particular, it is even an
open problem to know when the irreflexivity rule is needed (see e.g. [Ven93]). Fur-
thermore, the cut-elimination result of Theorem 14 is restricted to sequents of the
form I ` φ, rather than the more general X ` Y. But cut-elimination for such general
sequents is not straightforward since δMNTL does not satisfy Belnap’s condition (C8)
(see Section 6).

5 Another Completeness Proof for δMNTL

Although Corollary 15 states very satisfactory results, the proofs in Section 4 cannot
be easily generalised. In particular, for various extensions of 6̀= where the irreflexivity
rule shown below is added (see e.g. [Gab81, Rij92, Ven93]):

p ∧ [6=]¬p⇒ φ

φ
(IRR) provided propositional variable p does not occur in φ

It is unlikely that there is a natural DL rule corresponding to (IRR) that satisfies
the conditions (C1)-(C8) [Bel82]. In the rest of this section, we give a completeness
proof of δMNTL based on the system `MNTL [Bla90] whose extensions do not require the
irreflexivity rule.

Lemma 16 I ` φ1 ∧ φ2 ⇒ φ3 is [cut-free] derivable in δMNTL iff φ1 ◦ φ2 ` φ3 is
[cut-free] derivable in δMNTL.

Proof First we derive I ` φ1 ∧ φ2 ⇒ φ3 from φ1 ◦ φ2 ` φ3 by using the rules (`⇒),
(weakl) and (∧ `). Second, by proving that the rule below is admissible (without
introducing new cuts), as in the proof of [Kra96, Lemma 9], we get the desired result:

X ` φ⇒ ψ

X ◦ φ ` ψ
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Theorem 17 (Completeness) If `MNTL φ, then I ` φ is derivable in δMNTL.

Proof The proof is by induction on the length of the derivation of `MNTL φ. Actually,
most of the cases have been already proved in [Wan94, Kra96, Wan98]. It remains to
show that

I ` i ∧ φ⇒ σ(i⇒ φ)

is derivable in δMNTL where i ∈ Nom, φ ∈ NTL(H,G) and σ is a (possibly empty) finite
sequence of elements from {H,G}. To do so, we prove by induction on the length of
σ that both

(1) i ◦ φ ` σ(i⇒ φ) and (2) •6=(i ◦ φ) ` σ(i⇒ φ)
are derivable in δMNTL, also doing some extra work that will prove useful later. By
Lemma 16, we get I ` i ∧ φ ⇒ σ(i ⇒ φ) is derivable in δMNTL for any universal
modality σ.
Base Case |σ| = 0:
i ◦φ ` i⇒ φ can be derived by basic manipulations using weakening rules and (`⇒).
Indeed, φ ` φ has a derivation in δMNTL for any φ ∈ NTL(G,H). The second base case
can be solved as follows

i ` i
i ` •6= ∗ i

(i `)

i ◦ φ ` •6= ∗ i
(weakr)

• 6=(i ◦ φ) ` ∗i
(dp)

∗φ ◦ • 6=(i ◦ φ) ` ∗i
(weakl)

• 6=(i ◦ φ) ◦ i ` φ
(dp)

•6=(i ◦ φ) ` i⇒ φ
(`⇒)

Induction Step:
As an example let us show that i ◦ φ ` Gσ(i ⇒ φ) and •6=(i ◦ φ) ` Hσ(i ⇒ φ) are
derivable in δMNTL assuming that i ◦ φ ` σ(i ⇒ φ) and •6=(i ◦ φ) ` σ(i ⇒ φ) are
derivable in δMNTL. In the derivations below, ‘(IH)’ means induction hypothesis.

.... (IH)

i ◦ φ ` σ(i⇒ φ)

∗σ(i⇒ φ) ` ∗(i ◦ φ)
(dp)

.... (IH)

• 6=(i ◦ φ) ` σ(i⇒ φ)

∗ • 6= ∗ ∗ σ(i⇒ φ) ` ∗(i ◦ φ)
(dp)

• 6= ∗ σ(i⇒ φ) ` ∗(i ◦ φ)
(sym)

∗ • ∗ ∗ σ(i⇒ φ) ` ∗(i ◦ φ)
(uni1)

i ◦ φ ` •σ(i⇒ φ)
(dp)

i ◦ φ ` Gσ(i⇒ φ)
(` G)

The other case is solved in the following way:
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.... (IH)

• 6=(i ◦ φ) ` σ(i⇒ φ)

∗σ(i⇒ φ) ` ∗ •6= (i ◦ φ)
(dp)

.... (IH)

i ◦ φ ` σ(i⇒ φ)

.... (IH)

• 6=(i ◦ φ) ` σ(i⇒ φ)

•6= • 6= (i ◦ φ) ` σ(i⇒ φ)
(alio)

∗ • 6= ∗ ∗ σ(i⇒ φ) ` ∗ • 6= (i ◦ φ)
(dp)

•6= ∗ σ(i⇒ φ) ` ∗ •6= (i ◦ φ)
(sym)

• ∗ σ(i⇒ φ) ` ∗ •6= (i ◦ φ)
(uni2)

•6=(i ◦ φ) ` ∗ • ∗σ(i⇒ φ)
(dp)

• 6=(i ◦ φ) ` Hσ(i⇒ φ)
(` H)

Although Theorem 17 is weaker than Corollary 15 (no construction of cut-free
derivations), its proof relies only on the completeness of δKt [Kra96] and on the
derivability of the axiom schema i ∧ φ ⇒ σ(i ⇒ φ). Unlike the completeness proof
in Section 4, the proof of Theorem 17 shows how the rules (uni1), (uni2), (sym)
and (alio) are essential to get completeness. This is in sharp contrast with the proof
in Section 4 where the necessity of the above-mentioned rules is hidden by taking
advantage of the results from [Rij92, Kra96]. The completeness proof in Section 4
also gives a weak cut-elimination theorem for δMNTL by relying on the fact that MTL6=
enjoys cut-elimination. But as we shall show in Section 6, δMNTL does not satisfy
the condition (C8), so we cannot prove cut-elimination for δMNTL (for sequents of the
general form X ` Y) directly using (C8).

6 Cut Elimination and Belnap’s conditions

A very important feature of the proof-theoretical framework DL is the existence of a
very general cut-elimination theorem [Bel82]. Indeed, any display calculus satisfying
Belnap’s conditions (C2)-(C8) enjoys cut-elimination [Bel82]. Unfortunately δMNTL
does not satisfy (C8) recalled below; see e.g. [Wan98]:

(C8) If there are inferences I1 and I2 with respective conclusions X ` φ and φ ` Y

with φ principal in both inferences, and if cut is applied to obtain X ` Y, then

– either X ` Y is identical to one of X ` φ and φ ` Y
– or there is a derivation of X ` Y from the premisses of I1 and I2 in which

every cut-formula of any application of cut is a proper subformula of φ.

Consider the derivation,

.... Π1

i ` •6= ∗ X
X ` i (` i)

.... Π2

Y ` i
i ` •6= ∗ Y

(i `)

X ` •6= ∗ Y
(cut)

Since i has no proper subformulae, δMNTL does not satisfy (C8). However, δMNTL
enjoys a limited cut-elimination theorem by Corollary 15, and (C8) is crucial in the
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cut-elimination proofs in [Bel82, Wan98]. The situation may seem even worse since
an inference of (i `) [resp. (` i)] changes the displayed antecedent [resp. succedent]
occurrence of i into a succedent [resp. antecedent] part. This does not violate the
condition (C4) since the occurrences of a name in some (i `)-rule [resp. (` i)] infer-
ence are not parameters: they are not substructures of some structure obtained by
instantiating some structural variable.

Surprisingly, the proof of Theorem 17 shows that if `MNTL φ, then I ` φ is deriv-
able in δMNTL minus the rule (` i), say δ−MNTL. Indeed, the (` i)-rule is not used.
Fortunately, δ−MNTL enjoys cut-elimination. Indeed in δ−MNTL, i can be a succe-
dent principal formula in an inference only in the fundamental logical axiom i ` i,
and hence δ−MNTL obeys Belnap’s (C8). Hence we can simply apply Belnap’s proof
giving:

Theorem 18 For every set R of structural rules satisfying Belnap’s conditions (C2)-
(C8), the calculus δ−MNTL + R satisfies the conditions (C1)-(C8) and hence enjoys
cut-elimination for arbitrary sequents of the form X ` Y [Bel82].

Whether δMNTL itself enjoys cut-elimination is an open question since all the deriv-
able sequents X ` Y are not necessarily of the form I ` φ. Moreover, the above result
does not guarantee that any reasonable extension of δMNTL enjoys cut-elimination.

A preliminary version of this paper contained a strong normalisation theorem for
any display calculus obtained from δMNTL by addition of structural rules satisfying
the conditions (C2)-(C7). But more recent work [DG01a] has shown that the proof
of strong normalisation requires more work. We have therefore relegated strong nor-
malisation to the further work category.

7 Pseudo Displayable Nominal Tense Logics

Theorem 14 tells us that δMNTL is complete for MNTL, and that it enjoys cut-elimination
for sequents of the form I ` φ. But its proof does not give us cut-elimination for
arbitrary sequents X ` Y in δMNTL.

Theorem 17 tells us that δMNTL is complete for MNTL, and its proof shows that a
slightly restricted variant δ−MNTL is also complete for MNTL. Since δ−MNTL satisfies all
of Belnap’s conditions, it is not only complete for MNTL, but it enjoys cut-elimination
for arbitrary sequents X ` Y. Theorem 18 then simply extends this cut-elimination
result to extensions of δ−MNTL obtained via addition of structural rules that satisfy
Belnap’s conditions (C2)-(C7). By Kracht’s results we know that these rules arise
naturally from primitive axioms. But since our logics are defined semantically, an
obvious task is to characterise these rules (or the associated primitive axioms) se-
mantically. Without nominals, we already know the answer by Sahlqvist’s theorem
[Sah75].

In this section, we address this problem using techniques and results from [Bla90,
Kra96] for both δMNTL and δ−MNTL while preserving the cut-elimination theorems that
they respectively enjoy.

Definition 19 For some class of frames C, let L = 〈NTL(H,G), C〉 be the nominal
tense logic of C-frames. Logic L is pseudo displayable if:

19



(i) There is a display calculus δ
def
= δMNTL + R such that R is a set of structural

rules satisfying Belnap’s conditions (C2)-(C7), and

(ii) Any formula φ ∈ NTL(H,G) is L-valid iff I ` φ is derivable in δ.

We need the following notion of Sahlqvist tense formula in order to study the nom-
inal tense logics characterised by classes of frames modally definable by a Sahlqvist
tense formula. We recall that a formula is positive [resp. negative] iff every propo-
sitional variable occurs under an even [resp. odd] number of negation symbols when
every implication φ⇒ ψ is rewritten as ¬φ ∨ ψ.

Definition 20 A simple Sahlqvist tense formula (see e.g. [Rij93]) from TL(H,G)
is an implication φ⇒ ψ such that:

- ψ is positive

- φ is built up from negative formulae, formulae without occurrences of propo-
sitional variables, formulae of the form σp with σ a universal modality and
p ∈ Prp, using only ∧,∨ and the existential modalities.

A Sahlqvist tense formula is a conjunction of formulae of the form σ(φ⇒ ψ) with
σ a universal modality and φ⇒ ψ a simple Sahlqvist tense formula.

Theorem 21 If φ is a Sahlqvist tense formula and ` def
= `MNTL + φ, then any formula

ψ ∈ NTL(H,G) is NTLφ-valid iff ` ψ.

Before proving the theorem, an aside is in order.

As usual, a set X ⊆ NTL(H,G) is `-consistent
def⇔ there is no finite subset

{φ1, . . . , φn} ⊆ X such that ` ¬(φ1 ∧ . . . ∧ φn). A set X ⊆ NTL(H,G) is called a

maximal `-consistent set
def⇔ X is `-consistent and for all φ ∈ NTL(H,G), either

φ ∈ X or ¬φ ∈ X. We write XG to denote the set {φ | Gφ ∈ X}. We use the
standard construction of the canonical model (see e.g. [LS77, Mak66]).

For any Sahlqvist tense formula φ, if {F ∈ Fr | F |= φ} contains a frame F1 =
(W1, R1) with a reflexive w1 ∈ W1 and a frame F2 = (W2, R2) with an irreflexive
w2 ∈ W2 (for instance take φ to be p ⇒ p), NTLφ is non canonical [Bla90, Proof of
Theorem 4.3.1.]. That is, there is no NTLφ-model M = (W,R,m) such that for every
`-consistent set X there is w ∈W such that for all ψ ∈ X,M, w |= ψ. The arguments

go as follows. F1 6|= ¬(i ∧ Fi) since (W1, R1,m1), w1 |= i ∧ Fi with m1(i)
def
= {w1}

and F2 6|= ¬(i ∧ ¬Fi) since (W2, R2,m2), w2 |= i ∧ ¬Fi with m2(i)
def
= {w2}. So

neither ¬(i ∧ Fi) nor ¬(i ∧ ¬Fi) is NTLφ-valid and neither is derivable in `MNTL + φ
(by soundness). Thus both (i ∧ Fi) and (i ∧ ¬Fi) are (`MNTL + φ)-consistent. But in
any NTLφ-model M, i is true at exactly one point, so it is impossible to have both
formulae true in M.

Proof The proof of Theorem 21 follows developments from the second completeness
proof of `MNTL in [Bla90]. Our contribution is merely to check that it also works with
`MNTL + φ when φ is a Sahlqvist tense formula.

The canonical model for ` is the triple Mc def
= (W c, Rc,mc) where:

W c is the family of all maximal `-consistent sets
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for all X,Y : (X,Y ) ∈ Rc def⇔ XG ⊆ Y
mc(p)

def
= {X ∈W c | p ∈ X} for every p ∈ Prp

mc(i)
def
= {X ∈W c | i ∈ X} for every i ∈ Nom.

The usual Fundamental Theorem holds: for any X ∈ W c, a formula ψ ∈ X iff
Mc, X |= ψ. Since φ is a Sahlqvist tense formula, (W c, Rc) belongs to the frames
of NTLφ (see e.g. [Sah75, Ben84, Kra96]). As in the completeness proof of `MNTL in
[Bla90], for any name i, there is no guarantee that mc(i) is a singleton. Following
[Bla90, Lemma 4.3.7.], we can show that given X ∈ W c, the (temporal) generated

subframe Mc
X

def
= (W c

X , R
c
X ,m

c
X) of X satisfies:

for all Y, Y ′ ∈W c
X , if some nominal i belongs to Y ∩ Y ′, then Y = Y ′.

We recall that for any Y ∈ W c: Y ∈ W c
X

def⇔ there is a finite sequence 〈Y0, . . . , Yl〉
such that (Rc)−1 is the converse of Rc and:

Y0 = X and Yl = Y and for any j ∈ {0, . . . , l − 1}, (Yj , Yj+1) ∈ Rc ∪ (Rc)−1.

Moreover, Mc
X is a frame for NTLφ. Indeed, (W c, Rc) |= φ and by [Bla90, Corol-

lary 3.2.1], (W c
X , R

c
X) |= φ (see also [GT75]). By [Bla90, Theorem 3.2.1], for any

ψ ∈ X: Mc
X , X |= ψ iff Mc, X |= ψ.

Our proof is almost finished since mc
X behaves better than mc but mc

X(i) may be
the empty set for some name i. Let S be the set

S
def
= {i ∈ Nom | mc

X(i) = ∅}

Let M def
= (W,R,m) be the model such that:

W
def
= {1, 2} ×W c

X

(〈j1, Y1〉, 〈j2, Y2〉) ∈ R
def⇔ j1 = j2 and (Y1, Y2) ∈ RcX

m(p)
def
= {〈j, Y 〉 ∈W | p ∈ Y, 1 ≤ j ≤ 2} for any p ∈ Prp

m(i)
def
= {〈1, Y 〉} for any i ∈ Nom \ S with mc

X(i) = {Y }

m(i)
def
= {〈2, X〉} for any i ∈ S.

A similar construction is used in the proof of Lemma 9. The structure M is a
disjoint union of Mc

X with itself, except for the restriction of the valuation function
to nominals, and therefore (W,R) is a frame of NTLφ. Indeed, every class of frames
definable by a formula φ ∈ TL(H,G) is closed under disjoint union; see e.g. [Bla90,
Section 3.2.2] or [GT75]. Moreover, m is a correct valuation and for any ψ ∈ X:
M, 〈1, X〉 |= ψ iff Mc

X , X |= ψ.

If instead of nominals, we allow the difference operator [ 6=] in the language, things
get worse. Indeed, the constraints relative to the nominals affect only the valuation
function, whereas with the difference operator the constraints affect the relationships
between relations. This partly explains why the powerful irreflexivity rule is often
needed (see e.g. [Ven93, Rij92, Bal99]).

Recall that a primitive formula is of the form φ⇒ ψ where both φ and ψ are built
from propositional variables from Prp and > with the help of ∧, ∨, F , P and 〈6=〉
only, and φ contains each propositional variable at most once [Kra96].
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Theorem 22 For some class of frames C, let L = 〈NTL(H,G), C〉 be the nominal
tense logic of C-frames, and φ be a conjunction of primitive axioms in TL(G,H) such
that C = {F ∈ Fr : F |= φ}. Then, L is pseudo displayable.

Proof Using the effective procedure from [Kra96, Section 5], to each primitive ax-
iom φ′, conjunct of φ, we associate a finite set of structural rules. This provides a
constructive way to find a set R of structural rules such that for any ψ ∈ NTL(H,G)

with ` def
= `MNTL + φ: ` ψ iff I ` ψ is derivable in δMNTL + R. By Theorem 21, `

axiomatises L since every primitive formula in TL(G,H) is a Sahlqvist tense formula
and therefore L is pseudo displayable.

Note that for soundness and completeness, the proof of Theorem 22 only requires
the calculus δ−MNTL + R. Moreover, by Theorem 18, δ−MNTL + R satisfies Belnap’s
conditions and enjoys cut-elimination for arbitrary sequents. As a consequence, for
every ψ ∈ NTL(H,G), I ` ψ is derivable in δMNTL + R iff I ` ψ has a cut-free
derivation in δMNTL + R.

Corollary 23 Let L be a logic defined in Theorem 22. Then, every formula φ ∈
NTL(H,G) is L-valid iff I ` φ is derivable in δ−MNTL + R, where R is the set of
structural rules defined in the proof of Theorem 22.

Another class of pseudo displayable nominal tense logics can be identified by con-
sidering the first completeness proof of δMNTL from Section 4.

Theorem 24 For some class of frames C which is closed under disjoint unions and
isomorphic copies, let L = 〈NTL(H,G), C〉 be the nominal tense logic of C-frames, let
L 6= = 〈TL(H,G, [6=]), C〉 be the tense logic of inequality of C-frames, and let γ be a
conjunction of primitive axioms over the language TL(H,G, [6=]) such that 6̀= + γ
axiomatises L6=. Then, L is pseudo displayable.

The careful reader might observe that the irreflexivity rule is not present in ` 6= + γ.
Moreover, unlike Theorem 22, the primitive axioms in Theorem 24 are built from the
language that does admit [ 6=].

Proof (sketch) By [Kra96, Lemma 13], 6̀= + γ is pseudo displayable in the sense
defined in [Kra96]. Let δMTL6= + Rγ be the display calculus for 6̀= + γ with Rγ
the set of structural rules obtained from γ using the effective procedure of [Kra96,
Section 5]. The proof of Theorem 14 can be adapted to prove that δMNTL+ Rγ pseudo
displays L = 〈NTL(H,G), C〉.

Indeed one can show that if φ is L-valid, then a(φ) is L6=-valid and therefore I `
a(φ) has a cut-free derivation in δMTL6= + Rγ . By adapting the proof of Theorem 14,
we can obtain that I ` φ has a cut-free derivation in δMNTL + Rγ . Observe that any
formula ψ ∈ NTL(H,G) is L-valid iff a(ψ) is L6=-valid since C is closed under disjoint
unions and isomorphic copies (see Lemma 9). For the soundness part, we show that
if I ` φ is derivable in δMNTL + Rγ , then φ is L-valid. To do so, we prove that if
X ` Y is derivable in δMNTL + Rγ , then ϕ{X,Y} ⇒ (a(X) ⇒ c(X)) is L 6=-valid. We use
the two lemmas below:
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1. Let r be an inference rule in δMNTL + Rγ such that for any inference

X1 ` Y1 . . . Xn ` Yn
Xn+1 ` Yn+1

(r) (n ≥ 0)

if for i ∈ {1, . . . , n}, a(Xi) ⇒ c(Yi) is L 6=-valid, then a(Xn+1) ⇒ c(Yn+1) is L6=-
valid. Then, if for i ∈ {1, . . . , n}, ϕ{Xi,Yi} ⇒ (a(Xi) ⇒ c(Yi)) is L6=-valid, then
ϕ{Xn+1,Yn+1} ⇒ (a(Xn+1)⇒ s(Yn+1)) is L 6=-valid.

2. For all the rules r in δMNTL + Rγ except the (` i)-rule, for any inference

X1 ` Y1 . . . Xn ` Yn
Xn+1 ` Yn+1

(r) (n ≥ 0)

if for 1 ≤ i ≤ n, a(Xi)⇒ c(Yi) is L6=-valid, then so is a(Xn+1)⇒ c(Yn+1).

Proof of (1): For i ∈ {1, . . . , n + 1}, there is φi ∈ NTL(H,G) such that a(φi) =
a(Xi) ⇒ c(Yi) and ϕ{φi} = ϕ{Xi,Yi}. So, for i ∈ {1, . . . , n + 1}, ϕ{Xi,Yi} ⇒
(a(Xi) ⇒ c(Yi)) is L6=-valid iff ϕ{φi} ⇒ a(φi) is L6=-valid iff a(φi) is L 6=-valid
(by Lemma 8 and Lemma 9) iff a(Xi) ⇒ c(Yi) is L 6=-valid. This suffices to get
the desired result.

Proof of (2): The proof follows from [Kra96] and by observing that φ⇒ (p∧ [ 6=]¬p)
is L6=-valid implies (p ∧ [6=]¬p)⇒ [ 6=]¬φ is L 6=-valid for the (i `)-rule.

Let us conclude the soundness proof. By (1) and (2), for any inference rule r in
δMNTL + Rγ minus (` i), for any inference

X1 ` Y1 . . . Xn ` Yn
Xn+1 ` Yn+1

(r) (n ≥ 0)

if for 1 ≤ i ≤ n, ϕ{Xi,Yi} ⇒ (a(Xi) ⇒ c(Yi)) is L6=-valid, then so is ϕ{Xn+1,Yn+1} ⇒
(a(Xn+1)⇒ s(Yn+1)). The proof of Theorem 10 gives a similar property for (i `). By
Lemma 9: I ` φ is derivable in δMNTL + Rγ implies φ is L-valid.

As a consequence of Theorem 24:

Corollary 25 For every ψ ∈ NTL(H,G), I ` ψ is derivable in δMNTL + Rγ iff I ` ψ
has a cut-free derivation in δMNTL + Rγ .

Unlike the proof of Theorem 22, the proof of Theorem 24 does not allow us to
deduce an analogous completeness result for primitive extensions of δ−MNTL since the
latter is based upon the proof of Theorem 14 where we explicitly need to use both
introduction rules for nominals.

8 Concluding Remarks

We have defined display calculi for a large class of nominal tense logics. All our calculi
enjoy cut-elimination for restricted sequents of the form I ` φ. A simple observation
on the use of the rules for introducing nominals shows that a slight variant of all our
calculi also enjoy cut-elimination for arbitrary sequents X ` Y.

The following open problems are worth investigating:
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1. How to extend the completeness result for primitive extensions of δMNTL to prim-
itive extensions of δ−MNTL for the class of nominal tense logics from Theorem
24?

2. How to define structural rules in DL from axioms containing names?

3. We have proposed a way to formalise proof systems for nominal tense logics
within DL. Numerous nominal tense logics are known to be decidable (see e.g.
[Bla90, Bla93, PT91]). How to design uniform decision procedures based on our
calculi?

4. Theorem 22 and Theorem 24 establish two classes of pseudo displayable nominal
tense logics. Are they really different classes?

5. A possible answer to (1) is to characterise the class of Sahlqvist tense formulae
φ such that 6̀= + φ axiomatises 〈TL(H, [6=], G), {F | F |= φ}〉. This is roughly
equivalent to determining when the irreflexivity rule is superfluous (see e.g.
[Ven93]). A partial answer can be found in [Bal99].
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