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Fully Bayesian Aggregation

— dedicated to memory of Philippe Mongin (1950—2020), co-author and friend —

extended version of January 20211

Franz Dietrich2

Abstract

Can a group be an orthodox rational agent? This requires the group’s aggregate pref-

erences to follow expected utility (static rationality) and to evolve by Bayesian up-

dating (dynamic rationality). Group rationality is possible, but the only preference

aggregation rules which achieve it (and are minimally Paretian and continuous) are

the linear-geometric rules, which combine individual values linearly and combine in-

dividual beliefs geometrically. Linear-geometric preference aggregation contrasts with

classic linear-linear preference aggregation, which combines both values and beliefs

linearly, but achieves only static rationality. Our characterisation of linear-geometric

preference aggregation has two corollaries: a characterisation of linear aggregation of

values (Harsanyi’s Theorem) and a characterisation of geometric aggregation of beliefs.

Keywords: rational group agent, uncertainty, preference aggregation, opinion pool-

ing, value aggregation, static versus dynamic rationality, expected-utility hypothesis,

Bayesianism, group rationality versus Paretianism, spurious unanimity, ex-ante versus

ex-post Pareto

JEL classification codes: D7, D8

1 Introduction

Economics and other social sciences work with a well-established paradigm of a rational

agent. They routinely apply this paradigm to group agents such as households, firms,

governments, or entire societies. Such group agents are taken to hold and revise pref-

erences and beliefs, to make decisions, form and revise plans, engage in interactions,

compete on markets, or entertain international relations — in just the same rational way

as individuals. But is a rational group agent actually possible and meaningful, given

1The paper has benefited from generous and helpful feedback by Jean Baccelli, Marcus Pivato,

Martin Rechenauer, and anonymous referees. An earlier version was titled ‘The Rational Group’. The

research was supported by the French National Research Agency through three grants (ANR-17-CE26-

0003, ANR-16-FRAL-0010 and ANR-17-EURE-0001).
2Paris School of Economics & CNRS, fd@franzdietrich.net, www.franzdietrich.net
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heterogeneous (rational) group members? That is, could a rational group agent emerge

from combining conflicting attitudes of group members?

This problem matters for two very different reasons. Firstly, it matters to have

aggregation-theoretic micro-foundations for the hypothesis of rational groups, so as to

legitimize the standard modelling practice of invoking rational groups without model-

ling group members. This ‘macroscopic’ modelling practice is useful and fruitful, but

it would be comforting, to say the least, if group agents could be construed as aggrega-

tions of (unmodelled) group members.3 Secondly, one is sometimes explicitly interested

in group members, and seeks to combine their attitudes into rational group attitudes,

for instance in order to determine ‘fair’ group choices, carried out by a group repres-

entative or ‘planner’. This goal is constructive: one seeks to build a rational group

agent out of group members, rather than postulating a rational group agent without

modelling (or knowing) group members.

Existing aggregation theories provide powerful results that take us some way to-

wards a rational group. But they have never aimed for a full-fledged rational group

agent, to the best of my knowledge. For instance, Arrovian preference aggregation

ignores uncertainty, while Bayesian preference aggregation captures uncertainty, but so

far ignores the group’s response to information. Our question is therefore alive: can a

group be a standard rational agent?

The theory of Bayesian preference aggregation offers the right conceptual and formal

tools for addressing our question. This theory seeks to combine individual expected-

utility preferences under uncertainty. What does it already teach us? If group members

have identical beliefs, combining their expected-utility preferences is perfectly possible,

but the Pareto principle implies that group utility must be a linear combination of

individual utilities, by Harsanyi’s Theorem (Harsanyi 1955).4 The picture changes un-

der heterogeneous beliefs: one can then no longer construct any group expected-utility

preferences which meet the Pareto principle (Mongin 1995). Is this already the end of

group rationality under uncertainty? No. Following Mongin (1997/2016), the Pareto

principle is normatively questionable, because a unanimity can by ‘spurious’: it can rest

on conflicting beliefs, and thereby lose its normative force. For example, citizens could

unanimously want their state to exit a multi-state union, based on conflicting beliefs:

some believe that independence opens their state to the wider world (a consequence

they most prefer), while others believe that independence isolates their state (a con-

sequence they most prefer). Taking up this challenge, Gilboa, Samet and Schmeidler

(2004) (‘GSS’) propose to restrict the Pareto condition to comparisons between op-

tions whose consequences depend only on uncontroversial beliefs, and prove a seminal

3What I call aggregation-theoretic (micro-)foundations of group agents differs from so-called game-

theoretic (micro-)foundations of cooperation. In one case, we assume there is a single actor, the ‘group

agent’ (or individual acting on its behalf), whose acts or attitudes we aim to explain or make sense

of in terms of aggregation. In the other case, we assume that all group members are agents, whose

cooperative actions we aim to explain in terms of individual rationality.
4Except from the possibility of unequal weights, linear utility aggregation bears similarities to util-

itarianism, the moral theory whereby overall well-being is sum-total individual well-being. Whether

this parallel is justified is however debatable, because someone’s well-being might not be faithfully

quantified by their von-Neumann-Morgenstern utility function (Weymark 1991).
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possibility theorem: the restricted Pareto principle allows the formation of aggregate

expected-utility preferences, but only by defining group utility as a linear combination of

individual utilities and defining group probability as a linear combination of individual

probabilities. I call such preference aggregation linear-linear. Further developments

are discussed in Section 6.

GSS’s linear-linear approach has two shortcomings. First, it does not make the

group fully rational, as explained shortly. Second, it relies on a Pareto axiom that

is still vulnerable to indirectly spurious unanimities, i.e., unanimities that depend on

beliefs that depend on conflicting beliefs, a problem explained in Section 3 (and identified

similarly by Mongin and Pivato 2020). Fixing both problems will lead us to linear-

geometric aggregation: values are combined linearly, but beliefs geometrically.

How are linear-linear groups irrational? Any complete theory of rationality im-

poses static and dynamic requirements. Orthodox rational-choice theory is Bayesian;

it imposes the static requirement to hold expected-utility preferences and the dynamic

requirement to revise preferences by applying Bayesian updating to underlying be-

liefs.5 Despite its name, Bayesian preference aggregation theory has so far pursued

only a ‘semi-Bayesian’ or ‘semi-rational’ agenda, by imposing only static rationality on

the group agent, not dynamic rationality. That is, the group agent should maximise

expected utility, but need not revise à la Bayes. The theory is simply silent on the

group’s revision policy; it does nothing to discipline revision. Bayesian updating is

however a cornerstone of classic rationality. A household or other group which updates

its preferences irrationally conflicts with our models, and with our paradigm of ‘rational

households’ and, more generally, ‘rational group agents’. Such a group agent displays

dynamically incoherent behaviour, and runs into the very same well-known problems

and paradoxes as dynamically incoherent individuals. It suffers preference reversals

during dynamic decision problems and games. It can no longer form and execute stable

plans, jeopardizing intertemporal budget planning. It becomes vulnerable to Dutch

books, i.e., engages in sequential betting behaviour that leads to sure loss. So it can

be exploited — by third parties or even group members. In line with the semi-rational

agenda, linear-linear preference aggregation creates a group agent that is statically ra-

tional, but dynamically irrational, as has been complained (e.g., Mongin and Pivato

2020).

5Originally, and for most philosophers, Bayesianism is a theory of (rational) beliefs rather than

preferences, imposing the static requirement to hold beliefs in probabilistic form (‘probabilism’) and the

dynamic requirement to revise beliefs by Bayesian updating (‘conditionalisation’); see Joyce (2011) and

Bradley (2017). Standing in a behaviourist tradition, the economic discipline has recast Bayesianism

as a theory of preferences, by recasting the static requirement as the requirement that preferences

follow expected utilities, and recasting the dynamic requirement as the requirement that preferences be

revised by applying Bayesian updating to underlying beliefs whilst never modifying underlying values

(utilities). Also outside the Bayesian world, rationality usually has a static and a dynamic component.

In particular, many logical theories of rational beliefs impose the static requirement to hold consistent

and deductively closed binary beliefs, and the dynamic requirement to revise those beliefs according

to certain belief-revision axioms, e.g., the ‘AGM postulates’ (Alchourron et al. 1985). Also John

Broome’s influential philosophical theory of rationality and reasoning takes rationality to impose static

and dynamic requirements; see Broome (2013) and Dietrich et al. (2019).
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How else must preferences be aggregated in order to make the group rational?

This natural question has remained open. Why? One reason could be that full group

rationality seems at first like an unreachable goal, since already static group rationality

is so hard to reach. Another reason surely is that the literature predominantly adopts

a single-profile approach, i.e., works with a fixed profile of individual preferences and

fixed group preferences, instead of adopting a multi-profile approach, i.e., working

with a domain of possible profiles and an aggregation function defined on this domain

(notable exceptions are Blackorby, Donaldson and Weymark 2008 and Brandl 2021).

The single-profile approach makes preference change unaddressable, since the profile

cannot be transformed. To study dynamic rationality, we therefore adopt a multi-profile

approach, which is common elsewhere in social choice theory.6

This paper contributes the following theorem: only linear-geometric preference ag-

gregation creates a rational group agent, assuming the group agent depends on group

members in a minimally Paretian (and continuous) way. Minimal Paretianism weakens

GSS’s Pareto condition further, by restricting the condition to situations (profiles) with

common beliefs on all events, not just on events on which the two acts under compar-

ison depend. Minimal Paretianism is no longer vulnerable to any spurious unanimities,

be they direct or indirect; this addresses the mentioned problem with GSS’s Pareto

axiom.

A first lesson is that full group rationality is non-trivially possible. This supports

the standard modelling hypothesis of rational group agents. Another lesson is that

group rationality requires combining beliefs non-classically (i.e., geometrically), but

combining values classically (i.e., linearly).

Section 2 gives an example. Sections 3—6 present the theorem, its corollaries and

generalisations, and a critical assessment of the findings and their relation to the liter-

ature. Proofs are given in the appendix.

2 Illustration of group-preference change

We reconsider GSS’s classic story, but in a dynamic variant. The story is pure fiction,

but its structure is typical for real group agents. The group consists of two gentlemen

1 and 2. They have a dispute and must decide whether to fight a duel. The outcome

of a duel is either that 1 wins (and 2 loses) or that 2 wins (and 1 loses), depending on

a state of nature. There are three states:

• in state 1, 1 is stronger than 2, so would win a duel.
• in state 2, 2 is stronger than 1, so would win a duel.
• in state 3, 2 has a superior weapon (and is equally strong), so would win a duel.

In all states, having no duel has the outcome that nobody wins. Both gentlemen are

fully rational: they hold expected-utility (‘EU’) preferences and update them via Bayes’

rule. We consider two time points: before and after learning the event  = {1 2}
6Although a multi-profile setting is not explicitly dynamic (since time is absent), it implicitly opens

the door to a dynamic analysis, because one can represent the effect of new information on individual

preferences, hence on the profile, and thus on aggregate preferences of the group agent.
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that 2 does not have a superior weapon. Table 1 displays the gentlemen’s utilities of

utility of old prob. of old EU new prob. of new EU

1 wins 2 wins 1 2 3 of duel 1 2 3 of duel

gentleman 1 1 -5 .85 .05 .1 .1 .94 .06 0 .67

gentleman 2 0 1 .15 .15 .7 .85 .5 .5 0 .5

linear-linear group .5 -2 .5 .1 .4 —.75 .72 .28 0 —.19

linear-geometric group .5 -2 .51 .12 .37 —.74 .80 .20 0 .01

Table 1: Values, beliefs, and expected values before and after learning the event  =

{1 2} (numbers are rounded to two decimal digits)

both outcomes of a duel, the probabilities of states, and the expected utilities of a

duel, before and after learning . Note different things. Each gentleman most prefers

winning himself (utility 1). While gentleman 1 fears dying (utility −5), the reckless and
honour-obsessed gentleman 2 does not mind dying (utility 0). Each gentleman initially

believes strongly that he would win a duel, and updates his probabilities rationally via

Bayes’ rule. At each moment, the gentlemen have conflicting utilities and conflicting

beliefs, yet unanimously prefer duelling, as duelling gives positive expected utility while

not duelling gives zero expected utility.

Table 1 also displays group utilities, probabilities, and expected utilities, under two

alternative aggregation rules for forming group EU preferences:

• The linear-linear rule defines group utility as the (unweighted) linear average of
individual utilities; and similarly for group probability.

• The linear-geometric rule defines group utility as the (unweighted) linear average
of individual utilities; but it defines group probability as the (unweighted) geo-

metric average of individual probabilities, normalised to a probability function.

For instance, the old group probability of 3 is (1)
5(7)5 ≈ 037, where  is the

normalisation factor 1[(85)5(15)5 + (05)5(15)5 + (1)5(7)5].

Under both rules, not duelling is initially collectively better than duelling — against the

gentlemen’s unanimous preference. Such Pareto violations have been at the heart of

Bayesian aggregation theory, but this paper instead asks whether the group updates

its preferences rationally. This is not the case under the linear-linear rule: according to

Bayes’ rule, the new group probabilities of 1 and 2 should have been
05

05+01
≈ 83 and

01
05+01

≈ 17 rather than 72 and 28, and the new group expected utility of duelling

should have been 05
05+01

05+ 01
05+01

(−2) ≈ 08 rather than −019. So the group should
have come to prefer duelling. By contrast, under the linear-geometric rule the new

group probabilities and expected utility in Table 1 arise from the old ones via Bayes’

rule, as one can check and as our theorem will imply generally. As the new expected

utility of duelling is 01  0, the information makes duelling collectively superior (in

our fictional setting which ignores the unacceptability of duels).

The dynamic rationality of linear-linear aggregation cannot be restored by using

weighted linear averages and allowing weights to depend on the preference profile, hence
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on information states.7

3 Characterisation of fully rational aggregation

We consider a group of individuals  = {1     } ( ≥ 2). I work in the Anscombe-
Aumann framework.8 So let  be a finite set  of outcomes (|| ≥ 2), and X the set

of lotteries, i.e., probability functions over , capturing objective risk (and defined on

the power set 2). The probability of an outcome  under a lottery  is () = ({}).
A utility function is a function  :  → R, representing values. It is normalised if
minimal utility is min∈ () = 0 and maximal utility is max∈ () = 1. As usual,

it is extended to lotteries by taking expectations: () := E() for lotteries  ∈ X .
Turning to subjective uncertainty, let  be a non-empty finite set of states. Sets of

states are events. We allow the single-state case || = 1, but exclude the two-state case
|| = 2, in which our theorem curiously does not hold.9

Choice options are functions  :  → X (‘acts’), representing the prospect of lottery

() in state . I use similar symbols for acts and lotteries (‘’, ‘’, ...), because lotteries

are identifiable with special acts: constant acts, containing no subjective uncertainty.

A preference relation is a binary relation º over acts, formally º ⊆ X  × X ; we

write Â for its asymmetric component (representing strict preference) and ∼ for its

symmetric component (representing indifference). A state or event is null under º if

the outcome in it is irrelevant, i.e., all acts that agree outside it are indifferent.

A preference relation º is of expected-utility type — ‘is EU’ — if it maximises some

expected-utility function, i.e., there are a non-constant utility function  :  → R and
a probability function  on 2 such that

 º ⇔ E(()) ≥ E(()) for all acts   ∈ X 

Here,  is unique, and  is unique if one imposes normalisation. The unique  and

normalised  are denoted º and º, respectively. Let P be the set of EU preference

relations.

A value profile is a vector u = () of normalised utility functions  of individuals

 ∈  , summarising the values of individuals. A belief profile is a vector p = () of

probability functions on the set 2 of events, summarising the beliefs of individuals. An

EU preference profile is a vector (º) ∈ P of EU preference relations; it summarises

the preferences of individuals, and indirectly encodes their values and their beliefs,

contained in the value profile (º) and belief profile (º).

Bayesian aggregation theory usually works with a fixed preference profile. To study

preference change, we take a multi-profile approach: we consider a set of possible profiles

7Such ‘linear-linear rules with variable weights’ still violate Bayes’ rule, except if beliefs are combined

dictatorially by concentrating all weight on some individual.
8By working in the Anscombe-Aumann framework, we depart from Mongin (1995) and GSS (2004),

who work in the Savage framework, and come closer to Harsanyi (1954), who works in the von-Neumann-

Neumann framework, a special case of the Anscombe-Aumann framework (i.e., the single-state case).
9 In the two-state case, our axioms are necessary, but no longer sufficient for linear-geometric ag-

gregation, as they for instance permit linear-linear aggregation.
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D ⊆ P, the domain. For generality, the theorem will assume little about the domain.

It will assume that D is regular, by which I mean two things. First, each profile (º) ∈ D
is coherent : individuals have mutually consistent beliefs, i.e., at least one state  ∈  is

non-null under each º ( ∈ ). Coherence is plausible because presumably some state

in  is ‘true’ and hence not excluded by any rational individual.10 Second, to allow

belief revision, D is closed under belief change: whenever D contains a coherent profile
(º) ∈ P, then D also contains each coherent profile (º0) ∈ P that differs from (º)

only in beliefs, not in values.

An EU preference aggregation rule, or simply a rule, is a function transforming

EU preference profiles (from some domain) into group EU preference relations, i.e., a

function  : D→ P on some domain D ⊆ P.11

The following type of rules will emerge from our analysis:

Definition 1 An EU preference aggregation rule  : D → P (D ⊆ P) is linear-

geometric if there exist individual weights  ∈ R and  ∈ R+ ( ∈ ) where
P

  = 1

such that for each preference profile (º) ∈ D the group preference relation º =  ((º))

has

• utility function º given by
P

 º up to an additive constant,
• probability function º given on states by

Q
[º ]

 up to a multiplicative con-

stant.12

Such rules contrast with linear-linear rules, which are defined analogously except

from replacing the second bullet point by:

• probability function º given by º =
P

 º .

I now state simple axioms on a rule  : D → P. The core axiom requires rational

revision of group preferences. Rational revision is revision by conditionalisation. The

conditionalisation of a preference relation º on an event  ⊆  is a new preference re-

lation, denoted º, which can be defined in two equivalent ways. Under one definition,

which assumes that º is EU (and  is non-null), º is the relation obtained from º
by conditionalising beliefs and leaving utilities unchanged, i.e., the unique EU relation

such that º = º(·|) and º = º. The general or abstract definition, due to
Savage, needs no reference to utilities and probabilities: º is the relation such that,

for any acts  , we have  º  if and only if we have 0 º 0 for some acts 0 0

such that (i) in the event , 0 agrees with  and 0 agrees with , and (ii) outside ,

0 agrees with 0. In short,  º  means that  becomes weakly preferred to  after

equalizing (‘ignoring’) outcomes outside . The axiom can now be stated.

10As nobody can possess conclusive evidence against the truth.
11Our notions of ‘rule’ and ‘domain’ build in the assumption that preferences (individual or collective)

are of EU type, i.e., statically rational. Generalised notions of ‘rule’ and ‘domain’ could drop this

assumption.
12 In the representation of a linear-geometric rule, the belief weights  and the multiplicative constant

are unique (except in the single-state case || = 1, in which beliefs are trivial). The value weights 
and the additive constant are unique under the diversity condition defined in Section 5. Following

standard convention, 0 = 1 for all  ∈ R+, even for  = 0. This convention allows one to interpret

[º()]

 ( ∈ ) even if some  and º() are both zero.
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Dynamic Rationality (or Bayesian Updating): When information is learnt by

everyone, the new group preferences equal the old ones conditional on the information.

Formally, if a profile (º0) ∈ D arises from another (º) ∈ D by conditionalising pref-

erences on an event  ⊆ , i.e., º0 = º for all , then the new group relation º0
=  ((º0)) arises by conditionalising º =  ((º)) on , i.e., º0 = º.

In short, post-information group preferences must be equal to pre-information group

preferences conditional on information. Violation of this axiommakes the group dynam-

ically irrational and unable to execute stable plans. This may also create opportunities

to manipulate group preferences and decisions through delaying information.

Before defining our own Pareto axiom, recall the standard Pareto (indifference)

axiom:

Standard Pareto: For all profiles (º) ∈ D and acts   ∈ X , if  ∼  for each
 ∈  , then  ∼  (where º =  ((º))).

This axiom is notoriously criticised because unanimous preferences or indifferences

can be spurious: they can rest on conflicting beliefs (Mongin 1997/2016). In the ex-

ample of Section 2, the unanimous preference for duelling is spurious, as the gentlemen

hold (very) different subjective probabilities. GSS have therefore restricted Standard

Pareto to acts that depend only on events of uncontroversial probability. Formally,

given a profile (º), an act  is common-belief-based if all individual probability func-

tions º ( ∈ ) agree on those events on which  depend, where the events on which

 depend are the events of the form { ∈  : () ∈ } = −1() for some  ⊆ X , i.e.,
the events of the form ‘ has such-and-such result’. An act can be common-belief-based

even if beliefs disagree on many events, on which  does not depend.13

Here is GSS’s axiom, translated into our Anscombe-Aumann-type framework:

Restricted Pareto: For all profiles (º) ∈ D and common-belief-based acts   ∈ X ,

if  ∼  for each  ∈  , then  ∼  (where º =  ((º))).

However, this axiom is only safe against ‘direct’ spurious unanimities. I call a

unanimous preference or indifference directly spurious if it is based on conflicting beliefs,

and indirectly spurious if it is based on (possibly unanimous) beliefs that are themselves

based on conflicting beliefs. Here is an example of a unanimous preference that is not

directly, but indirectly spurious: a group of individuals unanimously prefers the UK

to remain within the EU based on a unanimous strong belief in the event  that

‘Brexit’ harms the British economy (and a unanimous concern for the economy), but

this belief is based on conflicting reasons, i.e., conflicting beliefs about epistemically

prior events. Some individuals might strongly believe  because they strongly believe

that the governmental advisers said so (event 0) and that advisors tell the truth
(event 00), while others strongly believe  because they strongly believe that the

13For instance, even under highly heterogeneous beliefs, all constant acts are common-belief-based,

because such acts depend only on the trivial events  and ∅, on which beliefs must agree.
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governmental advisers denied  (event 0) and that they are mistaken (event 00).
The former individuals reason from 0 and 00 to  (using 0 ∩ 00 ⊆ ), while the

latter individuals reason from 0 and 00 to  (using 0 ∩00 ⊆ ).

This objection against GSS’s Restricted Pareto axiom reinforces an analogous ob-

jection by Mongin and Pivato (2020). They point out the possibility of (what they call)

“complementary ignorance”, which is a version of indirectly spurious unanimity.14

Defining the notion of indirectly spurious unanimity formally would require en-

riching the model, presumably by a relation of epistemic priority between events or

something that generates such a relation, because our current model only captures lo-

gical relations between events, from which one cannot generally read off the direction of

epistemic priority or reasoning.15 But for present purposes we need not define indirect

spuriousness formally. We only aim to state a Pareto axiom that is safe against all

spurious unanimities, direct or indirect. Such a safe Pareto axiom is obtained by re-

stricting the Pareto axiom further, namely to common-belief profiles, i.e., profiles (º)

in which every individual  has same probability function º . In such profiles, not only
the beliefs underlying two given acts are unanimous, but also the beliefs underlying

those beliefs, the beliefs underlying beliefs underlying those beliefs, etc. This auto-

matically excludes spurious unanimities of any order of indirectness. Here is the new

axiom:

Minimal Pareto: For all common-belief profiles (º) ∈ D and acts   ∈ X , if  ∼ 
for each  ∈  , then  ∼  (where º =  ((º))).

Remark 1 Minimal Pareto weakens Restricted Pareto, which weakens Standard Pareto.

Our last axiom requires group preferences to depend continuously on individual

preferences, where ‘convergence’ is defined in the natural way.16

Continuity: If (º1 ) (º2 ) · · ·→ (º) in D, then  ((º1 ))  ((º2 )) · · ·→  ((º)).

I now state the theorem. I do this here only for fixed-values domains, i.e., domains

D whose profiles all have the same value profile; Section 5 re-states the theorem without
14A particularly stark case of indirectly spurious unanimity obtains where the two acts are based

on beliefs that are themselves based on different probability-one beliefs (full belief). If we identify

a probability-one belief in an event with the information of that event, then we face a situation of

unanimous beliefs based on different information. This situation is discussed by Mongin and Pivato

under the label “complementary ignorance”.
15For instance, in the example the fact that 0 ∩ 00 ⊆  does not yet establish that someone who

strongly believes  0 and 00 has reasoned from 0 and 00 to . The person might instead have

come up independently with the three beliefs (without any epistemic priorities between these events),

or have reasoned from  and some further event  to 0 and 00 using that ∩ ⊆ 0 and ∩ ⊆ 00

(in which case the epistemic priority goes the other way round). This illustrates that logical relations

underdetermine epistemic priority.
16A sequence of relations º1º2 · · · ∈ P converges to º ∈ P — written º1º2 · · ·→ º — if expected

utilities of acts converge: Eº1 (º1())Eº2 (º2()) · · · → Eº(º()) for all acts  ∈ X . This is

equivalent to convergence of values and beliefs: º1  º2  · · ·→ º and º1  º2  · · ·→ º (see Lemma
5). A sequence of profiles (º1 ) (º2 ) · · · ∈ D converges to (º) ∈ D — written (º1 ) (º2 ) · · ·→ (º) —

if º1 º2  · · ·→ º for each individual .
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fixing values. Fixed-values domains allow variation in beliefs, but not in values. Fixing

values is perhaps not a great loss, as Bayesian learning changes beliefs, not values;

and it is a ‘half-way’ concession to the fixed-profile approach of standard Bayesian

aggregation theory, which fixes values and beliefs.

Theorem 1 An EU preference aggregation rule  : D→ P on a (regular) fixed-values
domain D is dynamically rational, minimally Paretian, and continuous if and only if

it is linear-geometric.

I now discuss two extensions and the special case of ‘no uncertainty’.

Extension 1: non-public information. The axiom of Dynamic Rationality covers

public information (observed by everyone). It can be re-stated in two ways, to cover

private information (observed by just one individual) or to cover semi-private inform-

ation (observed by at least one individual). These are the two modified axioms, where

I underline the changes from the original:

• Dynamic Rationality for Private [or: Semi-private] Learning : When information
is learnt by exactly [or: at least] one individual, the new group preferences equal

the old ones conditional on the information. Formally, if a profile (º0) ∈ D arises
from another (º) ∈ D by conditionalising the preferences of exactly [or: at least]
one individual on an event  ⊆ , then the new group relation º0 =  ((º0))
arises by conditionalising º =  ((º)) on .

The axiom with semi-private information is obviously logically stronger than the

original axiom. Even the axiom with private information is logically stronger, because

public learning of  can be decomposed into  steps of private learning of  by each

individual in turn, assuming the domain D is regular (to ensure the profile stays in D
in each step). These stronger axioms can still be met, by only slightly fewer rules. We

must only exclude rules that ignore someone’s beliefs, to avoid that private learning by

someone is collectively ignored. More precisely, Theorem 1 still holds if we strengthen

Dynamic Rationality in one of the two ways (no matter which) and require strict

positivity of the belief weights  ( ∈ ).

Extension 2: respecting individual values. Theorem 1 imposes no constraints on

the sign of the value weights . Individual values could be ignored ( = 0) or even

counted negatively (  0). We can enforce non-negativity or even positivity of the

value weights  by strengthening the Minimal Pareto axiom in Theorem 1 in natural

ways. To enforce non-negativity, replace the axiom’s indifferences by weak preferences.

To enforce positivity, do the same and add that the group’s weak preference becomes

strict whenever some individual’s weak preference becomes strict.

Harsanyi’s Theorem as the uncertainty-free special case. Theorem 1 reduces to

Harsanyi’s Theorem in the uncertainty-free case, i.e., the single-state case || = 1. This
is because in that case acts in X  reduce to lotteries in X (which contain no subjective

uncertainty), the domain D becomes singleton (which amounts to fixing the profile),
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our Minimal Pareto axiom reduces to Harsanyi’s Pareto indifference axiom, and the

axioms of Dynamic Rationality and Continuity drop out (as they hold trivially for a

single-profile domain). To state Harsanyi’s Theorem, let an EU preference relation on

X (rather than X) be a binary relation º on X which maximises the expectation of

some non-constant utility function  on; the unique normalised version of  is denoted

º. A group preference relation º on X satisfies the Pareto indifference principle w.r.t.
individual preference relations º on X ( ∈ ) if  ∼ 0 whenever  ∼ 0 for all  ∈  .

Corollary (Harsanyi’s Theorem) A group EU preference relation º on X satisfies

the Pareto indifference principle w.r.t. individual EU preference relations º on X
(  ∈ ) if and only if º =

P
 º +  for some  ∈ R (  ∈ ) and  ∈ R.

4 Linear or geometric pooling of beliefs?

Linear-geometric aggregation differs from classical linear-linear aggregation only in how

beliefs are pooled. Should beliefs be pooled linearly or geometrically after all? This

is the notorious debate in opinion pooling theory — a debate that should finally reach

Bayesian preference aggregation theory. Opinion pooling theory is concerned with

merging subjective probabilities, not preferences. It has long recognised that linear

and geometric pooling each have one significant argument in its favour.

Pro geometric. Geometric belief aggregation has superior dynamic behaviour (see

Section 6 for discussion of the literature). In fact, Theorem 1 implies a new version of

this result, namely a ‘belief analogue’ of Theorem 1:

Theorem 2 A belief aggregation rule (on the domain of coherent belief profiles) is dy-

namically rational, unanimity-preserving, and continuous if and only if it is geometric.

The concepts in Theorem 2 (such as ‘dynamically rational’) are belief-theoretic

counterparts of the preference-theoretic concepts in Theorem 1. The appendix gives

the obvious formal definitions, and proves Theorem 2 by reducing it to a special case

of Theorem 1.

Pro linear. Linear opinion pooling enjoys the following (conditional) robustness prop-

erty: if states are refined or coarsened, then group beliefs are not perturbed, i.e.,

merely ‘extended’ or ‘restricted’, assuming that individual beliefs are not perturbed,

i.e., merely ‘extended’ or ‘restricted’ (a questionable assumption unfortunately, as ex-

plained shortly). This robustness property holds similarly in the context of aggregating

preferences rather than beliefs.

How important is such robustness in the preference-aggregation context? Much

depends on which of the two goals mentioned in the introduction we pursue. Robust-

ness matters less for the methodological goal of knowing whether the social-scientific

hypothesis of ‘rational group agents’ is coherent, i.e., has aggregation-theoretic micro-

foundations. An ideal rational agent holds beliefs defined on fixed, maximally informat-

ive states. This requires a maximal state space , and forbids coarsening states as done

11



in robustness arguments. Coarsening states applies to non-ideal agents. Robustness

however matters if we aim to construct group preferences in practice. In practice, one

cannot work with the maximally fine states of ideal rational agents. This opens the

door to problems of state design and robustness.

Unfortunately, in practice not even linear pooling is robust, because individual

beliefs are systematically non-robust to start with. Why? The states of a model are

normally linked, at least partly, to the (atomic) scenarios which individuals subjectively

consider, or are aware of, or reason with — either because the design of states (the

‘framing of contingencies’, in Ahn and Ergin’s 2010 words) affects people’s reasoning

and conceptualisation of options, or conversely because people’s reasoning guides the

modeller, who tailors the states of the model to the (atomic) scenarios considered by

individuals. Given this correlation between states and awareness — between model

ontology and individual ontology — a state refinement reflects growing awareness. But

growingly aware individuals do not only extend their old beliefs to new events: they

also revise their beliefs about old events, a process that is rationally governed by a well-

defined revision rule, axiomatised by Ahn and Ergin (2010) as ‘partition-dependence’,

by Karni and Viero (2013, 2020) as ‘reverse Bayesianism’, and by Dietrich (2018) as

‘proportional rescaling’. This makes individual beliefs non-robust. Hence also group

beliefs are non-robust, even if formed linearly.

5 How stable are the individual weights?

Theorem 1 delivers a type of aggregation in which the impact or ‘say’ of an individual

, given by his pair of weights  and , does not depend on the profile, hence is robust

to belief change: individual weights remain the same when beliefs change. But what

happens to weights when values change? This question is bracketed out by Theorem 1

by assuming a fixed-values domain. To answer the question, I now re-state Theorem 1

for domains in which not just beliefs, but also values can change. The finding will be

that individual weights can depend on values, but not on beliefs.

Technically, the extended theorem will make a standard assumption on profiles (be-

cause of which it is, strictly speaking, not logically stronger than Theorem 1). An EU

preference profile (º) is diverse — one might say, ‘diverse in values’ — if for each indi-

vidual  there are lotteries  0 ∈ X between which only individual  is non-indifferent

(i.e.,  6∼ 0 while  ∼ 0 for  6= ). In the extended theorem, individual weights can

vary with values, in the following sense:

Definition 2 An EU preference aggregation rule  : D → P (D ⊆ P) is linear-

geometric with values-dependent weights if there exist individual weights u ∈ R and
u ∈ R+ ( ∈ ) which depend continuously on the value profile u ∈ {(º) : (º

) ∈ D}, where P u = 1 for each u, such that at each profile (º) ∈ D the group

preference relation º =  ((º)) has

• utility function º given by
P

 uº up to an additive constant,
• probability function º given on states by

Q
[º ]

u up to a multiplicative con-
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stant,

where u denotes the current value profile (º).
17

Theorem 1+ An EU preference aggregation rule  : D → P on a (regular) do-

main D of diverse profiles is dynamically rational, minimally Paretian, and continuous
if and only if it is linear-geometric with values-dependent weights.

Extensions 1 and 2 translate analogously to Theorem 1+. The domain in Theorem

1+ is flexible. Maximally, it contains all diverse coherent profiles (º) ∈ P. Minimally,

it is a fixed-values domain. Aside from the diversity condition, Theorem 1 is a special

case of Theorem 1+: the case of fixed values. The reason is that by fixing values we

fix the index u in the weights ‘u’ and ‘u’; so this index drops out, and we obtain

ordinary linear-geometric rules.

As individual weights depend only on values, not on beliefs, weights still enjoy a

limited amount of stability or profile-independence. By contrast, the weights in GSS’s

linear-linear result can vary with both values and beliefs, even discontinuously. This full

profile-dependence would become visible if GSS’s result were re-stated as a multi-profile

result, i.e., as a result about an aggregation rule defined on a domain of profiles. The

reason why our fully rational approach leads to more weight stability than GSS’s less

rational and more Paretian approach is that we adopt inter-profile conditions (Dynamic

Rationality and Continuity), which connect and structure aggregation across profiles.

GSS adopt only intra-profile conditions (static rationality and restricted Pareto), which

cannot prevent the weights from jumping arbitrarily across profiles.

One may conjecture that combining both approaches leads to an impossibility the-

orem: there is no non-degenerate rule that is fully rational and also Paretian in GSS’s

stronger sense. Why? By Theorem 1+, such a rule must be linear-geometric with

values-dependent weights (taking ‘non-degenerate’ to subsume ‘continuous’). On the

other hand, the rule must be linear-linear with profile-dependent weights, assuming

GSS’s theorem translates to our framework, a conjecture whose proof lies outside the

scope of this paper.18 To be both simultaneously, some individual must receive the full

belief weight of one, and this individual must (by continuity) be the same at all profiles.

So the rule must be dictatorial in beliefs, hence degenerate; it can be non-dictatorial

(only) in values, as (only) the value weights can be distributed freely.

6 Discussion in relation to the literature

I have proposed to model groups as fully rational agents, by applying to group agents

what we normally require from individuals. Group rationality is uniquely achieved

17Footnote 12 about uniqueness of weights applies analogously.
18A version of GSS’s theorem within our Anscombe-Aumann and multi-profile framework would

assert that (on a domain of such-and-such type) the linear-linear rules with profile-dependent weights

are the only restrictedly Paretian rules for generating statically rational group preferences, possibly

assuming some non-degeneracy conditions on the rules. Such a result could also be stated in a single-

profile format, unless the result involves a non-degeneracy condition of an inter-profile nature.
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by linear-geometric aggregation, if group preferences are minimally Paretian and con-

tinuous in individual preferences. Linear-geometric aggregation makes the group agent

more rational, but less Paretian, than GSS’s classic linear-linear aggregation — a new

instance of the classic trade-off between group rationality and Paretianism (see below).

Which form of Paretianism is justified under uncertainty is an open debate (see below).

Minimal Paretianism seems particularly unobjectionable, as it is safe against directly

and indirectly spurious unanimities.

From here, important questions open up. How about weakening static group ra-

tionality into non-EU directions while preserving Dynamic Rationality, suitably ex-

tended? Such a dynamically (not statically) rational approach would be the dual of

the statically (not dynamically) rational programme of Harsanyi, Mongin, and Gilboa-

Samet-Schmeidler. And how about geometric-geometric rules, which pool even values

geometrically? Such rules remain fully rational, but become radically non-Paretian.

Bayesian preference aggregation theory was born with Harsanyi’s (1955) spectacular

theorem: in groups with heterogeneous preferences under risk, group utility must be lin-

ear in individual utilities if the group is Paretian and EU rational. Harsanyi regarded

his result as an ‘economic derivation’ of philosophical utilitarianism, a controversial

interpretation ever since (Weymark 1991, Fleurbaey and Mongin 2016). Harsanyi’s

Theorem enjoys some robustness within the limited world of objective uncertainty; see

generalisations by Fleurbaey (2009, 2014) and Danan, Gajdos and Tallon (2015). As

mentioned, the picture reverses for heterogeneous beliefs: EU rationality then becomes

incompatible with Paretianism (e.g., Mongin 1995), and meanwhile Paretianism be-

comes less compelling because unanimities can be spurious (Mongin 1997/2016); but

Gilboa et al. (2004) restore possibility by restricting the Pareto principle to unanimit-

ies that are not (directly) spurious, obtaining linear-linear group preferences. A lively

literature follows, exploring the trade-off between group rationality — in the static EU

sense setting aside Bayes’ rule — and Paretianism. The general direction has been to

combine more or less strong group rationality with more or less strong Paretianism, usu-

ally working within some classical model of choice under uncertainty (see Chateauneuf,

Cohen and Jaffray 2008 for a review).

Some works emphasize impossibility, often by working with non-EU preferences,

i.e., abandoning even static rationality. In particular, Chambers and Hayashi (2006)

show that full Paretianism already conflicts with minimal group rationality, i.e., with

transitive and complete group preferences satisfying Savage’s P3 or Savage’s P4. An-

other threat to preference aggregation comes from individual irrationality: Gajdos,

Tallon and Vergnaud (2008) and Zuber (2016) show that, unless individuals have EU

preferences, group preferences cannot even be mildly rational and Paretian — also if

individuals have identical beliefs.

Other works stress possibility. For instance, Chambers and Hayashi (2006) show

the possibility of state-dependent fully Paretian group preferences (see already Mongin

1998). Another positive result is due to Danan et al. (2016): incomplete preferences

based on imprecise beliefs can be aggregated in a Paretian way.

Over the years, new Pareto principles have been proposed and defended, such
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as principles restricted to unanimities that are shared-belief rationalisable (Gilboa,

Samuelson and Schmeidler 2014), principles sensitive to whether acts depend on object-

ive or subjective uncertainties (Mongin and Pivato 2020), and principles restricted to

unanimities that are common knowledge (Nehring 2004, Chambers and Hayashi 2014).

Attempts to make Paretianism immune to spurious unanimities face a general difficulty:

beliefs become empirically underdetermined once we remove the (unfalsifiable) hypo-

thesis of state-independent utility (Karni 1993, Wakker and Zank 1999, Baccelli 2019).

Different possible reactions might be taken in the face of this intriguing underdetermin-

ation diagnosis, such as: becoming more cautious about Pareto axioms out of fearing

hidden spurious unanimities, or on the contrary reverting to full-blown Paretianism

out of rejecting the very notion of belief and spurious unanimity. The former position

could be described as mentalist or realist, the latter position as strongly behaviourist

or instrumentalist. Sprumont (2018) offers such a behaviourist view.

The Dynamic Rationality axiom is a counterpart for preference aggregation of the

classic External Bayesianity axiom in the theory of belief aggregation or ‘opinion pool-

ing’ (Madansky 1964, Bordley 1982, Genest and Zidek 1986, Dietrich and List 2016).

Like our axiom, External Bayesianity requires aggregation to commute with revision;

but it differs firstly in the objects that are aggregated and revised, namely probabilities

rather than preferences, and secondly in the information that is learnt and triggers

revision, namely information given by a likelihood function rather than an event, i.e., a

function mapping each state to (what is interpreted as) the probability or probability-

density of an information conditional on the state. Informally, likelihood functions

capture information outside the domain (event algebra) relative to which beliefs are

held. If states are weather states, then the information ‘it rains’ is representable by an

event (the set of states in which it rains), hence lies inside the event algebra, whereas

the information ‘the radio forecasts that it rains’ lies outside the event algebra, and

is representable by a likelihood function that takes values near 1 in ‘rainy’ states (in

which this forecast is likely) and values near 0 in ‘sunny’ states (in which this forecast

is unlikely). While events represent the classical information concept in rational choice

theory and Bayesianism, likelihood functions represent an information concept that is

natural in statistics.19 This might explain why opinion pooling theory (a field influenced

by statistics) uses likelihood-function-type information in its External Bayesianity ax-

iom. As is well-known, geometric opinion pooling rules satisfy External Bayesianity,

but are not the only well-behaved rules doing so (e.g., Dietrich and List 2016, Baccelli

19 If the states represent the possible values of the unknown parameter in a statistical model, then

statistical information (‘data’) is representable by a likelihood function, defined as the data’s parameter-

dependent probability (or probability density). Bayesian statistics requires prior beliefs over the pos-

sible parameter values, and revises them when observing data. This revision is equivalent to condition-

alisation on a likelihood function (the one generated by the data), i.e., revision of the type considered in

the External Bayesianity axiom. This is the statistical rationale underlying External Bayesianity and

the likelihood-function-based concept of information. Seen from this perspective, External Bayesianity

is a natural condition in situations where different Bayesian statisticians work together, but disagree

on the prior beliefs over the parameters, and hence must aggregate their prior beliefs into compromise

prior beliefs (on which the statistical analysis is then based). By contrast, the ordinary event-based

concept of information seems more natural from a rational-choice-theoretic perspective.
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and Stewart 2019). Geometric opinion pooling rules become the only well-behaved

solutions if External Bayesianity is re-stated using standard event-type information,

thereby making group beliefs classically Bayesian; this is what is shown by Theorem 2

(and, in a preference-aggregation context, by Theorem 1). This move towards classic-

ally Bayesian group beliefs is already made in recent work on opinion pooling, in which

close variants of Theorem 2 are established (Russell et al. 2015, Dietrich 2019). The

upshot of Theorem 2 compared to its precursors is that it addresses geometric opinion

pooling in the ordinary sense, while the two earlier classically Bayesian results address

a generalised version of geometric pooling, in which the individual weights need not

sum to one.

Just as geometric opinion pooling can be generalised by lifting the constraint on

the sum of weights, so linear-geometric preference aggregation might be generalised

by lifting the constraint on the sum of belief weights. Such preference aggregation

would remain dynamically rational and continuous, but become radically non-Paretian,

since generalised geometric pooling overrules unanimously held probability functions,

violating even minimal Paretianism.

A Proof of Theorem 2 on opinion pooling

This appendix provides the formal definitions underlying Theorem 2, and then gives

two proofs of Theorem 2, a (short) proof based on Theorem 1, and an independent

proof. Having also an independent proof is crucial for us, since Theorem 2 will later

serve as a lemma on the way to prove Theorem 1. So, Theorem 2 is both a corollary of,

and a proof step towards, our central result. Theorem 2 and its (independent) proof

are close variants of existing ones in Russell et al. (2015) and Dietrich (2019).20 For

completeness, I still give a self-contained proof here.

The definitions underlying Theorem 2. Theorem 2 needs fewer formal primitives

than Theorem 1: it only needs our (finite non-empty) set of states , not our set of

outcomes. A belief aggregation (or opinion pooling) rule is a function  mapping each

belief profile p = () from some domain D ⊆ ∆() to a group probability function
(p) ∈ ∆(), hence a function  : D → ∆(). The rule is geometric if there exist

weights  ≥ 0 ( ∈ ) of sum one such that, at each belief profile p ∈ D, (p) is
given on states by

Q
[]

 up to a multiplicative constant. The three axioms used in

Theorem 2 are defined as follows:

• Dynamic Rationality (or Bayesian Updating): When information is learnt by
everyone, the new group beliefs equal the old ones conditional on the inform-

ation. Formally, if a belief profile (0) ∈ D arises from another () ∈ D by

conditionalising beliefs on an event  ⊆ , i.e., for all , 0 = (·|) (in par-
20Theorem 2 shares two premises with Russell et al.’s theorem and with Dietrich’s previous theorem

(i.e., Thm. 2 in Dietrich 2019), namely Dynamic Rationality and Continuity. While Theorem 2

characterises geometric pooling, the two precursors characterise generalised geometric pooling, in which

the individual weights need not have sum one.
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ticular ()  0), then the new group belief ((0)) arises by conditionalising
(()) on , i.e., ((0)) = (())(·|) (in particular (())()  0).

• Unanimity Preservation: (     ) =  for all unanimous belief profiles (  ) ∈
D.

• Continuity: If p → p in D (i.e.,  →  for all  ∈ ), then (p)→ (p).

Finally, a belief profile p ∈ ∆() is coherent if some state has positive probability
under each individual belief, i.e.,

T
 supp() 6= ∅.

Proof of Theorem 2 from Theorem 1. Assume Theorem 1 holds. Fix a (norm-

alised) utility function . Given , each probability measure  ∈ ∆() corresponds
uniquely to an EU preference relation º ∈ P, defined by º =  and º = . Hence,

any belief aggregation rule  : D→ ∆() on some domain D ⊆ ∆() corresponds to
an EU preference aggregation rule on a corresponding comain D ⊆ P. As in Theorem

2, consider a belief aggregation rule  : D→ ∆() on the domain D of coherent belief

profiles, and let  : D→ P be the corresponding EU preference aggregation rule. Since
D consists of all coherent belief profiles, D is a regular fixed-values domain, i.e., a do-

main of the type assumed in Theorem 1 (more precisely, D is the fixed-values domain

w.r.t. the unanimous value profile (  )). The axioms in Theorem 2 reduce to those

in Theorem 1:

(a)  is dynamically rational if and only if  is dynamically rational, essentially

because, as values are fixed, aggregation-revision commutativity for preferences

reduces to aggregation-revision commutativity for underlying beliefs.

(b)  is continuous if and only if  is continuous, essentially because, again as values

are fixed, convergence of preferences reduces to convergence of underlying beliefs

(drawing on Lemma 5 below).

(c)  is unanimity-preserving if and only if  is minimally Paretian. Why? First, if 

is unanimity-preserving, then  is minimally Paretian, because at any common-

belief profile (º) ∈ D the group relation  ((º)) has the same probability func-

tion as all º (by unanimity-preservation) and the same utility function as all

º (namely ), hence is identical to all º, and thus preserves individual indiffer-

ences. Conversely, assume  is minimally Paretian. To show that  is unanimity-

preserving, consider a unanimous belief profile (  ) ∈ D. We fix a state  ∈ 

and show that (  )() = (). Let  be a constant act which at each state

generates the same lottery having an outcome of utility 1 with probability ()

and an outcome of utility 0 with probability 1− (). Let  be an act which at 

has (surely) an outcome of utility 1 and at other states has (surely) an outcome

of utility 0. For each individual,  and  both have expected utility (), hence

are indifferent. So, by minimal Pareto,  and  are collectively indifferent. Since

 ’s collective expected utility is (), so is ’s. Hence the collective probability of

 is ().

Not only do the axioms of both theorems correspond, but also  is linear-geometric

if and only if  is geometric, because linearity in values holds trivially, given that the

group has the same utility function as all individuals. So Theorem 2 reduces to (the

current instance of) Theorem 1. ¥
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Direct proof of Theorem 2. Consider a belief aggregation rule  on D = {p ∈
∆() : p is coherent}. The result is trivial if || = 1. So, as || 6= 2, we can assume
without loss of generality that || ≥ 3.

Part 1 (necessity of the axioms). First, let  be geometric, say with weights  ( ∈
). Trivially,  is then unanimity-preserving (using that

P
  = 1) and continuous.

To show dynamic rationality, assume a belief profile (0) ∈ D arises from another

one () ∈ D by conditionalising each  on , i.e., () 6= 0 and 0 = (·|) for
all . We must show that ((0)) arises by conditionalising (()) on , i.e., that (*)

(())() 6= 0 and (**) ((0)) = (())(·|). To show (*), note first that supp(º) ⊇
∩supp() by definition of geometric pooling. So,

supp(º) ∩ ⊇ [∩supp()] ∩ = ∩[supp() ∩] = ∩supp(0) 6= ∅
where the ‘6=’ holds by coherence of (º0). So, supp(º) ∩  6= ∅, implying (*). To
show (**), note first that ((0)) is proportional to

Q
[
0
]
 on states, where each 0

(= (·|)) is itself proportional to  on states in  and zero on other states. So,

((0)) is proportional to
Q

[]
 (hence to (())) on states in  and zero on other

states. This implies (**). Q.e.d.

Part 2 (sufficiency of the axioms). Now assume  satisfies the three axioms. We

prove several claims, the last of which is that  is geometric, as intended.

Claim 1: For all p ∈ D and all   ∈ , p() = p() 6= 0⇒ (p)() = (p)() 6= 0.
Assume p() = p() 6= 0. For non-triviality,  6= . Let  = { }. Let 0 ∈ ∆()

be given by 0() = 0() = 1
2
. Form the unanimous profile p0 = (0     0). Note that

p(·|) = p0. So, by Dynamic Rationality, (p)() 6= 0 and (p)(·|) = (p0). Hence,
as (p0) = 0 by Unanimity-Preservation, (p)(|) = (p)(|) = 1

2
. By implication,

(p)() = (p)() 6= 0. Q.e.d.
Claim 2: For all  6=  in  there is a unique  : (0∞) → (0∞) such that

(p)()

(p)()
= 

³³
()

()

´´
for all p ∈ D with p()p()À 0.

Let  6=  in . Uniqueness holds as each x ∈ (0∞) equals
³³

()

()

´´
for a p ∈ D.

As for existence, let pp0 ∈ D with p()p0() À 0 and
³
()

()

´
=
³
0()
0()

´
. We show

(p)()

(p)()
=

(p)0()
(p)0() . Put  = { }. Note p(·|) = p0(·|). So (p(·|)) = (p0(·|)),

whence by Dynamic Rationality (p)(·|) = (p0)(·|). So (p)()

(p)()
=

(p)0()
(p)0() , where

both ratios are well-defined and non-zero because (p)() (p)() (p0)() (p0)() 6=
0 by Dynamic Rationality. Q.e.d.

Claim 3: (xy) = (x)(y) for all xy ∈ (0∞) and pairwise distinct
   ∈ .

Use that for all xy ∈ (0∞) and pairwise distinct    ∈  one can construct a

p ∈ D such that x =
³
()

()

´
, y =

³
()

()

´
, and so xy =

³
()

()

´
. Q.e.d.

Claim 4: All  for  6=  are the same function, to be denoted  .

Let  0  0 ∈  with  6=  and 0 6= 0, and x ∈ (0∞). I must show (x) =

00(x).

Case 1 :  = 0. Pick p ∈ D such that p()p(0) À 0 and x =
³
()

()

´
=
³
()

(0)

´
.
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So p() = p(0) 6= 0. Hence (p)() = (p)(0) 6= 0 by Claim 1. So
(p)()

(p)()
=

(p)()

(p)(0) ,

whence (x) = 0(x).

Case 2:  = 0. By an argument analogous to that in Case 1, (x) = 0(x).

Case 3 :  6= 0 and  6= 0. I show (x) = 00(x) by drawing on Cases 1 and 2. If

 6= 0, then (x) = 0(x) = 00(x) If 
0 6= , then (x) = 0(x) = 00(x) If

 = 0 and 0 = , then, choosing any  ∈ \{ }, (x) = (x) = (x) = (x)

Q.e.d.

Claim 5: (xy) = (x)(y) for all xy ∈ (0∞), and (1) = 1.

The functional equation holds by Claims 3 and 4. The identity (1) = 1 follows

because (1) = (1)(1). Q.e.d.

Claim 6:
(p)()

(p)()
= 

³³
()

()

´´
for all   ∈  and p ∈ D with p()p()À 0.

For  6=  this holds by Claims 2 and 4, while for  =  it holds as
(p)()

(p)()
= 1 and


³³

()

()

´´
= (1) = 1. Q.e.d.

Claim 7: There exist 1      ∈ R such that (x) = 
1
1 · · · for all x ∈ (0∞).

The function  : x 7→ ln (((exp)) on R obeys Cauchy’s functional equation

‘(x + y) = (x) + (y)’ by Claim 5 and is continuous by Continuity. So there are

 ∈ R ( ∈ ) such that (x) =
P

  for all x ∈ R (Aczél 1966). Hence,

(x) = exp  ((ln)) = exp
X


 ln = 
1
1 · · · for all x ∈ (0∞).

Claim 8:
T
 supp() ⊆ supp((p)).

We fix an  ∈ T supp() and show  ∈ supp((p)). Consider the event  = {}.
The updated profile p(·|) is still coherent, i.e., in D, so that by Dynamic Rationality
(p(·|)) = (p)(·|), and in particular (p)()  0. So  ∈ supp((p)). Q.e.d.

Claim 9: Consider the subdomain of full-support profilesD∗ := {p ∈ D : supp() =

 for all  ∈ }. For each p ∈ D∗, (p) is given on states by Q[]
 up to a multi-

plicative constant.

Let p ∈ D∗. Fix any  ∈ , and define 0 := (p)() and 00 :=
Q

[()]
 . We have

0 00  0, because supp((p)) =  as supp((p)) ⊇ T supp() =  by Claim 8. For

all  ∈ ,

(p)() = 0
(p)()

(p)()
= 0

µµ
()

()

¶¶
= 0

Y


µ
()

()

¶

=
0

00
Y


[()]
  Q.e.d.

Claim 10:  ≥ 0 for all  ∈  and
P

  = 1.

We proceed by contradiction. First, assume
P

  6= 1. Pick any p ∈ D∗ in which
all  are the same  such that () is neither identical for all  ∈  nor 1 at any  ∈ .

By Unanimity-Preservation, (p) = . So by Claim 9,  is proportional on states toQ
 

 = 


  , a contradiction as
P

  6= 1.
Second, assume  ∈  such that   0. Pick  ∈  and a sequence p1p2 · · · ∈ D∗

that converges to a p ∈ D\D∗ which satisfies supp() = \{} and supp() = 

for all  ∈ \{}. By   0 and Claim 9, the sequence (p1) (p2)    converges
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to the measure assigning probability 1 to . Meanwhile by Continuity the limit must

be (p). So (p)() = 1, whence supp((p)) = {}. Yet by Claim 8 supp((p)) ⊇T
 supp() = \{}, a contradiction. Q.e.d.
Claim 11:  coincides with the geometric rule with weights ,  ∈  .

Note that the geometric rule in question is well-defined by Claim 10. As  and this

geometric rule are two continuous functions on D which by Claim 9 coincide on the

topologically dense subdomain D∗, the two functions coincide globally. ¥

B Proof of Theorems 1 and 1+ on preference aggregation

I now prove Theorem 1+. Although Theorem 1 about fixed-values domains is not

quite a corollary (as it does not assume diverse profiles), we need no separate proof of

Theorem 1, because in the case of fixed-values domains the proof of Theorem 1+ does

not require diversity.

Assumptions and notation: Fix a regular domain D of diverse profiles, and a rule

 : D → P. By convention, the group relation obtained by aggregating individual
relations is denoted using the same symbol as for individuals, but without individual

index: so  ((º)) is denoted by º,  ((º0)) is denoted by º0, etc. Let U := {(º) :
(º) ∈ D} be the set of occurring values profiles. Let D  ⊆ D be the subdomain
of common-belief profiles in D.

Consider two separate conditions on the rule  :

LIN: There exist real weights (u)∈u∈U such that, at each profile (º) ∈ D, º is
given by

P
 (º )

º up to an additive constant.
GEO: There exist non-negative weights (u)∈u∈U with

P
 u = 1 for all u ∈ U

such that, at each profile (º) ∈ D, º is given on  by
Q

[]
(º ) up to a

multiplicative constant.

We prove Theorem 1+ by showing four facts, of which the first three establish

sufficiency of the axioms and the fourth establishes necessity of the axioms:

Fact 1: Dynamic Rationality and Minimal Pareto imply LIN.

Fact 2: Dynamic Rationality, Minimal Pareto, and Continuity imply GEO.

Fact 3: LIN, GEO and Continuity imply that the rule is linear-geometric with values-

dependent weights.

Fact 4: All linear-geometric rules with values-dependent weights satisfy Dynamic Ra-

tionality, Minimal Pareto, and Continuity.

B.1 Proof of Fact 1

We start with a technical lemma:
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Lemma 1 For all (º) ∈ D,
T
 supp(º) 6= ∅, and if Dynamic Rationality holds thenT

 supp(º) ⊆ supp(º) ⊆
S
 supp(º).

Proof. Let (º) ∈ D. By coherence,
T
 supp(º) 6= ∅. Now assume Dynamic

Rationality. We first show supp(º) ⊆
S
 supp(º). Let  =

S
 supp(º). Clearly,

º = º for all . So by Dynamic Rationality º = º, whence º = º . Thus
supp(º) ⊆ . Second, we consider any  ∈ T supp(º) and show  ∈ supp(º).
Consider the event  = {}. The updated profile (º0) := (º) is coherent, hence in

D. So Dynamic Rationality applies, and implies that º0 = º. In particular, º∈ P.
Thus  ∈ supp(º), as otherwise  would be º-null, andº would be the all-indifferent

relation, which lies outside P. ¥

We next prove that Dynamic Rationality implies this familiar axiom:

Independence of Group Values on Individual Beliefs (IGVIB): For all (º

) (º0) ∈ D, if º = º0 for all  ∈  , then º = º0 .

Lemma 2 Dynamic Rationality implies IGVIB.

Proof. Assume Dynamic Rationality. Note that if profiles (º) (º0) ∈ D are ‘Bayes

neighbours’ in the sense that for some  ⊆  we have (º) = (º0) or (º) = (º0),
then by Dynamic Rationality º = º0 or º = º0, and so º = º0 as conditionalisa-
tion preserves values.

Now consider any (º) (º0) ∈ D such that (º) = (º0). By the previous obser-
vation, it suffices to construct a finite sequence of profiles in D starting with (º) and

ending with (º0) such that any two adjacent profiles are Bayes neighbours. To do so,
pick  ∈ T supp(º) and 0 ∈ supp(º0) (via Lemma 1). Let (º1 )     (º5 ) be the
five profiles such that (º1 ) = (º) and (º5 ) = (º0), and such that (º2 ), (º3 ), (º4 )
have values profiles given by º2 = º3 = º4 = º ( ∈ ) and belief profiles given

by º2 () = 1, º3 () = º3 (
0) = 1

2
and º4 (

0) = 1 ( ∈ ). These profiles belong

to D as D is closed under belief change. To check for Bayes neighbourhood, note that,
for all  ∈  , º1

{} = º2 , º2 = º3{}, º3{0} = º4 , and º4 = º5{0}. ¥

The proof of Fact 1 is completed by two lemmas. The first uses Harsanyi’s Theorem

to show that Minimal Pareto alone implies a much weaker linearity property than LIN,

which is restricted to common-belief profiles and allows weights to depend arbitrarily on

the profile. The second strengthens the linearity conclusion to LIN by adding IGVIB.

Lemma 3 Under Minimal Pareto, there are weights (º) ∈ R across  ∈  and

(º) ∈ D  such that, at each (º) ∈ D , º =
P

 (º)º +  for some

 ∈ R.

Proof. Let (º) ∈ D . Under Minimal Pareto, the restriction of the group

relation to lotteries, º |X , satisfies Harsanyi’s (1955) Pareto indifference condition
w.r.t. the restricted individual relations º |X ( ∈ ). So our linearity conclusion

holds by Harsanyi’s Theorem (Harsanyi 1955). ¥
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Lemma 4 IGVIB and Minimal Pareto jointly imply LIN.

Proof. This result follows from Lemma 3, since under IGVIB the linearity conclusion

in Lemma 3 extends to arbitrary profiles (º) ∈ D (since each (º) ∈ D has the same

values profile as some (º0) ∈ D ), where we can take the weights (º) to depend
on (º) only through the values profile (º ). ¥

B.2 Proof of Fact 2

We begin by a simple characterisation of preference convergence:

Lemma 5 A sequence º converges to º in P (i.e., Eº (º())→ Eº(º()) for
all  ∈ X) if and only if º →  and º → º, where ‘→’ denotes pointwise
convergence or (equivalently) uniform convergence.

Proof. Consider º ( = 1 2    ) and º in P. First, if º → º and º → º,
then º→ º because for all acts  ∈ X

Eº (º()) =
X
∈

º()
X
∈

()()º()

→
X
∈

º()
X
∈

()()º() = Eº(º()).

Conversely, assume º→ º. Then º → º since for each  ∈  we can use the

constant act  ≡  to infer º() = Eº (º()) → Eº(º()) = º(). Now
we fix  ∈  and show º() → º(). Pick  0 ∈  such that º() = 1 and

º(0) = 0, and consider the act  ∈ X  mapping  to  and all other states to 0.
Since º→ º, we have Eº (º())→ Eº(º()), i.e.,

º()º() + (1− º())º(
0)→ º()1 + (1− º())0 = º()

Since º()→ º() = 1 and º(0)→ º(0) = 0, we can infer º()→ º(). ¥

Our preference aggregation rule  induces a family of belief aggregation rules u :

D → ∆(), where u ∈ U , defined as follows. Let u ∈ U . D consists of all coherent

belief profiles. For each p ∈ D, form the preference profile (º) ∈ D with values profile
u and belief profile p, then form the group relation º =  ((º)), and let u(p) := º.
The rules u ( ∈ U) inherit from  the three properties defined in Appendix A:

Lemma 6 (a) If  is dynamically rational, then each u (u ∈ U) is dynamically
rational.

(b) If  is minimally Paretian, then each u ( ∈ U) is unanimity-preserving.
(c) If  is continuous, then each u (u ∈ U) is continuous.

Proof. The result is obvious if || = 1, as then there is only one belief aggregation

rule, which is trivially dynamically rational, unanimity-preserving, and continuous.

Now suppose || 6= 1, and u ∈ U .
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(a) Let  be dynamically rational. Assume p ∈ D and  ⊆  with p() À 0,

i.e., with a well-defined updated profile p(·|) ∈ D. Let (º) have values profile u

and belief profile p. As p() À 0, each of (º) and (º) is coherent, so in D. By
Dynamic Rationality, º0 = º. Hence, º0 = º(·|), i.e., u(p(·|)) = u(p)(·|).
Q.e.d.

(b) Assume  is minimally Paretian. Let p = (  ) ∈ ∆() be a unanim-
ous belief profile. Let (º) ∈ D be the preference profile with values profile u and

(unanimous) belief profile p. Form º =  ((º)). We fix a state  ∈  and must

show that u(p)() = (), i.e., that º() = (). Pick outcomes   ∈  such that

 Â , i.e., º()  º(). Let  be the act which yields  at  and  on \{}.
Let  be the constant act which at all states yields the lottery () + (1 − ()),

where  () denotes the lottery with sure outcome  (). Then  ∼  for all

 ∈  . So, as (º) is a common-belief profile,  ∼  by Minimal Pareto. Hence,

º()º()+ (1− º())º() = ()º()+ (1− ())º(). As º()  º(), this
implies º() = (). Q.e.d.

(c) Assume  is continuous, and p → p in ∆(). Let (º
 ) ( = 1 2 ) and

(º) be the preference profiles in D with the belief profiles p and p, respectively, and
with the same values profile u. As p → p and u → u, we have (º

 ) → (º) by

Lemma 5. So º → º by Continuity for  , and thus by Lemma 5 º → º, i.e.,
u(p

)→ u(p). ¥

By this lemma, each of the rules u (u ∈ U) satisfies the premises of Theorem 2,

proved in Appendix A. So, by this theorem, Fact 2 holds.

B.3 Proof of Fact 3

Assume  : D → P is continuous and satisfies LIN and GEO, say w.r.t. weights

(u)∈u∈U and (u)∈u∈U , respectively. Without loss of generality, we assume
that in the single-state case || = 1 (in which the geometric weights u are arbitrary)
each u ( ∈ ) is constant in u. By LIN, group utility only depends on the values

profile. For each values profile u ∈ U , denote the corresponding normalised group
utility function by u; it equals

P
 u up to an additive constant.

Claim 1 : The mapping u 7→ u on U is continuous.
We assume u → u in U and show u → u. Pick profiles (º

 ) ∈ D ( = 1 2 )

and (º) ∈ D with identical belief profiles and values profiles u and u, respectively.

By Lemma 5, º
→ º for each . Hence, by continuity of  , º→ º. So, again by

Lemma 5, º → º, i.e., u → u. Q.e.d.

Claim 2 : The mapping u 7→ (u) from U to R is continuous.

Let  := ||, and label the outcomes in  by 1     . For each u = () ∈ U ,
we identify u with the column vector (u(1)     u())

 ∈ R×1, which can be
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written as uu where:

u :=

⎛⎜⎝ 1(1) · · · (1) 1
...

...
...

1() · · · () 1

⎞⎟⎠ ∈ R×(+1) u :=

⎛⎜⎜⎜⎜⎝
1u
...

u

u

⎞⎟⎟⎟⎟⎠ ∈ R(+1)×1
with u defined as the normalisation constant such that the minimal entry of uu is

zero (so u = −min∈
P

 u1()). Since u = uu, we have 

u u = 

u uu,

where 
u is the transpose of u. By diversity, the functions u on  ( ∈ ) are

affinely independent, and so the columns of u are linearly independent. Hence the

square matrix 
u  ∈ R(+1)×(+1) is invertible, whence (

u u)
−1

u u = u. To see

why the mapping u 7→ u = (
u u)

−1
u u on U is continuous, note that it is the

composition of various continuous functions and operations: u 7→ u is continuous by

Claim 1, u 7→ u is continuous, and the operations of matrix transposition, matrix

inversion and matrix multiplication are continuous. As u 7→ (u) is a subfunction of

the continuous function u 7→ u, it is itself continuous. Q.e.d.

Claim 3 : The mapping u 7→ (u) from U to R is continuous.

If || = 1, then u 7→ (u) is constant, hence continuous. Now assume || 6= 1, and
let u → u in U . Fix  ∈  . We show u → u. Pick distinct  

0 ∈ . Let (º
 )

( = 1 2    ) and (º) be the profiles in D with values profiles u and u, respectively,
and with a same belief profile p = ()∈ such that () =

2
3
and (

0) = 1
3
while

for  6=  () =
1
3
and (

0) = 2
3
. By Lemma 5 and the fact that u → u, we have

(º
 )→ (º). So, by continuity of  , º→ º, whence by Lemma 5 º → º. So, as

 0 ∈ supp(º) supp(º) by GEO,
º ()
º (

0) →
º()
º(0)

. Since

º()
º(0)

=
(23)


u (13)

1−
u

(13)

u (23)

1−
u

= 2
2

u
−1
and

º()
º(0)

=
(23)u(13)1−u

(13)u(23)1−u
= 22u−1

it follows that 2
2

u
−1 → 22u−1. So, u → u. ¥

B.4 Proof of Fact 4

Suppose  is linear-geometric with values-dependent weights, say w.r.t. weights (u u)∈u∈U .
I prove the three axioms.

Claim 1 :  is dynamically rational.

Assume (º0) ∈ D arises from (º) ∈ D by conditionalising all preferences on  ⊆ ,

i.e., º0 = º for all . We must show that º0 = º. Note that (º0) = ( º) and
that (º0) arises from (º) by conditionalising all beliefs on , i.e., º() 6= 0 and

º0 = º(·|) for all  (no º() is zero because otherwise some º0 = º would

be the all-indifferent relation, hence would lie outside P, contradicting that (º0) ∈ D).
To show that º0 = º, we need to prove that º0 = º (= º ) and that º0 is
the conditionalisation of º on  (i.e., that º() 6= 0 and º0 = º(·|)). First,
º = º0 because (º0) = ( º), and because º =

P
 uº and º0 =

P
 uº0 ,
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where u := (º) = (º0). Second, º0 is the conditionalisation of º on  because

º0 = ((º)) and º = ((º)) where  is a geometric opinion pooling rule (the

one with weights u,  ∈ ), and because geometric opinion pooling is dynamically

rational by Theorem 2, proved in Appendix A. Q.e.d.

Claim 2 :  is minimally Paretian.

Assume (º) ∈ D has common belief º ≡ . Then º = , as º is proportional
on  to

Q
 

u = 


 u =  where u := (º). So, whenever acts   satisfy  ∼ 
for all  ∈  , then  ∼  because

Eº(º())− Eº(º()) = E

⎛⎝X


u(º()− º()| {z }
=0

)

⎞⎠ = 0 Q.e.d.

Claim 3 :  is continuous.

We assume (º
 ) → (º) in D and show º→ º. For all  ∈  , º → º and

º → º by Lemma 5. Hence (º )→ (º ), and thus by continuity of the weights
(º


) → (º )

and (º

) → (º )

for all  ∈  . So,

X


(º

)º →

X


(º )
º and

Y


[º ]
(º



)

→
Y


[º ]
(º ) 

Hence º → º and º → º by definition of  . So º→ º by Lemma 5. ¥
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