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Abstract: Recurrence quantification analysis (RQA) is a nonlinear method providing 

information on the temporal structure of time series. RQA has been extensively used to explore 

various noisy and nonstationary physiological signals. However, the application of RQA to 

force signals acquired during voluntary fatiguing contractions performed until exhaustion 

remain to be investigated. We aimed to explore the sensitivity of the percentage of determinism 

(DET), an RQA predictability measure, to detect changes of force signal complexity induced 

by fatigue and recovery. Changes in force signal complexity were compared between women 

and men to explore the ability of DET measures to detect different fatigue profiles. Nineteen 

women and nineteen men performed intermittent isometric contractions of knee extensors at 

50% of maximal voluntary contraction (MVC) until exhaustion. Participants performed MVC 

before, during and after the fatiguing task to assess neuromuscular fatigue. Recovery 

measurements were performed three minutes after exhaustion. Particular attention has been 

given to the selection of the input parameters of RQA and to the influence of nonstationarity. 

A detailed methodology is provided to apply RQA to force signals. At the whole group level, 

complexity decreased with fatigue then increased after recovery. Greater fatigability of men 

was associated with a faster loss of complexity (i.e. faster increase of DET) of force signals. 

After recovery, complexity returned to baseline value only for women. These findings confirm 

that RQA is suited to explore force signal temporal structure and is able to reveal changes of 

complexity induced by fatigue and recovery by taking into account sex differences. 

 

Keywords: Force signal fluctuations, recurrence quantification analysis, exercise-related 

fatigue, complexity, sex differences.  
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1) Introduction 

 

Human performance is limited by fatigue which can be defined as a complex disabling symptom 

resulting from a myriad of physiological and psychological mechanisms [1]. Fatigue can be 

captured as a trait, in resting conditions, using individuals’ self-reports. Fatigue can also be 

evaluated as a state, during a given task such as physical exercise. Exercise-related fatigue 

(which is also referred to as “fatigability” [2,3]) represents a major area of research, with 

applications in various fields including sports, industrial and clinical settings. Exercise-related 

fatigue can be assessed by the exercise-induced decrease in maximal voluntary force or power 

produced by a muscle or a muscle group, classically referring to the concept of “neuromuscular 

fatigue” [4,5]. In addition to its negative impact on maximal force capacity, neuromuscular 

fatigue also impairs motor output during submaximal isometric contractions. These 

impairments are usually assessed using measures quantifying the force fluctuations in terms of 

amplitude (i.e. standard deviation and/or coefficient of variation) [6–8]. More recently, it has 

been suggested that neuromuscular impairments could be evaluated by measures allowing to 

characterise the temporal structure of force signals (e.g. [9]).  

Several methods, derived from dynamical systems, information, fractal, and statistical physics 

theories, have been introduced to evaluate the temporal structure of many physiological signals 

[10–14]. Clustered under the name of “measures of complexity”, they provide complementary 

information to those obtained with traditional statistical indicators (e.g. coefficient of variation) 

or conventional linear measures (e.g. spectral analysis) [15,16]. For instance, measures of 

complexity of postural signals would be good candidate to distinguish fallers from non-fallers 

in older adults [17,18] or more sensitive for the assessment of neuromuscular fatigue than 

spectral analysis when applied to electromyographic (EMG) signals [15]. 

It has been suggested that the “complexity” of a physiological signal would reflect the richness 

and the adaptation capabilities of the physiological system that produced this signal [16,19,20]. 

Complexity of force signals is interpreted as the adaptative capacity of the neuromuscular 

system to internal and/or external perturbations induced by the motor task demand. Several 

studies showing a loss of complexity of force signals with the appearance of neuromuscular 

fatigue [9,21,22] have extended the theories of loss of physiological complexity initially 

devoted to aging or pathological context [11,16,23].  

So far, entropy measures (quantifying information regarding the "regularity" of a time series) 

remain the most commonly used indicators to quantify the so-called complexity of force signals, 

whether or not in a context of neuromuscular fatigue [8,9,23–26]. However, it is well 

established that these measures can be, at least in some cases, biased by a characteristic often 

found in physiological signals that is nonstationarity (mainly low frequency trends) [27–29]. 

To overcome this limitation, a strategy allowing the detrending of force signals prior to entropy 

estimation has been recently proposed [29]. However, this approach was not suitable for the 

analysis of signals collected in the present study. Indeed, it was impossible to ensure stationarity 

through this strategy based on a statistical test for our dataset. Another method sometimes used 

to investigate the temporal structure of physiological signals, in terms of complexity, is the 

detrended fluctuation analysis (DFA), which is designed to quantify the correlations of time 

series. However, DFA is also sensitive to trends [30] and the interpretation of its results relies 

on stochastic models such as fractional Gaussian noises and fractional Brownian motions [31], 

which are not always compatible with experimental data. 

Based on these arguments, we propose here to assess the complexity of force fluctuations using 

an alternative approach through the analysis of the recurrences of patterns extracted from the 

experimental signals. Using graphical representations of the patterns, the so-called recurrence 

quantification analysis (RQA) provides an efficient way to estimate dynamical invariants and 

complexity measures related to the underlying system generating the data (see [32] and 
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references therein). RQA has many advantages such as its effectiveness for short and noisy time 

series and relevance for signals produced by nonlinear systems. It is also often described as a 

suitable tool for the investigation of nonstationary data [32,33].  

Within the scope of neuromuscular fatigue, RQA has been widely applied to EMG signals 

[15,34–36]. One of the most used RQA measures is the percentage of determinism (DET) which 

reflects the predictability of a time series (or its regularity, in this context). RQA returns a DET 

value between 0 and 1 (generally expressed in percentage), which decreases with the 

irregularity of the time series, often related to complexity in the literature [32]. Therefore, the 

authors reporting an increase of DET for EMG signals with the appearance of neuromuscular 

fatigue confirmed the fatigue-induced loss of complexity of neuromuscular system [15,34–36]. 

Nevertheless, the ability of RQA to detect fatigue-induced changes in neuromuscular system 

complexity from force signals is currently unknown. The analysis of force signals seems 

particularly relevant in various clinical and applied contexts as force represents a more 

functional measure (whose dynamics is the gold standard to capture neuromuscular fatigue [5]) 

and is often easier, less costly and time-consuming to capture compared to EMG signals of all 

single muscles (e.g. vasti muscles and rectus femoris) composing a muscle group (e.g. knee 

extensors). 

To our knowledge, only very few studies have used RQA to quantify the complexity of force 

signals. Kuznetsov and Riley [40] applied RQA to force signals acquired during finger flexions, 

with the aim to determine the impact of spatial resolution of visual feedback on signals 

complexity. Li et al. [37–39] also quantified the complexity of force signals recorded during 

grip contractions in different populations (i.e. healthy participants across various age and people 

with several neuromuscular disorders) through RQA, with the main aim to detect differences in 

force control strategies. However, in these studies force signals were collected during short 

contractions (i.e. 30-s duration), making difficult to assess the sensitivity of RQA to 

neuromuscular fatigue, especially because no conventional assessment of neuromuscular 

fatigue was performed (e.g. pre-post maximal voluntary contractions). Therefore, further 

studies are needed to understand the effect of neuromuscular fatigue on RQA measures obtained 

from force signals. 

To enhance the assessment of the sensitivity of RQA to neuromuscular fatigue and its ability to 

detect inter-individual differences, we propose to compare two populations with well-known 

differences in terms of neuromuscular fatigue profiles, i.e. women vs. men. It has long been 

established that women are less fatigable than men under specific conditions, including 

submaximal isometric muscle contractions performed at the same relative intensity (for review, 

see [41]). We also propose to analyse recovery data to assess the ability of RQA to detect 

different muscle state changes (i.e. fatigue and recovery). 

Accordingly, the aim of this study was to determine whether changes of neuromuscular system 

complexity could be detected by RQA applied to force signals, and to test the following 

assumptions: (i) that DET (obtained from RQA) would increase with neuromuscular fatigue 

then decrease after recovery; (ii) that the increase in DET with neuromuscular fatigue would be 

more important in men compared to women and (iii) that changes in DET values would 

correlate with traditional measures of neuromuscular fatigue and recovery (i.e. loss and 

recovery of maximal voluntary force).  
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2) Methods 

 

2.1) Participants 

Thirty-eight healthy young adults (nineteen women and nineteen men) volunteered to 

participate in this study and were kept naive to the protocol (Table 1). All subjects provided 

written informed consent to participate in the study, which was approved by a local ethic 

committee and conducted in accordance with the declaration of Helsinki. 

 

 Men (n=19) Women (n=19) p value 

Height (cm) 180.3 ± 5.1 164.4 ± 4.5 <0.001 

Weight (kg) 74.4 ± 11.2 60.3 ± 10.5 <0.001 

Age (years) 23.0 ± 2.7 22.2 ± 3.2 0.16 

BMI (kg/m2) 22.8 ± 2.8 22.2. ± 3.0 0.51 

Baseline MVC (N·m) 349.7 ± 57.3 223.7 ± 45.0 <0.001 

Baseline DET (%) 83.2 ± 7.0 94.5 ± 3.1 <0.001 
Table 1. Participants information (mean ± SD). BMI: Body mass index; MVC: Maximal voluntary contraction; DET: 

Percentage of determinism. 

2.2) Experimental setup 

Subjects sat in a custom-made chair with both hips and knees at 90° of flexion. A force sensor 

(F2712 200 daN, Celians MEIRI, France) was attached with an inextensible strap to the right 

leg ∼ 3-4 cm above the malleoli of the ankle joint. A belt was secured firmly across the waist 

to avoid any extraneous movements during isometric contractions. Force data were collected at 

2 kHz using BIOPAC MP150 (BIOPAC Systems, Inc., Santa Barbara, CA, USA) and 

Acqknowledge software (Version 4.1, BIOPAC Systems, Inc., Santa Barbara, CA, USA). 

 

2.3) Protocol 

The experimental sessions began with a standardized warm-up of the knee extensors including 

4 min of intermittent isometric contractions performed at increasing force levels. Then, after 5 

min of rest, participants performed at least three maximal voluntary contractions (MVCs) of  ∼ 

4-s duration interspaced by 1 min of recovery. Strong verbal encouragements were given during 

each MVC to ensure maximal volitional effort. If a gradual increase was observed during the 

first three attempts, additional MVCs were performed to ensure the reaching of the real MVC 

for each participant. Then, after 5 min of rest, participants began the fatiguing task. 

During the fatiguing task participants were instructed to perform intermittent isometric 

contractions of the knee extensors (i.e. cycles of 8 s of contraction and 4 s of rest; Fig. 1) at 

50% MVC until task failure. Verbal instructions were given throughout the fatiguing task to 

ensure that participants maintained the required target force level as accurately as possible. The 

force signal feedback was displayed on a screen (32” - 1920 x 1080 pixels) placed in front of 

the participants at a distance of ∼ 120 cm. Since the spatial resolution of visual force feedback 

may impact the temporal structure of the signals [40], we used a fixed value of 11% MVC.cm-

1 for each participant. Task failure was defined as the first contraction at which the participant 

failed to reach the target force level (i.e. first contraction with no sample within or above the 

target force level during the full 8-s duration; Fig. 1).  

Participants were asked to perform one MVC every five cycles (i.e. every minute) and 

immediately at task failure to evaluate the neuromuscular fatigue.   

After task failure, participants were given 3 min of rest and were then asked to perform one 

MVC followed by one block of five submaximal isometric contractions of the knee extensors 

(i.e. 8-s duration interspaced by 4 s of rest). 
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2.5) Data analysis 

Endurance time and peak force during MVCs were calculated using Acqknowledge software. 

Endurance time was measured as the time separating the beginning of the first submaximal 

contraction and the end of the last block entirely completed (excluding time to perform the 

intermittent MVCs). Signals preprocessing and measures of complexity were computed with 

MATLAB R2019a (MathWorks, Natick, MA, USA). MVCs were compared at three time 

points: i) baseline (i.e. greatest MVC produced before the fatiguing task; Fig.1); ii) fatigue (i.e. 

MVC performed following the last block of submaximal contraction entirely completed; Fig.1) 

and iii) recovery (i.e. MVC performed after the 3 min of rest; Fig. 1). Complexity data of force 

signals were compared using the same time points: (i) baseline (i.e. first block of five 

submaximal contractions; Fig. 1); (ii) fatigue (i.e. last block of five submaximal contractions 

entirely completed; Fig. 1) and (iii) recovery (i.e. block of five submaximal contractions 

performed after 3 min of rest; Fig. 1). To allow optimal comparisons between men and women, 

changes of complexity and MVC were normalised to the baseline value (i.e. changes expressed 

in percentage of baseline value). Data were also expressed as rate of changes during the 

fatiguing task and the recovery period. For instance, changes for normalised MVC were 

expressed as rate of decrease during the fatiguing task and rate of increase during the recovery 

using the equations (1) and (2), respectively. The same analysis was performed for changes of 

normalised DET.  
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Figure 1. Force signal recorded during the experimental session in a representative male participant. The red dotted line 

represents the target force level which has to be maintained during submaximal contractions. The gray areas show the 

windows used for recurrence quantification analysis. MVC: Maximal voluntary contraction. 

2.5.1) Force signals preprocessing 

For each submaximal contraction, the 1.5 first and last seconds were excluded (i.e. analyses 

were performed across 5-s centered window for each contraction; Fig. 1), then force signals 

were off-line filtered using 6th order zero-phase low-pass digital Butterworth filter with cut-off 
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frequency of 20 Hz and down-sampled at 500 Hz. Thereafter, the very low frequency trend of 

each signal was removed by means of a non-linear and data-driven method so-called Empirical 

Mode Decomposition (EMD) [42]. In short, EMD allows to decompose a signal into different 

components with locally defined frequency bands and therefore to limit the first-order 

nonstationarity of a signal after removing the lowest frequency component (also called residual; 

Fig. 2A and 2B). This procedure was not intended to rigorously guarantee the stationarity of 

signals (through statistical tests [29]) but was necessary to ensure that potential fatigue-induced 

changes in complexity are not mainly explained by very low-frequency trends (see below; part 

2.5.2.2. Computation of complexity measures). Prior to RQA, the detrended signals were 

centered to have zero mean and scaled to have unit standard deviation.  

 

2.5.2) Recurrence quantification analysis 

RQA is based on the reconstruction of the phase (or state) space (i.e. an abstract geometrical 

space whose coordinates represent the different states of the system under study) from a time 

series produced by a dynamical system (e.g. force signal produced by the neuromuscular 

system) following the Takens’ delay embedding theorem [43–45] and using an embedding 

dimension m, a delay τ , and the following equations:  

<1=
> � =?1, ?1AB, ?1ACB, … , ?1A=2E&>B> (3) 

 � � F − =
 − 1>I (4) 

 

where xi is the ith point of the original time series, yi(m) the ith sequence (also called time delay 

vector) of dimension m, n the number of sequences reconstructed in the phase space and N the 

length of the original time series. 

 

2.5.2.1) Construction of the recurrence plots 

The second step of RQA consists in the construction of the recurrence plot (RP) introduced by 

Eckman et al. [46], which corresponds to a 2-dimensional representation of the recurrences of 

the dynamical system in the state space. The RP is directly derived from the n x n (see equation 

(4)) binary recurrence matrix defined by the following equation: 

 

�1,J2,K � 	L=M − N<1 −	<JN) (5) 

 

where Θ is the Heaviside function (i.e.  Θ(x) = 0 if x < 0 and Θ(x) = 1 otherwise), || || is the 

Euclidean norm and ε is a defined threshold. The threshold ε allows to determine whether two 

delay vectors corresponding to instants i and j are close enough (or “neighbors”) to define a 

recurrence point (i.e. a black point in the RP) at location (i,j). Two cases can then arise : i) ||yi - 

yj|| ≤ ε, in this case the vectors yi and yj are considered neighbors resulting in a black point in 

the RP at coordinates (i,j); ii) ||yi - yj|| > ε, in this case the vectors yi and yj are not considered 

neighbors resulting in a white point in the RP at coordinates (i,j). Both axes of the RP 

(conventionally upwards and rightwards) are the time axes. As defined here, a RP is always 

symmetric with the respect of a black main diagonal also called line of identity [32]. 

  

2.5.2.2) Computation of complexity measures 

A simple visual inspection of the RP provides qualitative information on the temporal structure 

of the signal, which is naturally related to the underlying dynamics [45,46]. For instance, if the 

process studied is strongly nonstationary, the resulting RP will be characterized by an absence 

of recurrence points in the upper left and lower right corners. Here, this phenomenon was 

frequently observed for signals recorded after fatigue (Fig. 2), leading to an important 

heterogeneity of RPs between the different time points. This heterogeneity was characterized 
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by the clustering of numerous recurrence points close to the main diagonal line of the RP for 

signals displaying important low frequency trends (Fig. 2A and 2C). Since RQA measurements 

are based on the structures present in the RP, it was important to limit this heterogeneity to 

obtain results which correctly reflect changes in the dynamic of the time series and not produced 

by nonstationary trends. The EMD pre-processing, previously described in section 2.5.1. Force 

signals preprocessing, allowed us to remove these low-frequency trends before applying RQA. 

 
Figure 2. (A) and (C) Force signals acquired during submaximal contractions performed after fatigue without removal of 

residuals (represented by the dotted lines) and their associated recurrence plots; (B) and (D) Preprocessed force signals of 

panel A and C, respectively, after removal of residuals and their associated recurrence plots. The duration of signals shown is 

5 seconds. 
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Beyond a simple visual inspection, several measures have been introduced to quantify the 

structures of the RP. The first one is the recurrence rate (RR) or percentage of recurrence which 

corresponds to the density of recurrence points (i.e. black points) within the RP. The second 

classical measure derived from the RP is called percentage of determinism (DET) which 

corresponds to the percentage of recurrent points forming diagonal lines of at least length lmin. 

DET is computed using the equation (6): 

 

OPQ � 	∑ ST=S>#"U"V�#
∑ ST=S>#"UW

    (6) 

 

where P(l) is the histogram of diagonal lines of length l. DET is linked to the predictability of 

the system. For a deterministic system, the RP will have many long diagonals and few or none 

isolated points leading to an important value of DET. Inversely, for a system with random 

behavior, the RP will have none or very short diagonals leading to a low value of DET [32]. 

RQA provides many other output measures [32] but we focus here only on the DET outcome 

to quantify the regularity of force signals. 

 

2.5.2.3) Selection of input parameters   

The appropriate setting of the different input parameters (i.e. delay τ, dimension m and the 

thresholds ε and lmin) is crucial and particularly challenging when dealing with physiological 

data which may involve deterministic and stochastic features. Several methods have been 

proposed to optimise the selection of the input parameters. 

 

2.5.2.3.1) Delay τ 

A good estimation of delay τ is important to perform reliable analysis. If the delay is too small, 

the successive time delay vectors will be strongly correlated and inversely, if the delay is too 

large the time delay vectors will be virtually independent [45]. Two methods are conventionally 

used to select the optimal delay τ. The first one consists to select the time delay for which the 

autocorrelation function reach the value 1/e whereas the second one consists to choose the first 

local minimum of the average mutual information function [45,47]. Note that the average 

mutual information is sometimes preferred since it presents the advantage to consider the 

nonlinear dependencies not taken into account by the autocorrelation function. However, for 

most of our force signals these methods were not usable (i.e. significant variability for a same 

method between signals and/or inconsistent results between both methods for a given signal; 

Fig. 3).  

 

Figure 3. (A) Example of pre-processed force signal of 5-s duration and its associated (B) autocorrelation and (C) average 

mutual information functions. 

Therefore, the time delay τ was selected using an approach previously used for the analysis of 

center of pressure signals presented in [17] (i.e. via the 2-dimensional phase space plot of xi vs. 
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xi+τ). Using this method, we found an acceptable time delay τ = 20 (i.e. corresponding to 40ms 

after down-sampling) allowing to ensure a reasonable deployment of the 2-dimensional phase 

space without the successive samples becoming completely independent (Fig. 4). 

 
Figure 4. 2-dimensional phase plot from pre-processed force signal presented in Fig. 3A for (A) τ = 1 and (B) τ = 20. 

2.5.2.3.2) Embedding dimension m 

The optimal dimension m corresponds to the dimension in which the neighbors of each point 

(or time delay vector) within the reconstructed phase space can be considered as “real 

neighbors”. Classically, this optimal dimension is selected using the global false nearest 

neighbor (FNN) algorithm [45,48]. This method is based on the computation of the number of 

neighbors of each delay vector within the phase space and observing how this number evolves 

when the embedding dimension m is increased. FNN algorithm relies on the ratio of  distances 

separating two delay vectors in the dimension m and the dimension m-1. If this ratio is higher 

than a threshold (generally denoted Rtol), the delay vectors are considered as "false neighbors". 

Figures 5B and 5C illustrate the projection of the phase space of a given force signal (Fig. 5A) 

from dimension 2 to dimension 3 and presents how two delay vectors can become "false 

neighbors" when the dimension is increased (i.e. the green and red points were close enough to 

be considered neighbors in dimension 2 but not in dimension 3). The optimal dimension m 

corresponds to the dimension from which the percentage of false neighbors drop to 0. Results 

obtained with the FNN method were consistent for all force signals. Therefore, the optimal 

dimension m was set at 3 (Fig. 5D), in line with results reported in [37–39] from handgrip force 

signals. 
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Figure 5. (A) Example of pre-processed force signal of 5-s duration and its associated phase spaces for dimension m=2 in (B) 

and m=3 in (C). The green and red points in panels (B) and (C) represent two-time delay vectors considered as “false 

neighbors” when the 2-dimensional phase space is projected in dimension 3. (D) Effect of dimension on the percentage of 

false nearest neighbors for force signal presented in (A). 
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2.5.2.3.3) Thresholds ε and lmin 

The threshold ε (sometimes called radius) defines the size of the neighborhood in the 

reconstructed phase space for which two points given by two delay vectors yi and yj can be 

considered close and will generate a recurrence point at location (i,j) (see equation (5)). 

Therefore, the choice of threshold ε is crucial. If ε is too large, almost all pairs of points of the 

phase space will be considered as neighbors, leading to many recurrence points in the RP. 

Inversely, if ε is too small, very few pairs of points will be neighbors leading to an absence of 

recurrence points in the RP. In both cases, the RP provides no information regarding the 

temporal structure of the time series under study. In contrast to dimension or delay, there is no 

generic method available in the literature to determine the optimal threshold ε. Several “rules 

of thumb” have been suggested, as set the ε according to a given percentage of mean or 

maximum phase space diameter or select a threshold ε leading to a fixed RR [32]. Here, we 

made the choice to use a fixed RR. Indeed, since the different RQA measures are strongly 

dependent on the RR, which is dependent on the threshold ε, we used a variable radius to ensure 

a RR close to 1% for all force signals (i.e. 1.18 ± 0.06%). 

Finally, lmin was set at 5 to prevent a threshold effect for the estimation of DET (i.e. avoid 

reaching the maximal value of 100%). To perform RQA computation we used the Cross 

Recurrence Plot Toolbox (version 5.22) developed by Marwan et al. [32,49]. Figure 6 presents 

examples of RPs obtained for a male and a female participant at different time points of the task 

(i.e. baseline, fatigue and recovery). 
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Figure 6. Recurrence plots generated from knee extensors force signals of 5-s duration acquired at baseline (A,D), after 

fatigue (B,E) and after recovery (C,F) for a male (A,B,C) and a female participant (D,E,F). 

2.6) Statistical analysis 

All statistical procedures were performed on Prism (Version 8.0.2, GraphPad Software, San 

Diego, CA, USA). For all variables, normality of distribution was visually inspected and 

checked using Shapiro-Wilk and D’Agostino-Pearson tests. Age, baseline MVC, baseline DET, 

anthropometric characteristics, endurance time, and rate of decrease and increase for 

normalised MVC and DET (i.e. expressed in percentage of baseline values) were compared 

between groups using unpaired t-test or Mann-Whitney test when conditions for the application 

of parametric test were not met. To detect effects of sex, time (baseline, fatigue, recovery) and 

any interactions for normalised MVC and normalised DET during the task, linear mixed models 

applying the Greenhouse-Geisser correction with one within group factor (time) and one 

between group factor (sex) were used followed by the Bonferroni multiple-comparison test. 

Linear mixed models were used because they allow to analyse repeated measures data with 

missing values. This statistical approach was particularly relevant for normalised MVC data 

since two samples were missing in the data set (i.e. two failed MVCs during experimental 

sessions). The same statistical procedure was performed to analyse normalised DET, but 

because linear mixed model needs normally distributed data, we decided to remove extreme 

values to ensure the normal distribution. To this end we used the ROUT method (i.e. robust 

regression followed by outlier identification) introduced in [50], which led to remove four 

extreme values of normalised DET (i.e. 3.5% of the data set). It is of note that statistical analyses 

were also performed with absolute values of MVC and DET. These analyses revealed similar 
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results to those obtained with normalised values, but because it would be redundant to present 

the results in both absolute and relative values we reported here only results computed from 

normalised values. Relationships between traditional measures of neuromuscular fatigue and 

recovery (i.e. changes of normalised MVC) and changes in regularity of force signals (i.e. 

changes of normalised DET) and relationship between absolute values of baseline DET and 

baseline MVC were assessed using Pearson coefficient correlation when data were normally 

distributed and Spearman correlation coefficient for non-normal data. All data are presented as 

mean ± SD within the text and figures. For all analyses, a significance level of p < 0.05 was 

used to identify statistical significance. 
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3) Results 

 

3.1) Traditional neuromuscular parameters 

Men had higher baseline MVC compared to women (349.7 ± 57.3 N·m vs. 223.7 ± 45.0 N·m, 

respectively; p < 0.001; Table 1). Consequently, the mean submaximal target force level to 

maintain during the fatiguing task was higher for men than women (174.9 ± 28.6 N·m vs. 111.9 

± 22.5 N·m, respectively; p < 0.001). Endurance time was significantly longer for women than 

men (521 ± 321 s vs. 221 ± 57 s, respectively; p < 0.001; Fig. 7).  

 
Figure 7. Influence of sex on endurance time. Color symbols represent the individual data (n = 19 for each group). The 

horizontal black lines represent mean ± SD. *: significant difference. 

 

Main effect of time was found for normalised MVC (F(1.8,62.3) = 598.5; p < 0.001) with no 

significant main effect of group (F(1, 36) = 0.16; p = 0.69) or interaction effect (time × group; 

F(2, 70) = 0.34; p = 0.72). When considering all participants, normalised MVC decreased 

significantly with fatigue (Δ42.8 ± 6.9% of baseline value; p < 0.001) then increased 

significantly after recovery (Δ17.8 ± 7.0% of baseline value; p < 0.001) but remained lower 

than baseline (p < 0.001). 

As the decrease of normalised MVC was similar for both groups and considering the shorter 

endurance time for men, the rate of decrease for normalised MVC during the fatiguing task was 

significantly greater for men than women (-0.21 ± 0.08 % of baseline value.s-1 vs. -0.11 ± 0.05 

% of baseline value.s-1, respectively; p < 0.001; Fig. 8A). However, the rate of increase for 

normalised MVC during recovery was not significantly different between men and women 

(0.09 ± 0.03 % of baseline value.s-1 vs. 0.11 ± 0.05 % of baseline value.s-1, respectively; p = 

0.48; Fig. 8B). 

 

3.2) Recurrence quantification analysis 

At baseline, DET was significantly lower for men than women (83.2 ± 7.0% vs. 94.5 ± 3.1%; 

p < 0.001; Table 1).  

Effect of time (F(1.3,43.7) = 35.68; p < 0.001), group (F(1, 36) = 23.24; p < 0.001) and interaction 

(time × group; F(2, 68) = 19.49; p < 0.001) were found for normalised DET. When considering 

all participants, normalised DET increased significantly with fatigue (Δ9.6 ± 10.4% of baseline 

value; p < 0.001) then decreased significantly after recovery (Δ2.2 ± 3.5% of baseline value; p 

= 0.002) but remained higher than baseline (p < 0.001). After the fatiguing task, the significant 

increase of normalised DET was more important for men (Δ15.5 ± 11.2% of baseline value) 

than for women (Δ2.9 ± 2.2% of baseline value) (p < 0.001). After recovery, normalised DET 

decreased significantly for women (Δ1.9 ± 1.7% of baseline value; p < 0.005) and returned to 

baseline value (i.e. no significant difference between recovery and baseline; p = 0.17). 

However, the decrease of normalised DET after recovery was not significant for men (Δ2.4 ± 

4.5% of baseline value; p = 0.09). 
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Considering the shorter endurance time for men compared to women, the rate of increase for 

normalised DET during the fatiguing task was significantly greater for men than women (0.08 

± 0.06 % of baseline value.s-1 vs. 0.02 ± 0.04 % of baseline value.s-1, respectively; p < 0.001; 

Fig. 8C). However, the rate of decrease for normalised DET during recovery was not 

significantly different between men and women (-0.01 ± 0.03 % of baseline value.s-1 vs. -0.01 

± 0.01 % of baseline value.s-1, respectively; p = 0.93; Fig. 8D). 

 
Figure 8. Influence of sex on (A) rate of decrease for normalised MVC from baseline to fatigue; (B) rate of increase for 

normalised MVC during 3 min of recovery; (C) rate of increase for normalised DET from baseline to fatigue and (D) on rate of 

decrease for normalised DET during 3 min of recovery. Color symbols represent the individual data. Data are presented as 

mean ± SD (n = 19 for each group except for women group in panel B where n = 17). *: p<0.001: significant difference. 

 

3.3) Correlations between complexity and traditional neuromuscular parameters 

When considering all participants, baseline values of MVC and DET (expressed in absolute 

values) were significantly correlated (R = -0.36; p = 0.028; Fig. 9A). The rate of decrease for 

normalised MVC during the fatiguing task was significantly correlated to the rate of increase 

for normalised DET (R = -0.76; p < 0.001; Fig. 9B) whereas the rate of increase for normalised 

MVC during recovery was not correlated to the rate of decrease normalised for DET (R = 0.12; 

p = 0.49; Fig. 9C). 

When correlations were performed separately for men and women, baseline values of MVC 

and DET were not significantly correlated, for both men (R = 0.32; p = 0.18) and women (R = 

-0.17; p = 0.48). The rate of decrease for normalised MVC during the fatiguing task was 

significantly correlated to the rate of increase for normalised DET, for men (R = -0.64; p = 

0.003) and women (R = -0.62; p < 0.01). For both men and women, the rate of increase for 

normalised MVC during recovery was not correlated to the rate of decrease for normalised DET 

(R = 0.28; p = 0.24 and R = 0.12; p = 0.66, respectively). 
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Figure 9. Scatterplot of (A) absolute baseline maximal voluntary contraction (MVC) as function of absolute baseline 

percentage of determinism (DET), (B) rate of decrease for normalised MVC during the fatiguing task as function of rate of 

increase for normalised DET and (C) rate of increase for normalised MVC during recovery as function of rate of decrease for 

normalised DET. Black lines represent the normalised slopes for all participants (n = 38 except in panel C where n = 36). 
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4) Discussion 

 

Although RQA has been applied to many physiological signals, to the best of our knowledge, 

its application to force signals in a context of neuromuscular fatigue has never been studied. 

The major novel finding of the present study is that DET obtained from RQA is sensitive to 

changes of force signal complexity induced by fatigue and recovery. Our results also highlight 

that DET allows to discern sex differences regarding these changes. The significant relationship 

between the rate of decrease in complexity and a measure of fatigability supports that the former 

computed in the context of submaximal contractions can be considered as a relevant tool for 

the quantification of neuromuscular fatigue. 

 

4.1) RQA detects muscle fatigue and recovery 

As hypothesized, DET measure from RQA increased significantly with the appearance of 

neuromuscular fatigue. This result reflects a fatigue-induced loss of complexity of force signals, 

corroborating previous results of the literature obtained with others indicators of complexity 

(i.e. entropy and fractal measures) [9,21,22]. This finding is particularly relevant to extend the 

"toolkit" of metrics available to assess changes of force signal complexity. Changes of DET 

with the appearance of neuromuscular fatigue has been largely demonstrated for EMG signals 

[15,34–36]. It has been suggested that this result is mainly due to the synchronization of motor 

units caused by fatigue [15]. Since this synchronization also impacts the fluctuations of force 

signals [51,52], it seems very likely that such a mechanism is involved in the increase of DET 

of force signals reported here. 

The increase of DET with the appearance of neuromuscular fatigue was previously suggested 

by Li et al. in [39] for force signals acquired during brief handgrip contractions (i.e. by dividing 

the contractions of 30-s duration performed at 70% of maximal voluntary force in 5-s windows). 

However, this result needed to be confirmed for several reasons: (i) the increase of DET was 

not reported in other studies conducted by the same research group using identical protocols 

[37,38], which is probably explained by the differences in the populations studied and/or the 

sample size; (ii) the force signals analysed were obtained during muscle contractions which 

were not conducted until task failure, inducing different levels of fatigue between participants 

and (iii) no traditional fatigue assessments were performed, making impossible to quantify the 

level of fatigue induced by the muscle contractions.  

The significant relationship between an index of fatigability (i.e. rate of decrease for normalised 

MVC) and an index of loss of complexity (i.e. rate of increase for normalised DET) supports 

that RQA applied to force signals might be an interesting new indicator to assess neuromuscular 

fatigue. Nevertheless, it is important to note that rate of decrease for normalised MVC reflects 

changes of maximal force capacities whereas the DET from RQA was obtained from signals 

acquired during submaximal contractions. Future studies involving EMG measurements could 

investigate the relationship between the rate of decrease of force signal complexity and the rate 

of increase of the root mean square of EMG signals, a commonly used index for neuromuscular 

fatigue quantification [53]. 

Beyond its capacity to detect fatigue, the DET measure is sensitive to recovery. At the whole 

group level, the short period of rest allowed a significant recovery of the maximal voluntary 

force capacities concomitantly to a significant decrease of DET (index of complexity recovery). 

Although our results do not indicate a significant relationship between the rate of decrease for 

normalised DET and the rate of increase for normalised MVC, this finding suggests that DET 
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computed from force signals is a sensitive index to detect several state changes of the 

neuromuscular system (i.e. fatigue and recovery). 

 

4.2) RQA detects sex differences 

As expected, endurance time was significantly more important for women than men (521 ± 321 

s vs. 221 ± 57 s). Additionally, rate of decrease for normalised MVC force was significantly 

greater for men than women. These results are in line with numerous studies showing that 

women are less fatigable than men during submaximal isometric muscle contractions performed 

at the same relative intensity [41].  

An important finding is related to the sex differences regarding the complexity of force signals. 

Men showed a greater complexity (revealed by a lower value of DET) of force signals than 

women at the beginning of the fatiguing task (i.e. baseline or without fatigue).  Similar results 

were previously reported in studies assessing complexity by means of sample entropy [24,54]. 

Our results show a significant negative relationship between MVC and DET obtained at 

baseline. Although this relationship was not confirmed when computed on both groups 

separately (potentially explained by the reduction of samples size), this finding suggests that 

the differences of complexity of force signals between men and women are likely explained by 

the absolute force level produced by the participants (which was significantly greater for men 

than women). Another explanation could concern the inverted U-shaped relationship between 

the level of force generated (i.e. expressed in percentage of MVC) and the complexity of force 

signals [8,24,55]. It has been shown that there is a range of force level (~ 40-60% MVC) for 

which the complexity of force signals would be optimal. However, the results presented in the 

aforementioned studies were obtained from both men and women and concerned upper limb 

muscle groups. In view of the potential differences in the physiological characteristics of 

neuromuscular system between men and women (e.g. muscle fiber type) [41], it is not unlikely 

that this relationship is not perfectly similar for both sexes. For instance, it would be possible 

that the optimal force complexity will be found at ~ 50% MVC for men and at ~ 70% MVC for 

women, which could explain the differences of baseline complexity reported here. Further 

studies using several measures of complexity are needed to increase our understanding 

regarding the sex and muscle group influences on the relationship between force levels and the 

complexity of force signals.  

Another new finding from the current study is the influence of sex on the changes in complexity 

of force signals induced by fatigue and recovery. Our data show a greater rate of increase for 

normalised DET for men than for women during the fatiguing task, indicating a faster loss of 

complexity for men. Regarding recovery, no significant difference between groups was 

reported for the rate of decrease for normalised DET, indicating a similar rate of recovery of 

complexity between men and women. Nevertheless, after recovery the decrease of normalised 

DET was significant only for women and can be considered as complete since no significant 

difference was reported between the value of DET obtained after recovery and the baseline 

value. These differences between sexes are probably due to the several factors explaining the 

differences of fatigability between men and women (e.g. types of fibers, oxidative capacities, 

muscle perfusion, voluntary activation) [41]. Further studies are needed to clarify the 

underlying neuromuscular mechanisms behind these differences. 

4.3) Influence of input parameters 

As mentioned above, the selection of appropriate input parameters of RQA is not 

straightforward, especially for the analysis of physiological signals. Here, this selection was 
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particularly difficult for the time delay τ by using traditional methods presented in the literature 

(i.e. autocorrelation and mutual information functions). Considering that these methods were 

not suitable for the analysis of our signals, it was more appropriate to use another approach 

based on a visual inspection of 2-dimensional phase spaces. The use of this approach was 

motivated for the reason that it was previously used for the analysis of postural signals [17], 

which exhibit similar features to force signals obtained in our study. Nevertheless, since the 

visual nature of this method represents an important limit, we derived RQA measures with a 

range of time delay (10-30) to confirm the qualitative consistency of our results. Since all input 

parameters have an influence on the measures derived from RQA, we used a range of values 

for each parameter (dimension m = 2-4, RR = 1-10, lmin = 2-5). Using alternative values of these 

parameters within these ranges, no qualitative changes were observed regarding similar 

statistical analyses. Note that for some parameters the results of the DET were not usable. For 

instance, for several RR and lmin values (i.e. greater than 2% and 3 respectively) we commonly 

observed a sort of threshold effect for DET values (i.e. values close to the maximal value of 

100%). This phenomenon had the effect of masking any change in complexity, whether under 

the influence of sex, fatigue or recovery. 

4.4) Limitations 

A first limitation is that all experimental sessions were performed on the right leg. The dominant 

lower limb was not recorded, which could slightly impact the changes of the dynamic of force 

fluctuations and differences reported between sexes (especially in the case of significant 

difference regarding the ratio dominant/non-dominant limb between men and women).  

Moreover, we assessed the sensitivity of RQA to fatigue using only two time points (i.e. 

baseline and fatigue). Indeed, the short endurance time for some male participants did not allow 

presenting the full kinetic of DET and MVC changes along the fatiguing protocol. To this end, 

future studies should use protocols allowing longer tests duration for all participants, either by 

using lower target force level and/or changing the duty cycle (i.e. ratio contraction / relaxation) 

if intermittent contractions are used. 
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5) Conclusion 

 

This study provides evidence that RQA is an interesting tool for detecting changes in the 

complexity of force signals induced by fatigue and recovery. When the selection of input 

parameters is performed properly, this method can expand the toolkit of measures used to 

quantify the complexity of force signals. Future studies regarding the changes of complexity of 

the neuromuscular system with the appearance of neuromuscular fatigue or after recovery 

should consider the differences between sex reported in the present study. In practice, DET 

computed from force signals recorded during submaximal contractions might be an alternative 

to quantify neuromuscular fatigue, which may be relevant in various clinical and applied 

settings. 
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