Modal Logics with Weak Forms of Recursion: PSPACE Specimens

Stéphane Demri

- To cite this version:

Stéphane Demri. Modal Logics with Weak Forms of Recursion: PSPACE Specimens. Advances in Modal Logic (AIML'00), WORLD SCIENTIFIC, pp.113-138, 2002, 979-981-238-179-8. 10.1142/9789812776471_0007 . hal-03194865

HAL Id: hal-03194865

https://hal.science/hal-03194865

Submitted on 9 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Modal Logics with Weak Forms of Recursion: PSPACE Specimens

Stéphane Demri

To cite this version:

Stéphane Demri. Modal Logics with Weak Forms of Recursion: PSPACE Specimens. Advances in Modal Logic (AIML'00), WORLD SCIENTIFIC, pp.113-138, 2002, 979-981-238-179-8. 10.1142/9789812776471_0007 . hal-03194865

HAL Id: hal-03194865
https://hal.archives-ouvertes.fr/hal-03194865
Submitted on 9 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Advances in Modal Logic, Volume 3

F. Wolter, H. Wansing, M. de Rijke, and
M. Zakharyaschev, eds

Contents

1 Modal logics with weak forms of recursion: PSPACE specimens 1
S. Demri

1

Modal logics with weak forms of recursion: PSPACE specimens

S. Demri

Abstract

We analyze the computational complexity of extensions of the multimodal version of the standard modal logic K by finite addition of axiom schemes that can be read as the production rules of a formal grammar. By using proof-theoretical means, we show that every right linear grammar logic has a satisfiability problem in deterministic exponential time and we exhibit countably infinite classes of right linear grammar logics that contain weak forms of recursion for which the satisfiability problem can be solved in polynomial space.

1 Introduction

In order to explain the algorithmic properties of many modal logics, a possible approach consists in studying very expressive decidable logical theories in which can be easily embedded the modal logics. The modal μ-calculus (see e.g. (Kozen 1983)), the guarded fixed point logic $\mu L G F$ (Grädel and Walukiewicz 1999) and the monadic second-order theory of two successors (Rabin 1969) are good representatives of such theories. Weaker logical theories such as the Propositional Dynamic Logic (see e.g. (Pratt 1979, Fischer and Ladner 1979)) and the guarded fragment (Andreka et al. 1998) are also serious candidates although strictly less expressive, respectively. Moreover, since both the μ-calculus and the guarded fixed point logic $\mu L G F$ with bounded arity have an EXP-TIME-complete satisfiability problem (Grädel and Walukiewicz 1999), those logical formalisms inherit the algorithmic properties of weak extensions of the modal logic K (by adding the universal modal connec-

2 / S. Demri

tive for example) that are already of the same complexity level. By contrast, many standard modal logics are known to be in PSPACE (Ladner 1977, Halpern and Moses 1992) and this algorithmic property is not reflected by the analysis of most identified fragments of second order logic. As far as we know, a rare exception can be found in (Marx 1997) (see also (Lutz et al. 1999, Marx et al. 2000b)), where a PSPACE firstorder fragment is defined capturing multimodal logics with K, T and B modal connectives plus inclusion, to quote a few examples of logics. This situation is all the more surprising since many modal logics with weak forms of recursion (K4, S4, ...) are also in PSPACE. So, what is the adequate first-order/second-order fragment that is responsible for the algorithmic behavior of PSPACE modal logics? This question could become meaningful for optimizing the efficiency of mechanical reasoning for such logics and thus avoiding a blind translation into a rich decidable logical theory, possibly algorithmically more expensive in the worstcase. Although we have no answer for this question, this motivates the developments made in this paper. We study a countably infinite class of multimodal logics that can be embedded uniformly into first-order logic with the relational translation. The target fragment is not known to belong to identified decidable fragments but we exhibit modal logics with weak forms of recursion that are in PSPACE.

In order to understand the PSPACE modal logics with weak forms of recursion, a class of multimodal logics that are worth investigating are the grammar logics defined in (Fariñas del Cerro and Penttonen 1988) that are closely related to formal grammars. With each production rule $i_{1} \cdot \ldots \cdot i_{n} \rightarrow j_{1} \cdot \ldots \cdot j_{n^{\prime}}$ in the grammar is associated a reduction principle $\left[i_{1}\right] \ldots\left[i_{n}\right]$ p $\Rightarrow\left[j_{1}\right] \ldots\left[j_{n^{\prime}}\right]$ p (see e.g. (van Benthem 1976)) which is a particular form of Sahlqvist formula (Sahlqvist 1975). Observe that the logical view on grammar presented in (Kracht 2000) differs from the approach in (Fariñas del Cerro and Penttonen 1988). In the present paper, we mainly study the extensions of the multimodal logic K_{m} with m independent K modal connectives by finite addition of axiom schemes of the above form such that the associated finite set of production rules forms a right linear formal grammar. The right linear grammar logics contain a weak form of recursion although different from the one in the logics defined in (Halpern and Reif 1983) (e.g., we do not assume any determinism). For instance, consider the multimodal $\operatorname{logic} \mathcal{L}=K_{5}+[1] \mathrm{p} \Rightarrow$ $[3][2] \mathrm{p},[2] \mathrm{p} \Rightarrow[4][1] \mathrm{p},[2] \mathrm{p} \Rightarrow[5] \mathrm{p}$. Each modal connective of \mathcal{L} corresponds to a PDL modal connective (see e.g. (Demri 2000)). For example, [2] in \mathcal{L} corresponds to the PDL modal connective $\left[\left(c_{4} ; \mathrm{c}_{3}\right)^{*} ;\left(\mathrm{c}_{2} \cup\right.\right.$ $\left.\left.\left(c_{4} ; c_{1}\right) \cup c_{5}\right)\right]$. Though the PDL equivalent of [2] contains the star operator, in the paper we show that \mathcal{L}-satisfiability is in PSPACE (The-

Modal logics with weak forms of recursion: PSPACE specimens / 3
orem 8.1(1)). By contrast, the bimodal logic $K_{2}+[1] \mathrm{p} \Rightarrow[1][2] \mathrm{p}$ is EXPTIME-complete (see Theorem 7.5). More generally, we wonder which grammar logics are in PSPACE. In the paper, by proof-theoretical means we characterize a class of right linear grammar logics that are in PSPACE.

A standard way to find PSPACE upper bound for modal logics consists in designing sound and complete tableaux-like calculi (see e.g. (Kripke 1963, Ladner 1977, Halpern and Moses 1992, Basin et al. 1997, Massacci 1998, Baader and Sattler 2000, Marx et al. 2000a)) augmented with adequate strategies, most of the time depth-first visit of the proof tree with a controlled amount of contractions. One can however distinguish the works that establish PSPACE upper bounds but not necessarily the tightest ones (see (Ladner 1977, Halpern and Moses 1992)) from the works that improve the space function by reducing the exponents of the polynomials (see e.g. (Huldelmaier 1993, Hudelmaier 1996)). This is also sometime a matter of natural chronology as determining the decidability status of a logic may precede its computational complexity characterization. The present work belongs rather to the first category since we wish to establish PSPACE complexity upper bounds by prooftheoretical means in a uniform way. Although we know that improvements are possible in many cases, we rather concentrate on the gain of generality and uniformity. Moreover, we want to refine the borderline between EXPTIME-hard right linear logics and PSPACE right linear logics in order to partially answer to the following question inspired from (Vardi 1997, Grädel 1999): why so many (multi)modal logics with weak forms of recursion are in PSPACE?

For any right linear grammar logic, we shall define an additive sequent calculi that is proved to be sound and complete. In the spirit of (Ohnishi and Matsumoto 1957), the calculi use neither labels nor a generalized form of sequents. Other kinds of sequent-style calculi for these logics already exist in the literature, see e.g. (Kracht 1996, Szałas 1996, Basin et al. 1998, Baldoni 1998) and we believe that the present formulation of the calculi is quite adequate to find complexity upper bounds mainly because of our treatment of contraction. Then, we show that given a right linear grammar \mathcal{G} and a modal formula ϕ, deciding whether the formula is satisfiable in the extension of K_{m} with axiom schemes from \mathcal{G} can be done in deterministic exponential-time in the size of \mathcal{G} and ϕ. We refer to this problem as the general satisfiability problem for right linear grammar logics. The complexity upper bound is established by using a standard loop checking method dual to the one in (Pratt 1979). An extension is also presented for the global logical consequence problems. This improves upper bounds from (Baldoni 1998, Baldoni et al. 1998).

4 / S. Demri

We also easily show that the general satisfiability problem for right linear grammar logics is EXPTIME-hard by exhibiting a decidable countably infinite class of EXPTIME-hard right linear grammar logics. Further classes of EXPTIME-hard grammar logics can be found in the companion paper (Demri 2000).

In the second part of the paper, we propose a characterization of PSPACE decision procedures from the sequent calculi that allows us to show uniformly that all the right linear grammar logics from some identified countably infinite classes of logics are in PSPACE. We have indeed found decidable sufficient syntactic properties of the right linear grammars that guarantee that the generated logics from the grammars are in PSPACE. All the complexity upper bounds established in the paper are obtained by analyzing proofs in the sequent calculi and thus this follows the proof-theoretic alternative described in Section 8 in (van Benthem 2000) to explain the algorithmic behavior of modal logics.

For instance, we are able to show that given a bimodal extension of K_{2} obtained from K_{2} by additing axiom schemes from either a left linear or a right linear grammar, deciding whether the satisfiability problem of the logic is in PSPACE can be done in linear-time in the size of the grammar. Although the right linear grammars generate the same class of languages as the left linear grammars, this correspondence is not relevant at the level of grammar logics.

2 Logics

Given the set $\mathrm{PRP}=\left\{\mathrm{p}_{i}: i \in \mathbb{N}\right\}$ of propositional variables, the set FORM of modal formulae is defined as the smallest set such that PRP \subseteq FORM and, if $\phi, \psi \in$ FORM, then $\phi \wedge \psi \in$ FORM, $\neg \phi \in$ FORM and for $i \geq 1$, $[i] \phi \in$ FORM. For $m \geq 1$, we write L_{m} to denote the restriction of the modal language to the modal connectives in $\{[i]: i \in\{1, \ldots, m\}\}$. Standard abbreviations include $\vee, \Rightarrow,\langle i\rangle$. A necessity formula is a formula of the form $[i] \phi$ for some $i \geq 1$. The set $\operatorname{sub}(\phi)$ of subformulae of the formula ϕ is defined in the standard way. The modal depth of an occurrence of a formula ψ in ϕ is the number of occurrences of modal connectives that dominate ψ in ϕ. We write $\operatorname{md}(\phi)$ to denote the maximal modal depth of the subformulae of ϕ. An occurrence of the subformula ψ in ϕ is positive [resp. negative] $\stackrel{\text { def }}{\Leftrightarrow}$ it is in the scope of an even [resp. odd] number of negations. The possibility weight [resp. necessity weight] of a formula ϕ, denoted $\operatorname{pw}(\phi)$ [resp. $\operatorname{nw}(\phi)]$, is the number of occurrences of subformulae of the form $[i] \psi$ with negative [resp. positive] polarity. The notation Γ, ϕ, where Γ is a finite multi-set of formulae and ϕ is a formula, designates a multi-set which is the union
of Γ with the singleton multi-set containing only ϕ. Let f be a map $f:$ FORM $\rightarrow \mathbb{N}$. If $\Gamma=\phi_{1}, \ldots, \phi_{n}$ is a finite multi-set of formulae, by $f^{+}(\Gamma)$ we mean the natural number $f\left(\phi_{1}\right)+\ldots+f\left(\phi_{n}\right)$. Similarly, for $i \in\{1, \ldots, m\}$, for any multi-set $\Gamma=\phi_{1}, \ldots, \phi_{n}$ of formulae, we write $[i] \Gamma$ [resp. $\neg \Gamma]$ to denote $[i] \phi_{1}, \ldots,[i] \phi_{n}\left[\right.$ resp. $\left.\neg \phi_{1}, \ldots, \neg \phi_{n}\right]$. We also write $\operatorname{Set}(\Gamma)$ to denote the set of formulae occurring in Γ and $\phi \in \Gamma$ for $\phi \in \operatorname{Set}(\Gamma)$.

For any L_{m}-formula ϕ, we write $\mathrm{r}(\phi)$ to denote the rank of ϕ; that is, the number of occurrences of members of PRP $\cup\{\neg, \wedge\} \cup\{[i]: 1 \leq i \leq$ $m\}$. For example $\mathrm{r}(\mathrm{p} \wedge(\mathrm{q} \wedge \neg \mathrm{p}))=6$. Under reasonable hypothesis, the length of an L_{m}-formula ϕ, noted $|\phi|$, is in $\mathcal{O}(\mathrm{r}(\phi) \times(\log \mathrm{r}(\phi)+\log m)$). As usual in complexity theory, the extra logarithmic factor is due to the fact that we need an index of size $\log \mathrm{r}(\phi)$ for the different propositional variables.

An L_{m}-frame is a structure $\mathcal{F}=\left\langle W, R_{1}, \ldots, R_{m}\right\rangle$ such that W is a nonempty set and for $i \in\{1, \ldots, m\}, R_{i}$ is a binary relation on W. An L_{m}-model is a structure $\mathcal{M}=\left\langle W, R_{1}, \ldots, R_{m}, V\right\rangle$ such that $\left\langle W, R_{1}, \ldots, R_{m}\right\rangle$ is an L_{m}-frame and V is a valuation $V: \mathrm{PRP} \rightarrow \mathcal{P}(W)$. The standard definition of the satisfiability relation \models is omitted here (see e.g. (Blackburn et al. 2001)). An L_{m}-formula ϕ is said to be true in the L_{m}-model \mathcal{M} (written $\mathcal{M} \models \phi$) $\stackrel{\text { def }}{\Leftrightarrow}$ for all $x \in W, \mathcal{M}, x \models \phi$. An L_{m}-formula ϕ is said to be true in the L_{m}-frame \mathcal{F} (written $\left.\mathcal{F} \models \phi\right) \stackrel{\text { def }}{\Leftrightarrow}$ ϕ is true in all the L_{m}-models based on \mathcal{F}.

In this paper, a modal logic \mathcal{L} is understood as a pair $\left\langle\mathrm{L}_{m}, \mathcal{S}\right\rangle$ where L_{m} is a modal language with m modal connectives and \mathcal{S} is a nonempty class of L_{m}-frames. The class \mathcal{S} is usually defined in terms of properties that the relations in the frames of \mathcal{S} are supposed to satisfy. An L_{m} formula is said to be \mathcal{L}-satisfiable $\stackrel{\text { def }}{\Leftrightarrow}$ there is an L_{m}-model based on some $\mathcal{F} \in \mathcal{S}$ and $x \in W$ such that $\mathcal{M}, x \models \phi$. An L_{m}-formula is said to be \mathcal{L}-valid $\stackrel{\text { def }}{\Leftrightarrow}$ for all the \mathcal{L}-models \mathcal{M} based on some frame in \mathcal{S}, ϕ is true in $\mathcal{M} . \mathcal{L}$-satisfiability and \mathcal{L}-validity can be easily extended to finite sets of formulae understood as conjunctions.

3 Grammar Logics

For any alphabet Σ (finite set of symbols), we write $\Sigma^{*}\left[\right.$ resp. $\left.\Sigma^{+}\right]$to denote the set of [resp. nonempty] finite strings built over elements of $\Sigma . \epsilon$ denotes the empty string and $u_{1} \cdot u_{2}$ denotes the concatenation of two strings. For any finite string u, we write $|u|$ to denote its length. For any $u \in \Sigma^{*}$, we write u^{k} to denote the string composed of k copies of u. By convention, $u^{0}=\epsilon$.

A (formal) grammar \mathcal{G} is a quadruple $\mathcal{G}=\langle N, \Sigma, P, S\rangle$ such that

6 / S. Demri

N and Σ are disjoint finite sets of nonterminal symbols and terminal symbols, respectively (in the paper we allow Σ empty). P is a finite set of production rules, each production rule is of the form $u \rightarrow v$ such that $u \in(N \cup \Sigma)^{*} N(N \cup \Sigma)^{*}$ and $v \in(N \cup \Sigma)^{*}$. Finally, $S \in N$ is a special symbol called the start symbol (see e.g. (Hopcroft and Ullman 1979)). For the grammar \mathcal{G}, the size of \mathcal{G}, denoted $|\mathcal{G}|$, is
$|\mathcal{G}| \stackrel{\text { def }}{=}\left(\operatorname{card}(N)+\operatorname{card}(\Sigma)+\Sigma_{u \rightarrow v \in P}(|u \cdot v|+1)\right) \times \log (\operatorname{card}(N)+\operatorname{card}(\Sigma))$
Let $\Rightarrow_{\mathcal{G}}$ be the direct derivation relation defined as the subset of $(N \cup$ $\Sigma)^{*} \times(N \cup \Sigma)^{*}$ such that $u \Rightarrow_{\mathcal{G}} v \stackrel{\text { def }}{\Leftrightarrow}$ there is a production rule $u^{\prime} \rightarrow$ $v^{\prime} \in P$ such that $u=u_{1} \cdot u^{\prime} \cdot u_{2}, v=u_{1} \cdot v^{\prime} \cdot u_{2}, u_{1}, u_{2} \in(N \cup \Sigma)^{*}$. Let $\Rightarrow{ }_{\mathcal{G}}^{*}$ be the reflexive and transitive closure of $\Rightarrow_{\mathcal{G}}$. For $i \in(N \cup \Sigma)$, we write $\mathrm{L}_{i}(\mathcal{G})$ to denote the set of strings $\left\{u \in \Sigma^{*}: i \Rightarrow_{\mathcal{G}}^{*} u\right\}$. For instance, for $i \in \Sigma, \mathrm{~L}_{i}(\mathcal{G})=\{i\}$. A grammar \mathcal{G} is said to be strongly finite [resp. finite] $\stackrel{\text { def }}{\Leftrightarrow}$ for $i \in N,\left\{u \in(N \cup \Sigma)^{*}: i \Rightarrow_{\mathcal{G}}^{*} u\right\}$ is finite [resp. $\mathrm{L}_{i}(\mathcal{G})$ is finite]. It is possible that for some $i \in N, \mathrm{~L}_{i}(\mathcal{G})$ is empty although \mathcal{G} is not strongly finite.

In the rest of the paper we assume that each grammar $\langle N, \Sigma, P, S\rangle$ satisfies $N=\{1, \ldots, k\}$ for some $k \geq 1, \Sigma=\{k+1, \ldots, m\}$ for some $k \leq m$ (we allow Σ to be empty) and $S=1$.

Let $\mathcal{G}=\langle N, \Sigma, P, S\rangle$ be a grammar and \leadsto be the binary relation in $N \times(N \cup \Sigma)^{*}$ such that $i \leadsto u \stackrel{\text { def }}{\Leftrightarrow}$ either there is $j \rightarrow u \in P$ such that $i \Rightarrow_{\mathcal{G}}^{*} j$ or $u \in N$ and $i \Rightarrow_{\mathcal{G}}^{*} u$. If \mathcal{G} is right [resp. left] linear, then by using the technique for eliminating the unit production rules (Hopcroft and Ullman 1979), one can compute in polynomial-time in $|\mathcal{G}|$ a right [resp. left] linear grammar $\mathcal{G}^{\prime}=\left\langle N^{\prime}, \Sigma^{\prime}, P^{\prime}, S^{\prime}\right\rangle$ such that $N=N^{\prime}, \Sigma=\Sigma^{\prime}, S=S^{\prime}, P \subseteq P^{\prime}$ and for $\langle i, u\rangle \in(N \cup \Sigma)^{*}, i \leadsto u$ in \mathcal{G} iff $i \rightarrow u \in P^{\prime}$. For $i \in N$, we have $\left\{u \in(N \cup \Sigma)^{*}: i \Rightarrow_{\mathcal{G}}^{*} u\right\}=\{u \in$ $\left.(N \cup \Sigma)^{*}: i \Rightarrow_{\mathcal{G}^{\prime}}^{*} u\right\}$. In the case when \mathcal{G} is either left linear or right linear (called regular in the sequel), \leadsto can be computed in polynomial-time in $|\mathcal{G}|$ and for all $i \in N, \sum_{i \sim u}|u| \leq|\mathcal{G}|$. Although \mathcal{G} and \mathcal{G}^{\prime} generate the same language $\left(\mathrm{L}_{1}(\mathcal{G})=\mathrm{L}_{1}\left(\mathcal{G}^{\prime}\right)\right)$, in the sequel we do not assume that the grammars are necessarily of the form of \mathcal{G}^{\prime}. Indeed, grammars generating the same language, may engender different grammar logics. The binary relation \leadsto is used in Section 4 to define sequent calculi.

Let \mathcal{G} be a grammar and \mathcal{S} be a class of L_{m}-frames. We write $\mathcal{S}^{\mathcal{G}}$ to denote the subset of \mathcal{S} such that for any $\mathcal{F}=\left\langle W, R_{1}, \ldots, R_{m}\right\rangle \in \mathcal{S}$, $\mathcal{F} \in \mathcal{S}^{\mathcal{G}} \stackrel{\text { def }}{\Leftrightarrow}$ for any production rule $i_{1} \ldots i_{k^{\prime}} \rightarrow j_{1} \ldots j_{k^{\prime \prime}}$ in $\mathcal{G}, R_{j_{1}} \circ \ldots \circ$ $R_{j_{k^{\prime \prime}}} \subseteq R_{i_{1}} \circ \ldots \circ R_{i_{k^{\prime}}}$. For the logic $\mathcal{L}_{m}=\left\langle\mathrm{L}_{m}, \mathcal{S}_{m}\right\rangle$ where \mathcal{S}_{m} is the class of all the L_{m}-frames, we write $\mathcal{L}_{m}^{\mathcal{G}}$ to denote the $\operatorname{logic}\left\langle\mathrm{L}_{m}, \mathcal{S}_{m}^{\mathcal{G}}\right\rangle . \mathcal{L}_{m}^{\mathcal{G}}$ is said to be a grammar logic (Fariñas del Cerro and Penttonen 1988).

Modal logics with weak forms of recursion: PSPACE specimens / 7
For any string $u=i_{1} \cdot \ldots \cdot i_{n}$ in $\{1, \ldots, m\}^{*}$, we write R_{u} to denote $R_{i_{1}} \circ \ldots \circ R_{i_{n}}$. When $u=\epsilon, R_{u} \stackrel{\text { def }}{=}\{\langle x, x\rangle: x \in W\}$. Moreover, we write $[u] \phi$ to denote the L_{m}-formula $\left[i_{1}\right] \ldots\left[i_{n}\right] \phi$ where $u=i_{1} \cdot \ldots \cdot i_{n}$. If $u=\epsilon$, then $[u] \phi$ is simply ϕ.

Theorem 3.1 Let $\mathcal{G}=\langle N, \Sigma, P, S\rangle$. For $u, v \in(N \cup \Sigma)^{*}$, (I) $u \Rightarrow_{\mathcal{G}}^{*} v$ iff (II) $[u] \mathrm{p} \Rightarrow[v] \mathrm{p}$ is $\mathcal{L}_{m}^{\mathcal{G}}$-valid iff (III) for all $\mathcal{L}_{m}^{\mathcal{G}}$-models $R_{v} \subseteq R_{u}$.

The equivalence between (II) and (III) is a classical correspondence result in modal logic theory (see e.g. (van Benthem 1984)). (I) implies (II) can be proved by induction on the length of the derivation whereas (II) implies (I) can be shown by using part of the proof of Theorem 3 in (Chagrov and Shehtman 1994). In order to study the grammar logic $\mathcal{L}_{m}^{\mathcal{G}}$, what is essential is the value of the set P of production rules whereas once P is fixed, the value of the start symbol S and the distribution of the terminal and nonterminal symbols are immaterial for $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiability. Hence, semi-Thue rewriting systems are also appropriate to define grammar logics.

The general satisfiability problem GSP(REG) [resp. GSP(LIN), $\operatorname{GSP}\left(\operatorname{RLIN}_{f}\right)$, GSP(RLIN)] for regular grammar [resp. linear grammar, finite right linear grammar, right linear grammar] logics is defined as follows:

- Inputs: a regular [resp. right linear, finite right linear, linear] gram$\operatorname{mar} \mathcal{G}$ and an L_{m}-formula ϕ;
- Question: Is $\phi \mathcal{L}_{m}^{\mathcal{G}}$-satisfiable?

The above general satisfiability problems can be viewed as syntactic variants of satisfiability problems for fragments of the well-known description logic $\mathcal{A L C}$ augmented with role value maps (see details in (Demri 2000)).

It is known that the multimodal logic $\mathrm{K}_{m}, m \geq 1$, has a PSPACEcomplete satisfiability problem (see e.g. (Halpern and Moses 1992)). Adding a regular set of modal axioms preserves the PSPACE complexity lower bound.

Theorem 3.2 Let \mathcal{G} be either a regular grammar or a context-free grammar with a nonempty set of terminal symbols. Then, $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiability is PSPACE-hard.

A natural proof consists in reducing satisfiability for either the modal logic K or the modal logic T into $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiability. The only difficulty in the proof is to show that for any binary relation R there is an $\mathcal{L}_{m}^{\mathcal{G}}$ frame with $R_{m}=R$. Additionally, GSP(LIN) is undecidable. This can

$$
\begin{array}{cl}
\Gamma, \phi \vdash \Delta, \phi \text { (initial sequents) } & \frac{\Gamma \vdash \Delta, \phi}{\Gamma, \neg \phi \vdash \Delta}(\neg \vdash) \frac{\Gamma, \phi \vdash \Delta}{\Gamma \vdash \Delta, \neg \phi}(\vdash \neg) \\
\frac{\Gamma, \phi_{1}, \phi_{2} \vdash \Delta}{\Gamma, \phi_{1} \wedge \phi_{2} \vdash \Delta}(\wedge \vdash) & \frac{\Gamma \vdash \Delta, \phi_{1} \Gamma \vdash \Delta, \phi_{2}}{\Gamma \vdash \Delta, \phi_{1} \wedge \phi_{2}}(\vdash \wedge)
\end{array}
$$

FIGURE 1 Initial sequents and standard rules for propositional connectives
be proved by reducing the problem of empty intersection between linear languages into GSP(LIN) (see e.g. (Rozenberg and Salomaa 1994)) by using either prefixed tableaux calculi (Baldoni et al. 1998) or the equational characterization of context-free languages (Demri 2000).

4 Sequent calculi

4.1 Definitions

Let \mathcal{G} be a right linear grammar. The basic syntactic objects in the calculi are sequents. A sequent is an expression of the form $\Gamma \vdash \Delta$ where Γ and Δ are finite multi-sets of formulae, Γ is the antecedent and Δ the succedent. We write SEQ_{m} to denote the class of all sequents built over the modal language L_{m}. The additive sequent calculus $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}}$ for the $\operatorname{logic} \mathcal{L}_{m}^{\mathcal{G}}$ contains the rules from Figure 1 for the propositional fragment of $\mathcal{L}^{\mathcal{G}}$. The rules are read upwards and other rules depending of \mathcal{G} are presented below. The left-hand side introduction rule $[i]$ is defined below only if $i \nRightarrow_{\mathcal{G}}^{*} \epsilon$:

$$
\frac{\Gamma,[i] \phi, \phi \vdash \Delta}{\Gamma,[i] \phi \vdash \Delta}([i] \vdash)
$$

The right-hand side introduction rule for $[i]$ is defined as follows. For $i \in\{1, \ldots, k\}$, let $\leadsto(i)=\left\{u_{i, 1}, \ldots, u_{i, l_{i}}\right\}$ where given a binary relation R on U and $x \in U, R(x) \stackrel{\text { def }}{=}\{y \in U:\langle x, y\rangle \in R\}$. For $j \in\{1, \ldots, m\}$ and for $i \in\{1, \ldots, k\}$, let $\operatorname{start}_{j}^{i}=\left\{\left\langle i, k^{\prime}\right\rangle: u_{i, k^{\prime}}=j \cdot v_{i, k^{\prime}}\right\}$. Let $i \in$ $\{k+1, \ldots, m\}$. The $(\vdash[i])$ rule is defined as follows:

$$
\frac{\bigcup_{\left\langle 1, k^{\prime}\right\rangle \in \text { start }_{i}^{1}}\left[v_{1, k^{\prime}}\right] \Gamma_{1}, \ldots, \bigcup_{\left\langle k, k^{\prime}\right\rangle \in \text { start }_{i}^{k}}\left[v_{k, k^{\prime}}\right] \Gamma_{k}, \Gamma_{i} \vdash \phi}{\Gamma^{\prime},[1] \Gamma_{1}, \ldots,[k] \Gamma_{k},[i] \Gamma_{i} \vdash[i] \phi, \Delta}(\vdash[i])
$$

Moreover, we assume that in Γ^{\prime}, there is no formula of the form $[j] \psi$ for some $j \in\{1, \ldots, k\} \cup\{i\}$. It remains to define for $i \in\{1, \ldots, k\}$, the $(\vdash[i])$ rule:

$$
\frac{\Gamma_{1}^{\prime}, \ldots, \Gamma_{k}^{\prime} \vdash \phi}{\Gamma^{\prime},[1] \Gamma_{1}, \ldots,[k] \Gamma_{k} \vdash[i] \phi, \Delta}(\vdash[i])
$$

where for $j \in\{1, \ldots, k\}$, if $j \leadsto i$, then $\Gamma_{j}^{\prime} \stackrel{\text { def }}{=} \Gamma_{j}$, otherwise $\Gamma_{j}^{\prime} \stackrel{\text { def }}{=} \emptyset$

Modal logics with weak forms of recursion: PSPACE specimens / 9
(empty multi-set). Moreover, we assume that in Γ^{\prime}, there is no formula of the form $[j] \psi$ for some $j \in\{1, \ldots, k\}$.

For $i \in\{1, \ldots, m\}$ we abbreviate the $(\vdash[i])$ rule by

$$
\frac{\Gamma^{[i]} \vdash \phi}{\Gamma \vdash[i] \phi, \Delta}(\vdash[i])
$$

where the appropriate definition of $\Gamma^{[i]}$ from Γ is immediate from the above cases.

The $([i] \vdash)$ rules and the $(\vdash[i])$ rules are defined from the strings u satisfying $i \leadsto u$ and not only from the ones satisfying $i \rightarrow u \in P$. This is the price we may have to pay in the $(\vdash[i])$ rules since we want to introduce a [i]-formula at the right-hand side and to take into account the grammatical properties of the logic simultaneously.

An implicit contraction is operated in the $([i] \vdash)$-rule (if $i \Rightarrow_{\mathcal{G}}^{*} \epsilon$) whereas implicit contractions can be found also in the applications of the $(\vdash[i])$-rule but this depends on the structure of \mathcal{G} (see e.g. Section 8 for calculi with no implicit contractions). In order to get the PSPACE upper bounds, our main task is to control contraction and this requires a careful analysis.

Example 4.1 Let $\mathcal{G}^{r l}=\langle\{1,2\},\{3,4\},\{1 \rightarrow 3 \cdot 3 \cdot 1,1 \rightarrow 2,1 \rightarrow 4 \cdot 2,2 \rightarrow$ $4 \cdot 4 \cdot 4 \cdot 2\}, 1\rangle$ be a right linear grammar. The $(\vdash[4])$ rule is defined as follows:

$$
\frac{[2] \Gamma_{1},[4][4][2]\left(\Gamma_{1}, \Gamma_{2}\right), \Gamma_{4} \vdash \phi}{\Gamma^{\prime},[1] \Gamma_{1},[2] \Gamma_{2},[4] \Gamma_{4} \vdash[4] \phi, \Delta}(\vdash[4])
$$

Observe the duplication of Γ_{1}.
As is usual, a proof Π in $G \mathcal{L}_{m}^{\mathcal{G}}$ is a tree whose nodes are labelled by sequents satisfying the following conditions: the topmost sequents of Π are initial sequents and every sequent of Π, except the lowest one is an upper sequent of an inference whose lower sequent is also in Π. A sequent $\Gamma \vdash \Delta$ is provable in $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}} \stackrel{\text { def }}{\Leftrightarrow}$ there is a proof where the lowest sequent is $\Gamma \vdash \Delta$. A formula ϕ is provable in $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}} \stackrel{\text { def }}{\Leftrightarrow}$ the sequent $\emptyset \vdash \phi$ (also noted $\vdash \phi$) is provable in $G \mathcal{L}_{m}^{\mathcal{G}}$. A sequent $\Gamma \vdash \Delta$ is consistent $\stackrel{\text { def }}{\Leftrightarrow}$ $\Gamma \vdash \Delta$ is not provable in $G \mathcal{L}_{m}^{\mathcal{G}}$.

A sequent $\Gamma \vdash \Delta$ is downward saturated $\stackrel{\text { def }}{\Leftrightarrow}$ for $\phi \in \Gamma$ and for $\psi \in \Delta$:

- $\phi=\phi_{1} \wedge \phi_{2}$ implies $\phi_{1}, \phi_{2} \in \Gamma ; \phi=[i] \phi_{1}$ and $i \Rightarrow_{\mathcal{G}}^{*} \epsilon$ imply $\phi_{1} \in \Gamma$;
- $\phi=\neg \phi_{1}$ implies $\phi_{1} \in \Delta ; \psi=\neg \psi_{1}$ implies $\psi_{1} \in \Gamma$;
- $\psi=\psi_{1} \wedge \psi_{2}$ implies either $\psi_{1} \in \Delta$ or $\psi_{2} \in \Delta$.

10 / S. Demri
A derivation is defined as a proof except that the topmost sequents are not necessarily initial sequents. The derivations are supposed to grow upwards. If Π is a derivation of $\Gamma \vdash \Delta$ we write $\sigma=\Gamma_{0} \vdash \Delta_{0} \prec\left(r_{1}\right) \Gamma_{1} \vdash$ $\Delta_{1} \prec\left(r_{2}\right) \ldots \prec\left(r_{n-1}\right) \Gamma_{n} \vdash \Delta_{n}$ to denote the fact that there is an initial segment σ of a branch in Π from the root $\Gamma_{0} \vdash \Delta_{0}=\Gamma \vdash \Delta$ such that for $i \in\{0, \ldots, n-1\}, \Gamma_{i+1} \vdash \Delta_{i+1}$ is one of the premisses of the inference of the rule (r_{i+1}) with conclusion $\Gamma_{i} \vdash \Delta_{i}$. We omit to write the r_{i} 's when they are of no use. We write $\operatorname{Ant}(\sigma)$ [resp. $\operatorname{Suc}(\sigma)$] to denote the antecedent set $\bigcup_{0 \leq i \leq n} \operatorname{Set}\left(\Gamma_{i}\right)$ [resp. the succedent set $\left.\bigcup_{0 \leq i \leq n} \operatorname{Set}\left(\Delta_{i}\right)\right]$. We write last (σ) [resp. first (σ)] to denote $\Gamma_{n} \vdash \Delta_{n}$ [resp. $\Gamma_{0} \vdash \Delta_{0}$]. The sequence σ is said to be local $\stackrel{\text { def }}{\Leftrightarrow}$ no r_{i} is the right-hand side introduction rule $(\vdash[j])$ for some $j \in\{1, \ldots, m\}$. The sequence σ is said to be consistent $\stackrel{\text { def }}{\Leftrightarrow}$ all the $\Gamma_{i} \vdash \Delta_{i}$ are consistent. The sequence σ is said to be maximal $\stackrel{\text { def }}{\Leftrightarrow} \sigma$ is local and $\operatorname{Ant}(\sigma) \vdash$ $\operatorname{Suc}(\sigma)$ is downward saturated. The maximal and consistent sequences play the role of downward saturated sets in the standard terminology for tableaux (see e.g. (Goré 1999) for further details and historical notes). This complication is due to the fact that we consider multi-sets instead of sets in the sequents. The reward is that we can more easily control contraction and this shall be helpful to get PSPACE complexity upper bounds.

4.2 Properties

Let ϕ be a formula. The closure of ϕ with respect to \mathcal{G} is the smallest set $\operatorname{cl}_{\mathcal{G}}(\phi)$ of formulae such that $\operatorname{cl}_{\mathcal{G}}(\phi)$ is closed under subformulae, $\operatorname{sub}(\phi) \subseteq \operatorname{cl}_{\mathcal{G}}(\phi)$ and if $i \leadsto u$ and $[i] \psi \in \operatorname{cl}_{\mathcal{G}}(\phi)$, then $[u] \psi \in \operatorname{cl}_{\mathcal{G}}(\phi)$. One can prove that $\operatorname{card}\left(\operatorname{cl}_{\mathcal{G}}(\phi)\right)$ is bounded by $|\mathcal{G}| \times \mathrm{r}(\phi)$. We write $\operatorname{SEQ}(\phi)$ to denote the set of sequents $\Gamma \vdash \Delta$ such that $\bigcup_{\psi \in \Gamma, \Delta} \operatorname{cl}_{\mathcal{G}}(\psi) \subseteq \operatorname{cl}_{\mathcal{G}}(\phi)$.

Lemma 4.2 Let $\Gamma \vdash \Delta$ be a sequent. Then, every formula occurring in a derivation of $\Gamma \vdash \Delta$ belongs to $\bigcup_{\psi \in \Gamma, \Delta} \operatorname{cl}_{\mathcal{G}}(\psi)$.

The (easy) proof is by induction on the depth of the proof tree. Following for instance the terminology from (Goré 1999), $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}}$ has therefore the analytical superformula property and obviously $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}}$ does not have necessarily the subformula property.

Lemma $4.3 \Gamma \vdash \Delta$ is a provable sequent in $G \mathcal{L}_{m}^{\mathcal{G}}$ iff $\Gamma \vdash \Delta$ has a proof in $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}}$ such that all the initial sequents are of the form $\Gamma^{\prime}, \mathrm{p} \vdash \mathrm{p}, \Delta^{\prime}$ where p is a propositional variable.

The proof of Lemma 4.3 is standard. It is sufficient to show in the induction step that for every initial sequent $\Gamma^{\prime}, \phi \vdash \phi, \Delta^{\prime}$ with $\mathrm{r}(\phi) \geq 2$,
there is a proof of $\Gamma^{\prime}, \phi \vdash \phi, \Delta^{\prime}$ such that all the initial sequents are of the form $\Gamma^{\prime}, \psi \vdash \psi, \Delta^{\prime}$ with $\mathrm{r}(\psi)<\mathrm{r}(\phi)$.

A rule is invertible $\stackrel{\text { def }}{\Leftrightarrow}$ for every inference of the rule, the conclusion has a proof iff the premises have proofs.

Lemma 4.4 The rules $(\wedge \vdash)$, $(\vdash \wedge),(\neg \vdash)$, $(\vdash \neg)$ and $([i] \vdash)$ if $i \Rightarrow{ }_{\mathcal{G}}^{*} \epsilon$ are invertible.

The proof of Lemma 4.4 uses Lemma 4.3 and is not difficult to show. For instance, invertibility of $([i] \vdash)$ if $i \Rightarrow{ }_{\mathcal{G}}^{*} \epsilon$, is immediate.

Lemma 4.5 Let $\Gamma \vdash \Delta$ be a consistent sequent. Then, there is a maximal and consistent sequence $\sigma=\Gamma_{0} \vdash \Delta_{0} \prec \Gamma_{1} \vdash \Delta_{1} \prec \ldots \prec \Gamma_{n} \vdash \Delta_{n}$ with $\Gamma_{0} \vdash \Delta_{0}=\Gamma \vdash \Delta$.

Proof. Since $\Gamma \vdash \Delta$ is consistent, we know that no proof of $\Gamma \vdash \Delta$ exists and there is no propositional variable occurring in both Γ and Δ. Let $\Gamma_{0} \vdash \Delta_{0}=\Gamma \vdash \Delta$. If $\Gamma_{0} \vdash \Delta_{0}$ is downward saturated, then we are done. Now suppose that $\sigma_{i}=\Gamma_{0} \vdash \Delta_{0} \prec \Gamma_{1} \vdash \Delta_{1} \prec \ldots \prec \Gamma_{i} \vdash \Delta_{i}$ is a local sequence, $\operatorname{Ant}\left(\sigma_{i}\right) \vdash \operatorname{Suc}\left(\sigma_{i}\right)$ is not downward saturated and each $\Gamma_{j} \vdash$ $\Delta_{j}, 0 \leq j \leq i$, is consistent. For instance, suppose that $\phi_{1} \wedge \phi_{2} \in \operatorname{Ant}\left(\sigma_{i}\right)$ and $\phi_{1}, \phi_{2} \notin \operatorname{Ant}\left(\sigma_{i}\right)$. Hence, $\phi_{1} \wedge \phi_{2} \in \Gamma_{i}$ since otherwise $\phi_{1}, \phi_{2} \in \Gamma_{i^{\prime}}$ for some $i^{\prime}<i$. Apply the $(\wedge \vdash)$-rule to an occurrence of $\phi_{1} \wedge \phi_{2}$ in $\Gamma_{i} \vdash \Delta_{i}$ and let $\Gamma_{i+1} \vdash \Delta_{i+1}$ be $\left(\Gamma_{i} \backslash\left\{\phi_{1} \wedge \phi_{2}\right\}\right), \phi_{1}, \phi_{2} \vdash \Delta_{i}$. Since the $(\wedge \vdash)$ rule is invertible (see Lemma 4.4), $\Gamma_{i+1} \vdash \Delta_{i+1}$ is also consistent. If $\Gamma_{0} \vdash \Delta_{0}=\Gamma \vdash \Delta$ and $\operatorname{Ant}\left(\sigma_{i}\right) \vdash \operatorname{Suc}\left(\sigma_{i}\right)$ is not downward saturated for some other reason, we use a similar reasoning with obvious adaptations (we may have to choose between two branches). Lemma 4.2 guarantees termination and the length of σ can be bounded by $\operatorname{card}\left(\operatorname{cl}_{\mathcal{G}}(\Gamma, \Delta)\right)$. \dashv

4.3 Completeness

Following (Rautenberg 1983) (see also (Goré 1999)), we introduce the central notion of model graph. We prove completeness using the wellknown technique due to Schütte (see e.g. (Schütte 1967, Takeuti 1975)).

Definition 4.6 A model graph for some sequent $\Gamma \vdash \Delta$ is an $\mathrm{L}_{m^{-}}$ frame of the form $\left\langle W, R_{1+m}, \ldots, R_{2 \times m}\right\rangle$ such that W is a countable set of maximal and consistent sequences such that

1. for $\sigma \in W, \operatorname{Ant}(\sigma) \cup S u c(\sigma) \subseteq \bigcup_{\psi \in \Gamma, \Delta} \operatorname{cl}_{\mathcal{G}}(\psi)$;
2. there is σ_{0} such that $\operatorname{Set}(\Gamma) \subseteq \operatorname{Ant}\left(\sigma_{0}\right)$ and $\operatorname{Set}(\Delta) \subseteq \operatorname{Suc}\left(\sigma_{0}\right)$;
3. for $\sigma \in W$, if $[i] \phi \in \operatorname{Suc}(\sigma)$ for some $i \in\{1, \ldots, m\}$, then there is $\sigma^{\prime} \in W$ such that $\sigma R_{i+m} \sigma^{\prime}$ and $\phi \in \operatorname{Suc}\left(\sigma^{\prime}\right)$;

12 / S. Demri
4. for $\sigma, \sigma^{\prime} \in W$, if $\sigma R_{i+m} \sigma^{\prime}$ and $j \leadsto i \cdot u$ for some $\langle i, j\rangle \in\{1, \ldots, m\}$ $\times\{1, \ldots, k\}$, and $[j] \phi \in \operatorname{Ant}(\sigma)$, then $[u] \phi \in \operatorname{Ant}\left(\sigma^{\prime}\right)$;
5. for $\sigma, \sigma^{\prime} \in W$, if $\sigma R_{i+m} \sigma^{\prime}$ for some $i \in\{k+1, \ldots, m\}$, and $[i] \phi \in$ $\operatorname{Ant}(\sigma)$, then $\phi \in \operatorname{Ant}\left(\sigma^{\prime}\right)$.

A direct consequence of Definition 4.6(4) is that Definition 4.6(5) holds true even for $i \in\{1, \ldots, k\}$. The cornerstone of the completeness proof is the following result.

Theorem 4.7 If there is a model graph for $\Gamma \vdash \Delta$, then $\operatorname{Set}(\Gamma) \cup$ $\operatorname{Set}(\neg \Delta)$ is $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiable.
Proof. (sketch) For $i \in\{1, \ldots, k\}$, there is $l_{i} \geq 0$ such that $i \rightarrow u_{i, 1}, \ldots$, $i \rightarrow u_{i, l_{i}}$ are the only production rules in P having i as left-hand side. Let W be a countable non-empty set and $R_{m+1}, \ldots, R_{2 \times m}$ be binary relations on W. Let $f: \mathcal{P}(W \times W)^{m} \rightarrow \mathcal{P}(W \times W)^{m}$ be the map such that

$$
\begin{gathered}
f\left(R_{1}, \ldots, R_{m}\right) \stackrel{\text { def }}{=} \\
\left\langle\left(R_{1+m} \cup \bigcup_{1 \leq j \leq l_{1}} R_{u_{1, j}^{\star}}\right), \ldots,\left(R_{k+m} \cup \bigcup_{1 \leq j \leq l_{k}} R_{u_{k, j}^{\star}}\right), R_{k+1+m}, \ldots, R_{2 \times m}\right\rangle
\end{gathered}
$$

where $u_{i, j}^{\star}$ is a string obtained from $u_{i, j}$ by replacing $i \in\{k+1, \ldots, m\}$ by $i+m$. Let \leq be the binary relation on $\mathcal{P}(W \times W)^{m}$ defined as follows: $\left\langle R_{1}, \ldots, R_{m}\right\rangle \leq\left\langle R_{1}^{\prime}, \ldots, R_{m}^{\prime}\right\rangle \stackrel{\text { def }}{\Leftrightarrow}$ for all $i \in\{1, \ldots, m\}, R_{i} \subseteq R_{i}^{\prime}$. The structure $\left\langle\mathcal{P}(W \times W)^{m}, \leq\right\rangle$ is a complete lattice and f is continuous and order-preserving. By Kleene's Theorem, the least fixed point of f exists and is equal to

$$
\mu(f)=\bigcup_{i \in \mathbb{N}} f^{i}(\emptyset, \ldots, \emptyset) \stackrel{\text { def }}{=}\left\langle\mathcal{R}_{1}, \ldots, \mathcal{R}_{m}\right\rangle
$$

By construction, $\left\langle W, \mathcal{R}_{1}, \ldots, \mathcal{R}_{m}\right\rangle$ is an $\mathcal{L}_{m}^{\mathcal{G}}$-frame such that for $i \in$ $\{1, \ldots, m\}, R_{i+m} \subseteq \mathcal{R}_{i}$ and $\mathcal{R}_{i} \subseteq\left(R_{m+1} \cup \ldots \cup R_{2 \times m}\right)^{*}$.

Let $\left\langle W, R_{1+m}, \ldots, R_{2 \times m}\right\rangle$ be a model graph for $\Gamma \vdash \Delta$. We define an $\mathcal{L}_{m}^{\mathcal{G}}$-model $\mathcal{M}=\left\langle W, \mathcal{R}_{1}, \ldots, \mathcal{R}_{m}, V\right\rangle$ as follows: $\left\langle\mathcal{R}_{1}, \ldots, \mathcal{R}_{m}\right\rangle$ is the least fixed point of f defined with $R_{1+m}, \ldots, R_{2 \times m}$ and for any propositional variable $\mathrm{p}, V(\mathrm{p}) \stackrel{\text { def }}{=}\{\sigma \in W: \mathrm{p} \in \operatorname{Ant}(\sigma)\}$.

By induction on formulae we can show that for all $\sigma \in W$, for $\phi \in$ $\operatorname{Ant}(\sigma) \cup \operatorname{Suc}(\sigma)$, if $\phi \in \operatorname{Ant}(\sigma)$, then $\mathcal{M}, \sigma \models \phi$ otherwise $\mathcal{M}, \sigma \not \vDash \phi$. Moreover, there is $\sigma_{0} \in W$ such that $\operatorname{Set}(\Gamma) \subseteq \operatorname{Ant}\left(\sigma_{0}\right)$ and $\operatorname{Set}(\Delta) \subseteq$ $\operatorname{Suc}\left(\sigma_{0}\right)$. Consequently, $\mathcal{M}, \sigma_{0} \models \operatorname{Set}(\Gamma) \cup \operatorname{Set}(\neg \Delta)$. $\quad \dashv$

Theorem 4.8 For any sequent $\Gamma \vdash \Delta$, $\left(\bigwedge_{\phi \in \Gamma} \phi\right) \Rightarrow\left(\bigvee_{\phi \in \Delta} \phi\right)$ is $\mathcal{L}_{m}^{\mathcal{G}}-$ valid iff the sequent $\Gamma \vdash \Delta$ is provable in $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}}$.

Proof. The soundness proof is standard by using an induction on the depth of the proof tree. In order to prove completeness, we assume that $\left(\bigwedge_{\phi \in \Gamma} \phi\right) \Rightarrow\left(\bigvee_{\phi \in \Delta} \phi\right)$ is $\mathcal{L}_{m}^{\mathcal{G}}$-valid and suppose that $\Gamma \vdash \Delta$ is consistent. The first step is to create a maximal and consistent sequence σ_{0} starting with $\Gamma \vdash \Delta$ (see Lemma 4.5). Since σ_{0} is consistent, last $\left(\sigma_{0}\right)$ is consistent. We use this fact to construct an L_{m}-frame whose infinite limit will be a graph model. This is a meta-level construction for which we can visit all derivations for last $\left(\sigma_{0}\right)$, choosing nodes at will, since all such derivations cannot be completed as proofs. We use the successor relations $R_{i}, 1 \leq$ $i \leq m$ while building this frame. By Theorem 4.7, $\left(\bigwedge_{\phi \in \Gamma} \phi\right) \wedge\left(\bigwedge_{\phi \in \Delta} \neg \phi\right)$ is $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiable which will lead to a contradiction.

Let us show how to build the model graph. If no $[i] \phi$ occurs in the succedent part of $\operatorname{last}\left(\sigma_{0}\right)$, then the structure $\left\langle\left\{\sigma_{0}\right\}, \emptyset, \ldots, \emptyset\right\rangle$ is a model graph for $\Gamma \vdash \Delta$. Otherwise, for $i \in\{1, \ldots, m\}$, let $\psi_{i}^{1}, \ldots, \psi_{i}^{s_{i}}$ be all the formulae such that $[i] \psi_{i}^{j}$ occurs in the succedent part of $\operatorname{last}\left(\sigma_{0}\right)$. Let Γ^{\prime} be the antecedent part of $\operatorname{last}\left(\sigma_{0}\right)$. Since $\operatorname{last}\left(\sigma_{0}\right)$ is consistent, for $i \in\{1, \ldots, m\}$, for $j \in\left\{1, \ldots, s_{i}\right\}, \Gamma^{\prime[i]} \vdash \psi_{i}^{j}$ is also consistent. For $i \in$ $\{1, \ldots, m\}$, for $j \in\left\{1, \ldots, s_{i}\right\}$, create a maximal and consistent sequence $\sigma_{i, j}$ starting with $\Gamma^{\prime}[i] \vdash \psi_{i}^{j}$ and put $\sigma_{0} R_{i} \sigma_{i, j}$. The sequences $\sigma_{i, j}$ are said to be of level 1. $\sum_{i=1}^{m} s_{i}$ is bounded by $|\mathcal{G}| \times\left(\sum_{\psi \in \Gamma} \mathrm{r}(\psi)+\sum_{\psi \in \Delta} \mathrm{r}(\psi)\right)$ and this shall hold true at any level. Continue to create the nodes of further levels in a similar way. Either this procedure can go forever (but the infinite limit frame is a model graph for $\Gamma \vdash \Delta$) or the procedure stops after a finite amount of time (the number of level is finite as well as the resulting model graph).

5 GSP(RLIN) is EXPTIME-complete

No single rule $(\vdash[i])$ for some $i \in\{1, \ldots, m\}$ in $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}}$ captures all the properties of the relation R_{i} in the $\mathcal{L}_{m}^{\mathcal{G}}$-frames unlike the combination of all the introduction rules for necessity formulae. As in the single steps calculi in (Massacci 1994) (see also (Goré 1999, Massacci 2000)), the closure property of the $\mathcal{L}_{m}^{\mathcal{G}}$-frames (see the proof of Theorem 4.7) is encoded step by step and this is the key point to characterize the complexity of GSP(RLIN). That is why, we can improve the complexity upper bound of GSP(RLIN) from (Baldoni 1998, Baldoni et al. 1998).

Theorem 5.1 GSP(RLIN) is in EXPTIME.
Proof. We use a technique that is dual to the method in (Pratt 1979) that shows that PDL satisfiability is in EXPTIME. By Theorem 4.8, ϕ is $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiable iff $\neg \phi$ is not provable in $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}}$ and therefore we concentrate on validity instead of satisfiability since our procedure is determin-

14 / S. Demri

istic. Actually, we use a variant of $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}}$, namely $\operatorname{SETG} \mathcal{L}_{m}^{\mathcal{G}}$, where the sequents are pairs of finite sets (instead of finite multi-sets). A contraction is explicitly operated for the rules $(\vdash \wedge)$, $(\wedge \vdash),(\neg \vdash)$ and $(\vdash \neg)$. Following the developments of Section 4, one can show that $X \vdash Y$ is provable in SETG $\mathcal{L}_{m}^{\mathcal{G}}$ iff the formula $\left(\bigwedge_{\phi \in X} \phi\right) \Rightarrow\left(\bigvee_{\phi \in Y} \phi\right)$ is $\mathcal{L}_{m}^{\mathcal{G}}$-valid. Let ϕ be a formula for which we want to know whether ϕ is $\mathcal{L}_{m}^{\mathcal{G}}$-valid. The rules of the proof system $\operatorname{SETG} \mathcal{L}_{m}^{\mathcal{G}}$ can be computed in polynomial-time in $|\mathcal{G}|$ since the binary relation \leadsto can be computed in polynomial-time in $|\mathcal{G}|$ and all the rules are of size in $\mathcal{O}(|\mathcal{G}|)$. Their applicability can be checked in polynomial-time in $|\mathcal{G}|$ and in the size of the premiss and conclusion sequents. The cost of the computation of $\operatorname{SETG} \mathcal{L}_{m}^{\mathcal{G}}$ is relevant here since \mathcal{G} is part of the inputs.

The cardinality of the set $\operatorname{cl}_{\mathcal{G}}(\phi)$ is at most $|\mathcal{G}| \times \mathrm{r}(\phi)$. Let $\operatorname{SETSEQ}(\phi)$ be the finite set of sequents $X \vdash Y$ for $X, Y \subseteq \operatorname{cl}_{\mathcal{G}}(\phi)$. $\operatorname{SETSEQ}(\phi)$ is obviously a subset of the countably infinite set $\operatorname{SEQ}(\phi)$ where only sets can occur in the sequents of $\operatorname{SETSEQ}(\phi)$. The cardinality of $\operatorname{SETSEQ}(\phi)$ is bounded by $2^{|\mathcal{G}| \times r(\phi)+1}$ and the size of each $X \vdash Y$ is at most $2 \times(|\mathcal{G}| \times$ $|\phi|)^{2}$. Obviously, $\vdash \phi$ belongs to $\operatorname{SETSEQ}(\phi)$. We define a sequence of sets $Z_{1} \subseteq Z_{2} \subseteq Z_{3} \subseteq \ldots$ included in $\operatorname{SETSEQ}(\phi) . Z_{1}$ is defined as the set of sequents $X \vdash Y$ from $\operatorname{SETSEQ}(\phi)$ such that $X \cap Y \neq \emptyset$. Now suppose that Z_{i} is defined and let us define Z_{i+1}. For $X \vdash Y \in \operatorname{SETSEQ}(\phi)$, $X \vdash Y \in Z_{i+1} \stackrel{\text { def }}{\Leftrightarrow}$ either (C1) $X \vdash Y \in Z_{i}$ or $(\mathrm{C} 2)$ there are $X_{1} \vdash$ $Y_{1}, X_{l} \vdash Y_{l} \in Z_{i}$ such that

$$
\frac{X_{1} \vdash Y_{1} \ldots X_{l} \vdash Y_{l}}{X \vdash Y}(r)
$$

is a correct inference of the rule (r) in $\operatorname{SETG} \mathcal{L}_{m}^{\mathcal{G}}$. The index l takes the value either 1 or 2 according to the form of the rule (r). Since $\operatorname{card}(X)+$ $\operatorname{car} d(Y) \leq 2 \times|\mathcal{G}| \times \mathrm{r}(\phi)$, each formula in $X \vdash Y$ can be principal in only one rule, checking the condition (C2) can be done in exponential time in $|\mathcal{G}|+|\phi|$. If $\vdash \phi \in Z_{i+1}$, we stop and return 'yes' ϕ is $\mathcal{L}_{m}^{\mathcal{G}}$-valid. Otherwise, we continue the construction. Since $Z_{i} \subseteq Z_{i+1}$ and $\operatorname{SETSEQ}(\phi)$ has at most $2^{|\mathcal{G}| \times \mathrm{r}(\phi)+1}$ elements, this construction terminates after at most exponentially many stages. Computing Z_{i+1} can be done in deterministic exponential time in $|\mathcal{G}|+|\phi|$. Hence, the whole construction can be done in deterministic exponential time in $|\mathcal{G}|+|\phi|$. Whenever $Z_{i}=Z_{i+1}$ and $\vdash \phi \notin Z_{i}$, we return 'no', ϕ is not $\mathcal{L}_{m}^{\mathcal{G}}$-valid. The procedure can be shown to be correct. \dashv

The procedure in the proof of Theorem 5.1 is more suited for proving theoretical results than for being used in applications. It can be viewed as the addition of a highly inefficient loop checking to the calculi $G \mathcal{L}_{m}^{\mathcal{G}}$
(see e.g. (Ladner 1977, Fitting 1983, Cerrito and Cialdea Mayer 1997, Heuerding 1998) for related matters). Besides the EXPTIME upper bound is sharp enough.

Theorem 5.2 For $m \geq 2$, there is a decidable countably infinite set of right linear grammars such that $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiability is EXPTIME-hard.

Proof. (sketch) Let $\mathcal{G}_{i}, i \geq 1$, be the right linear grammar

$$
\left\langle\{1\},\{2, \ldots, m\},\left\{1 \rightarrow \epsilon, 1 \rightarrow 2^{i} \cdot 1\right\}, 1\right\rangle .
$$

For any two different prime numbers n, n^{\prime}, we have $\mathrm{L}_{1}\left(\mathcal{G}_{n}\right) \neq \mathrm{L}_{1}\left(\mathcal{G}_{n^{\prime}}\right)$. By Theorem 3.1, this guarantees that we have defined a countably infinite set of essentially different right linear grammar logics. Let $\mathrm{L}(\square)$ be the standard modal language for the modal logic K. Let K-GSAT be the set of standard modal formulae ϕ such that there is a Kripke model $\mathcal{M}=\langle W, R, V\rangle$ satisfying $\mathcal{M} \models \phi$. The global satisfiability problem KGSAT is known to be EXPTIME-hard (Chen and Lin 1994) (see also (Hemaspaandra 1996)). Let ϕ be a formula of $\mathrm{L}(\square)$. One can show that ϕ belongs to K-GSAT iff $\bigwedge_{0 \leq \alpha \leq i-1}\left[2^{\alpha} \cdot 1\right] \phi^{\prime}$ is $\mathcal{L}_{m}^{\mathcal{G}_{i}}$-satisfiable where ϕ^{\prime} is obtained from ϕ by replacing every occurrence of \square by [2].

Theorem 5.3 GSP(RLIN) is EXPTIME-complete.
There is also a natural log-space transformation from GSP(RLIN) into satisfiability for the μ-calculus with multiple fixed points (see e.g. (Park 1981, Streett and Emerson 1989, Grädel et al. 2000). By way of example, the translation $t([2] \phi)$ of [2] ϕ for the right linear grammar logic \mathcal{L} from Section 1 is

$$
\nu X_{2}\left(X_{1}, X_{2}, X_{3}\right) \cdot\left\langle[1] X_{3} \wedge[3] X_{2},[2] X_{3} \wedge[4] X_{1} \wedge[5] X_{3}, t(\phi)\right\rangle
$$

where X_{3} is used as a renaming variable. The principle behind this example can be generalized to any modal connective of a right linear grammar logic. However, by using a polynomial-time transformation into satisfiability for PDL with finite automata one can show that GSP(REG), the extension of GSP (RLIN) with left linear grammars, is EXPTIMEcomplete (Demri 2000).

The general global logical consequence problem for right linear grammar logics GGLC(RLIN) takes as inputs a right linear grammar \mathcal{G} and two L_{m}-formulae ϕ, ψ and checks whether for all $\mathcal{L}_{m}^{\mathcal{G}}$-models $\mathcal{M}, \mathcal{M} \models \phi$ implies $\mathcal{M} \equiv \psi$. For any right linear grammar $\mathcal{G}, \operatorname{GLC}\left(\mathcal{L}_{m}^{\mathcal{G}}\right)$ denotes the problem obtained from GGLC(RLIN) by fixing the grammar to \mathcal{G}. The calculus $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}}$ can be extended in order to deal with GGLC(RLIN). The

16 / S. Demri
sequents are of the form $\Gamma \vdash_{\phi} \Delta$ for the L_{m}-formula $\phi . \mathrm{G} \mathcal{L}_{m}^{\mathcal{G}}$ is extended by writing \vdash_{ϕ} instead of \vdash. However, one rule is added:

$$
\frac{\Gamma, \phi \vdash_{\phi} \Delta}{\Gamma \vdash_{\phi} \Delta} g l c_{\phi}
$$

$g l c_{\phi}$ is an obvious adaptation of existing rules for capturing global logical consequence (see e.g. (Fitting 1983, Heuerding 1998, Massacci 2000)). One can show that for any sequent $\Gamma \vdash_{\phi} \Delta$, the formula $\left\langle\phi,\left(\bigwedge_{\psi \in \Gamma} \psi\right) \Rightarrow\right.$ $\left.\left(\bigvee_{\psi \in \Delta} \psi\right)\right\rangle \in \operatorname{GLC}\left(\mathcal{L}_{m}^{\mathcal{G}}\right)$ iff the sequent $\Gamma \vdash_{\phi} \Delta$ is derivable in $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}}+$ $g l c_{\phi}$. Similarly, one can show that GGLC(RLIN) is in EXPTIME by adapting the proof of Theorem 5.1.

6 A sufficient condition for PSPACE decision procedures

The completeness proof of Theorem 4.8 and the proof of Lemma 4.5 induce a depth-first systematic procedure to determine whether a sequent $\Gamma \vdash \Delta$ is provable in $G \mathcal{L}_{m}^{\mathcal{G}}$ or not. In the proof of Lemma 4.5 , in order to obtain a maximal sequence σ starting from a given sequent in a derivation $\vdash \phi$, essential backtracking points are introduced when the rule $(\vdash \wedge)$ needs to be applied. Moreover, the length of such a sequence σ is bounded by $|\mathcal{G}| \times \mathrm{r}(\phi)$. By Lemma 4.2 and since $\operatorname{card}\left(\operatorname{cl}_{\mathcal{G}}(\phi)\right)$ is bounded by $|\mathcal{G}| \times r(\phi)$, the number of backtracking points is bounded by $|\mathcal{G}| \times r(\phi)$. Similarly, in the proof of Theorem 4.8, other backtracking points are introduced when the rule $(\vdash[i])$ for some $i \in\{1, \ldots, m\}$ needs to be applied. The number of such backtracking points is also bounded by $|\mathcal{G}| \times r(\phi)$. So one can use a bit-string of length $|\mathcal{G}| \times r(\phi)$ to remember which choices have been already tried. Consequently, in order to show that a given right linear grammar logic $\mathcal{L}_{m}^{\mathcal{G}}$ has a polynomial space satisfiability problem (or equivalently a polynomial space validity problem), it is sufficient to show that there is a polynomial $p($.$) such that in the$ depth-first systematic procedure for proving $\vdash \phi$, the $(\vdash[i])$ rules are applied on a branch at most $p(|\phi|)$ times (see also the proof of Lemma 6.1). This means that in the proof of Theorem 4.8 the number of levels is finite and is bounded by a polynomial in the size of the input sequent $\Gamma \vdash \Delta$.

This observation is not really surprising, but all the point now is to refine the above statement in order to be able to prove the polynomial space upper bounds for countably many right linear grammar logics.

Let $\langle S, \ll\rangle$ be a well-founded set, meas $: \mathrm{SEQ}_{m} \rightarrow S$ be a map and $p_{\text {card }}(),. p_{\text {length }}($.$) be polynomials such that for any \mathrm{L}_{m}$-formula ϕ,
(C3) for $\Gamma_{1} \vdash \Delta_{1}, \ldots, \Gamma_{n} \vdash \Delta_{n} \in \operatorname{SEQ}(\phi), \operatorname{meas}\left(\Gamma_{n} \vdash \Delta_{n}\right) \ll \ldots \ll$
$\operatorname{meas}\left(\Gamma_{1} \vdash \Delta_{1}\right) \ll \operatorname{meas}(\vdash \phi)$ implies $n<p_{\text {card }}(|\phi|)$;
(C4) for any inference

$$
\frac{\Gamma_{1} \vdash \Delta_{1} \ldots \Gamma_{l} \vdash \Delta_{l}}{\Gamma \vdash \Delta}(r)
$$

(a) with (r) different from $(\vdash[i])$ for all $i \in\{1, \ldots, m\}(l \in\{1,2\}$ according to the form of the rule (r));
(b) $\Gamma_{1} \vdash \Delta_{1}, \ldots, \Gamma_{l} \vdash \Delta_{l}, \Gamma \vdash \Delta \in \operatorname{SEQ}(\phi)$;
we have for $i \in\{1, l\}$, either meas $\left(\Gamma_{i} \vdash \Delta_{i}\right) \ll \operatorname{meas}(\Gamma \vdash \Delta)$ or $\operatorname{meas}\left(\Gamma_{i} \vdash \Delta_{i}\right)=\operatorname{meas}(\Gamma \vdash \Delta)$;
(C5) for any sequence of sequents in $\operatorname{SEQ}(\phi)$,

$$
\sigma_{0} \prec\left(\vdash\left[i_{1}\right]\right) \Gamma_{1} \vdash \Delta_{1} \prec \sigma_{1} \prec\left(\vdash\left[i_{2}\right]\right) \ldots \sigma_{n-1} \prec\left(\vdash\left[i_{n}\right]\right) \Gamma_{n} \vdash \Delta_{n}
$$

such that for $i \in\{0, \ldots, n-1\}, \sigma_{i}$ is maximal and $n>p_{\text {length }}(|\phi|)$, we have $\operatorname{meas}\left(\Gamma_{n} \vdash \Delta_{n}\right) \ll \operatorname{meas}\left(\operatorname{first}\left(\sigma_{0}\right)\right)$.

The condition (C3) holds true when $\{\operatorname{meas}(\Gamma \vdash \Delta): \Gamma \vdash \Delta \in$ $\operatorname{SEQ}(\phi)\}$ is finite since $\langle S, \ll\rangle$ is a well-founded set. For example, this is the case with $\operatorname{meas}(\Gamma \vdash \Delta)=\operatorname{md}\left(\bigwedge_{\psi \in \Gamma, \Delta} \psi\right)$.

Lemma 6.1 Let \mathcal{G} be a right linear grammar. If there exist a wellfounded set $\langle S, \ll\rangle$, a map meas: $\mathrm{SEQ}_{m} \rightarrow S$ and polynomials $p_{\text {card }}($.$) ,$ $p_{\text {length }}($.$) satisfying the conditions (C3), (C4) and (C5), for any \mathrm{L}_{m}$ formula ϕ, then $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiability is in PSPACE.

Proof. (sketch) The proof is by an easy verification by using the depthfirst systematic procedure induced by the proofs of Lemma 4.5 and Theorem 4.8 in order to check whether $\vdash \phi$ is provable in $G \mathcal{L}_{m}^{\mathcal{G}}$.

The above method is not new (see e.g. (Ladner 1977, Fitting 1983, Massacci 1998)) but it allows us to use a uniform depth-first procedure from the proof of Theorem 4.8 and from the proof of Lemma 4.5.

Let $\mathcal{G}^{r l}$ be the right linear grammar defined in Example 4.1. Because of the duplication of Γ_{1} in the application of the $(\vdash[4])$-rule, none of the obvious measures work to prove the polynomial space upper bound. Obviously, $\mathcal{G}^{r l}$ is finite since $\mathrm{L}_{1}\left(\mathcal{G}^{r l}\right)$ and $\mathrm{L}_{2}\left(\mathcal{G}^{r l}\right)$ are empty.

7 Finiteness implies PSPACE

This section is devoted to show that for any finite right linear grammar \mathcal{G}, the $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiability problem is in PSPACE (forthcoming Theorem 7.4 is even a bit more general). We need to introduce a few definitions. Let \mathcal{G} be a finite right linear grammar. The set N of non terminal symbols can be partionned into three sets N_{1}, N_{2} and N_{3} such that for $i \in N$,

$$
\text { - } i \in N_{1} \stackrel{\text { def }}{\Leftrightarrow} \mathrm{L}_{i}(\mathcal{G})=\emptyset ;
$$

18 / S. Demri

- $i \in N_{2} \stackrel{\text { def }}{\Leftrightarrow} i \notin N_{1}$ and for some $j \in N_{1}$ and $u \in \Sigma^{*}, i \Rightarrow_{\mathcal{G}}^{*} u \cdot j$;
- $i \in N_{3} \stackrel{\text { def }}{\Leftrightarrow} i \notin N_{1} \cup N_{2}$.
N_{1}, N_{2} and N_{3} can be computed in polynomial-time in $|\mathcal{G}|$. A $N_{2} \rightarrow N_{1-}$ derivation is a sequence of the form

$$
i_{0} \Rightarrow_{\mathcal{G}} u_{1} \cdot i_{1} \Rightarrow_{\mathcal{G}} \ldots \Rightarrow_{\mathcal{G}} u_{1} \ldots u_{n-1} \cdot i_{n-1} \Rightarrow_{\mathcal{G}} u_{1} \ldots u_{n} \cdot i_{n}
$$

such that $n \geq 1,\left\{i_{0}, \ldots, i_{n-1}\right\} \subseteq N_{2}$ and $i_{n} \in N_{1}$. The main properties of the partition $\left\{N_{1}, N_{2}, N_{3}\right\}$ are the following.

Lemma 7.1 Let \mathcal{G} be a finite right linear grammar and $\left\{N_{1}, N_{2}, N_{3}\right\}$ be the partition on N defined above. Then,
(I) if $i \Rightarrow_{\mathcal{G}}^{*} u$ with $i \in N_{1}$, then $u \in \Sigma^{*} \cdot N_{1}$;
(II) if $i_{0} \Rightarrow_{\mathcal{G}} u_{1} \cdot i_{1} \Rightarrow_{\mathcal{G}} \ldots \Rightarrow_{\mathcal{G}} u_{1} \ldots u_{n} \cdot i_{n}$ is a $N_{2} \rightarrow N_{1}$-derivation, then

1. for $j \in\{0, \ldots, n-2\}, i_{j} \neq i_{j+1}$;
2. $n \leq \operatorname{card}\left(N_{2}\right)-1 ;\left|u_{1} \cdot \ldots \cdot u_{n}\right| \leq|\mathcal{G}|$;
(III) if $i \Rightarrow_{\mathcal{G}}^{*} u$ with $i \in N_{3}$, then $u \in\left(\Sigma^{*} \cdot N_{3}\right) \cup \Sigma^{*}$;
(IV) if $i \Rightarrow{ }_{\mathcal{G}}^{*} u$ with $i \in N_{2} \cup N_{3}$ and $u \in \Sigma^{*}$, then $|u| \leq|\mathcal{G}|$.

For $i \in N \cup \Sigma$, we define $w_{\mathcal{G}}(i)$, the weight of i in \mathcal{G}, as follows:

- for $i \in N_{1} \cup \Sigma, w_{\mathcal{G}}(i) \stackrel{\text { def }}{=} 1$;
- for $i \in N_{3}, w_{\mathcal{G}}(i) \stackrel{\text { def }}{=} \max \left\{1+|u|: u \in \mathrm{~L}_{i}(\mathcal{G})\right\}$;
- for $i \in N_{2}$,

$$
\begin{aligned}
& w_{\mathcal{G}}(i) \stackrel{\text { def }}{=} \max \left(\{ 1 + | u | : u \in \mathrm { L } _ { i } (\mathcal { G }) \} \cup \left\{1+\left|u_{1} \cdot \ldots \cdot u_{n}\right|:\right.\right. \\
& \left.\left.i \Rightarrow_{\mathcal{G}} u_{1} i_{1} \Rightarrow_{\mathcal{G}} \ldots \Rightarrow_{\mathcal{G}} u_{1} \ldots u_{n} i_{n} N_{2} \rightarrow N_{1} \text {-derivation }\right\}\right)
\end{aligned}
$$

Observe that for $i \in N \cup \Sigma, w_{\mathcal{G}}(i) \leq|\mathcal{G}|$. Lemma 7.2 contains the main properties of the map $w_{\mathcal{G}}($.$) .$

Lemma 7.2 Let \mathcal{G} be a finite right linear grammar. Then,
(I) if $i \leadsto u \cdot i^{\prime}$ with $i \in N_{3}$ and $u \in \Sigma^{+}$, then $i^{\prime} \in N_{3}$ and $|u|-1+$ $w_{\mathcal{G}}\left(i^{\prime}\right)<w_{\mathcal{G}}(i)$;
(II) if $i \leadsto u$ with $i \in N_{3}$ and $u \in \Sigma^{+}$, then $|u|<w_{\mathcal{G}}(i)$;
(III) if $i \leadsto u$ with $i \in N_{2}$ and $u \in \Sigma^{+}$, then $|u|<\max \{1+|v|: v \in$ $\left.\mathrm{L}_{i}(\mathcal{G})\right\} \leq w_{\mathcal{G}}(i) ;$
(IV) if $i \leadsto u \cdot i^{\prime}$ with $i \in N_{2}, i^{\prime} \in N_{3}$ and $u \in \Sigma^{+}$, then $|u|-1+w_{\mathcal{G}}\left(i^{\prime}\right)<$ $w_{\mathcal{G}}(i)$;
(V) if $i \leadsto u \cdot i^{\prime}$ with $i, i^{\prime} \in N_{2}$ and $u \in \Sigma^{+}$, then $|u|-1+w_{\mathcal{G}}\left(i^{\prime}\right)<w_{\mathcal{G}}(i)$.

Proof. By way of example, we show (V). Assume $i \leadsto u \cdot i^{\prime}$ for some $i, i^{\prime} \in N_{2}$ and $u \in \Sigma^{+}$. It is obvious that

$$
\max \left\{|v|+1: v \in \mathrm{~L}_{i^{\prime}}(\mathcal{G})\right\}+|u|-1<\max \left\{|v|+1: v \in \mathrm{~L}_{i}(\mathcal{G})\right\} .
$$

It remains to show that

$$
\begin{aligned}
& \max \left\{1+\left|u_{1} \cdot \ldots \cdot u_{n}\right|: i^{\prime} \Rightarrow_{\mathcal{G}} u_{1} i_{1} \Rightarrow_{\mathcal{G}} \ldots \Rightarrow_{\mathcal{G}} u_{1} \ldots u_{n} i_{n}\right\}+|u|-1 \\
& \quad<\max \left\{1+\left|u_{1} \cdot \ldots \cdot u_{n}\right|: i \Rightarrow_{\mathcal{G}} u_{1} i_{1} \Rightarrow_{\mathcal{G}} \ldots \Rightarrow_{\mathcal{G}} u_{1} \ldots u_{n} i_{n}\right\} .
\end{aligned}
$$

Since $i \leadsto u \cdot i^{\prime}$, there are non terminal symbols $i_{0}, \ldots, i_{\alpha}, \alpha \geq 0$, such that $i_{0}=i$ and $i_{0} \Rightarrow_{\mathcal{G}} i_{1} \Rightarrow_{\mathcal{G}} \ldots \Rightarrow_{\mathcal{G}} i_{\alpha} \Rightarrow_{\mathcal{G}} u \cdot i^{\prime}$. In the case all the non terminal symbols $i_{0}, \ldots, i_{\alpha}$ belongs to N_{2} we can easily conclude the proof since

$$
\begin{gathered}
\max \left\{1+\left|u_{1} \cdot \ldots \cdot u_{n}\right|: i \Rightarrow_{\mathcal{G}} u_{1} i_{1} \Rightarrow_{\mathcal{G}} \ldots \Rightarrow_{\mathcal{G}} u_{1} \ldots u_{n} i_{n}\right\} \\
\geq|u|+\max \left\{1+\left|u_{1} \cdot \ldots \cdot u_{n}\right|: i^{\prime} \Rightarrow_{\mathcal{G}} u_{1} i_{1} \Rightarrow_{\mathcal{G}} \ldots \Rightarrow_{\mathcal{G}} u_{1} \ldots u_{n} i_{n}\right\} .
\end{gathered}
$$

Suppose $i_{j} \in N_{3}$ for some $j \in\{1, \ldots, \alpha\}$. If $i_{j} \in N_{3}$, then there is some $j^{\prime} \in N_{1}$ such that $i_{j} \Rightarrow_{\mathcal{G}}^{*} v \cdot j^{\prime}$, which leads to a contradiction by definition of the partition $\left\{N_{1}, N_{2}, N_{3}\right\}$. Suppose $i_{j} \in N_{1}$ for some $j \in\{1, \ldots, \alpha\}$. Hence $i_{j} \Rightarrow_{\mathcal{G}}^{*} u \cdot i^{\prime}$ and $u \cdot i^{\prime} \notin \Sigma^{*} \cdot N_{1}$ which is in contradiction with Lemma 7.1(I). \dashv

We define the maps $\mathrm{pw}^{a}:$ FORM $\rightarrow \mathbb{N}$ and $\mathrm{pw}^{s}:$ FORM $\rightarrow \mathbb{N}$ as follows ("a" stands for antecedent and "s" for succedent). Let ϕ be an L_{m}-formula. Let $[i] \psi$ be the occurrence of a formula occurring negatively [resp. positively] in ϕ. To be precise, one should define the notion of occurrence (as a finite sequence of natural numbers for instance). For the sake of simplicity, this is omitted here. In order to define $\mathrm{pw}^{a}(\phi)\left[\right.$ resp. $\left.\mathrm{pw}^{s}(\phi)\right]$, we define an auxiliary value $\mathrm{pw}^{a}(\phi,[i] \psi)$. Let $\left[i_{1}\right] \psi_{1}, \ldots,\left[i_{n}\right] \psi_{n}$, be the positive [resp. negative] occurrences of necessity formulae of ϕ such that the very occurrence of $[i] \psi$ is a subformula of each $\left[i_{j}\right] \phi_{i_{j}}$ (if any). In the case when some element of N_{1} is in $\left\{i_{1}, \ldots, i_{n}\right\}, \mathrm{pw}^{a}(\phi,[i] \psi) \stackrel{\text { def }}{=} 0\left[\right.$ resp. $\left.\mathrm{pw}^{s}(\phi,[i] \psi) \stackrel{\text { def }}{=} 0\right]$, otherwise $\mathrm{pw}^{a}(\phi,[i] \psi) \stackrel{\text { def }}{=} 1+\sum_{j=1}^{n} w_{\mathcal{G}}\left(i_{j}\right)\left[\right.$ resp. $\left.\mathrm{pw}^{s}(\phi,[i] \psi) \stackrel{\text { def }}{=} 1+\sum_{j=1}^{n} w_{\mathcal{G}}\left(i_{j}\right)\right]$. We are now in a position to define $\mathrm{pw}^{a}(\phi)\left[\mathrm{resp} \cdot \mathrm{pw}^{s}(\phi)\right] \cdot \mathrm{pw}^{a}(\phi) \stackrel{\text { def }}{=}$ $\sum \mathrm{pw}^{a}(\phi,[i] \psi)\left[\right.$ resp. $\left.\mathrm{pw}^{s}(\phi) \stackrel{\text { def }}{=} \sum \mathrm{pw}^{s}(\phi,[i] \psi)\right]$ where the sum is on the set of negative [resp. positive] occurrences of necessity formula in ϕ. For each $\psi \in \operatorname{cl}_{\mathcal{G}}(\phi)$, the number of negative occurrences of necessity formula is bounded by $|\mathcal{G}| \times \mathrm{r}(\phi)$ as well as the number of positive occurrences of necessity formula. So for $\psi \in \operatorname{cl}_{\mathcal{G}}(\phi)$,

$$
\max \left(\mathrm{pw}^{a}(\psi), \mathrm{pw}^{s}(\psi)\right) \leq|\mathcal{G}|^{2} \times \mathrm{r}(\phi)^{2} \times(|\mathcal{G}|+1)
$$

Theorem 7.3 Let \mathcal{G} be a finite right linear grammar logic. Then, $\mathcal{L}_{m}^{\mathcal{G}}{ }^{-}$ satisfiability is PSPACE-complete.

Deciding whether \mathcal{G} is a finite right linear grammar can be done in polynomial time in $|\mathcal{G}|$.
Proof. (sketch) Let us define S, meas, $p_{\text {card }}$ and $p_{\text {length }}$. We shall write $\operatorname{md}_{N}(\Gamma \vdash \Delta)$ to denote the maximal nesting of modal connectives $[i]$ with $i \in N$ in $\bigwedge_{\psi \in \Gamma, \Delta} \psi$. Observe that for $\Gamma \vdash \Delta \in \operatorname{SEQ}(\phi), \operatorname{md}_{N}(\Gamma \vdash$ $\Delta) \leq \mathrm{r}(\phi)$. We write $\mathrm{pw}^{\prime}(\Gamma \vdash \Delta)$ to denote

$$
\operatorname{pw}^{\prime}(\Gamma \vdash \Delta) \stackrel{\text { def }}{=} \max \left(\left\{\mathrm{pw}^{a}(\psi): \psi \in \Gamma\right\} \cup\left\{\mathrm{pw}^{s}(\psi): \psi \in \Delta\right\}\right) .
$$

- $\langle S, \ll\rangle \stackrel{\text { def }}{=}\left\langle\mathbb{N}^{2},<\right\rangle$ where $<$ is the standard lexicographical ordering on \mathbb{N}^{2} extending the standard $<$ on \mathbb{N};
- meas $(\Gamma \vdash \Delta) \stackrel{\text { def }}{=}\left\langle\operatorname{md}_{N}(\Gamma \vdash \Delta), \mathrm{pw}^{\prime}(\Gamma \vdash \Delta)\right\rangle$;
- $p_{\text {card }}(x)=1+|\mathcal{G}|^{2} \times(|\mathcal{G}|+1) \times x^{3} ; p_{\text {length }}(x)=1$.

Let ϕ be an L-formula. Condition (C3) is satisfied because

$$
\operatorname{card}(\{\operatorname{meas}(\Gamma \vdash \Delta): \Gamma \vdash \Delta \in \operatorname{SEQ}(\phi)\}) \leq|\mathcal{G}|^{2} \times(|\mathcal{G}|+1) \times|\phi|^{3} .
$$

The condition (C4) is obviously satisfied. In order to check the condition (C5), by way of example consider an inference of a $(\vdash[i])$ rule for some $i \in \Sigma$ (see notations in Section 4.1). Since for $j \in N$ and $u \in(N \cup \Sigma)^{*}$, $j \leadsto u$ implies $u \in \Sigma^{*} \cup \Sigma^{*} \cdot N$, for $j \in\{1, \ldots, k\}, \operatorname{md}_{N}\left([j] \Gamma_{j}\right) \geq$ $\operatorname{md}_{N}\left(\bigcup_{\left\langle j, k^{\prime}\right\rangle \in \text { start }_{i}^{j}}\left[v_{j, k^{\prime}}\right] \Gamma_{j}\right)$. Additionnally, $\operatorname{md}_{N}([i] \phi)=\operatorname{md}_{N}(\phi)$, which guarantees that $\operatorname{md}_{N}($.$) does not strictly increase (when reading the rules$ upwards).

In order to show that $\mathrm{pw}^{\prime}($.$) strictly decreases, it is sufficient to see$ that $\mathrm{pw}^{s}([i] \phi)=1+\mathrm{pw}^{s}(\phi)$ and to check that

- for $j \in N_{1}, \max \left(\left\{\mathrm{pw}^{a}(\psi): \psi \in[j] \Gamma_{j}\right\}\right)=\max \left(\left\{\mathrm{pw}^{a}(\psi): \psi \in\right.\right.$ $\left.\left.\bigcup_{\left\langle j, k^{\prime}\right\rangle \in \text { start }_{i}^{j}}\left[v_{j, k^{\prime}}\right] \Gamma_{j}\right\}\right)=0$ by Lemma 7.1(I);
- for $j \in N_{2}$ [resp. $j \in N_{3}$],

$$
\max \left(\left\{\mathrm{pw}^{a}(\psi): \psi \in[j] \Gamma_{j}\right\}\right) \geq
$$

$$
\max \left(\left\{\mathrm{pw}^{a}(\psi): \psi \in \bigcup_{\left\langle j, k^{\prime}\right\rangle \in \text { start }_{i}^{j}}\left[v_{j, k^{\prime}}\right] \Gamma_{j}\right\}\right)
$$

by Lemma 7.2(III,IV,V) [resp. by Lemma 7.2(I,II)].
-
Theorem 7.4 below is slightly stronger than Theorem 7.3.

Theorem 7.4 GSP $\left(R L I N_{f}\right)$ is in PSPACE.

The proof of Theorem 7.4 follows the line of the proof of Theorem 7.3 by observing that for any sequent $\Gamma \vdash \Delta \in \operatorname{SEQ}(\phi), \operatorname{md}_{N}(\Gamma \vdash \Delta) \leq \mathrm{r}(\phi)$ and $\mathrm{pw}^{\prime}(\Gamma \vdash \Delta) \leq|\mathcal{G}|^{2} \times(|\mathcal{G}|+1) \times|\phi|^{2}$. Moreover, from the space analysis in Section 6, we can decide whether $\vdash \phi$ is provable in $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}}$ in polynomial space in $|\mathcal{G}|+|\phi|$.

It seems difficult to extend Theorem 7.4 to a larger class of finite context-free grammars. Indeed, for the finite left linear grammar $\mathcal{G}^{l l}=$ $\langle\{1\},\{2\},\{1 \rightarrow 1 \cdot 2\}, 1\rangle, \mathcal{L}_{2}^{\mathcal{G}_{2}^{l l}}$-satisfiability is already EXPTIME-hard (see Theorem $7.5(1)$ below). By contrast, for any strongly finite contextfree grammar $\mathcal{G}, \mathcal{L}_{m}^{\mathcal{G}}$-satisfiability is in PSPACE. This can be shown by translation into PDL without Kleene star. By analogy to Theorem 7.4, it is open whether the general satisfiability problem for strongly finite context-free grammar logics is in PSPACE.

By using Theorem 7.3 and (Demri 2000), one can characterize the complexity of all the bimodal regular grammar logics.

Theorem 7.5 Let $\mathcal{L}_{2}^{\mathcal{G}}$ be a bimodal regular grammar logic, that is $N \cup$ $\Sigma=\{1,2\} \quad(m=2)$ and $S=1$.

1. If $1 \rightarrow 1 \cdot 2^{i}$ is a production rule of \mathcal{G} for some $i \geq 1$, then, $\mathcal{L}_{2}^{\mathcal{G}}$ satisfiability is EXPTIME-complete.
2. If \mathcal{G} is right linear and finite [resp. infinite], then $\mathcal{L}_{2}^{\mathcal{G}}$-satisfiability is PSPACE-complete [resp. EXPTIME-complete].

Theorem 7.5 exhausts all the possibilities of bimodal regular grammar logics. As a corollary, given a bimodal regular grammar logic $\mathcal{L}_{2}^{\mathcal{G}}$, deciding whether $\mathcal{L}_{2}^{\mathcal{G}}$ is PSPACE-complete can be done in linear time in $|\mathcal{G}|$. EXPTIME-hardness is roughly due to the fact that the concerned bimodal logics contain a modal connective [2] and another one [1] that is a variant of its reflexive and transitive closure (noted [2^{*}]), see also (Spaan 1993, Sattler 1996, Castilho et al. 1999) for logics with a similar attribute. For instance, if $\mathcal{M}, x \models\langle 1\rangle \phi \wedge[1] \psi$ for some $\mathcal{L}_{2}^{\mathcal{C}^{l l}}$-model \mathcal{M}, then there is $y \in R_{1}(x)$ such that $\mathcal{M}, y \vDash \phi$ and for all $z \in R_{2}^{*}(y)$, $\mathcal{M}, z \models \psi$, in symbols $\mathcal{M}, y \models \phi \wedge\left[2^{*}\right] \psi$. These are typically the formulae of that form that are responsible for the EXPTIME-hardness of PDL (Fischer and Ladner 1979, Spaan 1993). However, not every variant [1] of $\left[2^{*}\right]$ leads to EXPTIME-hardness. Consider the right linear gram$\operatorname{mar} \mathcal{G}=\langle\{1\},\{2\},\{1 \rightarrow 2 \cdot 1\}, 1\rangle$ that is closely related to $\mathcal{G}^{l l}$. Although [2] [resp. [1]] can be viewed as the PDL modal connective [c c_{2}] [resp. $\left.\left[\mathrm{c}_{2}^{*} ; \mathrm{c}_{1}\right]\right], \mathcal{L}_{2}^{\mathcal{G}}$ cannot isolate the modal connective [c_{2}^{*}] (or equivalently $\left.\left[2^{*}\right]\right)$ because in $\left[c_{2}^{*} ; \mathrm{c}_{1}\right]$, there is always a last step that is a c_{1} transition. Indeed, we have shown (see Theorem 7.3) that $\mathcal{L}_{2}^{\mathcal{G}}$-satisfiability
is in PSPACE. By Theorem 3.2 we conclude that $\mathcal{L}_{2}^{\mathcal{G}}$-satisfiability is PSPACE-complete.

8 Infinity and PSPACE

Theorem 7.3 roughly states that finiteness for right linear grammars implies an PSPACE complexity upper bound for the corresponding grammar logics. By contrast, we can show that infinity does not imply EXPTIME-hardness. The class of right linear grammar logics introduced below contains for $m \geq 2$, countably infinite PSPACE $\operatorname{logics} \mathcal{L}_{m}^{\mathcal{G}}$ with $N \cup \Sigma=\{1, \ldots, m\}$.

Theorem 8.1 Let $\mathcal{G}=\langle N, \Sigma, P, S\rangle$ be a right linear grammar such that for $i \in N$, (1) $i \leadsto u$ implies $|u| \geq 1$ and (2) $i \leadsto j \cdot u$ and $i \leadsto j \cdot u^{\prime}$ for some $j \in \Sigma$ imply $u=u^{\prime}$. Then, $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiability is PSPACE-complete.

If \mathcal{G} is viewed as a finite automaton \mathcal{A}, the assumption (2) in Theorem 8.1 can be interpreted as a requirement on the determinism of \mathcal{A}.

Proof. (sketch) Let us define S, meas, $p_{\text {card }}$ and $p_{\text {length }}$:

- $\langle S, \ll\rangle \stackrel{\text { def }}{=}\langle\mathbb{N},<\rangle ; p_{\text {card }}(x)=x+1 ; p_{\text {length }}(x)=1 ;$
- for any sequent $\Gamma \vdash \Delta$, meas $(\Gamma \vdash \Delta)=\mathrm{pw}^{+}(\Gamma)+\mathrm{nw}^{+}(\Delta)$ (see Section 2 for the definitions of $\mathrm{pw}^{+}($.$\left.) and \mathrm{nw}^{+}().\right)$.
The assumptions of Lemma 6.1 can be shown to hold. \dashv
For any grammar \mathcal{G} satisfying the assumptions of Theorem 8.1, the proof system $\mathrm{G} \mathcal{L}_{m}^{\mathcal{G}}$ involves no rule with implicit contraction. For $m \geq 5$, let $\mathcal{G}=\langle\{1,2,3\},\{4, \ldots, m\}, P, 1\rangle$ be the infinite right linear grammar with P defined as the union of $\left\{1 \rightarrow 4^{m}\right\}$ with

$$
\bigcup_{\{5, \ldots, m\}}\left\{1 \rightarrow i^{\left(2^{m}\right)} \cdot 2,2 \rightarrow(i \cdot(i+1) \cdot \ldots \cdot m)^{i} \cdot 3,3 \rightarrow i^{i} \cdot(i+1)^{i+1} \cdot \ldots \cdot m^{m} 1\right\}
$$

The grammar \mathcal{G} is not finite but by Theorem 8.1, $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiability is in PSPACE.

In Theorem 8.1, it is unlikely that one can significantly relax the condition $|u| \geq 1$ by allowing $|u|=0$. By Theorem $7.5(2), \mathcal{L}_{2}^{\mathcal{G}}$-satisfiability is EXPTIME-hard for the right linear grammar $\mathcal{G}=\langle\{1\},\{2\},\{1 \rightarrow$ $\epsilon, 1 \rightarrow 2 \cdot 1\}, 1\rangle$.

9 An open problem

By a proof-theoretical analysis, we have designed polynomial space decision procedures in a uniform framework for countably infinite right linear grammar logics. Understanding the complexity/decidability status of context-free grammar logics by proof-theoretical means seems to
be a challenge worth being attacked in order to further characterize the complexity of modal logics. More precisely, let \mathcal{G} be a context-free grammar such that for $i \in N,\left\{u \in(\Sigma \cup N)^{*}: i \Rightarrow_{\mathcal{G}}^{*} u\right\}$ is a regular language. In (Demri 2000) it is shown that $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiability can be polynomially reduced to PDL satisfiability by replacing any occurrence of $[i]$ by $\left[\pi_{i}\right]$ where π_{i} is a regular expression (program) generating precisely the language $\left\{u \in(\Sigma \cup N)^{*}: i \Rightarrow_{\mathcal{G}}^{*} u\right\}$. Hence, $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiability is in EXPTIME and showing that $\mathcal{L}_{m}^{\mathcal{G}}$-satisfiability is in PSPACE is equivalent to showing that PDL satisfiability restricted to the program expressions π_{1}, \ldots, π_{m} (if $\Sigma \cup N=\{1, \ldots, m\}$) is in PSPACE. Is there a natural class of PSPACE context-free grammar logics? K4, S4 should preferably fall into this hypothetical class.

Acknowledgments

I wish to express my gratitude to the anonymous referee for useful suggestions and remarks, to G. de Giacomo and E. Grädel for pointing me to works related to modal μ-calculus with simultaneous fixed points, to the participants of AiML-ICTL 2000 for their feedback on this work and to the AiML organizers for their kind invitation.

References

Andreka, H., I. Nemeti, and J. van Benthem. 1998. Modal languages and Bounded Fragments of Predicate Logic. JPL 27(3):217-274.
Baader, F., and U. Sattler. 2000. Tableau algorithms for Description Logics. In TABLEAUX-9, 1-18. LNAI 1847, Springer.
Baldoni, M. 1998. Normal Multimodal Logics: Automated Deduction and Logic Programming. Doctoral dissertation, Università degli Studi di Torino.
Baldoni, M., L. Giordano, and A. Martelli. 1998. A Tableau Calculus for Multimodal Logics and Some (Un)Decidability results. In TABLEAUX-7, 44-59. LNAI 1397, Springer.
Basin, D., S. Matthews, and L. Vigano. 1997. A new method for bounding the complexity of modal logics. In Computational Logic and Proof Theory, 89-102. LNCS 1289, Springer.
Basin, D., S. Matthews, and L. Viganò. 1998. Natural Deduction for NonClassical Logics. Studia Logica 60(1):119-160.
Blackburn, P., M. de Rijke, and Y. Venema. 2001. Modal Logic. Cambridge University Press. to appear.
Castilho, M., O. Gasquet, and A. Herzig. 1999. Formalizing action and change in modal logic I: the frame problem. JLC 9(5):701-735.
Cerrito, S., and M. Cialdea Mayer. 1997. A Polynomial Translation of S4 into T and Contraction-free Tableaux for S4. Logic Journal of the IGPL $5(2): 287-300$.

24 / References

Chagrov, A., and V. Shehtman. 1994. Algorithmic aspects of propositional tense logics. In CSL-8, 442-455. LNCS 933, Springer.
Chen, C., and I. Lin. 1994. The complexity of propositional modal theories and the complexity of consistency of propositional modal theories. In LFCS-3, 69-80. LNCS 813, Springer.
Demri, S. 2000. The complexity of regularity in grammar logics and related modal logics. Submitted.
Fariñas del Cerro, L., and M. Penttonen. 1988. Grammar logics. Logique et Analyse 123-134.
Fischer, M., and R. Ladner. 1979. Propositional Dynamic Logic of Regular Programs. Journal of Computer and System Sciences 18:194-211.
Fitting, M. 1983. Proof methods for modal and intuitionistic logics. D. Reidel Publishing Co.
Goré, R. 1999. Tableaux methods for modal and temporal logics. In Handbook of Tableaux Methods, ed. M. d'Agostino, D. Gabbay, R. Hähnle, and J. Posegga, 297-396. Kluwer.

Grädel, E. 1999. Why are modal logics so robustly decidable? Bulletin of the EATCS 68:90-103.
Grädel, E., C. Hirsch, and M. Otto. 2000. Back and forth between guarded and modal logics. In LICS'2000, 217-228.
Grädel, E., and I. Walukiewicz. 1999. Guarded Fixed Point Logic. In LICS'99, 45-54.
Halpern, J., and Y. Moses. 1992. A guide to completeness and complexity for modal logics of knowledge and belief. AI 54:319-379.
Halpern, J., and H. Reif. 1983. The propositional dynamic logic of deterministic, well-structured programs. TCS 27:127-165.
Hemaspaandra, E. 1996. The price of Universality. NDJFL 37(2):173-203.
Heuerding, A. 1998. Sequent Calculi for Proof Search in Some Modal Logics. Doctoral dissertation, University of Bern.
Hopcroft, J., and J. Ullman. 1979. Introduction to automata theory, languages, and computation. Addison-Wesley Publishing Company, Reading, M.A.
Hudelmaier, J. 1996. Improved decision procedures for the modal logics K, T and S4. In CSL'95, 320-334. LNCS 1092, Springer.
Huldelmaier, J. 1993. An O(n $\log \mathrm{n})$-space decision procedure for intuitionistic propositional logic. JLC 3(1):63-75.
Kozen, D. 1983. Results on the Propositional μ-calculus. TCS 27:333-354.
Kracht, M. 1996. Power and Weakness of the modal display calculus. In Proof theory of modal logic, ed. H. Wansing, 93-121. Kluwer.
Kracht, M. 2000. Logic and Syntax - A Personal Perspective. In Advances in Modal Logics, Vol. 2, ed. M. Zakharyaschev, K. Segerberg, M. de Rijke, and H. Wansing, 355-384. CSLI Publications.
Kripke, S. 1963. Semantical analysis of modal logic I: normal modal propositional calculi. Zeitschrift für Mathematik Logik und Grundlagen der Mathematik 9:67-96.

Ladner, R. 1977. The computational complexity of provability in systems of modal propositional logic. SIAM Journal of Computing 6(3):467-480.
Lutz, C., U. Sattler, and S. Tobies. 1999. A suggestion for an n-ary description logic. In International Workshop on Description Logics, Sweden, 81-85.
Marx, M. 1997. Complexity of Modal Logics of Relations. Technical report. ILLC.
Marx, M., S. Mikulas, and M. Reynolds. 2000a. The Mosaic Method for Temporal Logics. In TABLEAUX-9, 324-340. LNAI 1847, Springer.
Marx, M., S. Mikulas, and S. Schlobach. 2000b. Labelled Deduction for the guarded fragment. In Labelled Deduction, ed. D. Basin, M. D'Agostino, D. Gabbay, and S. Matthews, 195-214. Kluwer.

Massacci, F. 1994. Strongly analytic tableaux for normal modal logics. In $C A D E-12,723-737$. LNAI 814, Springer.
Massacci, F. 1998. Efficient Approximate Deduction and an Application to Computer Security. Doctoral dissertation, Università Degli Studi Di Roma "La Sapienza".
Massacci, F. 2000. Single Steps Tableaux for Modal Logics. JAR 24(3):319364.

Ohnishi, M., and K. Matsumoto. 1957. Gentzen Method in modal calculi. Osaka Mathematical Journal 9:113-130.
Park, D. 1981. Concurrency and Automata on infinite sequences. In 5th GI Conference on Theoretical Computer Science, 167-183. LNCS 104, Springer.
Pratt, V. 1979. Models of program logics. In Proceedings of the 20th IEEE Symposium on Foundations of Computer Science, 115-122.
Rabin, M. 1969. Decidability of second-order theories and automata on infinite trees. Transactions of the American Mathematical Society 41:1-35.
Rautenberg, W. 1983. Modal Tableau Calculi and Interpolation. JPL 12:403423.

Rozenberg, G., and A. Salomaa. 1994. Cornerstones of Undecidability. Prentice Hall.
Sahlqvist, H. 1975. Completeness and correspondence in the first and second order semantics for modal logics. In 3rd Scandinavian Logic Symposium, 1973, 110-143. North Holland.
Sattler, U. 1996. A concept language extended with different kinds of transitive roles. In 20. Deutsche Jahrestagung für Künstliche Intelligenz. LNM 1137, Springer.
Schütte, K. 1967. Proof theory. Springer-Verlag.
Spaan, E. 1993. Complexity of Modal Logics. Doctoral dissertation, ILLC, Amsterdam University.
Streett, R., and A. Emerson. 1989. An automata theoretic decision procedure for the propositional μ-calculus. Information and Computation 81:249264.

Szałas, A. 1996. On natural deduction in first-order fixpoint logics. Fundamenta Informaticae 26(1):81-94.

26 / References

Takeuti, G. 1975. Proof Theory. North-Holland Publishing Company.
van Benthem, J. 1976. Modal Reduction principles. JSL 2:301-312.
van Benthem, J. 1984. Correspondence Theory. In Handbook of Philosophical Logic, Volume II, ed. D. Gabbay and F. Günthner, 167-247. Reidel, Dordrecht.
van Benthem, J. 2000. Modal Logic in Two Gestalts. In Advances in Modal Logics, Vol. 2, ed. M. Zakharyaschev, K. Segerberg, M. de Rijke, and H. Wansing, 91-118. CSLI Publications.

Vardi, M. 1997. Why is modal logic so robustly decidable? In DIMACS Series in Discrete Mathematics and Theoretical Computer Science 31, American Mathematical Society, 149-183.

Stéphane Demri

Lab. Spécification et Vérification
ENS de Cachan \& CNRS UMR 8643
61 Av. Pdt. Wilson
94235 Cachan Cedex, France
email: demri@lsv.ens-cachan.fr
URL: http://www.lsv.ens-cachan.fr/~demri/
On leave from Lab. LEIBNIZ, Grenoble.

