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An O((n.log n) 3 )-time transformation from Grz into decidable fragments of classical first-order logic

The provability logic Grz is characterized by a class of modal frames that is not first-order definable. We present a simple embedding of Grz into decidable fragments of classical first-order logic such as FO 2 and the guarded fragment. The embedding is an O((n.log n) 3 )-time transformation that neither involves first principles about Turing machines (and therefore is easy to implement), nor the semantical characterization of Grz (and therefore does not use any second-order machinery). Instead, we use the syntactic relationships between cut-free sequent-style calculi for Grz, S4 and T. We first translate Grz into T, and then we use the relational translation from T into FO 2 .

Introduction

Propositional modal logics have proved useful in many areas of computer science because they capture interesting properties of binary relations (Kripke frames) whilst retaining decidability (see e.g. [START_REF] Vardi | Why is modal logic so robustly decidable? In Descriptive complexity and finite models[END_REF][START_REF] Van Benthem | The Range of Modal Logic -An Essay in Memory of George Gargov[END_REF]). By far the most popular method for automating deduction in these logics has been the method of analytic tableaux (see e.g. [START_REF] Fitting | Proof methods for modal and intuitionistic logics[END_REF][START_REF] Rautenberg | Modal tableau calculi and interpolation[END_REF][START_REF] Goré | Tableaux methods for modal and temporal logics[END_REF]), particularly because of the close connection between tableaux calculi and known cut-free Gentzen systems for these logics.

An alternative approach is to translate propositional modal logics into classical first-order logic since this allows us to use the wealth of knowledge in first-order theorem proving to mechanize modal deduction (see e.g. [START_REF] Ch | Methods for automated theorem proving in non classical logics[END_REF][START_REF] Ohlbach | A resolution calculus for modal logics[END_REF][START_REF] Herzig | Raisonnement automatique en logique modale et algorithmes d'unification[END_REF][START_REF] Agostino | A set-theoretical translation method for polymodal logics[END_REF][START_REF] Nonnengart | Resolution-based calculi for modal and temporal logics[END_REF][START_REF] Ohlbach | Combining Hilbert style and semantic reasoning in a resolution framework[END_REF]). Let FO n be the fragment of classical first-order logic using at most n individual variables and no function symbols. Any modal logic characterized by a firstorder definable class of modal frames can be translated into FO n for some fixed n ≥ 2. The decidable modal logic K4, for example, is characterised by transitive frames, definable using the first-order formula (∀x, y, z)(R(x, y) ∧ R(y, z) ⇒ R(x, z)) containing 3 variables. Since FO3 is undecidable and FO 2 is decidable, translating K4 into first-order logic does not automatically retain decidability. Of course, the exact fragment delineated by the translation is decidable. The only known first-order decision procedure for that particular fragment except the one that mimicks the rules for K4 is the one recently published in [START_REF] Ganzinger | A resolution-based decision procedure for extensions of K4[END_REF]. Therefore, blind translation is not useful if this means giving up decidability.

Moreover, it is well-known that many decidable propositional modal logics are characterised by classes of Kripke frames which are not firstorder definable, and that the "standard" relational translation (see e.g. [START_REF] Ch | Methods for automated theorem proving in non classical logics[END_REF][START_REF] Van Benthem | Modal logic and classical logic[END_REF]) is unable to deal with such logics. The class of such "second order" modal logics includes logics like G and Grz which have been shown to have "arithmetical" interpretations as well as logics like S4.3.1 which have interpretations as logics of linear time (without a next-time operator) [START_REF] Goré | Cut-free sequent and tableau systems for propositional Diodorian modal logics[END_REF].

Somewhat surprisingly, faithful translations into classical logic (usually augmented with theories) have been found for some propositional modal logics even when these logics are characterized by classes of frames that are not first-order definable. For instance, the modal logic K augmented with the McKinsey axiom is captured by the framework presented in [START_REF] Ohlbach | Optimized translation of multi modal logic into predicate logic[END_REF]. Similarly, the provability logic G 3 that admits arithmetical interpretations [START_REF] Solovay | Provability interpretations of modal logics[END_REF] is treated within the set-theoretical framework defined in [START_REF] Agostino | A set-theoretical translation method for polymodal logics[END_REF]. Both techniques in [START_REF] Ohlbach | Optimized translation of multi modal logic into predicate logic[END_REF][START_REF] Agostino | A set-theoretical translation method for polymodal logics[END_REF] use a version of classical logic augmented with a theory. Alternatively, G can also be translated into classical logic by first using the translation into K4 defined in [START_REF] Ph | A translation from the modal logic of provability into K4[END_REF] and then a translation from K4 into classical logic (see e.g. [START_REF] Van Benthem | Modal logic and classical logic[END_REF]).

The fact that G can be translated into a decidable fragment of classical logic follows from a purely complexity theory viewpoint, as shown next. Take a modal logic L that is in the complexity class C and let C be another complexity class. Here a logic is to be understood as a set of formulae and therefore a logic is exactly a (decision) problem in the usual sense in complexity theory. That is, as a language viewed as a set of strings built upon a given alphabet. By definition (see e.g. [START_REF] Ch | Computational Complexity[END_REF]), for any fragment of classical logic that is C-hard with respect to C many-one reductions4 , there is a mapping f in C such that any modal formula φ ∈ L iff f (φ) is valid in such a first-order fragment. From the facts that G is in PSPACE (see e.g. [START_REF] Ph | A translation from the modal logic of provability into K4[END_REF][START_REF] Ladner | The computational complexity of provability in systems of modal propositional logic[END_REF]), validity in FO 2 is NEXPTIME-hard [START_REF] Fürer | The computational complexity of the unconstrained limited domino problem (with implications for logical decision problems)[END_REF] (see also [START_REF] Lewis | Complexity results for classes of quantificational formulas[END_REF]) and PSPACE ⊆ NEXPTIME, it is easy to conclude that there exists a polynomial-time transformation from G into validity in FO 2 .

As is well-known, this illustrates the difference between the fact that a propositional modal logic K + φ is characterised by a class of frames which is not first-order definable, and the existence of a translation from K + φ into first-order logic. The weak point with this theoretical result is that the definition of f might require the use of first principles about Turing machines. If this is so, then realising the map f requires cumbersome machinery since we must first completely define a Turing machine that solves the problem. This is why the translations in [START_REF] Ohlbach | Optimized translation of multi modal logic into predicate logic[END_REF][START_REF] Ph | A translation from the modal logic of provability into K4[END_REF][START_REF] Agostino | A set-theoretical translation method for polymodal logics[END_REF] are much more refined and practical (apart from the fact that they allow to mechanise the modal logics under study).

Another well-known modal logic that is characterized by a class of modal frames that is not first-order definable is the provability logic Grz (for Grzegorczyk). The main contribution of this paper is the definition of an O(n.log n)-time transformation from Grz into S4, using cut-free sequent-style calculi for these respective logics. Renaming techniques from [START_REF] Mints | Gentzen-type and resolution rules part I: propositional logic[END_REF] are used in order to get the O(n.log n)-time bound. Then, we present a cubic-time transformation from S4 into T, again using the cutfree sequent-style calculi for these respective logics. Both reductions proceed via an analysis of the proofs in cut-free sequent calculi from the literature. The second reduction is a slight variant of the one presented in [START_REF] Cerrito | A polynomial translation of S4 into T and contraction-free tableaux for S4[END_REF] (see also [START_REF] Fitting | First-order modal tableaux[END_REF]). The reduction announced in the title can be obtained by translating T into FO 2 , which is known to be decidable (see e.g. [START_REF] Mortimer | On language with two variables[END_REF]). Furthermore, the formula obtained by reduction belongs to the decidable guarded fragment of classical logic (see e.g. [START_REF] Andreka | Modal languages and bounded fragments of predicate logic[END_REF]) for which a resolution decision procedure has been defined in [START_REF] De Nivelle | A resolution decision procedure for the guarded fragment[END_REF].

In [START_REF] Boolos | The Logic of Provability[END_REF] Chapter 12], a (non polynomial-time) transformation from Grz into G is defined. By using renamings of subformulae, it is easy to extract from that transformation, an O(n.log n)-time transformation from Grz into G [Boo93, Chapter 12]. There exists an O(n)-time transformation from G into K4 [START_REF] Ph | A translation from the modal logic of provability into K4[END_REF]. There exists an O(n 4 .log n)-time transformation from K4 into K using [START_REF] Cerrito | A polynomial translation of S4 into T and contraction-free tableaux for S4[END_REF] and renamings of subformulae. Finally, there exists an O(n)-time transformation from K into FO 2 [START_REF] Van Benthem | Modal logic and classical logic[END_REF].

Combining these results gives an O(n 4 .(log n) 5 )-time transformation from Grz into FO 2 , a decidable fragment of first-order logic.

The translation proposed in this paper is therefore a more refined alternative since it requires only time in O((n.log n) 3 ). As a side-effect, we obtain an O(n.log n)-time transformation from Grz into S4 and an O((n.log n) 3 )-time transformation from Grz into T. Using the space upper bound for S4-validity from [START_REF] Hudelmaier | Improved decision procedures for the modal logics K, T and S4[END_REF], we obtain that Grz requires only space in O(n 2 .(log n) 3 ). We are not aware of any tighter bound for Grz in the literature. Furthermore, our purely proof-theoretical analyses of the cut-free sequent-style calculi, and sometimes of the Hilbert-style proof systems, gives a simple framework to unify the transformations involved in [START_REF] Boolos | The Logic of Provability[END_REF][START_REF] Ph | A translation from the modal logic of provability into K4[END_REF][START_REF] Cerrito | A polynomial translation of S4 into T and contraction-free tableaux for S4[END_REF]. As we intend to report in a longer paper, it is also possible to generalise our method to handle other "second order" propositional modal logics like S4.3.1 using the calculi from [START_REF] Goré | Cut-free sequent and tableau systems for propositional Diodorian modal logics[END_REF] (see also [START_REF] Demri | Theoremhood preserving maps as a characterisation of cut elimination for provability logics[END_REF] for a generalisation and extension in the Display Logic framework [START_REF] Belnap | Display logic[END_REF]). This paper is a completed version of [START_REF] Demri | An O((n.log n) 3 )-time transformation from Grz into decidable fragments of classical first-order logic[END_REF].

Basic Notions

In the present paper, we assume that the modal formulae are built from a countably infinite set For 0 def = {p i,j : i, j ∈ ω} of atomic propositions using the usual connectives 2, ¬, ⇒, ∧. Other standard abbreviations include ∨, ⇔, 3. The set of modal formulae is denoted For. An occurrence of the subformula ψ in φ is positive [resp. negative] iff it is in the scope of an even [resp. odd] number of negations, where as usual, every occurrence of φ 1 ⇒ φ 2 is treated as an occurence of ¬(φ 1 ∧ ¬φ 2 ). For instance 2p 0,0 [resp. 2p 0,1 ] has a positive [resp. negative] occurrence in (22p 0,1 ) ⇒ (p 0,1 ∧ 2p 0,0 ). We write mwp(φ) [resp. mwn(φ)] to denote the number of positive [resp. negative] occurrences of 2 in φ. We write |φ| to denote the size of the formula φ, that is the number of symbols occurring in φ. φ is also represented as a string of characters.

We recall that the standard Hilbert system K is composed of the following axiom schemes: the tautologies of the Propositional Calculus (PC) and 2p ⇒ (2(p ⇒ q) ⇒ 2q). The inference rules of K are modus ponens ( from p and p ⇒ q infer q) and necessitation (from p infer 2p). By abusing our notation, we may identify the system K with its set of theorems, allowing us to write φ ∈ K to denote that φ is a theorem of K. Analogous notation is used for the following well-known extensions of K:

T def = K + 2p ⇒ p, K4 def = K + 2p ⇒ 22p, S4 def = K4 + 2p ⇒ p and Grz def = S4 + 2(2(p ⇒ 2p) ⇒ p) ⇒ 2p.
Numerous variants of the system Grz (having the same set of theorems) can be found in the literature (see for instance [START_REF] Goré | Relations between propositional normal modal logics: an overview[END_REF]).

We call GT , GS4 and GGrz the cut-free versions of the Gentzen-style calculi defined in [START_REF] Ohnishi | Gentzen method in modal calculi[END_REF][START_REF] Avron | On modal systems having arithmetical interpretations[END_REF] where the sequents are built from finite sets of formulae. Moreover, the weakening rule is absorbed in the initial sequents. For instance, the initial sequents of all the Gentzen-style calculi used in the paper are of the form Γ, φ ∆, φ where "," denotes set union. The common core of rules for the systems GT , GS4 and GGrz are presented in Figure 1. The introduction rules for 2 on the right-hand side are the following:

Γ φ Σ, 2Γ 2φ, ∆ ( 2) T 2Γ φ Σ, 2Γ 2φ, ∆ ( 2) S4 2Γ, 2(φ ⇒ 2φ) φ Σ, 2Γ 2φ, ∆ ( 2) Grz 
where 2Γ def = {2ψ : ψ ∈ Γ }. Moreover, we assume that in Σ, there is no formula of the form 2ψ. This restriction is not essential for completeness (and for soundness) but it is used in the proof of Lemma 5. Each rule ( 2) T , ( 2) S4 and ( 2) Grz belongs respectively to GT , GS4 and GGrz. For each L ∈ {T, S4, Grz}, we know that for any sequent Γ ∆, the formula

( φ∈Γ φ) ⇒ ( φ∈∆ φ) ∈ L iff 5 the sequent Γ ∆ is derivable in GL (see e.g. [OM57,Avr84,Gor99]). Consequently, if Γ ∆ is derivable in GL, then so is Γ, Γ ∆, ∆ .

A transformation from Grz into S4

Let f : For × {0, 1} → For be the following map:

for any p ∈ For 0 , f (p, 0)

def = f (p, 1) def = p -f (¬φ, i) def = ¬f (φ, 1 -i) for i ∈ {0, 1} -f (φ 1 ∧ φ 2 , i) def = f (φ 1 , i) ∧ f (φ 2 , i) for i ∈ {0, 1} -f (φ 1 ⇒ φ 2 , i) def = f (φ 1 , 1 -i) ⇒ f (φ 2 , i) for i ∈ {0, 1} -f (2φ, 1) def = 2(2(f (φ, 1) ⇒ 2f (φ, 0)) ⇒ f (φ, 1)) f (2φ, 0) def = 2f (φ, 0).
In f (φ, i), the index i should be seen as information about the polarity of φ in the translation process as is done in [START_REF] Ph | A translation from the modal logic of provability into K4[END_REF] for the translation from G into K4. Observe that if we replace the definition of f (2φ, 1) above by f (2φ, 1)

def = 2(f (2(φ ⇒ 2φ) ⇒ φ, 1
)), we get the same map. Since the rule of replacement of equivalents is admissible in Grz, one can show by induction on the length of φ that for any φ ∈ For and for

any i ∈ {0, 1}, φ ⇔ f (φ, i) ∈ Grz. Moreover, Lemma 1. For any φ ∈ For, φ ⇒ f (φ, 1) ∈ K ⊆ S4 and f (φ, 0) ⇒ φ ∈ K ⊆ S4.
Proof. The proof is by simultaneous induction on the structure of φ. The base case when φ is an atomic proposition is immediate. By way of example, let us treat the cases below in the induction step:

(1)

φ 1 ∧ φ 2 ⇒ f (φ 1 ∧ φ 2 , 1) ∈ K (2) 2φ 1 ⇒ f (2φ 1 , 1) ∈ K (3) f (¬φ 1 , 0) ⇒ ¬φ 1 ∈ K (4) f (2φ 1 , 0) ⇒ 2φ 1 ∈ K.
(1) By the induction hypothesis, φ 1 ⇒ f (φ 1 , 1) ∈ K and φ 2 ⇒ f (φ 2 , 1) ∈ K. By easy manipulation at the propositional level,

φ 1 ∧ φ 2 ⇒ f (φ 1 , 1) ∧ f (φ 2 , 1) ∈ K. By definition of f , φ 1 ∧ φ 2 ⇒ f (φ 1 ∧ φ 2 , 1) ∈ K.
(2) By the induction hypothesis, φ 1 ⇒ f (φ 1 , 1) ∈ K. By easy manipulation at the propositional level,

φ 1 ⇒ (2(f (φ, 1) ⇒ 2f (φ, 0)) ⇒ f (φ 1 , 1)) ∈ K. It is known that the regular rule (from ψ 1 ⇒ ψ 2 infer 2ψ 1 ⇒ 2ψ 2 ) is admissible in K. So, 2φ 1 ⇒ 2(2(f (φ, 1) ⇒ 2f (φ, 0)) ⇒ f (φ 1 , 1)) ∈ K. By the definition of f , 2φ 1 ⇒ f (2φ 1 , 1) ∈ K.
(3) By the induction hypothesis, φ 1 ⇒ f (φ 1 , 1) ∈ K. By easy manipulation at the propositional level, ¬f

(φ 1 , 1) ⇒ ¬φ 1 ∈ K. By definition of f , f (¬φ 1 , 0) ⇒ ¬φ 1 ∈ K. (4) By the induction hypothesis, f (φ 1 , 0) ⇒ φ 1 ∈ K. Since the regular rule is admissible in K, 2f (φ 1 , 0) ⇒ 2φ 1 ∈ K. By the definition of f , f (2φ 1 , 0) ⇒ 2φ 1 ∈ K. Theorem 1. A formula φ ∈ Grz iff f (φ, 1) ∈ S4.
Proof. If f (φ, 1) ∈ S4, then a fortiori f (φ, 1) ∈ Grz, and since φ ⇔ f (φ, 1) ∈ Grz, we then obtain φ ∈ Grz. Now assume φ ∈ Grz, hence the sequent φ has a cut-free proof in GGrz. We can show that in the given cut-free proof of φ, for every sequent Γ ∆ with cut-free proof Π , the sequent f (Γ, 0) f (∆, 1) admits a cut-free proof in GS4. Here, f is extended to sets of formulae in the natural way. So, we shall conclude that f (φ, 1) is derivable in GS4 and therefore f (φ, 1) ∈ S4. The proof is by induction on the structure of the derivations.

Base case: When Γ ∆ is an initial sequent Γ , ψ ψ, ∆ , we can show that f (Γ , 0), f (ψ, 0) f (ψ, 1), f (∆ , 1) has a cut-free proof in GS4 since f (ψ, 0) ⇒ f (ψ, 1) ∈ S4. By completeness of GS4, f (ψ, 0) f (ψ, 1) has a proof in GS4. Induction step: The structural rules pose no difficulties because by definition f is homomorphic with respect to the comma. By way of example, the proof step (in GGrz)

. . . . 2Γ , 2(ψ ⇒ 2ψ) ψ Γ, 2Γ 2ψ, ∆ ( 2) 
Grz is transformed into the proof steps (in GS4)

. . . .

2f (Γ , 0), 2(f (ψ, 1) ⇒ 2f (ψ, 0)) f (ψ, 1) 2f (Γ , 0) 2(f (ψ, 1) ⇒ 2f (ψ, 0)) ⇒ f (ψ, 1) ( ⇒) f (Γ, 0), 2f (Γ , 0) 2(2(f (ψ, 1) ⇒ 2f (ψ, 0)) ⇒ f (ψ, 1)), f (∆, 1) ( 2) S4
The induction hypothesis is used here since 2f (Γ , 0), 2(f (ψ, 1) ⇒ 2f (ψ, 0)) f (ψ, 1) has a (cut-free) proof in GS4. Furthermore, by definition,

-f (2Γ , 0) = 2f (Γ , 0); f (2ψ, 1) = 2(2(f (ψ, 1) ⇒ 2f (ψ, 0)) ⇒ f (ψ, 1)); -f (2(ψ ⇒ 2ψ), 0) = 2(2(f (ψ, 1) ⇒ 2f (ψ, 0))).
Observe that f (Γ, 0) does not contain any formula of the form 2ψ . The proof (in GGrz) . . . .

Γ, 2ψ, ψ ∆ Γ, 2ψ ∆ (2 ) 
is transformed into the proof (in GS4)

. . . .

f (Γ, 0), 2f (ψ, 0), f (ψ, 0) f (∆, 1) f (Γ, 0), 2f (ψ, 0) f (∆, 1) (2 ) 
Indeed, f (2ψ, 0) = 2f (ψ, 0). The other cases are not difficult to obtain and they are omitted here.

A close examination of f shows that f is not computable in O(n.log n)time. Indeed, the right-hand side in the definition of f (2φ, 1) requires several recursive calls to f and the computation of f is therefore exponentialtime. However, we can use a slight variant of f that uses renamings as done in [START_REF] Mints | Gentzen-type and resolution rules part I: propositional logic[END_REF]. Specifically, we have, (Renaming) φ ∈ S4 iff 2(p new ⇔ ψ) ⇒ φ ∈ S4 where φ is obtained from φ by replacing every occurrence of ψ in φ by the atomic proposition p new not occurring in φ.

Let φ be a modal formula we wish to translate from Grz into S4. Let φ 1 , . . . , φ m be an enumeration (without repetition) of all the subformulae of φ in increasing order with respect to the size such that the n first formulae are all the atomic propositions occurring in φ. We shall build a formula g(φ) using {p i,j : 1 ≤ i ≤ m, j ∈ {0, 1}} such that g(φ) ∈ S4 iff f (φ, 1) ∈ S4. Moreover, g(φ) can be computed in time O(|φ|.log |φ|). For i ∈ {1, . . . , m}, we associate a formula ψ i as shown in Figure 2 and let g(φ

) def = ( m i=1 ψ i ) ⇒ p m,1 . Form of φi ψi p 2(p i,0 ⇔ p i,1 ) ¬φj 2(p i,1 ⇔ ¬p j,0 ) ∧ 2(p i,0 ⇔ ¬p j,1 ) φi 1 ∧ φi 2 2(p i,1 ⇔ (p i 1 ,1 ∧ p i 2 ,1 )) ∧ 2(p i,0 ⇔ (p i 1 ,0 ∧ p i 2 ,0 )) φi 1 ⇒ φi 2 2(p i,1 ⇔ (p i 1 ,0 ⇒ p i 2 ,1 )) ∧ 2(p i,0 ⇔ (p i 1 ,1 ⇒ p i 2 ,0 )) 2φj 2(p i,1 ⇔ 2(2(p j,1 ⇒ 2p j,0 )) ⇒ p j,1 )) ∧ 2(p i,0 ⇔ 2p j,0 ) Fig. 2. Definition of ψi Lemma 2. (1) f (φ, 1) ∈ S4 iff g(φ) ∈ S4 (2) computing g(φ) requires time in O(|φ|.log |φ|) (3) |g(φ)| is in O(|φ|.log |φ|) (4) mwp(g(φ)) + mwn(g(φ)) is in O(|φ|).
Proof.

(2)-( 4) is by simple inspection of the definition of g(φ). The idea of the proof of (1) is to effectively build g(φ) from f (φ, 1) by successively applying transformations based on (Renaming). Such a process requires exponential-time in φ (since |f (φ, 1)| can be exponential in |φ|). However, we can build g(φ) in a tractable way (see (2)-( 4)) since g translates and renames simultaneously.

(1) Let us build g(φ) from f (φ, 1) by successively applying transformations based on (Renaming). For any atomic proposition q = φ i occurring in f (φ, 1), replace the positive [resp. negative] occurrences of q by p i,1 [resp. p i,0 ]. Let us say that we obtain the formula ψ (this shall be our current working formula). The constraint formula, say C, is defined as

C def = n i=1 2(p i,1 ⇔ p i,0
). Along the steps, we shall have that f (φ, 1) ∈ S4 iff C ⇒ ψ ∈ S4. The next steps consist of replacing subformulae ψ in ψ by their renaming equivalent and then to update C appropriately until ψ = p m,1 . For instance, take a subformula ψ = p i,1 ∧ p j,1 in ψ. Replace every occurrence of p i,1 ∧p j,1 in ψ by p k,1 with φ k = φ i ∧φ j . The constraint formula C is updated as follows: C := C ∧ 2(p k,1 ⇔ (p i,1 ∧ p j,1 )). The other cases are omitted and they use the decomposition from Figure 2

. So, when ψ is equal to p m,1 , f (φ, 1) ∈ S4 iff C ⇒ p m,1 ∈ S4. It is easy to see that ( m i=1 ψ i ) ⇒ p m,1 ∈ S4 iff C ⇒ p m,1 . Indeed, the set of conjuncts of C is a subset of the set of conjuncts of m i=1 ψ i . So, if C ⇒ p m,1 ∈ S4, then g(φ) ∈ S4.
In order to show that the converse also holds, let us define the binary relation DEP between atomic propositions. Let p i 1 ,j 1 and p i 2 ,j 2 be atomic propositions occurring in m i=1 ψ i . We write p i 1 ,j 1 DEP p i 2 ,j 2 to denote that there is a conjunct of m i=1 ψ i of the form 2(ψ 1 ⇔ ψ 2 ) such that either p i 1 ,j 1 occurs in ψ 1 and p i 2 ,j 2 occurs in ψ 2 or p i 1 ,j 1 occurs in ψ 2 and p i 2 ,j 2 occurs in ψ 1 . Let DEP * be the smallest equivalence relation including DEP . It is easy to see that if g(φ) ∈ S4, then C ⇒ p m,1 ∈ S4 since for all the atomic propositions q occurring in m i=1 ψ i but not in C, not qDEP * p m,1 .

Theorem 2. Grz requires space in O(n 2 .(log n) 3 ).

An equivalent statement is that there exists a deterministic Turing machine in SPACE(O(n 2 .(log n) 3 )) that solves the Grz-provability problem. This follows from the facts that S4 requires space in O(n 2 .log n) [START_REF] Hudelmaier | Improved decision procedures for the modal logics K, T and S4[END_REF], computing g(φ) requires space in O(|φ|.log |φ|), and |g(φ)| is in O(|φ|.log |φ|). Putting these together gives that checking whether g(φ) is an S4-theorem requires space in O((|φ|.log |φ|) 2 .log(|φ|.log |φ|)), that is space in O(|φ| 2 .(log |φ|) 3 ). By the way, one can show that Grz is PSPACE-hard by using mappings from propositional intuitionistic logic into Grz (see e.g. [START_REF] Chagrov | Modal Logic[END_REF]).

A transformation from Sinto T

Let h : For × ω × {0, 1} → For be the following map (n ∈ ω, i ∈ {0, 1}):

for any p ∈ For 0 , h(p, n, 0)

def = h(p, n, 1) def = p -h(¬φ, n, i) def = ¬h(φ, n, 1 -i) -h(φ 1 ∧ φ 2 , n, i) def = h(φ 1 , n, i) ∧ h(φ 2 , n, i) -h(φ 1 ⇒ φ 2 , n, i) def = h(φ 1 , n, 1 -i) ⇒ h(φ 2 , n, i) -h(2φ, n, 1) def = 2h(φ, n, 1) -h(2φ, n, 0) def = 2 n h(φ, n, 0) if n ≥ 1 2h(φ, n, 0) otherwise
The map h is a slight variant of the map M S4,T defined in [CCM97] which itself is a variant of a map defined in [START_REF] Fitting | First-order modal tableaux[END_REF]. The main difference is that we do not assume that the formulae are in negative normal form (which is why a third argument dealing with polarity is introduced here). In that sense, we follow [Fit88, Section 3]. Furthermore, since we are dealing here with validity instead of inconsistency, the treatment of the modal operators is dual. Lemma 3. For any formula φ ∈ For and for any 0 ≤ m ≤ n,

(1) φ ⇔ h(φ, n, 0) ∈ S4 and φ ⇔ h(φ, n, 1) ∈ S4.

(2) h(φ, n, 0) ⇒ h(φ, m, 0) ∈ T and h(φ, m, 1) ⇒ h(φ, n, 1) ∈ T .

(3) h(φ, n, 0) ⇒ h(φ, n, 1) ∈ T .

Proof. The proof of (1) uses the facts that the rule of replacement of equivalents is admissible in S4 and 2 n ψ ⇔ 2ψ ∈ S4 for any n ≥ 1 and for any ψ ∈ For. The proof of (2) is by simultaneous induction on the size of the formula. By way of example, let us show in the induction step that h(2φ, n, 0) ⇒ h(2φ, m, 0) ∈ T . By induction hypothesis, h(φ, n, 0) ⇒ h(φ, m, 0) ∈ T . It is known that the regular rule is admissible for T. So, by applying this rule n times on h(φ, n, 0) ⇒ h(φ, m, 0), we get that

2 n h(φ, n, 0) ⇒ 2 n h(φ, m, 0) ∈ T . Since 2 n h(φ, m, 0) ⇒ 2 m h(φ, m, 0) ∈ T (remember m ≤ n and 2ψ ⇒ ψ ∈ T ), then 2 n h(φ, n, 0) ⇒ 2 m h(φ, m, 0) ∈ T . (3) If n = 0, then h(φ, n, 0) = h(φ, n, 1) = φ. Now assume n ≥ 1.
The proof is by induction on the structure of φ. The base case when φ is an atomic proposition is immediate. Let us treat the cases φ = ¬φ and φ = 2φ in the induction step. By Induction Hypothesis, h(φ , n, 0) ⇒ h(φ , n, 1) ∈ T . By manipulation at the propositional level, ¬h(φ , n, 1) ⇒ ¬h(φ , n, 0) ∈ T . By definition of h, h(¬φ , n, 0) ⇒ h(¬φ , n, 1) ∈ T . Moreover, by applying n times the regular rule (admissible in T) on h(φ , n, 0) ⇒ h(φ , n, 1), we get 2 n h(φ , n, 0) ⇒ 2 n h(φ , n, 1) ∈ T . Moreover,

-2 n h(φ , n, 1) ⇒ 2h(φ , n, 1) ∈ T ; -2 n h(φ , n, 0) = h(2φ , n, 0); -2h(φ , n, 1) = h(2φ , n, 1). So, h(2φ , n, 0) ⇒ h(2φ , n, 1) ∈ T .
The map h is extended to sets of formulae in the most natural way.

Lemma 4. Let Γ ∆ be a sequent that has a (cut-free) proof Π in GS4 such that the maximum number of ( 2) S4 -rule inferences in any branch is at most n. Then, h(Γ, n, 0) h(∆, n, 1) has a (cut-free) proof in GT.

Lemma 4 is an extension of Lemma 2.2 in [START_REF] Cerrito | A polynomial translation of S4 into T and contraction-free tableaux for S4[END_REF].

Proof. The proof is by double induction on n and then on the length of the proof Π of Γ ∆. The length of Π is just the number of nodes of the proof tree. Base case (i): n = 0. By definition, h(Γ, 0, 0) = Γ and h(∆, 0, 1) = ∆. Any proof of Γ ∆ in GS4 with no applications of ( 2) S4 is also a proof of Γ ∆ in GT . Induction step (i): assume that for any sequent Γ ∆ having a (cut-free) proof in GS4 such that the maximum number of ( 2) S4 -rule inferences in any branch is at most n -1 ≥ 0, h(Γ, n -1, 0) h(∆, n -1, 1) has a (cut-free) proof in GT. Now, let Γ ∆ be a sequent that has a (cut-free) proof Π in GS4 such that the maximum number of ( 2) S4 -rule inferences in any branch is at most n. We use an induction on the length of Π. Base case (ii): Γ ∆ is an initial sequent Γ , φ ∆ , φ. By Lemma 3(3), h(φ, n, 0) ⇒ h(φ, n, 1) ∈ T . So, h(φ, n, 0) h(φ, n, 1) has a cut-free proof in GT by completeness of GT with respect to T. Hence, h(Γ , n, 0), h(φ, n, 0) h(∆ , n, 1), h(φ, n, 1) has a cut-free proof in GT . Induction step (ii): assume that for any sequent Γ ∆ having a (cutfree) proof Π of length at most n -1 ≥ 1 in GS4 such that the maximum number of ( 2) S4 -rule inferences in any branch is at most n, h(Γ, n, 0) h(∆, n, 1) has a (cut-free) proof in GT. Now, let Γ ∆ be a sequent that has a (cut-free) proof Π in GS4 of length n such that the maximum number of ( 2) S4 -rule inferences in any branch is at most n. Among the Boolean connectives, we only treat here the case for the conjunction since the cases for ¬ and ⇒ are similar. The proof Π below (in GS4) . . . .

Γ , φ 1 , φ 2 ∆ Γ , φ 1 ∧ φ 2 ∆ (∧ )
is transformed into the proof below (in GT ) using the induction hypothesis (ii) . . . .

h(Γ , n, 0), h(φ 1 , n, 0), h(φ 2 , n, 0) h(∆ , n, 1) h(Γ , n, 0), h(φ 1 ∧ φ 2 , n, 0) h(∆ , n, 1) (∧ )
The proof Π below (in GS4) . . . .

Γ ∆ , φ 1 Γ ∆ , φ 2 Γ ∆ , φ 1 ∧ φ 2 ( ∧)
is transformed into the proof below (in GT ) using the induction hypothesis (ii) . . . . h(Γ , n, 0) h(∆ , n, 1), h(φ 1 , n, 1) h(Γ , n, 0) h(∆ , n, 1), h(φ 2 , n, 1) h(Γ , n, 0) h(∆ , n, 1), h(φ 1 ∧ φ 2 , n, 1) ( ∧)

Consider the proof Π below:

Π . . . . 2Γ φ Γ , 2Γ 2φ, ∆ ( 2) S4 
In the proof Π of 2Γ φ in GS4, the maximum number of ( 2) S4 -rule inferences in any branch is less than n -1. By induction hypothesis (i), h(2Γ , n -1, 0) h(φ, n -1, 1) has a cut-free proof, say Π , in GT . So, the proof below is obtained in GT : Π . . . .

2 n-1 h(Γ , n -1, 0) h(φ, n -1, 1) h(Γ , n, 0), 2 n h(Γ , n -1, 0) 2h(φ, n -1, 1), h(∆ , n, 1)
( 2) T For ψ ∈ Γ , h(ψ, n, 0) ⇒ h(ψ, n -1, 0) ∈ T by Lemma 3(2). By using n applications of the regular rule, for ψ ∈ Γ , 2 n h(ψ, n, 0) ⇒ 2 n h(ψ, n -1, 0) ∈ T . Similarly, by Lemma 3(2) h(2φ, n -1, 1) ⇒ h(2φ, n, 1) ∈ T . By soundness of GT , the formula ϕ ∈ T where:

ϕ def = (( ψ∈Γ h(ψ, n, 0))∧( ψ∈Γ 2 n h(ψ, n-1, 0))) ⇒ (h(2φ, n-1, 1)∨ ψ∈∆ h(ψ, n, 1)).
For ψ ∈ Γ , 2 n h(ψ, n-1, 0) occurs negatively in ϕ and h(2φ, n-1, 1) occurs positively in ϕ. By the Monotonicity of Entailment Lemma [AM86],

((

ψ∈Γ h(ψ, n, 0))∧( ψ∈Γ 2 n h(ψ, n, 0))) ⇒ (h(2φ, n, 1)∨ ψ∈∆ h(ψ, n, 1)) ∈ T
By completeness of GT , we get that h(Γ , n, 0), h(2Γ , n, 0) h(2φ, n, 1), h(∆ , n, 1) has a cut-free proof in GT . In order to conclude the proof, let us treat the last case. Consider the proof Π below in GS4: . . . .

Γ , 2φ, φ ∆ Γ , 2φ ∆ (2 ) 
By induction hypothesis (ii), h(Γ , n, 0), 2 n h(φ, n, 0), h(φ, n, 0) h(∆ , n, 1) has a cut-free proof in GT . So,

s 1 def = h(Γ , n, 0), 2 n h(φ, n, 0), 2 n-1 h(φ, n, 0), . . . , 2h(φ, n, 0), h(φ, n, 0) h(∆ , n, 1)
has also a cut-free proof in GT . The above proof is transformed into (in GT ) . . . .

s 1 h(Γ , n, 0), 2 n h(φ, n, 0), 2 n-1 h(φ, n, 0), . . . , 2h(φ, n, 0) h(∆ , n, 1) (2 ) h(Γ , n, 0), 2 n h(φ, n, 0), 2 n-1 h(φ, n, 0), . . . , 2 2 h(φ, n, 0) h(∆ , n, 1) (2 ) . . . . h(Γ , n, 0), 2 n h(φ, n, 0), 2 n-1 h(φ, n, 0) h(∆ , n, 1) h(Γ , n, 0), h(2φ, n, 0) h(∆ , n, 1) (2 ) 
Lemma 5. Let Γ ∆ be a sequent such that the number of negative occurrences of 2 in φ∈Γ φ ⇒ ψ∈∆ ψ is n. If Γ ∆ has a (cut-free) proof in GS4, then Γ ∆ has a (cut-free) proof in GS4 such that the ( 2) S4 -rule is applied at most n + 1 times to the same formula in every branch.

Lemma 5 is also an extension of Lemma 2.4 in [START_REF] Cerrito | A polynomial translation of S4 into T and contraction-free tableaux for S4[END_REF]. However, its proof mainly relies on the analysis of the proof of [CCM97, Lemma 2.4]. So it is included here in order to make the paper self-contained.

Proof. First, observe that if Γ ∆ is derivable in GS4 and if ψ has a negative [resp. positive] occurrence in ( φ∈Γ φ) ⇒ ( φ∈∆ φ), then for any cut-free proof Π of Γ ∆, every occurrence of ψ in Π can only occur in the left-hand side [resp. in the right-hand side] of sequents. So if the inference below

2Γ φ Γ , 2Γ 2φ, ∆ ( 2) S4
occurs in a proof Π of Γ ∆, then any 2ψ ∈ 2Γ occurs with negative polarity in ( φ∈Γ φ) ⇒ ( φ∈∆ φ). Moreover, consider the following ( 2) S4 inferences in a proof Π of Γ ∆:

2Γ 2 φ 2 Γ 2 , 2Γ 2 2φ 2 , ∆ 2 ( 2) S4 . . . . 2Γ 1 φ 1 Γ 1 , 2Γ 1 2φ 1 , ∆ 1 ( 2) S4 . . . . Then Γ 1 ⊆ Γ 2 . Let Π be a (cut-free) proof of Γ ∆ in GS4.
Assume there is a branch in Π containing n + 1 + k (k ≥ 1) ( 2) S4 inferences introducing the same formula 2ψ. Let us eliminate at least one ( 2) S4 inference on that branch as done in [START_REF] Cerrito | A polynomial translation of S4 into T and contraction-free tableaux for S4[END_REF]. Consider the sequence inf 1 , . . . , inf n+1+k of inferences of the form (1 ≤ i ≤ n + 1 + k),

2Γ i ψ Γ i , 2Γ i 2ψ, ∆ i ( 2) S4
We assume that if i < j, then inf j occurs above inf i . Let Γ be the set of the formulae of the form 2ψ where 2ψ has a negative occurrence in ( φ∈Γ φ) ⇒ ( φ∈∆ φ). Since Γ 1 ⊆ . . . ⊆ Γ n+1+k and card(Γ ) = n, there exist i 0 ∈ {1, . . . , n + 1} and j 0 ∈ {i 0 , . . . , n + 2} such that Γ i 0 = Γ j 0 . So, in that branch of Π, we can replace the sequence shown below left by the sequence shown below right: Π . . . . 2Γ j 0 ψ Γ j 0 , 2Γ j 0 2ψ, ∆ j 0 ( 2) S4 . . . .

2Γ i 0 ψ Γ i 0 , 2Γ i 0 2ψ, ∆ i 0
( 2) S4 Π . . . .

2Γ j 0 ψ Γ j 0 , 2Γ j 0 2ψ, ∆ j 0 ( 2) S4
Theorem 3. A formula φ ∈ S4 iff h(φ, (mwn(φ) + 1).mwp(φ), 1) ∈ T .

Theorem 3 is a mere consequence of Lemma 4 and Lemma 5. Its proof uses the sequent calculi GS4 and GT whereas in [START_REF] Cerrito | A polynomial translation of S4 into T and contraction-free tableaux for S4[END_REF] the proofs manipulate Fitting's non prefixed calculi for S4 and T [START_REF] Fitting | Proof methods for modal and intuitionistic logics[END_REF]. Observe the map h is a variant of a map defined in [START_REF] Fitting | First-order modal tableaux[END_REF]. Let us write h (φ) to denote the formula h(φ, (mwn(φ) + 1).mwp(φ), 1).

By close examination of the definition of h (φ), The relational translation from T into FO 2 (see e.g. [START_REF] Van Benthem | Modal logic and classical logic[END_REF]) with a smart recycling of the variables requires only linear-time and the size of the translated formula is also linear in the size of the initial formula. We warn the reader that in various places in the literature it is stated that the relational translation exponentially increases the size of formulae; this is erroneous. Using this "smart" relational transformation, the composition of various transformations in the paper provides an O((n.log n) 3 )-time transformation from Grz into the decidable fragment FO 2 of classical logic. It is easy to see that the resulting formula is in the guarded fragment of classical logic (see e.g. [START_REF] Andreka | Modal languages and bounded fragments of predicate logic[END_REF]), for which a proof procedure based on resolution is proposed in [START_REF] De Nivelle | A resolution decision procedure for the guarded fragment[END_REF]. Alternatively, after translating Grz into T, the techniques from [START_REF] Schmidt | Optimised Modal Translation and Resolution[END_REF] could also be used to translate T into classical logic. These are possibilities to obtain a decision procedure for Grz using theorem provers for classical logic.
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  . computing h (φ) requires time in O(|φ| 3 ); 2. |h (φ)| is in O(|φ| 3 ). So a formula φ ∈ Grz iff h (g(φ)) ∈ T .1. Computing h (g(φ)) requires time in O((|φ|.log |φ|) 3 ) (remember mwp(g(φ))+ mwn(g(φ)) is in O(|φ|); 2. |h (g(φ))| is in O((|φ|.log |φ|) 3 ).

Also called GL (for Gödel and Löb), KW, K4W, PrL.

Also called "transformation", see e.g.[START_REF] Ch | Computational Complexity[END_REF].

Γ, φ ∆, φ (initial sequents)Γ ∆, φ Γ, ¬φ ∆ (¬ ) Γ, φ ∆ Γ ∆, ¬φ ( ¬) Γ, φ1, φ2 ∆ Γ, φ1 ∧ φ2 ∆ (∧ ) Γ ∆, φ1 Γ ∆, φ2 Γ ∆, φ1 ∧ φ2 ( ∧) Γ ∆, φ1 Γ, φ2 ∆ Γ, φ1 ⇒ φ2 ∆ (⇒ ) Γ, φ1 ∆, φ2 Γ ∆, φ1 ⇒ φ2 ( ⇒) Γ, 2φ, φ ∆ Γ, 2φ ∆(2 )

As is usual, the empty conjunction is understood as the verum logical constant (or simply p 0,0 ∨ ¬p 0,0 ) and the empty disjunction is understood as the falsum logical constant ⊥ (or simply p 0,0 ∧ ¬p 0,0 ).

We are currently investigating whether this translation can be extended to first-order Grz (FOGrz). But the set of valid formulae for first-order Gödel-Löb logic, a close cousin of FOGrz, is not recursively enumerable [Boo93, Chapt. 17], and we suspect that this result also holds for FOGrz.
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