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Introduction

Given a non compact space-time (M, g) (i.e a manifold M endowed with a Lorentzian metric g), the study of the geometrical asymptotic properties of M is of great mathematical, as well as physical interest. This kind of study was pioneered by R. Penrose (see [P]), by associating a conformal boundary to some space-times. More precisely, a conformal boundary completion of a space-time (M, g), is a manifold M , with boundary ∂M , endowed with a conformal class of Lorentzian metrics [g], satisfying the following conditions:

(i) The interior of (M , [g]) is conformally diffeomorphic to (M, g).

(ii) For a metric g in the conformal class [g], there is a smooth function ρ on M , such that ρ -1 ({0}) = ∂M , dρ = 0 on ∂M , and g = ρ 2 g on M .

Notice that if g ∈ [g], the causal caracter of g |∂M can be non constant on ∂M . For example, if B is an open (Euclidian) ball in Minkowski space, the Minkowski metric restricted to ∂B is Lorentzian at some points, Riemannian or degenerate at others.

In [P], Penrose constructed a conformal boundary completion for several families of space-times, but in the general case, two natural questions remain widely open: under which minimal hypotheses does such a conformal boundary completion exist? When it exists, do we have some kind of uniqueness result?

In the Riemannian context, a lot of works concerning conformally compact Einstein metrics where done (see [A], [C-H], [Bi] and many others), and some partial results are known about the two previous questions.

The case of compact conformal boundary completions (or conformal compactifications) is not the only relevant. In fact, very basic and natural space-times involve non compact conformal boundary completions. One example, which will be fundamental in what follows, is anti-de Sitter space AdS n+1 (the simply connected complete Lorentzian manifold of curvature -1). This space admits as conformal boundary Einstein's static universe Ein n (see section 2), which is topologically R × S n-1 . Building a conformal boundary completion of other anti-de Sitter space-times (i.e lorentzian manifolds of constant curvature -1) can be also usefull, as shows the example of BTZ blackholes (see [START_REF] Bañados | Zanelli -Black hole in threedimensional space-time[END_REF], [START_REF] Bañados | Zanelli -Geometry of the 2 + 1 black hole[END_REF]). These blackholes are particular cases of Kleinian anti-de Sitter structures, namely the quotient of some open subset Ω ⊂ AdS n+1 by a discrete subgroup of isometries Γ ⊂ O(2, n). In this paper, we will focus on a very special kind of Kleinian structures, namely the complete anti-de Sitter structures. In other words, we will deal mainly with space-times of the form AdS n+1 /Γ, for a discrete Γ ⊂ O(2, n) acting properly discontinuously on AdS n+1 . The aim of this article is to build a conformal boundary completion for these complete structures. We will also get a uniqueness result (Theorem 1), and prove that in this context, the conformal structure on the boundary (∂M, [g] |∂M ) determines completely (M, g) (Theorem 2). In section 5, we give an illustration of these constructions on explicit examples.

Notice that the restriction to the case of complete structures is not "physically realistic". Indeed, to get space-times without causality pathologies (such as closed causal geodesics) it is in general necessary to consider only quotients of strict open subsets of AdS n+1 (as it is the case for BTZ blackholes). Nevertheless, we think that the methods presented here will be usefull to deal with the general case of Kleinian structures.

Anti-de Sitter space and Einstein's universe

We recall here some basic properties of Einstein's universe and anti-de Sitter space. we refer to [HE], [O'N], [S] and [START_REF] Frances | Géométrie et dynamique lorentziennes conformes[END_REF] for more details.

Einstein's static universe

Let R 2,n+1 be the space R n+3 , endowed with the quadratic form q 2,n+1 (

x) = -2x 1 x n+3 -2x 2 x n+2 + x 2 3 + ... + x 2 n + x 2 n+1
. We call C 2,n+1 the isotropic cone of q 2,n+1 . The projection of C 2,n+1 on RP n+2 is a smooth quadric, endowed with a natural Lorentzian conformal structure inherited from R 2,n+1 . This quadric, together with its natural structure is called the compact Einstein's universe of dimension n + 1, and denoted Ein n+1 . The group 

Lightlike geodesics

It is well known that in pseudo-Riemannian conformal geometry, lightlike geodesics have a conformal meaning. Indeed, all the metrics of a same conformal class have the same lightlike geodesics (if one forgets the parametrization). On Ein n+1 , lightlike geodesics admit a parametrization of the form: t → (t, c(t)), where t → c(t) is a geodesic of S n (endowed with its canonical Riemannian metric of curvature +1). Any lightlike geodesic is left invariant by the action of the center (so that lightlike geodesics on Ein n+1 are circles).

Given a point p in Ein n+1 , the lightcone with vertex p, denoted by C(p), is the set of lightlike geodesics passing through p. Lightcones are not smooth submanifolds of Ein n+1 . The singular points are exactly the points ζ k .p, for k ∈ Z. Removing its singular points to a lightcone, one gets a countably infinite family of connected components, each one diffeomorphic to the product R × S n-1 .

The conformal boundary completion of AdS n+1

In R 2,n+1 , we denote by R 2,n the subspace generated by e 1 , ...., e n , e n+2 , e n+3 . The projection of R 2,n ∩ C 2,n+1 on Ein n+1 is a sub-Einstein's universe of codimension 1, that we call Ein n . The complementary of Ein n in Ein n+1 is exactly the projection of the set Q = {u+e n+1 ∈ R 2,n+1 |u ∈ R 2,n , q 2,n+1 (u) = -1}. It is, conformally, the space AdS n+1 (namely, the quotient of the antide Sitter space AdS n+1 by the center of its isometry group). The subspace Ein n lift into a subspace Ein n ⊂ Ein n+1 . In this model, the complementary of Ein n in Ein n+1 has two connected components, each one conformally equivalent to AdS n+1 . We chose one of these components, that we call AdS n+1 . The union AdS n+1 ∪ Ein n = AdS n+1 is a submanifold of Ein n+1 , with boundary Ein n , and interior AdS n+1 . The canonical conformal structure on Ein n+1 induces a canonical conformal structure [g can ] on AdS n+1 , and

(AdS n+1 , [g can ]) is a conformal boundary completion of AdS n+1 . The subgroup O(2, n) ⊂ O(2, n + 1) which leaves R 2,n ⊂ R 2,n+1
invariant, acts isometrically on AdS n+1 , and conformally on AdS n+1 .

3 Conformal dynamics

Cartan's decomposition

The group O(2, n) is not a matrix group, and it is not so easy to understand its dynamics on Ein n , or AdS n+1 . Nevertheless, some specific subgroups or subsets of O(2, n) are simple to describe, and help in the understanding of the whole group:

• The center of SO o (2, n), isomorphic to Z, and generated by the transformation ζ : (t, x) → (t+π, -x) (we denote by (t, x) the points of Einstein's universe R × S n-1 ).

• The subset K consisting of transformations of the form: (t, x) → (t + a, σ.x), with a ∈ [0, π[ and σ ∈ O(n -2). Note that K is relatively compact.

• The abelian subgroup A + , which projects injectively in O(2, n) onto the subgroup of matrices:

           e λ e µ 1 . . . 1 e -µ e -λ            with λ ≥ µ ≥ 0. Now, every element g of O(2, n) can be written g = ζ l(g) k 1 (g)a + (g)k 2 (g),
with l(g) ∈ Z, k 1 (g) and k 2 (g) in K, and a + (g) ∈ A + . This decomposition is called Cartan's decomposition of O(2, n). Notice that the integer l(g) and the Cartan's projection a + (g) are uniquely determined by g.

Let us write a + (g) as a matrix of O(2, n):

a + (g) =            e λ(g) e µ(g) 1 . . . 1 e -µ(g) e -λ(g)           
The reals λ(g) ≥ µ(g) ≥ 0 are called the distorsions of the element g.

Sequences tending to infinity

Let us consider now a sequence (g k ) in O(2, n), which tends to infinity (i.e leaves every compact subset of O(2, n)). Looking, if necessary, at a subsequence, we can suppose: a) the four sequences l(g k ), λ(g k ), µ(g k ) and δ(g

k ) = λ(g k ) -µ(g k ) converge respectively to l ∞ , λ ∞ , µ ∞ and δ ∞ in R.
b) compact factors in the Cartan's decomposition of (g k ) both admit a limit in K, as k tends to infinity.

Under these asumptions, the sequence (g k ) falls into one of the four following categories:

(i) |l ∞ | = +∞. The sequence (g k ) is then said to be proper. For the three other cases, l ∞ is finite.

(ii

) If µ ∞ = +∞, the sequence (g k ) is said to have bounded distorsion. (iii) If λ ∞ = µ ∞ = +∞ and δ ∞ is finite, the sequence (g k ) is said to have balanced distorsions. (iv) If λ ∞ = µ ∞ = δ ∞ = +∞, the sequence (g k
) is said to have mixed distorsions.

The limit set of a complete anti-de Sitter structure

In [START_REF]Lorentzian Kleinian groups[END_REF], we studied extensively the dynamical behaviour on Ein n of sequences tending to infinity in O(2, n). This description can be adapted to sequences of O(2, n) acting on AdS n+1 (resp. Ein n ), and we refer to [START_REF]Lorentzian Kleinian groups[END_REF] for the proofs. Here, we state only the few properties which will be relevant for our purpose. First, we recall the following definition:

Definition 1 (Properness). Let (g k ) be a sequence of O(2, n) tending to infinity, and Ω an open subset of AdS n+1 , left invariant by (g k ). The sequence (g k ) acts properly on Ω if for any pair (K, K ) of compact subsets of Ω, g k (K) ∩ K = ∅ for all but a finite number of k's. 

K ⊂ AdS n+1 \{∆ -(g k )} (resp. K ⊂ AdS n+1 \{∆ + (g k )}), g k (K) (resp. g -1 k (K)) tends (for the Hausdorff topology) a closed subset of ∆ + (g k ) (resp. ∆ -(g k )).
Let M be a manifold endowed with a complete anti-de Sitter metric g. The structure (M, g) is obtained as the quotient of the space AdS n+1 , by a discrete subgroup Γ ⊂ O(2, n), acting properly discontinuously on AdS n+1 . By Proposition 2, the group Γ does not contain any sequence (γ k ) with bounded distorsion. Let S be the set of all sequences (γ k ) ⊂ Γ, which have either mixed or balanced distorsion. Notice that any infinite sequence of Γ has a subsequence in S. We define the limit set of the group Γ in the following way:

Λ Γ = (γ k )∈S ∆ + (γ k ) ∪ ∆ -(γ k )
It is clear that the set Λ Γ is closed, Γ-invariant, and included in Ein n . Let us call Ω Γ the complementary of Λ Γ in AdS n+1 . We deduce easily from Proposition 3: Proposition 4. The action of Γ on Ω Γ is proper and discontinuous.

For a more general definition of the limit set of a discrete subgroup Γ ⊂ O(2, n), we refer to [START_REF]Lorentzian Kleinian groups[END_REF]. Other definitions of the limit set, in the framework of linear discrete groups can be found in [B].

4 The conformal boundary completion of a complete anti-de Sitter structure

Building the boundary

Let (M, g) be a complete anti-de Sitter structure, obtained as the quotient AdS n+1 /Γ. By proposition 4, the quotient M = Ω Γ /Γ is a manifold with boundary. The interior of M is the complete anti-de Sitter structure AdS n+1 /Γ we started with. The boundary ∂M is the conformally flat Lorentzian manifold (Ω Γ ∩ Ein n )/Γ. In fact, M inherits from Ω Γ a canonical conformal class of Lorentzian metrics. Let us pick some metric g in this class. We lift g (resp. g) into a Γ-invariant h (resp. h) on Ω Γ (resp. AdS n+1 ). The metric h is nothing else than the canonical metric g can of AdS n+1 . For this canonical metric, there is a well known conformal boundary. So, there is a smooth metric h on AdS n+1 , and a function β on AdS n+1 , such that h = β 2 h. Moreover, Ein n = β -1 ({0}) and dβ = 0 on Ein n . On the other hand, h and h are in the same conformal class, so that h = α 2 h on Ω Γ . We thus get h = ρ 2 h on AdS n+1 , with ρ = αβ. The function ρ is smooth on Ω Γ , ρ -1 ({0}) = Ω Γ ∩ Ein n and dρ = 0 on Ω Γ ∩ Ein n . Moreover, it has to be Γ-invariant, since it is the case for h and h. Thus, ρ induces a smooth function ρ on M , such that g = ρ 2 g on M . Clearly ρ -1 ({0}) = ∂M and dρ = 0 on ∂M . This proves that M is a conformal boundary completion of (M, g).

Remark 1. Of course, it can happen that for some complete structure AdS n+1 /Γ, Λ Γ = Ein n . In this case, the previous construction yields an empty conformal boundary ∂M .

(G, X, ∂X)-structures

Let X be a manifold with boundary ∂X, and interior X. We write X = X ∪ ∂X. Suppose that some Lie group G acts transitively on X ∪ ∂X. Suppose moreover that the action of G is strongly effective. It means that two elements g 1 and g 2 of G acting in the same way on an open subset U ⊂ X are in fact equal. Then we can define the notion of a (G, X, ∂X) -structure on a manifold M , with boundary ∂M and interior M . It is the the data of:

-an open covering (U i ) i∈I of M .

-a family of embeddings φ i : U i → X, respecting the boundaries (i.e

φ i (U i ∩ ∂M ) = φ i (U i ) ∩ ∂X).
-a family (g ji ) i,j∈I of elements of G, such that for all i, j ∈ I, the map

φ j • φ -1 i agrees with g ji on φ i (U i ∩ U j ).
With this definition, the conformal boundary completion of a complete anti-de Sitter structure, as defined above, is endowed with a ( O(2, n), AdS n+1 , Ein n )structure.

Main properties of the conformal boundary completion for a complete anti-de Sitter structure

The first, and maybe most important property, is that, under some natural asumptions, there is essentially a unique conformal boundary completion, for a given complete anti-de Sitter structure. Since we are dealing, a priori, with non compact conformal boundary completions, it is natural to introduce the notion of maximal completion.

Definition 2. Let (M , [g]) and (N , [h]) two conformal boundary completions of a space-time (M, g). We write

(M , [g]) ⊂ (N , [h]) if there is a conformal embedding of (M , [g]) into (N , [h]
), mapping ∂M into ∂N . A maximal element for the relation ⊂ is called a maximal conformal boundary completion of (M, g).

We can now prove:

Theorem 1. Let (M, g) a complete anti-de Sitter structure. If (M , [g])
and (N , [h]) are two maximal conformal boundary completions of M , and if moreover M and N both admit a ( O(2, n), AdS n+1 , Ein n )-structure, then they are isomorphic (i.e there is a diffeomorphism of manifolds with boundary between M and N , which is conformal).

Proof : We write M = M ∪ ∂M and denote by M ∪ ∂M the universal cover of M . As for classical (G, X)-structures, (G, X, ∂X)-structures admit a developping map δ and a holonomy morphism ρ (see [Th]). In our case δ is a local diffeomorphism from M ∪ ∂M to AdS n+1 , which sends the boundary of M ∪ ∂M in Ein n . The interior of M ∪ ∂M is just M , the universal cover of M . The restriction of δ to M is the developping map of the anti-de Sitter structure on M . Since (M, g) is complete, δ | M is injective. Since δ is a local diffeomorphism, we infer that δ is injective on the whole M ∪ ∂M . Thus, (M , [g]) is obtained as a quotient Ω/Γ, where Ω is an open subset of AdS n+1

and Γ is the discrete group of O(2, n), such that (M, g) = AdS n+1 /Γ. We now prove the:

Lemma 1. If a discrete subgroup Γ ⊂ O(2, n) acts properly on some open subset Ω, with AdS n+1 ⊂ Ω ⊂ AdS n+1 , then Ω ⊂ Ω Γ .
Proof : Since AdS n+1 ⊂ Ω and Γ acts properly on Ω, we know from section 3.3 that Γ has a limit set Λ Γ , and so Ω Γ is well defined. Now, let (γ k ) be a sequence of Γ with balanced or mixed distorsions. We call ∆ + (γ k ) and ∆ -(γ k ) its attracting and repelling lightlike geodesics. We project (γ k ) on

γ k ∈ O(2, n) and ∆ + (γ k ) (resp. ∆ -(γ k )) on ∆ + ⊂ Ein n (resp. ∆ -⊂ Ein n ).
Let x ∈ ∆ -, and a U be a small neighbourhood of x in Ein n+1 . in [START_REF]Lorentzian Kleinian groups[END_REF] (sections 3.2.1, 3.2.3), we proved that the Hausdorff limit lim k→+∞ γ k (U ) is either a lightcone (of Ein n+1 ), or some closed subset with non empty interior. In any case, this limit meets the complementary of Ein n in Ein n+1 . Lifting all these results to Ein n , we get that if x ∈ ∆ -(γ k ), and U is a small neighbourhood of x in AdS n+1 , then the Hausdorff limit of γ k (U ) meets AdS n+1 . So, if Ω meets ∆ -(γ k ), the action can't be proper on Ω, since AdS n+1 ⊂ Ω by hypothesis. Looking at (γ -1 k ), one proves also that Ω can't meet ∆ + (γ k ). We infer that Λ Γ ∩ Ω = ∅, and Ω ⊂ Ω Γ .

The previous result and the maximality hypothesis on (M , [g]) yields that (M , [g]) = Ω Γ /Γ. So the structure of (M , [g]) is entirely defined under the two hypothesis that (M , [g]) is maximal and shares a ( O(2, n), AdS n+1 , Ein n )structure.

From now, when we will speak of the conformal boundary completion of a complete anti-de Sitter structure (M, g) = AdS n+1 /Γ, we will always mean (M , [g]) = Ω Γ /Γ (this is justified by Theorem 1). But in dimension ≥ 3, any conformal transformation between Ω 1 and Ω 2 is the restriction of some element of O(2, n), by Liouville's theorem (see [S], [START_REF] Frances | Les structures conformes pseudo-riemanniennes vues comme structures rigides à l'ordre 2[END_REF]). So φ ∈ O(2, n) and φΓ 1 φ -1 = Γ 2 . Thus, since (M, g) and (N, h) are respectively AdS n+1 /Γ 1 and AdS n+1 /Γ 2 , (M, g) and (N, h) are isometric.

Proposition 5. Let (M, g) be a complete anti-de Sitter structure, and (M , [g]) its conformal boundary completion. Then any isometry of (M, g) extends to a diffeomorphism of M , acting conformally on (∂M, [g] |∂M ). Reciprocally, any conformal transformation of (∂M, [g] |∂N ) extends to a diffeomorphism of M , acting isometrically on (M, g).

Proof : If we write (M, g) as a quotient AdS n+1 /Γ, the structure (∂M, [g] |∂M ) is a Kleinian structure, obtained as the quotient (Ω Γ ∩ Ein n )/Γ. Any isometry of (M, g) is induced by an element φ ∈ O(2, n) satisfying φΓφ -1 = Γ. But since φ(Λ Γ ) = Λ φΓφ -1 , we get that φ(Ω Γ ) = Ω Γ , and φ induces a conformal diffeomorphism of (M , [g]). In particular, it induces a conformal diffeomorphism of (∂M, [g] |∂M ). Reciprocally, a conformal transformation of (∂M, [g] |∂M ) is induced by a φ ∈ O(2, n), such that φΓφ -1 = Γ and φ(Ω Γ ∩ Ein n ) = Ω Γ ∩ Ein n . But then, φ(Ω Γ ) = Ω Γ and φ induces a diffeomorphism of M . This diffeomorphism is moreover an isometry of (M, g), since φ( AdS n+1 ) = AdS n+1 and φΓφ -1 = Γ.

Illustration

The example of Lorentzian Schottky groups

Let ∆ ± i , i = 1, ..., g, be a collection of 2g pairwise disjoint lightlike geodesics in Ein n . Then there exist g elements γ 1 , ..., γ g in O(2, n), and a family U ± i of 2g open subsets of AdS n+1 , with the following properties:

(

i) For all 1 ≤ i ≤ g, U ± i is a tubular neighbourhood of ∆ ± i . (ii) The closures of the U ± i 's are pairwise disjoint. (iii) For all 1 ≤ i ≤ g, γ i (resp. γ -1 i ) maps the exterior of U - i (resp. U + i ) in AdS n+1 , on the closure of U + i (resp. U - i ).
The group Γ generated by the elements γ 1 , ..., γ g is then a free group, called Lorentzian Schottky group. We studied such groups in [START_REF]Lorentzian Kleinian groups[END_REF]. In particular, we proved:

Theorem 3. Let Γ ⊂ O(2, n) (n ≥ 3
), be a Lorentzian Schottky group with g generators (g ≥ 2). Then:

(i) The action of Γ on AdS n+1 is proper.

(ii) The limit set Λ Γ is a lamination by lightlike geodesics. Topologically, it is a product of R by a Cantor set.

(iii) The conformal boundary of the complete anti-de Sitter space-time AdS n+1 /Γ is diffeomorphic to R×(S 1 × S n-2 ) (g-1) . Here, (S 1 × S n-2 ) (g-1)

denotes the connected sum of g -1 copies of (S 1 × S n-2 ).

For n = 2, there is an alternative statement to this theorem, but this time, the conformal boundary is not connected: it is a finite union of cylinders R × S 1 .

Other examples in odd dimension

The group U (1, n), preserving the Lorentzian hermitian form -|z 1 | 2 +|z 2 | 2 + ...+|z n | 2 , admits a canonical injection in O(2, 2n). This yields an injection of the universal covers U (1, n) ⊂ O(2, 2n). In fact, there is a natural fibration of Ein 2n over the canonical flat CR-sphere S 2n-1 , the fibers of which are lightlike geodesics. The group U (1, n) is exactly the subgroup of O(2, 2n) preserving this fibration. On the other hand, as first observed by R. Kulkarni, U (1, n) acts properly on AdS 2n+1 . Let (M, g) be a complete anti-de Sitter structure, obtained as a quotient AdS 2n+1 /Γ, with Γ ⊂ U (1, n). The group Γ projects as a subgroup Γ ⊂ U (1, n). The group Γ acts on S 2n-1 as a convergence group. In particular, it has a domain of discontinuity Ω Γ (which turns out to be the projection of Ω Γ ∩ Ein 2n ). We obtain that the conformal boundary of (M, g) is a fibration by lightlike geodesics over the CR-flat Kleinian manifold Ω Γ /G (we refer to [Go] for an account on CRflat Kleinian manifolds). In other words, the structure (M, g) fibers over a complete complex hyperbolic manifold, the boundary of which is the CRmanifold Ω Γ /Γ. We just saw that the fibration extends to the respective boundaries.

Aknowledgments: I would like to thank A.Zeghib for usefull comments on this text.
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