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Overview on the bending effects distorting
axisymmetric capillary bridges.

Gérard Gagneux1 and Olivier Millet2

LaSIE, UMR-CNRS 7356, Université de La Rochelle, avenue Michel Crépeau,

17042 La Rochelle cedex 1, France.

Abstract It is well known that the constant mean curvature surfaces, highly studied, are
obtained by minimizing the only surface tension energy at fixed volume, the
constant corresponding to the Lagrange multiplier. Implicitly, this means that
the Gaussian curvature and the total curvature are not taken into account and
that therefore, the bending energy is disregarded or a priori considered as hav-
ing negligible effects compared to the effects of surface tension. Admittedly,
the spherical or distorted water drops, freely evolving in the air, exactly agree
with this simplifying method. Indeed, under boundaryless manifold condition,
the most common formulation of the Gauss-Bonnet integration theorem in-
dicates that for a spherical drop or a soap bubble without contact, with or
without bump, the integral of the Gaussian curvature over the surface, pro-
portional to the bending energy, is invariant if one bends and deforms the
surface (this value is a topological invariant). However, this result is not valid
when the drop is subjected to contact boundary conditions. Therefore, be-
cause of the constrained boundaries, the study of capillary bridges requires to
take into account the Gaussian curvature of the surface and the total geodesic
curvature of the boundaries. We study here, theoretically, the real effects of
bending forces and therefore of the Gaussian curvature in order to identify a
discriminating criterion according to the sign of the Gaussian curvature. Con-
cerning the bending effects, the true shape of the static bridge surfaces is
here described by parametric equations, generalizing Delaunay formulas. The
related generalized Young-Laplace boundary value system is then solved as an
inverse problem from experimental data for the unknown parameters identi-
fication. The subject of this study presents strong correspondences with the
Gullstrand equation of geometrical optics, with also the gravitational bending
angle of light for finite distance and in geometrical approachs to gravitational
lensing theory in the astrophysical context.
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MSC: 49N45 · 53A10 · 58E12 · 74F10 · 74G05 · 74G15

1Corresponding author. Email address : gerard.maryse.gagneux@gmail.com
2Email address : olivier.millet@univ-lr.fr

1



1 Terminology, scope and focus of the topic

1.1 Some liminary considerations on the subject and the various
formulations of the Gauss-Bonnet theorem.

This study is underpinned by the following question: why studies on capillary bridges often
seem to ignore the role of Gaussian curvature and therefore of bending effects? In addition,
the local shape of a surface cannot generally be described by a single scalar. It is well known
that the principal curvatures are intrinsically the two eigenvalues of the shape operator, the
Gauss curvature being its determinant and the mean curvature is its trace [5].

Ignoring the Gaussian curvature amounts to misregarding the role of the local geometry of
the free lateral surface in the distribution of pressures, that is a very rough method in various
geometrical situations that we will characterize and which are very common in experimental
practice.

We assume that the shape of the capillary surfaces remains axisymmetric in the deforma-
tions.

Let’s start with some terminology elements.

Synclastic surfaces are those in which the centres or curvature are on the same side of
the surface (dome-shape or elliptic surface). The Gaussian curvature is everywhere strictly
positive; for examples among the Delaunay constant mean curvature surfaces of revolution
(see in [8] a synoptic table for identifying the capillary bridges of revolution) : a portion of
unduloid, catenoid or nodoid with concave upper meridian, the axis of the bridge being
horizontal.

This is opposed to anticlastic surfaces, which are those in which the centres of curvature
are located on opposing sides of the surface (saddle shape or hyperbolic surface for the
confined liquid). The Gaussian curvature is then everywhere strictly negative; for example:
a portion of unduloid, catenoid, nodoid, or sphere with convex upper meridian, the axis of
the bridge being horizontal. It is then not mathematically correct to say without further

information that a nodoid is an anticlastic surface.

The Gaussian curvature of a right circular cylinder is everywhere equal to zero and therefore
accordingly, this case is outside the scope of this study.

In the case of minimal surfaces, necessarily anticlastic surfaces, such as catenoids with upper
convex meridian, where the mean curvature is zero, the strictly negative Gaussian curva-
ture has the specificity of being the only contribution of the curvature tensor to the energy
formulation; therefore, the Gaussian curvature plays a critical role in the determination of
the equilibrium state of this capillary system.

According to the Gauss-Bonnet integration theorem3, for a closed free surface, the energy
contribution of the Gaussian curvature during deformation is constant (as long as the topol-

3For any compact, boundaryless two-dimensional Riemannian manifold Σ, the integral of the Gaussian
curvature K over the entire manifold with respect to area measure is 2π times the Euler characteristic of Σ,
also called the Euler number of the manifold, i.e.∫

Σ
K dΣ = 2πχ (Σ) .

For example, for a sphere Σ of radius R in R3, it comes:∫
Σ
K dΣ =

1

R2
4πR2 = 4π and here χ (Σ) = 2.
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ogy of the surface, described by the Euler characteristic of the surface, does not change [35])
and can be ignored when determining the shape of such a membrane. This has probably
favored the in-depth study of constant mean curvature surfaces, excluding gravity effects
[7][15][28][29]. In the case of capillary bridges, the presence of contact surfaces does not
allow this simplification (the total geodesic curvature of the boundary is to be taken into
account to apply the Gauss-Bonnet integration theorem4) and makes it a priori necessary
to take into account the Gaussian curvature, to establish a hierarchy of the various config-
urations with regard to the bending effects and to introduce the generalized Young-Laplace
equation.

By way of illustration, we indicate that the geodesic curvature of a circle of radius r on the
sphere of radius R is given by the formula

kg =

√
R2 − r2

Rr
=

cot θ

R

where θ is the colatitude.

This study proposes a resolutely theoretical contribution to the problem of the various
distortions affecting axisymmetric capillary bridges in order to establish a structured and
practical framework for experimentation and numerical approach [16]. We deduce a clear
hierarchization of effects between various reference configurations. This requires introducing
some notions of differential geometry.

1.1.1 The original aspects of this theoretical approach.

A recognition problem.

The second aspect, in practice covering a wide area, concerns the strong distorsions for
which the bending effects, bending the interface5, are modeled by an additional curvature-
related term: the introduction of CK , a multiplier coefficient of the Gaussian curvature K,
at the dimension of a force and standing for the bending stress. Under appropriate boundary
conditions, the shape of an interface between two non-solid substances is then described by
the so-called generalized Young-Laplace equation, thus involving both mean and Gaussian
curvatures. Indeed structurally analogous to the Gullstrand equation of geometrical optics,
the resulting equation, at the downward vertical measurement x linked to the value ∆p0 at
x = 0, comes in the following form [3], [12], [27] that will be detailed more specifically:

γ

(
1

ρc
+

1

N

)
+ CK

1

ρc N
= ∆p0 −∆ρ gx ,

where the force CK divided by the area ρcN stands for the bending stress, ρc and N for
the principal radii of curvature (evaluated algebraically, positively when the curvature is

Suppose M is a compact two-dimensional Riemannian manifold with boundary δM and let kg the signed
geodesic curvature of δM. Then∫

M
K dM +

∫
δM

kg ds = 2πχ (M) .

The geodesic curvature kg of an arbitrary curve at a point P on a surface is defined as the curvature of
the projection of the curve onto a plane tangent to the surface at P .

4We should write in all fairness Gauss-Binet-Bonnet theorem (1848).
5Bending the interface, i.e. changing its curvature, in a first approach.
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turned into the interior of the capillary bridge) and the pressure deficiency is ∆p0 at x = 0.
Thenceforth, a major difficulty is to estimate the influence of CK on two determinant data:

the modified contact angles and the spontaneous curvature
∆p0

γ
at x = 0 after distortion.

It is also reported [31] that in electro-capillarity, at the nanoscale, the presence of electric
fields leads to an extra stress term to be added in the Young-Laplace equation.

As expected, the length
|CK |
γ

that occurs in the exact formulas that we will establish

allows in a certain way to assess the relative importance of bending effects (a typical scale
of tension versus bending). In particular, for this purpose, the smallness or not of the

dimensionless number
|CK |
2γY ∗

appears significant, Y ∗ being the gorge radius of the distorted

bridge. In the form
π |CK |
2πγY ∗

, this number appears as the quotient of the contributions of the

bending and liquid surface tension forces at the distorted bridge neck. Strictly speaking,

the formulas obtained retain the value
π |CK |

2πγY ∗ −∆p0πY ∗
2 as the most accurate criterion,

taking then into account the contribution of the hydrostatic pressure.

It will also be noted that, in respect of certain theoretical issues, a capillary bridge may be
considered as an optic system because it is composed of two interfaces [27].

The main tool is to highlight, in both cases, an exact first integral for the Young-Laplace
equations, classical or generalized. These relationships, which are actually total energy
conservation laws, are taken advantage of to obtain the theoretical expression of the vary-
ing inter-particle force, quantified effects of flexural strength. When considering the only
bending efffects, the method allows to easily obtain a parameterization of the profile
by generalizing together a Delaunay formula related to constant mean curvature surfaces
[6], p.313 and the resolution method of the Young-Laplace equation as an inverse problem
developed in [8].

1.1.2 Synclastic versus anticlastic surfaces

As expected a priori, under the condition: 1
ρc

+ 1
N 6= 0, excluding temporarily the minimal

surfaces, the quotients∣∣∣∣∣
1

ρc N
1
ρc

+ 1
N

∣∣∣∣∣ i.e.
1

|ρc +N |
and the scalar

|CK |
γ

1

|ρc +N |

that occur in the generalized Young-Laplace equation allow also in a certain way to assess
the relative importance of bending effects. It is then a question of studying the variations
of the function (ρc, N)→ |ρc +N | .
By placing oneself out of gravity for a simple illustration, it appears that, as expected by
experience, the bending is to be considered in the case of the anticlastic6 surfaces and
are of little importance for synclastic surfaces. Hence, the common horizontal axis nodoid

with convex upper meridian is certainly sensitive to bending effects.

6etymologically: opposed to being broken into pieces
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The Gaussian curvature.of a right circular cylinder is everywhere equal to zero.and therefore
accordingly, this case is outside the scope of this study.

In the case of minimal surfaces such as catenoids7 where the mean curvature is zero, the
Gaussian curvature has the specificity of being determined by the direct relationship at
established equilibrium:

1

ρc N
= − 1

ρc 2
=

1

CK
∆p0,

∆p0 being here an unknown spontaneous value to be identified by the data of an additional
boundary condition.This implicit unknown value, a priori non-zero, would highlight the
significant interest in considering the bending effects after experimental verifications.

1.2 Analytical evaluation of capillary distortions by weak gravity
effects.

As a benchmark to be used for comparative purposes, consider, first in the classical theory,
an axisymmetric vertical liquid bridge (i.e. the x− axis is vertical and ∆p0 is the pressure
difference through the interface at the neck level x = 0). I is an open interval on which we
can define by Cartesian representation, say x → y (x), a portion of the Delaunay roulette
strictly containing the convex profile of the bridge considered without taking into account
the gravity (a zero or low gravity environment) [8]. So the shear stress is zero in the y
direction and at first, we place ourselves in the relevant cases in which y” (0) > 0.
Taking then, if necessary [10], [13], [21] into account the effects of gravity, via an over-
pressure, results conventionally in the modified nonlinear differential equation for the dis-
torted profile x → Y (x), according to the volumic mass densities difference between the
liquid and the surrounding fluid

∆ρ = ρint − ρext
a quantitated balance between the surface tension and gravity forces:

Y
′′

(x)

(1 + Y ′2 (x))
3/2
− 1

Y (x)
√

1 + Y ′2 (x)
= −∆p0

γ
+
g ∆ρ

γ
x (1)

=: H +Bx , x ∈ I.

As the only parameter of the disturbance, such an apparent density formula ∆ρ = ρint−ρext
can be discussed but, as a first approximation, remains conventional although the bridge
fluid is not completely embedded in the surrounding fluid as for a wall-bound pendant drop
without frictional contact constraints on the low boundary, possibly strongly distorting8. In
continuum mechanics, this equation is obtained in the absence of motion when gravity is
the only body force present. It is counterintuitive that the sign and the order of magnitude
of the Gaussian curvature do not come into consideration for defining the distorted shape
of the free capillary surface. This implicitly assumes that bending effects are neglected and
that we are de facto limited here to studying rather moderate distortions. It is presumably a
question of finding a balance between what is too simple and therefore necessarily false and

7surface with strictly negative Gaussian curvature and therefore, a priori, really subject to bending effects.
8See in [7], p.780, figure 15, a stable pendent water drop in a bath of castor oil exhibiting inflection on

the profile, also neck and bulge (artificial low gravity: ∆ρ = 39 kg/m3).
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the too complicated, unusable in the context of an experimental validation. By repeating
the terms of [12], p. 33, ”it is apparent that the free energy representation appropriate for
nonmoderately curved capillary systems produces a modified form of the Laplace equation,
containing the bending moment and the Gaussian curvature”. The question of bending and
its impact on the deformation will be thoroughly discussed below.

1.3 An exact energy invariant related to distorted bridges with
neck, influenced by Earth gravity

1.3.1 A first integral of the (H,B) −Young-Laplace equation

We still find ourselves in the framework and notations of the previous subsection, concerning
essentially any bridge with strictly negative Gaussian curvature K (the product of the two
principal curvatures). The free surface is then saddle shaped, precisely the case mainly
concerned by the bending effects.
It is particularly proposed to provide a theoretical justification for an extension of the conven-
tional gorge method in order to evaluate the interparticle capillary force under gravitational
perturbation at the neck level as a special case of an energy conservation principle. Unlike
the situation of axisymmetric bridges with constant mean curvature, the capillary force is
no longer constant at all points of the distorted profile. The analytic expression of the in-
terparticle force Fcap (x) is given with exactness at the generic level x; it can be used by
direct calculation from observed data and takes into account the gravitational forces versus
the upward buoyancy forces.
For other approaches, we can consult the Russian authors about low-gravity fluid mechanics
[22].

First, we introduce (X∗, Y ∗) the coordinates of the moved neck (i.e. the point such that
Y (X∗) = Y ∗, Y ′ (X∗) = 0) and the two branches x+ and x− of Y −1 in the set-theoretical
sense, respectively defined on {x ≥ X∗} and {x ≤ X∗}, subsets of the vertical x− axis, with
the convention that x+ (Y ) ≥ 0 if Y ≥ Y ∗, x+ (Y ∗) = 0 in the Cartesian coordinate system
linked to the neck level of the distorted bridge.
Keep in mind that the capillary bridge profile loses its symmetry: the gravitational perturba-
tion modifies the localization of the contact points and hence, also the domain of definition
for the modified nonlinear differential Young-Laplace equation; the associated boundary
value problem does not admit locally symmetric solutions that are physically relevant.
According to [9], the mass of water is displaced toward the lower solid and in consequence,
the real gorge radius is lower, i.e. more precisely,

X∗ < 0, Y ∗ < y∗ since Y ′ (0) ≈ B y∗2 is strictly positive.

Moreover, the upper boundary of the liquid thus slides over a wetted part of the solid, while
the lower part spreads over a dry part, which should substantially affect the resulting values
of the wetting angles; as is well known, the observed contact angle hysteresis depends on
whether the liquid is advancing or receding on the surface. Let us add that the capillary
phenomena are known to be highly sensitive to all types of microscopic non-uniformity
(canthotaxis effects).

The main result is stated as follows:
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Result 1
Whatever the shape taken by the distorted axisymmetric bridge, we have in relation to the
case where the effects of gravity are neglected, the following relationship which is a general-
ization of an energy conservation principle:along each concerned branch of the profile, the

two following functional expressions are constant and equal, at the dimension of a force.

For any x ≥ X∗, H being rigorously evaluated as the mean curvature at the neck of the
distorted bridge, we have:

F+ = 2πγ

(
Y (x)√

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y ∗
x+ (y) ydy

)
and, if x ≤ X∗,

F− = 2πγ

(
Y (x)√

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y ∗
x− (y) ydy

)
.

Moreover, the common value is

F+ = F− = 2πγY ∗ + πγHY
∗2

= −π∆p0Y
∗2 + 2πγY ∗,

∆p0 being evaluated, strictly speaking, at the neck of the distorted bridge.

The demonstration will be established at the end of the next subsection, after highlighting
the important practical consequences of this abstract result.
These analytical expressions are generalizations of formulas obtained in [8], equation (14).

1.3.2 The general expression of the interparticle capillary force

The previous relationship opens the way for an extension of the conventional gorge
method in order to evaluate the interparticle capillary force at the neck level. This result
accurately quantifies the effect of gravitational forces only by the impact of the reduced neck
diameter. These formulas are independent of the experimental device (horizontal plates,
spheres, etc.) insofar as the distorted bridge keeps a saddle-shaped free capillary surface.
Indeed, the general analytical expression of the interparticle capillary force at the level x on
{x ≥ X∗} for illustration, H being rigorously evaluated as the mean curvature at the neck
of the distorted bridge, is

Fcap (x) = 2πγ

(
Y (x)√

1 + Y ′2 (x)
+
H

2
Y 2 (x)

)

+ 2πg∆ρ

(∫ Y (x)

Y ∗
x+ (y) ydy − x−X∗

2
Y 2 (x)

)

and therefore, conjugate with the expression of the first integral, becomes in practice imme-
diately usable, by the various mathematical relationships:
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Fcap (x) = 2πγY ∗ + πγHY
∗2 − πg∆ρ (x−X∗)Y 2 (x) .

In other words, on {x ≥ X∗}, at the generic abscissa x, the influence of gravity is thus
explicitly reflected by the weight of the right cylindrical column of radius Y (x), height
(x−X∗) and apparent density ∆ρ, but also implicitly by the modified profile representation
x→ Y (x). Consequently,

Fcap (X∗) = 2πγY ∗ + πγHY
∗2,

Fcap (x) = Fcap (X∗)− πg∆ρ (x−X∗)Y 2 (x) , x ≥ X∗,
Fcap (0) = Fcap (X∗) + πγBX∗Y 2 (0) , X∗ < 0,

≈ Fcap (X∗) + πγBX∗y∗2.

In addition to affecting the lateral surface area of the bridge (denoted by |Σ (d)|, d as
distorted by gravity) and the corresponding capillary energy, distortion causes a surface
energy interchange by the wetting modifications of the solids boundaries. The contact
lines are subject to a frictional force generating a dissipation mechanism. Hence, quantities
|Λi| (d)i=1,2 , the area of the wetted region on solid Si, are among the unknown of the problem
and the capillary surface energy functional at prescribed volume, taking into account the
free boundaries contribution, is to be transcribed in the following revised formulation

Efrictional (d) = −γ (cos δ1 (d) |Λ1 (d)|+ cos δ2 (d) |Λ2| (d)) , δi (d) ∈ [0, π] ,

Ecap (d) = γ (|Σ (d)| − cos δ1 (d) |Λ1| (d)− cos δ2 (d) |Λ2| (d)) ,

where δi (d) are the contact angles values, after distortion effects.
In the case of the consideration of bending effects, one must also introduce the expression
of the variation of the bending stress via the Gaussian curvature K in the integral form

Ebending stress = Ck
∫

Σ
K dΣ ,

expression that can be easily reevaluated by the Gauss-Bonnet theorem and boundary data.

The particular situation of axisymmetric bridges considerably simplifies the calculation of
the integral of the geodesic curvature along the boundaries.
By way of example, let us consider the rather academic situation of a bridge M whose
free surface is a portion of the sphere of radius R between two parallel plates of distinct
physical characteristics. It is a priori a toroid with a concave meridian, little concerned by
the effects of bending. The boundary consists of two circles C1 and C1 of radius R1 and R2.
The calculation of the contribution of the boundary geodesic curvature is then presented in
the following form∫

Σ

K dΣ +

∫
C1

√
R2 −R2

1

RR1
ds+

∫
C2

√
R2 −R2

2

RR2
ds = 2πχ (M)

i.e. ∫
Σ

K dΣ = 2πχ (M)− 2π

R

(√
R2 −R2

1 +
√
R2 −R2

2

)
.
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The more general case of the geodesic curvature of a boundary circle of an axisymmetric
free surface with a Delaunay roulette profile comes from classical exercises of differential
geometry [4], [5].

Certainly, the marked distortion of a capillary bridge significantly alters its shape, its ge-
ometry and stability properties (varying main and Gaussian curvatures ) and its resulting
capillary and bending forces.

Limiting us to the interesting case of the distortion of a nodoid with a convex meridian in
{y ≥ 0} (i.e. intrinsically, with negative Gaussian curvature) and assuming that H varies
very little, we observe that the positive capillary force decreases weakly at the moved neck
under the effect of gravity, due to the decrease of the gorge radius. At the level x, on
{x ≥ X∗}, the force decreases continuously under the effect of the apparent weight of the
cylindrical liquid column with radius Y (x) and height (x−X∗).
The integral involved in the expression of F+ and F− is linked to the external volume of
the figure of revolution generated by the rotation about the x− axis of a profile arc from
the moved neck, preparatory term to transcribe the Archimedes’ principle. Note that this
would be the internal volume, counted negatively, for the observation of a hypothetical
convex bridge.
Despite appearances, this last expression of F+ and F− = 2πγY ∗+πγHY

∗2 depends on B
since (X∗, Y ∗), the coordinates of the neck, depend on B.

The key to understanding how to get this first integral is to rewrite locally the (H,B)-
modified nonlinear differential Young-Laplace equation in the following local form, separately
in the two branches related to {x ≥ X∗} and {x ≤ X∗}, H being rigorously evaluated
as the mean curvature at the neck of the distorted bridge:

− 1

Y

d

dY

Y√
1 + Y ′2

= H +B x± (Y ) .

Hence, by quadrature, quantities F+ and F− are constant respectively on {x ≥ X∗} and
{x ≤ X∗}; write F+ = C+ and F− = C−.
A continuity argument at (X∗, Y ∗) implies

C+ = C− = 2πγY ∗ + πγHY
∗2.

The demonstration lends itself to various easy generalizations, especially when a surface
inflection exists and the Gaussian curvature changes sign.

1.3.3 The mean curvature recognition in situ at the distorted neck

The visual observation of a distorted capillary bridge allows by some geometric measurements
to calculate analytically, at any point, the expression of the mean curvature (here varying, a
priori unknown according to the formula H +Bx in the Young-Laplace equation, H being
a spontaneous value and not a known data).
For this purpose, we will take advantage of the exact first integral.
It is assumed that by a photographic process on the meridian profile, we could measure
the coordinates of the neck (X∗, Y ∗), of the lower point (Xl, Yl) and of the midpoint whose
ordinate is 1

2 (Y ∗ + Yl), more precisely the point
(
x+
(

1
2 (Y ∗ + Yl)

)
, 1

2 (Y ∗ + Yl)
)

and φl ,

9



the angle made by the tangent vector to the meniscus with the x−axis at the lower point.
According to the exact first integral applied on the interval [Y ∗, Yl], we note that

Yl cosφl +
H

2
Y 2
l +B

∫ Yl

Y ∗
x+ (y) ydy = Y ∗ +

H

2
Y
∗2.

Therefore

H = 2

Y ∗ − Yl cosφl −B
∫ Yl

Y ∗
x+ (y) ydy

Y 2
l − Y

∗2
.

Simpson’s rule will provide an adequate approximation to the exact integral. This is valid
for very small ”discretizations”; namely, when the distance between the neck and the ”lower
point” |Y− (I)− Y ∗| � 1. In this case, it comes more precisely, so immediately usable:∫ Yl

Y ∗
x+ (y) ydy ≈ Yl − Y ∗

6

(
X∗Y ∗ + 2 (Y ∗ + Yl) x+

(
Y ∗ + Yl

2

)
+XlYl

)
.

Note here that the method is easily generalized when subsequently, bending effects will also
be considered. The corresponding relationships are then written:

Yl cosφl +
H

2
Y 2
l −

CK
2γ

cos2 φl +B

∫ Yl

Y ∗
x+ (y) ydy = Y ∗ +

H

2
Y
∗2 − CK

2γ
.

H = 2

Y ∗ − Yl cosφl −
CK
2γ

sin2 φl −B
∫ Yl

Y ∗
x+ (y) ydy

Y 2
l − Y

∗2
.

1.4 On the generalized Young–Laplace equation. Effects of the
Gaussian curvature at strong distortions

We set out here, for the convenience of the reader and in order to point out various directions
of research, a generalization of the Young-Laplace equation presented in 1996 and which may
be of particular interest in the case of strong capillary distortions.
The chapter 1 of the book ”Applied Surface Thermodynamics” presents a generalized theory
of capillarity [12]. The approach is entirely Gibbsian [3], based on the concept of the dividing
surface, according to the statement of the authors However, it extends and differs from the
classical theory in that it is not restricted to moderately curved liquid-fluid interfaces by
taking into account the bending stress via mechanical curvature potentials along the interface
(see also [2], p. 63-64, [25], [30]).
Various independent approaches lead to the generalized Young-Laplace equation involving
both the mean curvature and the Gaussian curvature K, two intrinsic curvature measures
of the free surface related to the Weingarten map (in particular, bulk thermodynamics,
minimization of an appropriate free energy function).
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The shape of an interface between two non-solid substances is then described in the zero-
gravity case by the generalized Young–Laplace equation:

γ

(
1

ρc
+

1

N

)
+ CK

1

ρc N
= ∆p

where CK has the dimension of a force and stands for the account taken for the bending
stress, ρc and N for the principal radii of curvature (evaluated algebraically). The new
bending term discriminates the saddle-shaped interfaces (Gaussian curvature K = 1

ρc N
is

everywhere negative) and the synclastic interfaces on which Gaussian curvature is every-
where positive (locally convex axisymmetric bridges). A meridional profile of revolution
with an inflection point juxtaposes the opposing effects of bending. It must be borne in
mind that for very distorted profiles, the surface tension γ may be surface temperature and
curvature-dependent, which severely complicates the mathematical treatment. It follows the
specified formulation, with suitably dimensioned coefficients cT and cJ , cK ([12], p.9, eq.
27; here, interfacial tension equals local Gibbs free energy per non-planar surface area for
chemically pure fluids):

γ = γ0 + cTT + cJ

(
1

ρc
+

1

N

)
+ cK

1

ρc N
.

Taking then into account simultaneously the combined effects of gravity and flexure results
in the generalized highly nonlinear differential equation for the distorted profile x → Y (x)
of axisymmetric capillary systems:

Y ” (x)

(1 + Y ′2 (x))
3/2
− 1

Y (x)
√

1 + Y ′2 (x)
− CK

γ

Y ” (x)

Y (x) (1 + Y ′2 (x))
2

= −∆p0

γ
+
g ∆ρ

γ
x =: H +Bx , x ∈ I.

Mathematically isomorphic but with different variables and physical units, this differential
equation has the same structure as the Gullstrand equation of geometrical optics, which
relates the optic power P ′op of a thick lens (in dioptres, the reciprocal of the equivalent focal
length) to its geometry and the properties of the media. For example, the superficial tension

γ is equivalent to the refractivity
n1

n2
− 1, where ni is a refractive index, CK is analogous to

the expression −
(
n1

n2
− 1

)2
n2

n1
d, d the lens thickness and ∆p corresponds to P ′op.

Such an analogy is the subject of a thorough analysis in the publication [27] whose title is
enlightening: The Young-Laplace equation links capillarity with geometrical optics.

See also [18] about the gravitational bending angle of light for finite distance or [14] in
the astrophysical context. In a geometrical approach to gravitational lensing theory, the
Gauss–Bonnet theorem is applied to the optical metric of a lens. Among the many related
themes, we can also mention the principles of thin plate and shell theories, the depressions
at the surface of an elastic spherical shell submitted to external pressure [26], the wrapping
of an adhesive sphere with an elastic sheet [17] or the light deflection and the Gauss–Bonnet
theorem for a definition of total deflection angle [1].
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1.5 A generalization of an exact energy invariant related to strongly
distorted bridges with neck

The qualitative results elaborated in the framework of the constant mean curvature theory
are essentially based on the existence of an exact invariant (in fact, a first integral for
the second order nonlinear differential equation which reveals the conservation of the total
energy of the free surface). With minor adaptations, they are immediately applicable to the
situation where the Gaussian curvature and bending effects are taken into account. Indeed,
as we will see, we still highlight in this case a first integral for the generalized Young-
Laplace equation by limiting ourselves to a presentation concerning essentially any bridge
with strictly negative Gaussian curvature.

For the spontaneous but a priori unknown value of H, H = HB , the generalized equation
can be rewritten, with the previous notations, in the differential form:

− 1

Y

d

dY

(
Y√

1 + Y ′2
− CK

2γ

1

1 + Y ′2

)
= H +Bx± (Y ) .

Hence, along each concerned branch of the strongly distorted profile, the two following
functional expressions are constant and equal, at the dimension of a force. Moreover, we
have for any x ≥ X∗, (X∗, Y ∗) being the coordinates of the moved neck,

F+
CK

= 2πγ(
Y (x)√

1 + Y ′2 (x)
− CK

2γ

1

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y ∗
x+ (y) ydy)

and, if x < X∗,

F−CK
= 2πγ(

Y (x)√
1 + Y ′2 (x)

− CK
2γ

1

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y ∗
x− (y) ydy).

By highlighting a continuous connection at the neck, the common value is

F+
CK

= F−CK
= 2πγY ∗ − πCK + πγHY

∗2

= −π∆p0Y
∗2 − πCK + 2πγY ∗,

∆p0 being evaluated, strictly speaking, at the neck of the distorted bridge.

2 The special case of only bending effects

It is interesting to note that when considering the only bending effects (i.e. CK 6= 0, B = 0),
then for any axisymmetric capillary bridge, the interparticle capillary force

FcapCK
= 2πγ

(
Y√

1 + Y ′2
− CK

2γ

1

1 + Y ′2
+
H

2
Y 2

)
(2)

is constant at all points of the profile (generalization of the proposition 1 in [8] on the
conservation of the total energy of the liquid bridge free surface).
The evaluation of FcapCK

at the gorge radius Y ∗ leads to, rather than the ”gorge method” :
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FcapCK
= 2πγY ∗ − πCK + πγHY

∗2.

As explicited at the beginning of the paper, this exact formula allows to assess the relative
importance of bending effects.
Of course equivalently, this expression may be evaluated at one or the other triple line. More
generally, in fact

FcapCK
= 2πγY (x) cos Θ (x)− πCK cos2 Θ (x) + πγHY 2 (x)

where Θ (x) is the easily calculable angle made by the tangent vector to the meniscus with
the x−axis at the generic point (x, Y (x)) .

2.1 Explicit parameterization of the profile

This latter relationship is interesting because it allows to easily obtain a parameterization of
the profile via Θ by generalizing formulas established in an other way (by pure geometry) by
C.H. Delaunay in 1841 [6], p.313. By a direct calculation and solving a quadratic equation
if H 6= 0, we get at H > 0, for example

Y (Θ) = Y

(
Θ,

CK
γ

)
, the positive root such that Y

(
0,
CK
γ

)
= Y ∗,

i.e.

Y (Θ) =
1

H

(
− cos Θ +

√
(HY ∗ + 1)

2 −
(

1 +H
CK
γ

)
sin2 Θ

)
,

x (Θ) = X∗ +

∫ Θ

0

dY (θ) cot (θ) dθ, i.e., x (Θ) = X∗+

1

H

sin Θ +
(

1 +H CK

γ

)∫ Θ

0

cos2 θ dθ√
(HY ∗ + 1)

2 −
(

1 +H CK

γ

)
sin2 θ

 .

It should be kept in mind that the value of the gorge radius Y ∗measured by observation
in situ, and the same goes for H, depends on CK

γ . As a practical observation, for the
experimenter, the value of the capillary pressure H is a priori an implicit unknown of the
problem (a spontaneous value) whose mode of identification will be detailed below.
Note in particular that for a catenoid

Y

(
Θ,

CK
γ

)
=

2Y ∗ − CK

γ sin2 Θ

2 cos Θ
if H = 0.

If, moreover, CK = 0, then the quantity Y (Θ) cos Θ is proved to be constant, a well-known
geometrical property for catenaries).
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2.2 Missing data recovery using the first integral

When the three dimensioned constant terms FcapCK
, CK , H are considered as missing values

to be restored (a priori unknowns of the problem as spontaneous values resulting a posteriori
from a static equilibrium), the relation (2) makes it possible to obtain the result by solving
a linear system. To do this via an inverse problem, it suffices to apply the specific invariance
relation at three points of the profile (experimental data), taking care to verify that the
corresponding determinant of the 3 × 3 matrix is not close to zero (numerical stability
condition). For this purpose, considering, for example, the observation of three distinct
points Y (0) = Y ∗, Y (Θ1) = Y1, Y (Θ2) = Y2, we note that the explicit determinant of the
involved system is expressed, in absolute value, by∣∣sin2 Θ1

(
Y ∗2 − Y 2

2

)
− sin2 Θ2

(
Y ∗2 − Y 2

1

)∣∣ .
So, in that case, are generalized the analytical calculation methods of distorted capillary
bridges properties deduced as an inverse problem from experimental data, developed in [8].

2.3 Gravity and bending effects on the interparticle capillary force

Renewing with the same principles the previous procedures by minor adaptations leads to
the general analytical expression of the interparticle capillary force at any level.
Indeed, the interparticle capillary force at the level x, on {x ≥ X∗} for illustration, can be
evaluated as follows:

Fcap,CK ,B (x) = 2πγ

(
Y (x)√

1 + Y ′2 (x)
− CK

2γ

1

1 + Y ′2 (x)
+
H

2
Y 2 (x)

)

+ 2πγB

(∫ Y (x)

Y ∗
x+ (y) ydy − x−X∗

2
Y 2 (x)

)
and therefore, conjugate with the expression of the first integral of the generalized Young-
Laplace equation, becomes in practice immediately usable, by the mathematical relation-
ships:

Fcap,CK ,B (x) = 2πγY ∗ − πCK + πγHY
∗2 − πγB (x−X∗)Y 2 (x) ,

and, in other words, rather than the ”gorge method”,

Fcap,CK ,B (X∗) = 2πγY ∗ − πCK + πγHY
∗2.

It follows then that concisely, by referring to the moved gorge point,

Fcap,CK ,B (x) = Fcap,CK ,B (X∗)− πg∆ρ (x−X∗)Y 2 (x) , x ≥ X∗.

These formulas remain valid on {x ≤ X∗} insofar as the distorted bridge keeps a saddle-
shaped free capillary surface and thus, x→ Fcap,CK ,B (x) is everywhere a decreasing func-
tion. They are independent of the experimental device (horizontal plates, spheres, etc.).
It must be kept in mind that the values Y ∗, Y (x) on {x ≥ X∗} and H depend henceforth
on the value of the force CK , besides B and the contact parameters.

This also opens the way to build different numerical schemes of the predictor-corrector type
with great flexibility of use for any strongly distorted bridge with strictly negative Gaussian
curvature.
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2.4 Gravity and bending effects on the strongly distorted profiles

For principal information, it should be noted that the numerical predictor-corrector scheme,
previously presented out of the bending context (in the H −B Young-Laplace framework)
and corresponding to this more general situation, reveals a new term involving CK as [9]:

(
H

2
+Bh

(
k − 1

2

))
Y 2
k + Yk cos Ψ (xk)− hB

1

2
Y ∗2 +

∑
j=1,...,k−1.

Y 2
j


= Y ∗ +

1

2
HY

∗2 − CK
2γ

sin2 Ψ (xk) , xk ≥ X∗,

(X∗, Y ∗) are the coordinates of the moved neck having been observed and measured in situ
in the simplified case of a direct experience.

In situation of a behavior prediction from the zero-gravity case, the evaluation of the coor-
dinates (X∗, Y ∗) as initialization value is more complicated on the basis of the previously
developed considerations, reconstructing the shape of the local curvature. We can again ap-
proximate (X∗, Y ∗) by the coordinates of the point with smallest ordinate on the osculating
circle at (0, Y (0)) whose radius RS (0) is given by the following relationship [9], according
to the generalized Young–Laplace equation:

RS (0) =

Y (0)
√

1 + Y ′2 (0)− CK
γ

HY (0)
√

1 + Y ′2 (0) + 1
.

The point (0, y (0)) can be in first approximation considered as an invariant point of the
distortion and therefore (0, y (0)) = (0, y∗) = (0, Y (0)). At this point, only vary the local
profile shape and the angle formed by the tangent to the distorted meniscus and the x−axis,
from value 0 to α0, α0 > 0. We can use a successive approximations method (each new
approximation is calculated on the basis of the preceding approximation) and the choice
of the initial approximation for α0 is, to some contextual extent, arbitrary but rather to
underestimate: it is interesting to build ordered profiles approximations for the sake of
convergence of the method (the value α0 such as tanα0 = B y∗2 if B2y∗4 � 1 corresponds
to a really weak distorsion).
Therefore, taking here as a first approximation the value of H at zero gravity [9],

RS (0) ≈
y∗ cosα0 −

CK
γ

Hy∗ cosα0 + 1

X∗ ≈ −RS (0) sinα0

Y ∗ ≈ y∗ −RS (0) (1− cosα0) .

By performing then a simple iteration from the generalized Young-Laplace equation, we
obtain an estimate of the spontaneous value of H under the formulation:

H = H

(
B,

CK
γ

)
≈ 1

RS (0)

(
1− CK

γY ∗

)
− 1

Y ∗
−BX∗.
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So, for the profile of the lower part of the distorted bridge, we have just to successively solve
quadratic equations in the unknown Yk, for k = 1, 2, ..., the sequence of positive ordinates
{Yk}k≥1 to be realistically increasing. The sequence {Yk} obtained at the first iteration
of the process can serve as a new predictor and so on, which then defines an iterative
numerical method by.successive approximations and readjustment of the neck position and
the H−value at each iteration.

Failing to know a first approximation of the distortion, the configuration of the bridge by
neglecting both gravity and flexion effects, when it is known (by a microgravity experi-
ment in parabolic flight for example) can be used to initialize the iterative algorithm, with
readjustment of the neck position and the H−value at each iteration.

2.5 Adaptations to the case of strictly positive Gaussian curvature
bridges

This rather academic case concerns situations of weak bending effects.
Taking again the previous argument by adapting to the case of strictly positive Gaussian
curvatures, it shows that formally, the expression of the interparticle capillary force, a priori
repulsive, formally keeps the same expression at any level x, on {x ≥ X∗}:

Fcap,CK ,B (x) = 2πγY ∗ − πCK + πγHY
∗2 − πg∆ρ (x−X∗)Y 2 (x) .

However, it must be kept in mind that the spontaneous and a priori unknown values X∗,
Y ∗, Y (x) on {x ≥ X∗} and H (negative) depend on the value of the force CK , on B and on
the Gaussian curvature sign, besides the contact parameters. The physical interpretation of
this relationship reminds us of the Pascal’s experiment, known as ”crève-tonneau” (barrel-
buster).
The sign of variations of the interparticle capillary force depends on the expression:

sign
dFcap,CK ,B

dx
(x) = −sign (Y (x) + 2 (x−X∗)Y ′ (x)) .

In addition, one can still take advantage of the first integral on {x ≥ X∗}, to fix ideas, still
valid if B = 0,

2πγ(
Y (x)√

1 + Y ′2 (x)
− CK

2γ

1

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y ∗
x+ (y) ydy)

= 2πγY ∗ − πCK + πγHY
∗2.

This again opens the way to implement different numerical schemes of the predictor-corrector
type with great flexibility of use for any strongly distorted bridge with strictly positive
Gaussian curvature.

3 Conclusions

In summary of the key aspects, recall via the Gauss-Bonnet theorem, a situation where
the issue of the importance of bending effects is irrelevant: for a closed free surface, the
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energy contribution of the Gaussian curvature during deformation is constant, as long as
the topology of the surface (i.e. the Euler characteristic) does not change, and therefore can
be ignored when determining the shape of the profile.
The situation is quite different for capillary bridges. The total geodesic curvature of the
contact boundaries must be taken into account, mainly for bridges with strictly negative
Gaussian curvature.
Concerning the only bending effects in the zero-gravity case, the true shape of the static
bridge surfaces is here described by parametric equations, generalizing Delaunay formulas;
we have presented a forecasting method for evaluating the axisymmetric capillary distor-
tions, from the zero-gravity case assumed to be known precisely. We took advantage of the
knowledge of an exact first integral for the generalized Young-Laplace equation with missing
data values and a double estimate of the position of the moved neck and the spontaneous
value H after gravity and bending effects. It must of course be kept in mind that conduct
such a predictive modeling for the motion of the contact lines by gravity and flexure effects
is a problem considerably more difficult than to model the static distorted case, observed
in situ. The isomorphic structure between the Gullstrand and generalized Young-Laplace
equations may be thought to allow experimenters to consider a capillary bridge as an opti-
cal system. Although the two physical phenomena seem a priori disjoined but intellectually
close, it could be deduced new practices for curvature measurements and fast, effective
parameters identification. Nevertheless, the combined effect of volume, bending and axial
gravity on the axisymmetric liquid bridge stability is a broad research subject to explore.
The considerations on the numerical treatment of the distortion problem are given here as
an indication of a research direction necessary to the advancement of the topic; this rather
new subject could be of interest to specialists in finite elements or spline functions tech-
niques. It would be interesting to reconsider, in taking into account the bending effects and
the Gauss-Bonnet theorem, an analytical framework for evaluating the cohesion effects of
coalescence between saddle shaped capillary bridges [11].
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