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Abstract. The provability logic Grz is characterized by a class of modal
frames that is not first-order definable. We present a simple embedding of
Grz into decidable fragments of classical first-order logic such as FO2 and
the guarded fragment. The embedding is an O((n.log n)3)-time transfor-
mation that neither involves first principles about Turing machines (and
therefore is easy to implement), nor the semantical characterization of
Grz (and therefore does not use any second-order machinery). Instead,
we use the syntactic relationships between cut-free sequent-style calculi
for Grz, S4 and T. We first translate Grz into T, and then we use the
relational translation from T into FO2.

1 Introduction

Propositional modal logics have proved useful in many areas of computer
science because they capture interesting properties of binary relations
(Kripke frames) whilst retaining decidability (see e.g. [Var97,Ben99]). By
far the most popular method for automating deduction in these logics
has been the method of analytic tableaux (see e.g. [Fit83,Rau83,Gor99]),
particularly because of the close connection between tableaux calculi and
known cut-free Gentzen systems for these logics.

An alternative approach is to translate propositional modal logics
into classical first-order logic since this allows us to use the wealth of
knowledge in first-order theorem proving to mechanize modal deduc-
tion (see e.g. [Mor76,Ohl88,Her89,dMP95,Non96,Ohl98]). Let FOn be the

? Supported by an Australian Research Council Queen Elizabeth II Fellowship.
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fragment of classical first-order logic using at most n individual vari-
ables and no function symbols. Any modal logic characterized by a first-
order definable class of modal frames can be translated into FOn for
some fixed n ≥ 2. The decidable modal logic K4, for example, is char-
acterised by transitive frames, definable using the first-order formula
(∀x, y, z)(R(x, y) ∧ R(y, z) ⇒ R(x, z)) containing 3 variables. Since FO3

is undecidable and FO2 is decidable, translating K4 into first-order logic
does not automatically retain decidability. Of course, the exact fragment
delineated by the translation is decidable. The only known first-order de-
cision procedure for that particular fragment except the one that mimicks
the rules for K4 is the one recently published in [GHMS98]. Therefore,
blind translation is not useful if this means giving up decidability.

Moreover, it is well-known that many decidable propositional modal
logics are characterised by classes of Kripke frames which are not first-
order definable, and that the “standard” relational translation (see e.g.
[Mor76,Ben83]) is unable to deal with such logics. The class of such “sec-
ond order” modal logics includes logics like G and Grz which have been
shown to have “arithmetical” interpretations as well as logics like S4.3.1
which have interpretations as logics of linear time (without a next-time
operator) [Gor94].

Somewhat surprisingly, faithful translations into classical logic (usu-
ally augmented with theories) have been found for some propositional
modal logics even when these logics are characterized by classes of frames
that are not first-order definable. For instance, the modal logic K aug-
mented with the McKinsey axiom is captured by the framework presented
in [Ohl93]. Similarly, the provability logic G3 that admits arithmetical
interpretations [Sol76] is treated within the set-theoretical framework de-
fined in [dMP95]. Both techniques in [Ohl93,dMP95] use a version of
classical logic augmented with a theory. Alternatively, G can also be
translated into classical logic by first using the translation into K4 de-
fined in [BH94] and then a translation from K4 into classical logic (see
e.g. [Ben83]).

The fact that G can be translated into a decidable fragment of classical
logic follows from a purely complexity theory viewpoint, as shown next.
Take a modal logic L that is in the complexity class C and let C′ be
another complexity class. Here a logic is to be understood as a set of
formulae and therefore a logic is exactly a (decision) problem in the usual
sense in complexity theory. That is, as a language viewed as a set of
strings built upon a given alphabet. By definition (see e.g. [Pap94]), for

3 Also called GL (for Gödel and Löb), KW, K4W, PrL.
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any fragment of classical logic that is C-hard with respect to C′ many-one
reductions4, there is a mapping f in C′ such that any modal formula φ ∈ L
iff f(φ) is valid in such a first-order fragment. From the facts that G is in
PSPACE (see e.g. [BH94,Lad77]), validity in FO2 is NEXPTIME-hard
[Für81] (see also [Lew80]) and PSPACE ⊆ NEXPTIME, it is easy to
conclude that there exists a polynomial-time transformation from G into
validity in FO2.

As is well-known, this illustrates the difference between the fact that a
propositional modal logic K + φ is characterised by a class of frames which
is not first-order definable, and the existence of a translation from K + φ
into first-order logic. The weak point with this theoretical result is that
the definition of f might require the use of first principles about Turing
machines. If this is so, then realising the map f requires cumbersome
machinery since we must first completely define a Turing machine that
solves the problem. This is why the translations in [Ohl93,BH94,dMP95]
are much more refined and practical (apart from the fact that they allow
to mechanise the modal logics under study).

Another well-known modal logic that is characterized by a class of
modal frames that is not first-order definable is the provability logic Grz
(for Grzegorczyk). The main contribution of this paper is the definition
of an O(n.log n)-time transformation from Grz into S4, using cut-free
sequent-style calculi for these respective logics. Renaming techniques from
[Min88] are used in order to get the O(n.log n)-time bound. Then, we
present a cubic-time transformation from S4 into T, again using the cut-
free sequent-style calculi for these respective logics. Both reductions pro-
ceed via an analysis of the proofs in cut-free sequent calculi from the
literature. The second reduction is a slight variant of the one presented in
[CCM97] (see also [Fit88]). The reduction announced in the title can be
obtained by translating T into FO2, which is known to be decidable (see
e.g. [Mor75]). Furthermore, the formula obtained by reduction belongs to
the decidable guarded fragment of classical logic (see e.g. [ANB98]) for
which a resolution decision procedure has been defined in [Niv98].

In [Boo93, Chapter 12], a (non polynomial-time) transformation from
Grz into G is defined. By using renamings of subformulae, it is easy to ex-
tract from that transformation, an O(n.log n)-time transformation from
Grz into G [Boo93, Chapter 12]. There exists an O(n)-time transforma-
tion from G into K4 [BH94]. There exists an O(n4.log n)-time transfor-
mation from K4 into K using [CCM97] and renamings of subformulae. Fi-
nally, there exists an O(n)-time transformation from K into FO2 [Ben83].

4 Also called “transformation”, see e.g. [Pap94].
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Combining these results gives anO(n4.(log n)5)-time transformation from
Grz into FO2, a decidable fragment of first-order logic.

The translation proposed in this paper is therefore a more refined al-
ternative since it requires only time in O((n.log n)3). As a side-effect,
we obtain an O(n.log n)-time transformation from Grz into S4 and an
O((n.log n)3)-time transformation from Grz into T. Using the space up-
per bound for S4-validity from [Hud96], we obtain that Grz requires only
space in O(n2.(log n)3). We are not aware of any tighter bound for Grz in
the literature. Furthermore, our purely proof-theoretical analyses of the
cut-free sequent-style calculi, and sometimes of the Hilbert-style proof
systems, gives a simple framework to unify the transformations involved
in [Boo93,BH94,CCM97]. As we intend to report in a longer paper, it
is also possible to generalise our method to handle other “second order”
propositional modal logics like S4.3.1 using the calculi from [Gor94] (see
also [DG99] for a generalisation and extension in the Display Logic frame-
work [Bel82]). This paper is a completed version of [DG98].

2 Basic Notions

In the present paper, we assume that the modal formulae are built from a
countably infinite set For0

def= {pi,j : i, j ∈ ω} of atomic propositions using
the usual connectives 2, ¬, ⇒, ∧. Other standard abbreviations include
∨,⇔,3. The set of modal formulae is denoted For. An occurrence of the
subformula ψ in φ is positive [resp. negative] iff it is in the scope of an
even [resp. odd] number of negations, where as usual, every occurrence
of φ1 ⇒ φ2 is treated as an occurence of ¬(φ1 ∧ ¬φ2). For instance 2p0,0

[resp. 2p0,1] has a positive [resp. negative] occurrence in (22p0,1) ⇒
(p0,1 ∧2p0,0). We write mwp(φ) [resp. mwn(φ)] to denote the number of
positive [resp. negative] occurrences of 2 in φ. We write |φ| to denote the
size of the formula φ, that is the number of symbols occurring in φ. φ is
also represented as a string of characters.

We recall that the standard Hilbert system K is composed of the
following axiom schemes: the tautologies of the Propositional Calculus
(PC) and 2p ⇒ (2(p ⇒ q) ⇒ 2q). The inference rules of K are modus
ponens ( from p and p ⇒ q infer q) and necessitation (from p infer 2p).
By abusing our notation, we may identify the system K with its set of
theorems, allowing us to write φ ∈ K to denote that φ is a theorem of K.
Analogous notation is used for the following well-known extensions of K:
T def= K + 2p⇒ p, K4 def= K + 2p⇒ 22p, S4 def= K4 + 2p⇒ p and Grz
def= S4 + 2(2(p⇒ 2p) ⇒ p) ⇒ 2p. Numerous variants of the system Grz
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(having the same set of theorems) can be found in the literature (see for
instance [GHH97]).

We call GT , GS4 and GGrz the cut-free versions of the Gentzen-style
calculi defined in [OM57,Avr84] where the sequents are built from finite
sets of formulae. Moreover, the weakening rule is absorbed in the initial
sequents. For instance, the initial sequents of all the Gentzen-style calculi
used in the paper are of the form Γ, φ ` ∆,φ where “,” denotes set union.
The common core of rules for the systems GT , GS4 and GGrz are presented
in Figure 1.

Γ, φ ` ∆,φ (initial sequents)

Γ ` ∆,φ
Γ,¬φ ` ∆ (¬ `)

Γ, φ ` ∆
Γ ` ∆,¬φ (` ¬)

Γ, φ1, φ2 ` ∆
Γ, φ1 ∧ φ2 ` ∆

(∧ `)
Γ ` ∆,φ1 Γ ` ∆,φ2

Γ ` ∆,φ1 ∧ φ2
(` ∧)

Γ ` ∆,φ1 Γ, φ2 ` ∆
Γ, φ1 ⇒ φ2 ` ∆

(⇒`)
Γ, φ1 ` ∆,φ2

Γ ` ∆,φ1 ⇒ φ2
(`⇒)

Γ,2φ, φ ` ∆
Γ,2φ ` ∆ (2 `)

Fig. 1. Common core of rules

The introduction rules for 2 on the right-hand side are the following:

Γ ` φ
Σ,2Γ ` 2φ,∆

(` 2)T
2Γ ` φ

Σ,2Γ ` 2φ,∆
(` 2)S4

2Γ,2(φ⇒ 2φ) ` φ
Σ,2Γ ` 2φ,∆

(` 2)Grz

where 2Γ
def= {2ψ : ψ ∈ Γ}. Moreover, we assume that in Σ, there is no

formula of the form 2ψ. This restriction is not essential for completeness
(and for soundness) but it is used in the proof of Lemma 5. Each rule
(` 2)T , (` 2)S4 and (` 2)Grz belongs respectively to GT , GS4 and GGrz.
For each L ∈ {T, S4, Grz}, we know that for any sequent Γ ` ∆, the
formula (

∧
φ∈Γ φ) ⇒ (

∨
φ∈∆ φ) ∈ L iff5 the sequent Γ ` ∆ is derivable in

GL (see e.g. [OM57,Avr84,Gor99]). Consequently, if Γ ` ∆ is derivable in
GL, then so is Γ, Γ ′ ` ∆,∆′.

5 As is usual, the empty conjunction is understood as the verum logical constant > (or
simply p0,0 ∨ ¬p0,0) and the empty disjunction is understood as the falsum logical
constant ⊥ (or simply p0,0 ∧ ¬p0,0).
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3 A transformation from Grz into S4

Let f : For× {0, 1} → For be the following map:

– for any p ∈ For0, f(p, 0) def= f(p, 1) def= p

– f(¬φ, i) def= ¬f(φ, 1− i) for i ∈ {0, 1}
– f(φ1 ∧ φ2, i)

def= f(φ1, i) ∧ f(φ2, i) for i ∈ {0, 1}
– f(φ1 ⇒ φ2, i)

def= f(φ1, 1− i) ⇒ f(φ2, i) for i ∈ {0, 1}
– f(2φ, 1) def= 2(2(f(φ, 1) ⇒ 2f(φ, 0)) ⇒ f(φ, 1)) f(2φ, 0) def= 2f(φ, 0).

In f(φ, i), the index i should be seen as information about the polarity
of φ in the translation process as is done in [BH94] for the translation
from G into K4. Observe that if we replace the definition of f(2φ, 1)
above by f(2φ, 1) def= 2(f(2(φ⇒ 2φ) ⇒ φ, 1)), we get the same map.

Since the rule of replacement of equivalents is admissible in Grz, one
can show by induction on the length of φ that for any φ ∈ For and for
any i ∈ {0, 1}, φ⇔ f(φ, i) ∈ Grz. Moreover,

Lemma 1. For any φ ∈ For, φ ⇒ f(φ, 1) ∈ K ⊆ S4 and f(φ, 0) ⇒ φ ∈
K ⊆ S4.

Proof. The proof is by simultaneous induction on the structure of φ.
The base case when φ is an atomic proposition is immediate. By way of
example, let us treat the cases below in the induction step:

(1) φ1 ∧ φ2 ⇒ f(φ1 ∧ φ2, 1) ∈ K (2) 2φ1 ⇒ f(2φ1, 1) ∈ K

(3) f(¬φ1, 0) ⇒ ¬φ1 ∈ K (4) f(2φ1, 0) ⇒ 2φ1 ∈ K.

(1) By the induction hypothesis, φ1 ⇒ f(φ1, 1) ∈ K and φ2 ⇒ f(φ2, 1) ∈
K. By easy manipulation at the propositional level, φ1 ∧ φ2 ⇒ f(φ1, 1)∧
f(φ2, 1) ∈ K. By definition of f , φ1 ∧ φ2 ⇒ f(φ1 ∧ φ2, 1) ∈ K.
(2) By the induction hypothesis, φ1 ⇒ f(φ1, 1) ∈ K. By easy ma-
nipulation at the propositional level, φ1 ⇒ (2(f(φ, 1) ⇒ 2f(φ, 0)) ⇒
f(φ1, 1)) ∈ K. It is known that the regular rule (from ψ1 ⇒ ψ2 infer
2ψ1 ⇒ 2ψ2) is admissible in K. So, 2φ1 ⇒ 2(2(f(φ, 1) ⇒ 2f(φ, 0)) ⇒
f(φ1, 1)) ∈ K. By the definition of f , 2φ1 ⇒ f(2φ1, 1) ∈ K.
(3) By the induction hypothesis, φ1 ⇒ f(φ1, 1) ∈ K. By easy manipula-
tion at the propositional level, ¬f(φ1, 1) ⇒ ¬φ1 ∈ K. By definition of f ,
f(¬φ1, 0) ⇒ ¬φ1 ∈ K.
(4) By the induction hypothesis, f(φ1, 0) ⇒ φ1 ∈ K. Since the regular
rule is admissible in K, 2f(φ1, 0) ⇒ 2φ1 ∈ K. By the definition of f ,
f(2φ1, 0) ⇒ 2φ1 ∈ K.

6



Theorem 1. A formula φ ∈ Grz iff f(φ, 1) ∈ S4.

Proof. If f(φ, 1) ∈ S4, then a fortiori f(φ, 1) ∈ Grz, and since φ ⇔
f(φ, 1) ∈ Grz, we then obtain φ ∈ Grz.

Now assume φ ∈ Grz, hence the sequent ` φ has a cut-free proof in
GGrz. We can show that in the given cut-free proof of ` φ, for every se-
quent Γ ` ∆ with cut-free proof Π ′, the sequent f(Γ, 0) ` f(∆, 1) admits
a cut-free proof in GS4. Here, f is extended to sets of formulae in the
natural way. So, we shall conclude that ` f(φ, 1) is derivable in GS4 and
therefore f(φ, 1) ∈ S4. The proof is by induction on the structure of the
derivations.
Base case: When Γ ` ∆ is an initial sequent Γ ′, ψ ` ψ,∆′, we can show
that f(Γ ′, 0), f(ψ, 0) ` f(ψ, 1), f(∆′, 1) has a cut-free proof in GS4 since
f(ψ, 0) ⇒ f(ψ, 1) ∈ S4. By completeness of GS4, f(ψ, 0) ` f(ψ, 1) has a
proof in GS4.
Induction step: The structural rules pose no difficulties because by defi-
nition f is homomorphic with respect to the comma. By way of example,
the proof step (in GGrz)

....
2Γ ′,2(ψ ⇒ 2ψ) ` ψ
Γ,2Γ ′ ` 2ψ,∆

(` 2)Grz

is transformed into the proof steps (in GS4)

....
2f(Γ ′, 0),2(f(ψ, 1) ⇒ 2f(ψ, 0)) ` f(ψ, 1)

2f(Γ ′, 0) ` 2(f(ψ, 1) ⇒ 2f(ψ, 0)) ⇒ f(ψ, 1)
(`⇒)

f(Γ, 0),2f(Γ ′, 0) ` 2(2(f(ψ, 1) ⇒ 2f(ψ, 0)) ⇒ f(ψ, 1)), f(∆, 1)
(` 2)S4

The induction hypothesis is used here since 2f(Γ ′, 0),2(f(ψ, 1) ⇒ 2f(ψ, 0)) `
f(ψ, 1) has a (cut-free) proof in GS4. Furthermore, by definition,

– f(2Γ ′, 0) = 2f(Γ ′, 0); f(2ψ, 1) = 2(2(f(ψ, 1) ⇒ 2f(ψ, 0)) ⇒ f(ψ, 1));
– f(2(ψ ⇒ 2ψ), 0) = 2(2(f(ψ, 1) ⇒ 2f(ψ, 0))).

Observe that f(Γ, 0) does not contain any formula of the form 2ψ′. The
proof (in GGrz)

....
Γ,2ψ,ψ ` ∆
Γ,2ψ ` ∆ (2 `)
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is transformed into the proof (in GS4)

....
f(Γ, 0),2f(ψ, 0), f(ψ, 0) ` f(∆, 1)

f(Γ, 0),2f(ψ, 0) ` f(∆, 1)
(2 `)

Indeed, f(2ψ, 0) = 2f(ψ, 0). The other cases are not difficult to obtain
and they are omitted here.

A close examination of f shows that f is not computable inO(n.log n)-
time. Indeed, the right-hand side in the definition of f(2φ, 1) requires sev-
eral recursive calls to f and the computation of f is therefore exponential-
time. However, we can use a slight variant of f that uses renamings as
done in [Min88]. Specifically, we have, (Renaming) φ ∈ S4 iff 2(pnew ⇔
ψ) ⇒ φ′ ∈ S4 where φ′ is obtained from φ by replacing every occurrence
of ψ in φ by the atomic proposition pnew not occurring in φ.

Let φ be a modal formula we wish to translate from Grz into S4. Let
φ1, . . . , φm be an enumeration (without repetition) of all the subformulae
of φ in increasing order with respect to the size such that the n first
formulae are all the atomic propositions occurring in φ. We shall build a
formula g(φ) using {pi,j : 1 ≤ i ≤ m, j ∈ {0, 1}} such that g(φ) ∈ S4 iff
f(φ, 1) ∈ S4. Moreover, g(φ) can be computed in time O(|φ|.log |φ|). For
i ∈ {1, . . . ,m}, we associate a formula ψi as shown in Figure 2 and let
g(φ) def= (

∧m
i=1 ψi) ⇒ pm,1.

Form of φi ψi

p 2(pi,0 ⇔ pi,1)

¬φj 2(pi,1 ⇔ ¬pj,0) ∧ 2(pi,0 ⇔ ¬pj,1)

φi1 ∧ φi2 2(pi,1 ⇔ (pi1,1 ∧ pi2,1)) ∧ 2(pi,0 ⇔ (pi1,0 ∧ pi2,0))

φi1 ⇒ φi2 2(pi,1 ⇔ (pi1,0 ⇒ pi2,1)) ∧ 2(pi,0 ⇔ (pi1,1 ⇒ pi2,0))

2φj 2(pi,1 ⇔ 2(2(pj,1 ⇒ 2pj,0)) ⇒ pj,1)) ∧ 2(pi,0 ⇔ 2pj,0)

Fig. 2. Definition of ψi

Lemma 2.
(1) f(φ, 1) ∈ S4 iff g(φ) ∈ S4 (2) computing g(φ) requires time in O(|φ|.log |φ|)

(3) |g(φ)| is in O(|φ|.log |φ|) (4) mwp(g(φ)) +mwn(g(φ)) is in O(|φ|).
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Proof. (2)-(4) is by simple inspection of the definition of g(φ). The idea
of the proof of (1) is to effectively build g(φ) from f(φ, 1) by successively
applying transformations based on (Renaming). Such a process requires
exponential-time in φ (since |f(φ, 1)| can be exponential in |φ|). However,
we can build g(φ) in a tractable way (see (2)-(4)) since g translates and
renames simultaneously.
(1) Let us build g(φ) from f(φ, 1) by successively applying transforma-
tions based on (Renaming). For any atomic proposition q = φi occurring
in f(φ, 1), replace the positive [resp. negative] occurrences of q by pi,1
[resp. pi,0]. Let us say that we obtain the formula ψ (this shall be our
current working formula). The constraint formula, say C, is defined as
C

def=
∧n
i=1 2(pi,1 ⇔ pi,0). Along the steps, we shall have that f(φ, 1) ∈ S4

iff C ⇒ ψ ∈ S4. The next steps consist of replacing subformulae ψ′ in ψ
by their renaming equivalent and then to update C appropriately until
ψ = pm,1. For instance, take a subformula ψ′ = pi,1 ∧ pj,1 in ψ. Replace
every occurrence of pi,1∧pj,1 in ψ by pk,1 with φk = φi∧φj . The constraint
formula C is updated as follows: C := C ∧ 2(pk,1 ⇔ (pi,1 ∧ pj,1)). The
other cases are omitted and they use the decomposition from Figure 2. So,
when ψ is equal to pm,1, f(φ, 1) ∈ S4 iff C ⇒ pm,1 ∈ S4. It is easy to see
that (

∧m
i=1 ψi) ⇒ pm,1 ∈ S4 iff C ⇒ pm,1. Indeed, the set of conjuncts of

C is a subset of the set of conjuncts of
∧m
i=1 ψi. So, if C ⇒ pm,1 ∈ S4, then

g(φ) ∈ S4. In order to show that the converse also holds, let us define the
binary relation DEP between atomic propositions. Let pi1,j1 and pi2,j2 be
atomic propositions occurring in

∧m
i=1 ψi. We write pi1,j1 DEP pi2,j2 to

denote that there is a conjunct of
∧m
i=1 ψi of the form 2(ψ′1 ⇔ ψ′2) such

that either pi1,j1 occurs in ψ′1 and pi2,j2 occurs in ψ′2 or pi1,j1 occurs in ψ′2
and pi2,j2 occurs in ψ′1. Let DEP ∗ be the smallest equivalence relation
including DEP . It is easy to see that if g(φ) ∈ S4, then C ⇒ pm,1 ∈ S4
since for all the atomic propositions q occurring in

∧m
i=1 ψi but not in C,

not qDEP ∗pm,1.

Theorem 2. Grz requires space in O(n2.(log n)3).

An equivalent statement is that there exists a deterministic Turing
machine in SPACE(O(n2.(log n)3)) that solves the Grz-provability prob-
lem. This follows from the facts that S4 requires space in O(n2.log n)
[Hud96], computing g(φ) requires space in O(|φ|.log |φ|), and |g(φ)| is in
O(|φ|.log |φ|). Putting these together gives that checking whether g(φ)
is an S4-theorem requires space in O((|φ|.log |φ|)2.log(|φ|.log |φ|)), that
is space in O(|φ|2.(log |φ|)3). By the way, one can show that Grz is
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PSPACE-hard by using mappings from propositional intuitionistic logic
into Grz (see e.g. [CZ97]).

4 A transformation from S4 into T

Let h : For× ω × {0, 1} → For be the following map (n ∈ ω, i ∈ {0, 1}):

– for any p ∈ For0, h(p, n, 0) def= h(p, n, 1) def= p

– h(¬φ, n, i) def= ¬h(φ, n, 1− i)
– h(φ1 ∧ φ2, n, i)

def= h(φ1, n, i) ∧ h(φ2, n, i)
– h(φ1 ⇒ φ2, n, i)

def= h(φ1, n, 1− i) ⇒ h(φ2, n, i)
– h(2φ, n, 1) def= 2h(φ, n, 1)

– h(2φ, n, 0) def=

{
2nh(φ, n, 0) if n ≥ 1
2h(φ, n, 0) otherwise

The map h is a slight variant of the map MS4,T defined in [CCM97]
which itself is a variant of a map defined in [Fit88]. The main difference
is that we do not assume that the formulae are in negative normal form
(which is why a third argument dealing with polarity is introduced here).
In that sense, we follow [Fit88, Section 3]. Furthermore, since we are
dealing here with validity instead of inconsistency, the treatment of the
modal operators is dual.

Lemma 3. For any formula φ ∈ For and for any 0 ≤ m ≤ n,

(1) φ⇔ h(φ, n, 0) ∈ S4 and φ⇔ h(φ, n, 1) ∈ S4.
(2) h(φ, n, 0) ⇒ h(φ,m, 0) ∈ T and h(φ,m, 1) ⇒ h(φ, n, 1) ∈ T .
(3) h(φ, n, 0) ⇒ h(φ, n, 1) ∈ T .

Proof. The proof of (1) uses the facts that the rule of replacement of
equivalents is admissible in S4 and 2nψ ⇔ 2ψ ∈ S4 for any n ≥ 1 and
for any ψ ∈ For.
The proof of (2) is by simultaneous induction on the size of the formula.
By way of example, let us show in the induction step that h(2φ, n, 0) ⇒
h(2φ,m, 0) ∈ T . By induction hypothesis, h(φ, n, 0) ⇒ h(φ,m, 0) ∈ T .
It is known that the regular rule is admissible for T. So, by applying
this rule n times on h(φ, n, 0) ⇒ h(φ,m, 0), we get that 2nh(φ, n, 0) ⇒
2nh(φ,m, 0) ∈ T . Since 2nh(φ,m, 0) ⇒ 2mh(φ,m, 0) ∈ T (remember
m ≤ n and 2ψ ⇒ ψ ∈ T ), then 2nh(φ, n, 0) ⇒ 2mh(φ,m, 0) ∈ T .
(3) If n = 0, then h(φ, n, 0) = h(φ, n, 1) = φ. Now assume n ≥ 1. The
proof is by induction on the structure of φ. The base case when φ is
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an atomic proposition is immediate. Let us treat the cases φ = ¬φ′ and
φ = 2φ′ in the induction step. By Induction Hypothesis, h(φ′, n, 0) ⇒
h(φ′, n, 1) ∈ T . By manipulation at the propositional level, ¬h(φ′, n, 1) ⇒
¬h(φ′, n, 0) ∈ T . By definition of h, h(¬φ′, n, 0) ⇒ h(¬φ′, n, 1) ∈ T .
Moreover, by applying n times the regular rule (admissible in T) on
h(φ′, n, 0) ⇒ h(φ′, n, 1), we get 2nh(φ′, n, 0) ⇒ 2nh(φ′, n, 1) ∈ T . More-
over,

– 2nh(φ′, n, 1) ⇒ 2h(φ′, n, 1) ∈ T ;
– 2nh(φ′, n, 0) = h(2φ′, n, 0);
– 2h(φ′, n, 1) = h(2φ′, n, 1).

So, h(2φ′, n, 0) ⇒ h(2φ′, n, 1) ∈ T .

The map h is extended to sets of formulae in the most natural way.

Lemma 4. Let Γ ` ∆ be a sequent that has a (cut-free) proof Π in GS4
such that the maximum number of (` 2)S4-rule inferences in any branch
is at most n. Then, h(Γ, n, 0) ` h(∆,n, 1) has a (cut-free) proof in GT.

Lemma 4 is an extension of Lemma 2.2 in [CCM97].

Proof. The proof is by double induction on n and then on the length of
the proof Π of Γ ` ∆. The length of Π is just the number of nodes of
the proof tree.
Base case (i): n = 0. By definition, h(Γ, 0, 0) = Γ and h(∆, 0, 1) = ∆.
Any proof of Γ ` ∆ in GS4 with no applications of (` 2)S4 is also a proof
of Γ ` ∆ in GT .
Induction step (i): assume that for any sequent Γ ` ∆ having a (cut-free)
proof in GS4 such that the maximum number of (` 2)S4-rule inferences
in any branch is at most n − 1 ≥ 0, h(Γ, n − 1, 0) ` h(∆,n − 1, 1) has a
(cut-free) proof in GT. Now, let Γ ` ∆ be a sequent that has a (cut-free)
proof Π in GS4 such that the maximum number of (` 2)S4-rule inferences
in any branch is at most n. We use an induction on the length of Π.
Base case (ii): Γ ` ∆ is an initial sequent Γ ′, φ ` ∆′, φ. By Lemma 3(3),
h(φ, n, 0) ⇒ h(φ, n, 1) ∈ T . So, h(φ, n, 0) ` h(φ, n, 1) has a cut-free proof
in GT by completeness of GT with respect to T. Hence, h(Γ ′, n, 0), h(φ, n, 0) `
h(∆′, n, 1), h(φ, n, 1) has a cut-free proof in GT .
Induction step (ii): assume that for any sequent Γ ` ∆ having a (cut-
free) proof Π of length at most n′ − 1 ≥ 1 in GS4 such that the max-
imum number of (` 2)S4-rule inferences in any branch is at most n,
h(Γ, n, 0) ` h(∆,n, 1) has a (cut-free) proof in GT. Now, let Γ ` ∆ be a
sequent that has a (cut-free) proof Π in GS4 of length n′ such that the
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maximum number of (` 2)S4-rule inferences in any branch is at most
n. Among the Boolean connectives, we only treat here the case for the
conjunction since the cases for ¬ and ⇒ are similar. The proof Π below
(in GS4)

....
Γ ′, φ1, φ2 ` ∆′

Γ ′, φ1 ∧ φ2 ` ∆′ (∧ `)

is transformed into the proof below (in GT ) using the induction hypothesis
(ii)

....
h(Γ ′, n, 0), h(φ1, n, 0), h(φ2, n, 0) ` h(∆′, n, 1)

h(Γ ′, n, 0), h(φ1 ∧ φ2, n, 0) ` h(∆′, n, 1)
(∧ `)

The proof Π below (in GS4)
....

Γ ′ ` ∆′, φ1 Γ ′ ` ∆′, φ2

Γ ′ ` ∆′, φ1 ∧ φ2
(` ∧)

is transformed into the proof below (in GT ) using the induction hypothesis
(ii)

....
h(Γ ′, n, 0) ` h(∆′, n, 1), h(φ1, n, 1) h(Γ ′, n, 0) ` h(∆′, n, 1), h(φ2, n, 1)

h(Γ ′, n, 0) ` h(∆′, n, 1), h(φ1 ∧ φ2, n, 1)
(` ∧)

Consider the proof Π below:

Π ′
....

2Γ ′′ ` φ
Γ ′,2Γ ′′ ` 2φ,∆′ (` 2)S4

In the proof Π ′ of 2Γ ′′ ` φ in GS4, the maximum number of (` 2)S4-rule
inferences in any branch is less than n − 1. By induction hypothesis (i),
h(2Γ ′′, n − 1, 0) ` h(φ, n − 1, 1) has a cut-free proof, say Π ′′, in GT . So,
the proof below is obtained in GT :

Π ′′
....

2n−1h(Γ ′′, n− 1, 0) ` h(φ, n− 1, 1)
h(Γ ′, n, 0),2nh(Γ ′′, n− 1, 0) ` 2h(φ, n− 1, 1), h(∆′, n, 1)

(` 2)T
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For ψ ∈ Γ ′′, h(ψ, n, 0) ⇒ h(ψ, n − 1, 0) ∈ T by Lemma 3(2). By using n
applications of the regular rule, for ψ ∈ Γ ′′, 2nh(ψ, n, 0) ⇒ 2nh(ψ, n −
1, 0) ∈ T . Similarly, by Lemma 3(2) h(2φ, n − 1, 1) ⇒ h(2φ, n, 1) ∈ T .
By soundness of GT , the formula ϕ ∈ T where:

ϕ
def= ((

∧
ψ∈Γ ′

h(ψ, n, 0))∧(
∧

ψ∈Γ ′′

2nh(ψ, n−1, 0))) ⇒ (h(2φ, n−1, 1)∨
∨
ψ∈∆′

h(ψ, n, 1)).

For ψ ∈ Γ ′′, 2nh(ψ, n−1, 0) occurs negatively in ϕ and h(2φ, n−1, 1) oc-
curs positively in ϕ. By the Monotonicity of Entailment Lemma [AM86],

((
∧
ψ∈Γ ′

h(ψ, n, 0))∧(
∧

ψ∈Γ ′′

2nh(ψ, n, 0))) ⇒ (h(2φ, n, 1)∨
∨
ψ∈∆′

h(ψ, n, 1)) ∈ T

By completeness of GT , we get that h(Γ ′, n, 0), h(2Γ ′′, n, 0) ` h(2φ, n, 1), h(∆′, n, 1)
has a cut-free proof in GT . In order to conclude the proof, let us treat the
last case. Consider the proof Π below in GS4:

....
Γ ′,2φ, φ ` ∆′

Γ ′,2φ ` ∆′ (2 `)

By induction hypothesis (ii), h(Γ ′, n, 0),2nh(φ, n, 0), h(φ, n, 0) ` h(∆′, n, 1)
has a cut-free proof in GT . So,

s1
def= h(Γ ′, n, 0),2nh(φ, n, 0),2n−1h(φ, n, 0), . . . ,2h(φ, n, 0), h(φ, n, 0) ` h(∆′, n, 1)

has also a cut-free proof in GT . The above proof is transformed into (in
GT )

....
s1

h(Γ ′, n, 0),2nh(φ, n, 0),2n−1h(φ, n, 0), . . . ,2h(φ, n, 0) ` h(∆′, n, 1)
(2 `)

h(Γ ′, n, 0),2nh(φ, n, 0),2n−1h(φ, n, 0), . . . ,22h(φ, n, 0) ` h(∆′, n, 1)
(2 `)

....
h(Γ ′, n, 0),2nh(φ, n, 0),2n−1h(φ, n, 0) ` h(∆′, n, 1)

h(Γ ′, n, 0), h(2φ, n, 0) ` h(∆′, n, 1)
(2 `)

Lemma 5. Let Γ ` ∆ be a sequent such that the number of negative
occurrences of 2 in

∧
φ∈Γ φ ⇒

∨
ψ∈∆ ψ is n. If Γ ` ∆ has a (cut-free)

proof in GS4, then Γ ` ∆ has a (cut-free) proof in GS4 such that the
(` 2)S4-rule is applied at most n+ 1 times to the same formula in every
branch.
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Lemma 5 is also an extension of Lemma 2.4 in [CCM97]. However, its
proof mainly relies on the analysis of the proof of [CCM97, Lemma 2.4].
So it is included here in order to make the paper self-contained.

Proof. First, observe that if Γ ` ∆ is derivable in GS4 and if ψ has a
negative [resp. positive] occurrence in (

∧
φ∈Γ φ) ⇒ (

∨
φ∈∆ φ), then for

any cut-free proof Π of Γ ` ∆, every occurrence of ψ in Π can only occur
in the left-hand side [resp. in the right-hand side] of sequents. So if the
inference below

2Γ ′′ ` φ
Γ ′,2Γ ′′ ` 2φ,∆′ (` 2)S4

occurs in a proof Π of Γ ` ∆, then any 2ψ ∈ 2Γ ′′ occurs with negative
polarity in (

∧
φ∈Γ φ) ⇒ (

∨
φ∈∆ φ). Moreover, consider the following (`

2)S4 inferences in a proof Π of Γ ` ∆:

2Γ ′
2 ` φ2

Γ2,2Γ
′
2 ` 2φ2,∆2

(` 2)S4

....
2Γ ′

1 ` φ1

Γ1,2Γ
′
1 ` 2φ1,∆1

(` 2)S4

....

Then Γ ′
1 ⊆ Γ ′

2. Let Π be a (cut-free) proof of Γ ` ∆ in GS4. Assume
there is a branch in Π containing n + 1 + k (k ≥ 1) (` 2)S4 inferences
introducing the same formula 2ψ. Let us eliminate at least one (` 2)S4

inference on that branch as done in [CCM97]. Consider the sequence inf1,
. . . , infn+1+k of inferences of the form (1 ≤ i ≤ n+ 1 + k),

2Γ ′
i ` ψ

Γi,2Γ
′
i ` 2ψ,∆i

(` 2)S4

We assume that if i < j, then infj occurs above infi. Let Γ ′ be the set
of the formulae of the form 2ψ′ where 2ψ′ has a negative occurrence in
(
∧
φ∈Γ φ) ⇒ (

∨
φ∈∆ φ). Since Γ ′

1 ⊆ . . . ⊆ Γ ′
n+1+k and card(Γ ′) = n, there

exist i0 ∈ {1, . . . , n+ 1} and j0 ∈ {i0, . . . , n+ 2} such that Γ ′
i0

= Γ ′
j0

. So,
in that branch of Π, we can replace the sequence shown below left by the
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sequence shown below right:

Π ′
....

2Γ ′
j0
` ψ

Γj0 ,2Γ
′
j0
` 2ψ,∆j0

(` 2)S4

....
2Γ ′

i0
` ψ

Γi0 ,2Γ
′
i0
` 2ψ,∆i0

(` 2)S4

Π ′
....

2Γ ′
j0
` ψ

Γj0 ,2Γ
′
j0
` 2ψ,∆j0

(` 2)S4

Theorem 3. A formula φ ∈ S4 iff h(φ, (mwn(φ) + 1).mwp(φ), 1) ∈ T .

Theorem 3 is a mere consequence of Lemma 4 and Lemma 5. Its
proof uses the sequent calculi GS4 and GT whereas in [CCM97] the proofs
manipulate Fitting’s non prefixed calculi for S4 and T [Fit83]. Observe
the map h is a variant of a map defined in [Fit88]. Let us write h′(φ) to
denote the formula h(φ, (mwn(φ) + 1).mwp(φ), 1).

By close examination of the definition of h′(φ),

1. computing h′(φ) requires time in O(|φ|3);
2. |h′(φ)| is in O(|φ|3).

So a formula φ ∈ Grz iff h′(g(φ)) ∈ T .

1. Computing h′(g(φ)) requires time inO((|φ|.log |φ|)3) (remembermwp(g(φ))+
mwn(g(φ)) is in O(|φ|);

2. |h′(g(φ))| is in O((|φ|.log |φ|)3).

The relational translation from T into FO2 (see e.g. [Ben83]) with a
smart recycling of the variables requires only linear-time and the size of
the translated formula is also linear in the size of the initial formula. We
warn the reader that in various places in the literature it is stated that the
relational translation exponentially increases the size of formulae; this is
erroneous. Using this “smart” relational transformation, the composition
of various transformations in the paper provides an O((n.log n)3)-time
transformation from Grz into the decidable fragment FO2 of classical
logic. It is easy to see that the resulting formula is in the guarded fragment
of classical logic (see e.g. [ANB98]), for which a proof procedure based
on resolution is proposed in [Niv98]. Alternatively, after translating Grz
into T, the techniques from [Sch97] could also be used to translate T into
classical logic. These are possibilities to obtain a decision procedure for
Grz using theorem provers for classical logic.
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We are currently investigating whether this translation can be ex-
tended to first-order Grz (FOGrz). But the set of valid formulae for
first-order Gödel-Löb logic, a close cousin of FOGrz, is not recursively
enumerable [Boo93, Chapt. 17], and we suspect that this result also holds
for FOGrz.
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