S Demri

Modal logics with weak forms of recursion: PSPACE specimens

We analyze the computational complexity of extensions of the multimodal version of the standard modal logic K by finite addition of axiom schemes that can be read as the production rules of a formal grammar. By using proof-theoretical means, we show that every right linear grammar logic has a satisfiability problem in deterministic exponential time and we exhibit countably infinite classes of right linear grammar logics that contain weak forms of recursion for which the satisfiability problem can be solved in polynomial space.

Introduction

In order to explain the algorithmic properties of many modal logics, a possible approach consists in studying very expressive decidable logical theories in which can be easily embedded the modal logics. The modal µ-calculus (see e.g. [START_REF] Kozen | Results on the Propositional µ-calculus[END_REF])), the guarded fixed p oint l ogic µLGF [START_REF] Grädel | Guarded Fixed Point Logic[END_REF] and the monadic second-order theory of two successors [START_REF] Rabin | Decidability of second-order theories and automata on infinite trees[END_REF]) are good representatives of such theories. Weaker logical theories such as the Propositional Dynamic Logic (see e.g. (Pratt 1979, Fischer and[START_REF] Fischer | Propositional Dynamic Logic of Regular Programs[END_REF]) and the guarded fragment [START_REF] Andreka | Modal languages and Bounded Fragments of Predicate Logic[END_REF]) are also serious candidates although strictly less expressive, respectively. Moreover, since both the µ-calculus and the guarded fixed p oint logic µ LGF with b ounded arity have an EXP-TIME-complete satisfiability p roblem (Grädel a nd W alukiewicz 1999), those logical formalisms inherit the algorithmic properties of weak extensions of the modal logic K (by adding the universal modal connec-tive for example) that are already of the same complexity level. By contrast, many standard modal logics are known to be in PSPACE (Ladner 1977, Halpern and[START_REF] Halpern | A guide to completeness and complexity for modal logics of knowledge and belief[END_REF] and this algorithmic property is not reflected by the analysis of most identified fragments of second order logic. As far as we know, a rare exception can be found in [START_REF] Marx | Complexity of Modal Logics of Relations[END_REF]) (see also [START_REF] Lutz | A suggestion for an n-ary description logic[END_REF], Marx et al. 2000b)), where a PSPACE firstorder fragment is defined capturing multimodal logics with K, T and B modal connectives plus inclusion, to quote a few examples of logics. This situation is all the more surprising since many modal logics with weak forms of recursion (K4, S4, . . .) are also in PSPACE. So, what is the adequate first-order/second-order fragment that is responsible for the algorithmic behavior of PSPACE modal logics? This question could become meaningful for optimizing the efficiency of mechanical reasoning for such logics and thus avoiding a blind translation into a rich decidable logical theory, possibly algorithmically more expensive in the worstcase. Although we have no answer for this question, this motivates the developments made in this paper. We study a countably infinite class of multimodal logics that can be embedded uniformly into first-order logic with the relational translation. The target fragment is not known to belong to identified decidable fragments but we exhibit modal logics with weak forms of recursion that are in PSPACE.

In order to understand the PSPACE modal logics with weak forms of recursion, a class of multimodal logics that are worth investigating are the grammar logics defined in (Fariñas del [START_REF] Del Cerro | Grammar logics[END_REF] that are closely related to formal grammars. With each production rule i 1 • . . . • i n → j 1 • . . . • j n in the grammar is associated a reduction principle [i 1] . . . [i n]p ⇒ [j 1] . . . [j n]p (see e.g. [START_REF] Van Benthem | Modal Reduction principles[END_REF]) which is a particular form of Sahlqvist formula [START_REF] Sahlqvist | Completeness and correspondence in the first and second order semantics for modal logics[END_REF]. Observe that the logical view on grammar presented in [START_REF] Kracht | Logic and Syntax -A Personal Perspective[END_REF] differs from the approach in (Fariñas del [START_REF] Del Cerro | Grammar logics[END_REF]. In the present paper, we mainly study the extensions of the multimodal logic K m with m independent K modal connectives by finite addition of axiom schemes of the above form such that the associated finite set of production rules forms a right linear formal grammar. The right linear grammar logics contain a weak form of recursion although different from the one in the logics defined in [START_REF] Halpern | The propositional dynamic logic of deterministic, well-structured programs[END_REF]) (e.g., we do not assume any determinism). For instance, consider the multimodal logic

L = K 5 + [1]p ⇒ [3][2]p, [2]p ⇒ [4][1]p, [2]p ⇒ [5]p.
Each modal connective of L corresponds to a PDL modal connective (see e.g. [START_REF] Demri | The complexity of regularity in grammar logics and related modal logics[END_REF]). For example, [2] in L corresponds to the PDL modal connective [(c 4 ; c 3) * ; (c 2 ∪ (c 4 ; c 1) ∪ c 5)]. Though the PDL equivalent of [2] contains the star operator, in the paper we show that L-satisfiability is in PSPACE (The-orem 8.1(1)). By contrast, the bimodal logic Theorem 7.5). More generally, we wonder which grammar logics are in PSPACE. In the paper, by proof-theoretical means we characterize a class of right linear grammar logics that are in PSPACE.

K 2 + [1]p ⇒ [1][2]p is EXPTIME-complete (see
A standard way to find PSPACE upper bound for modal logics consists in designing sound and complete tableaux-like calculi (see e.g. [START_REF] Kripke | Semantical analysis of modal logic I: normal modal propositional calculi[END_REF][START_REF] Ladner | The computational complexity of provability in systems of modal propositional logic[END_REF][START_REF] Halpern | A guide to completeness and complexity for modal logics of knowledge and belief[END_REF][START_REF] Basin | A new method for bounding the complexity of modal logics[END_REF][START_REF] Massacci | Efficient Approximate Deduction and an Application to Computer Security[END_REF][START_REF] Baader | Tableau algorithms for Description Logics[END_REF], Marx et al. 2000a)) augmented with adequate strategies, most of the time depth-first visit of the proof tree with a controlled amount of contractions. One can however distinguish the works that establish PSPACE upper bounds but not necessarily the tightest ones (see (Ladner 1977, Halpern and[START_REF] Halpern | A guide to completeness and complexity for modal logics of knowledge and belief[END_REF]) from the works that improve the space function by reducing the exponents of the polynomials (see e.g. [START_REF] Huldelmaier | An O(n log n)-space decision procedure for intuitionistic propositional logic[END_REF], Hudelmaier 1996)). This is also sometime a matter of natural chronology as determining the decidability status of a logic may precede its computational complexity characterization. The present work belongs rather to the first category since we wish to establish PSPACE complexity upper bounds by prooftheoretical means in a uniform way. Although we know that improvements are possible in many cases, we rather concentrate on the gain of generality and uniformity. Moreover, we want to refine the borderline between EXPTIME-hard right linear logics and PSPACE right linear logics in order to partially answer to the following question inspired from [START_REF] Vardi | Why is modal logic so robustly decidable[END_REF][START_REF] Grädel | Why are modal logics so robustly decidable?[END_REF]): why so many (multi)modal logics with weak forms of recursion are in PSPACE?

For any right linear grammar logic, we shall define an additive sequent calculi that is proved to be sound and complete. In the spirit of [START_REF] Ohnishi | Gentzen Method in modal calculi[END_REF], the calculi use neither labels nor a generalized form of sequents. Other kinds of sequent-style calculi for these logics already exist in the literature, see e.g. [START_REF] Kracht | Power and Weakness of the modal display calculus[END_REF][START_REF] Sza Las | On natural deduction in first-order fixpoint logics[END_REF][START_REF] Basin | Natural Deduction for Non-Classical Logics[END_REF][START_REF] Baldoni | Normal Multimodal Logics: Automated Deduction and Logic Programming[END_REF] and we believe that the present formulation of the calculi is quite adequate to find complexity upper bounds mainly because of our treatment of contraction. Then, we show that given a right linear grammar G and a modal formula φ, deciding whether the formula is satisfiable in the extension of K m with axiom schemes from G can be done in deterministic exponential-time in the size of G and φ. We refer to this problem as the general satisfiability problem for right linear grammar logics. The complexity upper bound is established by using a standard loop checking method dual to the one in [START_REF] Pratt | Models of program logics[END_REF]). An extension is also presented for the global logical consequence problems. This improves upper bounds from [START_REF] Baldoni | Normal Multimodal Logics: Automated Deduction and Logic Programming[END_REF], Baldoni et al. 1998).

We also easily show that the general satisfiability problem for right linear grammar logics is EXPTIME-hard by exhibiting a decidable countably infinite class of EXPTIME-hard right linear grammar logics. Further classes of EXPTIME-hard grammar logics can be found in the companion paper [START_REF] Demri | The complexity of regularity in grammar logics and related modal logics[END_REF].

In the second part of the paper, we propose a characterization of PSPACE decision procedures from the sequent calculi that allows us to show uniformly that all the right linear grammar logics from some identified countably infinite classes of logics are in PSPACE. We have indeed found decidable sufficient syntactic properties of the right linear grammars that guarantee that the generated logics from the grammars are in PSPACE. All the complexity upper bounds established in the paper are obtained by analyzing proofs in the sequent calculi and thus this follows the proof-theoretic alternative described in Section 8 in [START_REF] Van Benthem | Modal Logic in Two Gestalts[END_REF] to explain the algorithmic behavior of modal logics.

For instance, we are able to show that given a bimodal extension of K 2 obtained from K 2 by additing axiom schemes from either a left linear or a right linear grammar, deciding whether the satisfiability problem of the logic is in PSPACE can be done in linear-time in the size of the grammar. Although the right linear grammars generate the same class of languages as the left linear grammars, this correspondence is not relevant at the level of grammar logics.

Logics

Given the set PRP = {p i : i ∈ N} of propositional variables, the set FORM of modal formulae is defined as the smallest set such that PRP ⊆ FORM and, if φ, ψ ∈ FORM, then φ ∧ ψ ∈ FORM, ¬φ ∈ FORM and for i ≥ 1, [i]φ ∈ FORM. For m ≥ 1, we write L m to denote the restriction of the modal language to the modal connectives in {[i] : i ∈ {1, . . . , m}}. Standard abbreviations include ∨, ⇒, i . A necessity formula is a formula of the form [i]φ for some i ≥ 1. The set sub(φ) of subformulae of the formula φ is defined in the standard way. The modal depth of an occurrence of a formula ψ in φ is the number of occurrences of modal connectives that dominate ψ in φ. We write md(φ) to denote the maximal modal depth of the subformulae of φ. An occurrence of the subformula ψ in φ is positive [resp. negative] def ⇔ it is in the scope of an even [resp. odd] number of negations. The possibility weight [resp.

necessity weight] of a formula φ, denoted pw(φ) [resp. nw(φ)], is the number of occurrences of subformulae of the form [i]ψ with negative [resp. positive] polarity. The notation Γ, φ, where Γ is a finite multi-set of formulae and φ is a formula, designates a multi-set which is the union of Γ with the singleton multi-set containing only φ. Let f be a map f : FORM → N. If Γ = φ 1 , . . . , φ n is a finite multi-set of formulae, by f + (Γ) we mean the natural number f (φ 1) + . . . + f (φ n). Similarly, for i ∈ {1, . . . , m}, for any multi-set Γ = φ 1 , . . . , φ n of formulae, we write [i]Γ [resp. ¬Γ] to denote [i]φ 1 , . . . , [i]φ n [resp. ¬φ 1 , . . . , ¬φ n]. We also write Set(Γ) to denote the set of formulae occurring in Γ and φ ∈ Γ for φ ∈ Set(Γ).

For any L m -formula φ, we write r(φ) to denote the rank of φ; that is, the number of occurrences of members of PRP ∪ {¬, ∧} ∪ {[i] : 1 ≤ i ≤ m}. For example r(p ∧ (q ∧ ¬p)) = 6. Under reasonable hypothesis, the length of an L m -formula φ, noted |φ|, is in O(r(φ) × (log r(φ) + log m)). As usual in complexity theory, the extra logarithmic factor is due to the fact that we need an index of size log r(φ) for the different propositional variables.

An L m -frame is a structure F = W, R 1 , . . . , R m such that W is a nonempty set and for i ∈ {1, . . . , m}, R i is a binary relation on

W . An L m -model is a structure M = W, R 1 , . . . , R m , V such that W, R 1 , . . . , R m is an L m -frame and V is a valuation V : PRP → P(W).
The standard definition of the satisfiability relation |= is omitted here (see e.g. [START_REF] Blackburn | Modal Logic[END_REF]). An L m -formula φ is said to be true

in the L m -model M (written M |= φ) def ⇔ for all x ∈ W , M, x |= φ. An L m -formula φ is said to be true in the L m -frame F (written F |= φ) def ⇔ φ is true in all the L m -models based on F.
In this paper, a modal logic L is understood as a pair L m , S where L m is a modal language with m modal connectives and S is a nonempty class of L m -frames. The class S is usually defined in terms of properties that the relations in the frames of S are supposed to satisfy. An L mformula is said to be L-satisfiable def ⇔ there is an L m -model based on some F ∈ S and x ∈ W such that M, x |= φ. An L m -formula is said to be L-valid def ⇔ for all the L-models M based on some frame in S, φ is true in M. L-satisfiability and L-validity can be easily extended to finite sets of formulae understood as conjunctions.

Grammar Logics

For any alphabet Σ (finite set of symbols), we write Σ * [resp. Σ +] to denote the set of [resp. nonempty] finite strings built over elements of Σ. denotes the empty string and u 1 • u 2 denotes the concatenation of two strings. For any finite string u, we write |u| to denote its length. For any u ∈ Σ * , we write u k to denote the string composed of k copies of u. By convention, u 0 = .

A (formal) grammar G is a quadruple G = N, Σ, P, S such that N and Σ are disjoint finite sets of nonterminal symbols and terminal symbols, respectively (in the paper we allow Σ empty). P is a finite set of production rules, each production rule is of the form u → v such that u ∈ (N ∪Σ) * N (N ∪Σ) * and v ∈ (N ∪Σ) * . Finally, S ∈ N is a special symbol called the start symbol (see e.g. [START_REF] Hopcroft | Improved decision procedures for the modal logics K, T and S4[END_REF]).

For the grammar G, the size of G, denoted |G|, is

|G| def = (card(N)+card(Σ)+Σ u→v∈P (|u•v|+1))×log(card(N)+card(Σ))
Let ⇒ G be the direct derivation relation defined as the subset of (

N ∪ Σ) * × (N ∪ Σ) * such that u ⇒ G v def ⇔ there is a production rule u → v ∈ P such that u = u 1 • u • u 2 , v = u 1 • v • u 2 , u 1 , u 2 ∈ (N ∪ Σ) * . Let ⇒ * G be the reflexive and transitive closure of ⇒ G . For i ∈ (N ∪ Σ), we write L i (G) to denote the set of strings {u ∈ Σ * : i ⇒ * G u}. For instance, for i ∈ Σ, L i (G) = {i}. A grammar G is said to be strongly finite [resp. finite] def ⇔ for i ∈ N , {u ∈ (N ∪ Σ) * : i ⇒ * G u} is finite [resp. L i (G) is finite]. It is possible that for some i ∈ N , L i (G) is empty although G is not strongly finite.
In the rest of the paper we assume that each grammar N, Σ, P, S satisfies N = {1, . . . , k} for some k ≥ 1, Σ = {k + 1, . . . , m} for some k ≤ m (we allow Σ to be empty) and S = 1.

Let G = N, Σ, P, S be a grammar and ; be the binary relation

in N × (N ∪ Σ) * such that i ; u def ⇔ either there is j → u ∈ P such that i ⇒ * G j or u ∈ N and i ⇒ * G u. If G is right [resp.
left] linear, then by using the technique for eliminating the unit production rules [START_REF] Hopcroft | Improved decision procedures for the modal logics K, T and S4[END_REF], one can compute in polynomial-time in |G| a right [resp. left] linear grammar G = N , Σ , P , S such that N = N , Σ = Σ , S = S , P ⊆ P and for i, u

∈ (N ∪ Σ) * , i ; u in G iff i → u ∈ P . For i ∈ N , we have {u ∈ (N ∪ Σ) * : i ⇒ * G u} = {u ∈ (N ∪Σ) * : i ⇒ * G u}.
In the case when G is either left linear or right linear (called regular in the sequel), ; can be computed in polynomial-time in |G| and for all i ∈ N , i;u |u| ≤ |G|. Although G and G generate the same language (L 1 (G) = L 1 (G)), in the sequel we do not assume that the grammars are necessarily of the form of G . Indeed, grammars generating the same language, may engender different grammar logics. The binary relation ; is used in Section 4 to define sequent calculi.

Let G be a grammar and S be a class of L m -frames. We write S G to denote the subset of S such that for any

F = W, R 1 , . . . , R m ∈ S, F ∈ S G def ⇔ for any production rule i 1 . . . i k → j 1 . . . j k in G, R j1 • . . . • R j k ⊆ R i1 •. . .•R i k . For the logic L m = L m , S m where S m is the class of all the L m -frames, we write L G m to denote the logic L m , S G m . L G
m is said to be a grammar logic (Fariñas del Cerro and Penttonen 1988).

For any string u

= i 1 • . . . • i n in {1, . . . , m} * , we write R u to denote R i1 • . . . • R in . When u = , R u def = { x, x : x ∈ W }. Moreover, we write [u]φ to denote the L m -formula [i 1] . . . [i n]φ where u = i 1 • . . . • i n . If u = , then [u]φ is simply φ. Theorem 3.1 Let G = N, Σ, P, S . For u, v ∈ (N ∪ Σ) * , (I) u ⇒ * G v iff (II) [u]p ⇒ [v]p is L G m -valid iff (III) for all L G m -models R v ⊆ R u .
The equivalence between (II) and (III) is a classical correspondence result in modal logic theory (see e.g. [START_REF] Van Benthem | Correspondence Theory[END_REF]). (I) implies (II) can be proved by induction on the length of the derivation whereas (II) implies (I) can be shown by using part of the proof of Theorem 3 in [START_REF] Chagrov | Algorithmic aspects of propositional tense logics[END_REF]. In order to study the grammar logic L G m , what is essential is the value of the set P of production rules whereas once P is fixed, the value of the start symbol S and the distribution of the terminal and nonterminal symbols are immaterial for L G m -satisfiability. Hence, semi-Thue rewriting systems are also appropriate to define grammar logics.

The general satisfiability problem GSP(REG) [resp. GSP(LIN), GSP(RLIN f), GSP(RLIN)] for regular grammar [resp. linear grammar, finite right linear grammar, right linear grammar] logics is defined as follows:

• Inputs: a regular [resp. right linear, finite right linear, linear] grammar G and an L m -formula φ; • Question: Is φ L G m -satisfiable? The above general satisfiability problems can be viewed as syntactic variants of satisfiability problems for fragments of the well-known description logic ALC augmented with role value maps (see details in [START_REF] Demri | The complexity of regularity in grammar logics and related modal logics[END_REF]).

It is known that the multimodal logic K m , m ≥ 1, has a PSPACEcomplete satisfiability problem (see e.g. [START_REF] Halpern | A guide to completeness and complexity for modal logics of knowledge and belief[END_REF]). Adding a regular set of modal axioms preserves the PSPACE complexity lower bound.

Theorem 3.2 Let G be either a regular grammar or a context-free grammar with a nonempty set of terminal symbols. Then, L G m -satisfiability is PSPACE-hard.

A natural proof consists in reducing satisfiability for either the modal logic K or the modal logic T into L G m -satisfiability. The only difficulty in the proof is to show that for any binary relation R there is an

L G m - frame with R m = R. Additionally, GSP(LIN) is undecidable. This can Γ, φ ∆, φ (initial sequents) Γ ∆, φ Γ, ¬φ ∆ (¬) Γ, φ ∆ Γ ∆, ¬φ (¬) Γ, φ 1 , φ 2 ∆ Γ, φ 1 ∧ φ 2 ∆ (∧) Γ ∆, φ 1 Γ ∆, φ 2 Γ ∆, φ 1 ∧ φ 2 (∧) FIGURE 1
Initial sequents and standard rules for propositional connectives be proved by reducing the problem of empty intersection between linear languages into GSP(LIN) (see e.g. [START_REF] Rozenberg | Cornerstones of Undecidability[END_REF]) by using either prefixed tableaux calculi [START_REF] Baldoni | A Tableau Calculus for Multimodal Logics and Some (Un)Decidability results[END_REF] or the equational characterization of context-free languages [START_REF] Demri | The complexity of regularity in grammar logics and related modal logics[END_REF].

4 Sequent calculi

Definitions

Let G be a right linear grammar. The basic syntactic objects in the calculi are sequents. A sequent is an expression of the form Γ ∆ where Γ and ∆ are finite multi-sets of formulae, Γ is the antecedent and ∆ the succedent. We write SEQ m to denote the class of all sequents built over the modal language L m . The additive sequent calculus GL G m for the logic L G m contains the rules from Figure 1 for the propositional fragment of L G m . The rules are read upwards and other rules depending of G are presented below. The left-hand side introduction rule [i] is defined below

only if i ⇒ * G : Γ, [i]φ, φ ∆ Γ, [i]φ ∆ ([i])
The right-hand side introduction rule for [i] is defined as follows. For i ∈ {1, . . . , k}, let ; (i) = {u i,1 , . . . , u i,li } where given a binary relation R on U and x ∈ U , R(x) def = {y ∈ U : x, y ∈ R}. For j ∈ {1, . . . , m} and for i ∈ {1, . . . , k}, let start

i j = { i, k : u i,k = j • v i,k }. Let i ∈ {k + 1, . . . , m}. The ([i]
) rule is defined as follows:

1,k ∈start 1 i [v 1,k]Γ 1 , . . . , k,k ∈start k i [v k,k]Γ k , Γ i φ Γ , [1]Γ 1 , . . . , [k]Γ k , [i]Γ i [i]φ, ∆ ([i])
Moreover, we assume that in Γ , there is no formula of the form [j]ψ for some j ∈ {1, . . . , k} ∪ {i}. It remains to define for i ∈ {1, . . . , k}, the

([i]) rule: Γ 1 , . . . , Γ k φ Γ , [1]Γ 1 , . . . , [k]Γ k [i]φ, ∆ ([i])
where for j ∈ {1, . . . , k}, if j ; i, then Γ

j def = Γ j , otherwise Γ j def = ∅
(empty multi-set). Moreover, we assume that in Γ , there is no formula of the form [j]ψ for some j ∈ {1, . . . , k}.

For i ∈ {1, . . . , m} we abbreviate the ([i]) rule by

Γ [i] φ Γ [i]φ, ∆ ([i])
where the appropriate definition of Γ [i] from Γ is immediate from the above cases.

The ([i]) rules and the ([i]) rules are defined from the strings u satisfying i ; u and not only from the ones satisfying i → u ∈ P . This is the price we may have to pay in the ([i]) rules since we want to introduce a [i]-formula at the right-hand side and to take into account the grammatical properties of the logic simultaneously.

An implicit contraction is operated in the ([i])-rule (if i ⇒ * G) whereas implicit contractions can be found also in the applications of the ([i])-rule but this depends on the structure of G (see e.g. Section 8 for calculi with no implicit contractions). In order to get the PSPACE upper bounds, our main task is to control contraction and this requires a careful analysis.

Example 4.1 Let G rl = {1, 2}, {3, 4}, {1 → 3•3•1, 1 → 2, 1 → 4•2, 2 → 4 • 4 • 4 • 2}
, 1 be a right linear grammar. The ([4]) rule is defined as follows:

[

2]Γ 1 , [4][4][2](Γ 1 , Γ 2), Γ 4 φ Γ , [1]Γ 1 , [2]Γ 2 , [4]Γ 4 [4]φ, ∆ ([4])
Observe the duplication of Γ 1 .

As is usual, a proof Π in GL G m is a tree whose nodes are labelled by sequents satisfying the following conditions: the topmost sequents of Π are initial sequents and every sequent of Π, except the lowest one is an upper sequent of an inference whose lower sequent is also in Π

. A sequent Γ ∆ is provable in GL G m def ⇔ there is a proof where the lowest sequent is Γ ∆. A formula φ is provable in GL G m def ⇔ the sequent ∅ φ (also noted φ) is provable in GL G m . A sequent Γ ∆ is consistent def ⇔ Γ ∆ is not provable in GL G m . A sequent Γ ∆ is downward saturated def ⇔ for φ ∈ Γ and for ψ ∈ ∆: • φ = φ 1 ∧ φ 2 implies φ 1 , φ 2 ∈ Γ; φ = [i]φ 1 and i ⇒ * G imply φ 1 ∈ Γ; • φ = ¬φ 1 implies φ 1 ∈ ∆; ψ = ¬ψ 1 implies ψ 1 ∈ Γ; • ψ = ψ 1 ∧ ψ 2 implies either ψ 1 ∈ ∆ or ψ 2 ∈ ∆.
A derivation is defined as a proof except that the topmost sequents are not necessarily initial sequents. The derivations are supposed to grow upwards. If Π is a derivation of Γ ∆ we write σ = Γ 0 ∆ 0 ≺ (r 1)Γ 1 ∆ 1 ≺ (r 2) . . . ≺ (r n-1)Γ n ∆ n to denote the fact that there is an initial segment σ of a branch in Π from the root Γ 0 ∆ 0 = Γ ∆ such that for i ∈ {0, . . . , n -1}, Γ i+1 ∆ i+1 is one of the premisses of the inference of the rule (r i+1) with conclusion Γ i ∆ i . We omit to write the r i 's when they are of no use. We write Ant(σ) [resp. Suc(σ)] to denote the antecedent set 0≤i≤n Set(Γ i) [resp. the succedent set

0≤i≤n Set(∆ i)]. We write last(σ) [resp. f irst(σ)] to denote Γ n ∆ n [resp. Γ 0 ∆ 0].
The sequence σ is said to be local def ⇔ no r i is the right-hand side introduction rule ([j]) for some j ∈ {1, . . . , m}. The sequence σ is said to be consistent def ⇔ all the Γ i ∆ i are consistent. The sequence σ is said to be maximal def ⇔ σ is local and Ant(σ) Suc(σ) is downward saturated. The maximal and consistent sequences play the role of downward saturated sets in the standard terminology for tableaux (see e.g. [START_REF] Goré | Tableaux methods for modal and temporal logics[END_REF] for further details and historical notes). This complication is due to the fact that we consider multi-sets instead of sets in the sequents. The reward is that we can more easily control contraction and this shall be helpful to get PSPACE complexity upper bounds.

Properties

Let φ be a formula. The closure of φ with respect to G is the smallest set cl G (φ) of formulae such that cl G (φ) is closed under subformulae, sub(φ) ⊆ cl G (φ) and if i ; u and [i]ψ ∈ cl G (φ), then [u]ψ ∈ cl G (φ). One can prove that card(cl G (φ)) is bounded by |G| × r(φ). We write SEQ(φ) to denote the set of sequents Γ ∆ such that ψ∈Γ,∆ cl G (ψ) ⊆ cl G (φ).

Lemma 4.2 Let Γ ∆ be a sequent. Then, every formula occurring in a derivation of Γ ∆ belongs to ψ∈Γ,∆ cl G (ψ).

The (easy) proof is by induction on the depth of the proof tree. Following for instance the terminology from [START_REF] Goré | Tableaux methods for modal and temporal logics[END_REF], GL G m has therefore the analytical superformula property and obviously GL G m does not have necessarily the subformula property.

Lemma 4.3 Γ ∆ is a provable sequent in GL G m iff Γ ∆ has a proof in GL G
m such that all the initial sequents are of the form Γ , p p, ∆ where p is a propositional variable.

The proof of Lemma 4.3 is standard. It is sufficient to show in the induction step that for every initial sequent Γ , φ φ, ∆ with r(φ) ≥ 2, there is a proof of Γ , φ φ, ∆ such that all the initial sequents are of the form Γ , ψ ψ, ∆ with r(ψ) < r(φ).

A rule is invertible def ⇔ for every inference of the rule, the conclusion has a proof iff the premises have proofs.

Lemma 4.4 The rules (∧), (∧), (¬), (¬) and

([i]) if i ⇒ * G are invertible.
The proof of Lemma 4.4 uses Lemma 4.3 and is not difficult to show. For instance, invertibility of (

[i]) if i ⇒ * G , is immediate.
Lemma 4.5 Let Γ ∆ be a consistent sequent. Then, there is a maximal and consistent sequence σ

= Γ 0 ∆ 0 ≺ Γ 1 ∆ 1 ≺ . . . ≺ Γ n ∆ n with Γ 0 ∆ 0 = Γ ∆.
Proof. Since Γ ∆ is consistent, we know that no proof of Γ ∆ exists and there is no propositional variable occurring in both Γ and ∆. Let Γ 0 ∆ 0 = Γ ∆. If Γ 0 ∆ 0 is downward saturated, then we are done. Now suppose that

σ i = Γ 0 ∆ 0 ≺ Γ 1 ∆ 1 ≺ . . . ≺ Γ i ∆ i is a local sequence, Ant(σ i) Suc(σ i) is not downward saturated and each Γ j ∆ j , 0 ≤ j ≤ i, is consistent. For instance, suppose that φ 1 ∧φ 2 ∈ Ant(σ i) and φ 1 , φ 2 ∈ Ant(σ i). Hence, φ 1 ∧φ 2 ∈ Γ i since otherwise φ 1 , φ 2 ∈ Γ i for some i < i. Apply the (∧)-rule to an occurrence of φ 1 ∧ φ 2 in Γ i ∆ i and let Γ i+1 ∆ i+1 be (Γ i \ {φ 1 ∧ φ 2 }), φ 1 , φ 2 ∆ i . Since the (∧)- rule is invertible (see Lemma 4.4), Γ i+1 ∆ i+1 is also consistent. If Γ 0 ∆ 0 = Γ ∆
and Ant(σ i) Suc(σ i) is not downward saturated for some other reason, we use a similar reasoning with obvious adaptations (we may have to choose between two branches). Lemma 4.2 guarantees termination and the length of σ can be bounded by card(cl G (Γ, ∆)).

Completeness

Following [START_REF] Rautenberg | Modal Tableau Calculi and Interpolation[END_REF]) (see also [START_REF] Goré | Tableaux methods for modal and temporal logics[END_REF])), we introduce the central notion of model graph. We prove completeness using the wellknown technique due to Schütte (see e.g. [START_REF] Schütte | Proof theory[END_REF][START_REF] Takeuti | Proof Theory[END_REF]).

Definition 4.6 A model graph for some sequent Γ ∆ is an L mframe of the form W, R 1+m , . . . , R 2×m such that W is a countable set of maximal and consistent sequences such that

1. for σ ∈ W , Ant(σ) ∪ Suc(σ) ⊆ ψ∈Γ,∆ cl G (ψ); 2. there is σ 0 such that Set(Γ) ⊆ Ant(σ 0) and Set(∆) ⊆ Suc(σ 0); 3. for σ ∈ W , if [i]φ ∈ Suc(σ)
for some i ∈ {1, . . . , m}, then there is σ ∈ W such that σR i+m σ and φ ∈ Suc(σ); 4. for σ, σ ∈ W , if σR i+m σ and j ; i • u for some i, j ∈ {1, . . . , m} × {1, . . . , k}, and [j]φ ∈ Ant(σ), then [u]φ ∈ Ant(σ); 5. for σ, σ ∈ W , if σR i+m σ for some i ∈ {k + 1, . . . , m}, and [i]φ ∈ Ant(σ), then φ ∈ Ant(σ).

A direct consequence of Definition 4.6(4) is that Definition 4.6(5) holds true even for i ∈ {1, . . . , k}. The cornerstone of the completeness proof is the following result.

Theorem 4.7 If there is a model graph for Γ ∆, then Set(Γ) ∪ Set(¬∆) is L G m -satisfiable.
Proof. (sketch) For i ∈ {1, . . . , k}, there is l i ≥ 0 such that i → u i,1 , . . . , i → u i,li are the only production rules in P having i as left-hand side.

Let W be a countable non-empty set and R m+1 , . . . , R 2×m be binary relations on W . Let f :

P(W × W) m → P(W × W) m be the map such that f (R 1 , . . . , R m) def = (R 1+m ∪ 1≤j≤l1 R u 1,j), . . . , (R k+m ∪ 1≤j≤l k R u k,j), R k+1+m , . . . , R 2×m
where u i,j is a string obtained from u i,j by replacing i ∈ {k + 1, . . . , m} by i+m. Let ≤ be the binary relation on P(W ×W) m defined as follows:

R 1 , . . . , R m ≤ R 1 , . . . , R m def ⇔ for all i ∈ {1, . . . , m}, R i ⊆ R i . The structure P(W × W) m ,
≤ is a complete lattice and f is continuous and order-preserving. By Kleene's Theorem, the least fixed point of f exists and is equal to

µ(f) = i∈N f i (∅, . . . , ∅) def = R 1 , . . . , R m . By construction, W, R 1 , . . . , R m is an L G m -frame such that for i ∈ {1, . . . , m}, R i+m ⊆ R i and R i ⊆ (R m+1 ∪ . . . ∪ R 2×m) * .
Let W, R 1+m , . . . , R 2×m be a model graph for Γ ∆. We define an L G m -model M = W, R 1 , . . . , R m , V as follows: R 1 , . . . , R m is the least fixed point of f defined with R 1+m , . . ., R 2×m and for any propositional variable p, V (p) def = {σ ∈ W : p ∈ Ant(σ)}.

By induction on formulae we can show that for all

σ ∈ W , for φ ∈ Ant(σ) ∪ Suc(σ), if φ ∈ Ant(σ), then M, σ |= φ otherwise M, σ |= φ. Moreover, there is σ 0 ∈ W such that Set(Γ) ⊆ Ant(σ 0) and Set(∆) ⊆ Suc(σ 0). Consequently, M, σ 0 |= Set(Γ) ∪ Set(¬∆). Theorem 4.8 For any sequent Γ ∆, (φ∈Γ φ) ⇒ (φ∈∆ φ) is L G m - valid iff the sequent Γ ∆ is provable in GL G m .
Proof. The soundness proof is standard by using an induction on the depth of the proof tree. In order to prove completeness, we assume that (φ∈Γ φ) ⇒ (φ∈∆ φ) is L G m -valid and suppose that Γ ∆ is consistent. The first step is to create a maximal and consistent sequence σ 0 starting with Γ ∆ (see Lemma 4.5). Since σ 0 is consistent, last(σ 0) is consistent. We use this fact to construct an L m -frame whose infinite limit will be a graph model. This is a meta-level construction for which we can visit all derivations for last(σ 0), choosing nodes at will, since all such derivations cannot be completed as proofs. We use the successor relations R i , 1 ≤ i ≤ m while building this frame. By Theorem 4.7, (φ∈Γ φ) ∧ (φ∈∆ ¬φ) is L G m -satisfiable which will lead to a contradiction. Let us show how to build the model graph. If no [i]φ occurs in the succedent part of last(σ 0), then the structure {σ 0 }, ∅, . . . , ∅ is a model graph for Γ ∆. Otherwise, for i ∈ {1, . . . , m}, let ψ 1 i , . . . , ψ si i be all the formulae such that [i]ψ j i occurs in the succedent part of last(σ 0). Let Γ be the antecedent part of last(σ 0). Since last(σ 0) is consistent, for i ∈ {1, . . . , m}, for j ∈ {1, . . . , s i }, Γ [i] ψ j i is also consistent. For i ∈ {1, . . . , m}, for j ∈ {1, . . . , s i }, create a maximal and consistent sequence σ i,j starting with Γ [i] ψ j i and put σ 0 R i σ i,j . The sequences σ i,j are said to be of level 1. m i=1 s i is bounded by |G| × (ψ∈Γ r(ψ) + ψ∈∆ r(ψ)) and this shall hold true at any level. Continue to create the nodes of further levels in a similar way. Either this procedure can go forever (but the infinite limit frame is a model graph for Γ ∆) or the procedure stops after a finite amount of time (the number of level is finite as well as the resulting model graph).

GSP(RLIN) is EXPTIME-complete

No single rule ([i]) for some i ∈ {1, . . . , m} in GL G m captures all the properties of the relation R i in the L G m -frames unlike the combination of all the introduction rules for necessity formulae. As in the single steps calculi in [START_REF] Massacci | Strongly analytic tableaux for normal modal logics[END_REF]) (see also [START_REF] Goré | Tableaux methods for modal and temporal logics[END_REF][START_REF] Massacci | Single Steps Tableaux for Modal Logics[END_REF]), the closure property of the L G m -frames (see the proof of Theorem 4.7) is encoded step by step and this is the key point to characterize the complexity of GSP(RLIN). That is why, we can improve the complexity upper bound of GSP(RLIN) from [START_REF] Baldoni | Normal Multimodal Logics: Automated Deduction and Logic Programming[END_REF], Baldoni et al. 1998).

Theorem 5.1 GSP(RLIN) is in EXPTIME.

Proof. We use a technique that is dual to the method in [START_REF] Pratt | Models of program logics[END_REF]) that shows that PDL satisfiability is in EXPTIME. By Theorem 4.8, φ is L G m -satisfiable iff ¬φ is not provable in GL G m and therefore we concentrate on validity instead of satisfiability since our procedure is determin-istic. Actually, we use a variant of GL G m , namely SETGL G m , where the sequents are pairs of finite sets (instead of finite multi-sets). A contraction is explicitly operated for the rules (∧), (∧), (¬) and (¬). Following the developments of Section 4, one can show that X Y is provable in SETGL G m iff the formula (φ∈X φ) ⇒ (φ∈Y φ) is L G m -valid. Let φ be a formula for which we want to know whether φ is L G m -valid. The rules of the proof system SETGL G m can be computed in polynomial-time in |G| since the binary relation ; can be computed in polynomial-time in |G| and all the rules are of size in O(|G|). Their applicability can be checked in polynomial-time in |G| and in the size of the premiss and conclusion sequents. The cost of the computation of SETGL G m is relevant here since G is part of the inputs.

The cardinality of the set cl (φ) is at most |G|×r(φ). Let SETSEQ(φ) be the finite set of sequents X Y for X, Y ⊆ cl G (φ). SETSEQ(φ) is obviously a subset of the countably infinite set SEQ(φ) where only sets can occur in the sequents of SETSEQ(φ). The cardinality of SETSEQ(φ) is bounded by 2 |G|×r(φ)+1 and the size of each X Y is at most 2×(|G|× |φ|) 2 . Obviously, φ belongs to SETSEQ(φ). We define a sequence of sets

Z 1 ⊆ Z 2 ⊆ Z 3 ⊆ . . . included in SETSEQ(φ). Z 1 is defined as the set of sequents X Y from SETSEQ(φ) such that X ∩ Y = ∅. Now suppose that Z i is defined and let us define Z i+1 . For X Y ∈ SETSEQ(φ), X Y ∈ Z i+1 def ⇔ either (C1) X Y ∈ Z i or (C2) there are X 1 Y 1 , X l Y l ∈ Z i such that X 1 Y 1 . . . X l Y l X Y (r)
is a correct inference of the rule (r) in SETGL G m . The index l takes the value either 1 or 2 according to the form of the rule (r). Since card(X) + card(Y) ≤ 2 × |G| × r(φ), each formula in X Y can be principal in only one rule, checking the condition (C2) can be done in exponential time in |G|+|φ|. If φ ∈ Z i+1 , we stop and return 'yes' φ is L G m -valid. Otherwise, we continue the construction. Since Z i ⊆ Z i+1 and SETSEQ(φ) has at most 2 |G|×r(φ)+1 elements, this construction terminates after at most exponentially many stages. Computing Z i+1 can be done in deterministic exponential time in |G| + |φ|. Hence, the whole construction can be done in deterministic exponential time in |G| + |φ|. Whenever Z i = Z i+1 and φ ∈ Z i , we return 'no', φ is not L G m -valid. The procedure can be shown to be correct.

The procedure in the proof of Theorem 5.1 is more suited for proving theoretical results than for being used in applications. It can be viewed as the addition of a highly inefficient loop checking to the calculi GL G m (see e.g. [START_REF] Ladner | The computational complexity of provability in systems of modal propositional logic[END_REF][START_REF] Fitting | Proof methods for modal and intuitionistic logics[END_REF][START_REF] Cerrito | A Polynomial Translation of S4 into T and Contraction-free Tableaux for S4[END_REF][START_REF] Heuerding | Sequent Calculi for Proof Search in Some Modal Logics[END_REF]) for related matters). Besides the EXPTIME upper bound is sharp enough.

Theorem 5.2 For m ≥ 2, there is a decidable countably infinite set of right linear grammars such that L G m -satisfiability is EXPTIME-hard.

Proof. (sketch) Let G i , i ≥ 1, be the right linear grammar

{1}, {2, . . . , m}, {1 → , 1 → 2 i • 1}, 1 .
For any two different prime numbers n, n , we have

L 1 (G n) = L 1 (G n)
. By Theorem 3.1, this guarantees that we have defined a countably infinite set of essentially different right linear grammar logics. Let L(2) be the standard modal language for the modal logic K. Let K-GSAT be the set of standard modal formulae φ such that there is a Kripke model

M = W, R, V satisfying M |= φ.
The global satisfiability problem K-GSAT is known to be EXPTIME-hard (Chen and Lin 1994) (see also [START_REF] Hemaspaandra | The price of Universality[END_REF]). Let φ be a formula of L(2). One can show that

φ belongs to K-GSAT iff 0≤α≤i-1 [2 α • 1]φ is L Gi m -satisfiable where φ is obtained from φ by replacing every occurrence of 2 by [2]. Theorem 5.3 GSP(RLIN) is EXPTIME-complete.
There is also a natural log-space transformation from GSP(RLIN) into satisfiability for the µ-calculus with multiple fixed points (see e.g. [START_REF] Park | Concurrency and Automata on infinite sequences[END_REF][START_REF] Streett | An automata theoretic decision procedure for the propositional µ-calculus[END_REF][START_REF] Grädel | Back and forth between guarded and modal logics[END_REF]. By way of example, the translation t([2]φ) of [2]φ for the right linear grammar logic L from Section 1 is

νX 2 (X 1 , X 2 , X 3). [1]X 3 ∧ [3]X 2 , [2]X 3 ∧ [4]X 1 ∧ [5]X 3 , t(φ)
where X 3 is used as a renaming variable. The principle behind this example can be generalized to any modal connective of a right linear grammar logic. However, by using a polynomial-time transformation into satisfiability for PDL with finite automata one can show that GSP(REG), the extension of GSP(RLIN) with left linear grammars, is EXPTIMEcomplete [START_REF] Demri | The complexity of regularity in grammar logics and related modal logics[END_REF].

The general global logical consequence problem for right linear grammar logics GGLC(RLIN) takes as inputs a right linear grammar G and two L m -formulae φ, ψ and checks whether for all L G m -models M, M |= φ implies M |= ψ. For any right linear grammar G, GLC(L G m) denotes the problem obtained from GGLC(RLIN) by fixing the grammar to G. The calculus GL G m can be extended in order to deal with GGLC(RLIN). The sequents are of the form Γ φ ∆ for the L m -formula φ. GL G m is extended by writing φ instead of . However, one rule is added:

Γ, φ φ ∆ Γ φ ∆ glc φ
glc φ is an obvious adaptation of existing rules for capturing global logical consequence (see e.g. [START_REF] Fitting | Proof methods for modal and intuitionistic logics[END_REF][START_REF] Heuerding | Sequent Calculi for Proof Search in Some Modal Logics[END_REF][START_REF] Massacci | Single Steps Tableaux for Modal Logics[END_REF]).

One can show that for any sequent Γ φ ∆, the formula φ,

(ψ∈Γ ψ) ⇒ (ψ∈∆ ψ) ∈ GLC(L G m) iff the sequent Γ φ ∆ is derivable in GL G m + glc φ .
Similarly, one can show that GGLC(RLIN) is in EXPTIME by adapting the proof of Theorem 5.1.

A sufficient condition for PSPACE decision procedures

The completeness proof of Theorem 4.8 and the proof of Lemma 4.5 induce a depth-first systematic procedure to determine whether a sequent Γ ∆ is provable in GL G m or not. In the proof of Lemma 4.5, in order to obtain a maximal sequence σ starting from a given sequent in a derivation φ, essential backtracking points are introduced when the rule (∧) needs to be applied. Moreover, the length of such a sequence σ is bounded by |G| × r(φ). By Lemma 4.2 and since card(cl G (φ)) is bounded by |G| × r(φ), the number of backtracking points is bounded by |G| × r(φ). Similarly, in the proof of Theorem 4.8, other backtracking points are introduced when the rule ([i]) for some i ∈ {1, . . . , m} needs to be applied. The number of such backtracking points is also bounded by |G|×r(φ). So one can use a bit-string of length |G|×r(φ) to remember which choices have been already tried. Consequently, in order to show that a given right linear grammar logic L G m has a polynomial space satisfiability problem (or equivalently a polynomial space validity problem), it is sufficient to show that there is a polynomial p(.) such that in the depth-first systematic procedure for proving φ, the ([i]) rules are applied on a branch at most p(|φ|) times (see also the proof of Lemma 6.1). This means that in the proof of Theorem 4.8 the number of levels is finite and is bounded by a polynomial in the size of the input sequent Γ ∆.

This observation is not really surprising, but all the point now is to refine the above statement in order to be able to prove the polynomial space upper bounds for countably many right linear grammar logics.

Let S, be a well-founded set, meas : SEQ m → S be a map and p card (.), p length (.) be polynomials such that for any L m -formula φ,

(C3) for Γ 1 ∆ 1 , . . . , Γ n ∆ n ∈ SEQ(φ), meas(Γ n ∆ n) . . . meas(Γ 1 ∆ 1) meas(φ) implies n < p card (|φ|); (C4) for any inference Γ 1 ∆ 1 . . . Γ l ∆ l Γ ∆ (r)
(a) with (r) different from ([i]) for all i ∈ {1, . . . , m} (l ∈ {1, 2} according to the form of the rule (r)); (b) Γ 1 ∆ 1 , . . . , Γ l ∆ l , Γ ∆ ∈ SEQ(φ); we have for i ∈ {1, l}, either meas(Γ i ∆ i) meas(Γ ∆) or meas(Γ i ∆ i) = meas(Γ ∆); (C5) for any sequence of sequents in SEQ(φ),

σ 0 ≺ ([i 1])Γ 1 ∆ 1 ≺ σ 1 ≺ ([i 2]) . . . σ n-1 ≺ ([i n])Γ n ∆ n
such that for i ∈ {0, . . . , n-1}, σ i is maximal and n > p length (|φ|), we have meas(Γ n ∆ n) meas(f irst(σ 0)).

The condition (C3) holds true when {meas(Γ ∆) : Γ ∆ ∈ SEQ(φ)} is finite since S, is a well-founded set. For example, this is the case with meas(Γ ∆) = md(ψ∈Γ,∆ ψ). Lemma 6.1 Let G be a right linear grammar. If there exist a wellfounded set S, , a map meas : SEQ m → S and polynomials p card (.), p length (.) satisfying the conditions (C3), (C4) and (C5), for any L mformula φ, then L G m -satisfiability is in PSPACE. Proof. (sketch) The proof is by an easy verification by using the depthfirst systematic procedure induced by the proofs of Lemma 4.5 and Theorem 4.8 in order to check whether φ is provable in GL G m . The above method is not new (see e.g. [START_REF] Ladner | The computational complexity of provability in systems of modal propositional logic[END_REF][START_REF] Fitting | Proof methods for modal and intuitionistic logics[END_REF][START_REF] Massacci | Efficient Approximate Deduction and an Application to Computer Security[END_REF])) but it allows us to use a uniform depth-first procedure from the proof of Theorem 4.8 and from the proof of Lemma 4.5.

Let G rl be the right linear grammar defined in Example 4.1. Because of the duplication of Γ 1 in the application of the ([4])-rule, none of the obvious measures work to prove the polynomial space upper bound. Obviously, G rl is finite since L 1 (G rl) and L 2 (G rl) are empty.

Finiteness implies PSPACE

This section is devoted to show that for any finite right linear grammar G, the L G m -satisfiability problem is in PSPACE (forthcoming Theorem 7.4 is even a bit more general). We need to introduce a few definitions. Let G be a finite right linear grammar. The set N of non terminal symbols can be partionned into three sets N 1 , N 2 and N 3 such that for i ∈ N ,

• i ∈ N 1 def ⇔ L i (G) = ∅;
Proof. By way of example, we show (V). Assume i ; u • i for some i, i ∈ N 2 and u ∈ Σ + . It is obvious that

max{|v| + 1 : v ∈ L i (G)} + |u| -1 < max{|v| + 1 : v ∈ L i (G)}. It remains to show that max{1 + |u 1 • . . . • u n | : i ⇒ G u 1 i 1 ⇒ G . . . ⇒ G u 1 . . . u n i n } + |u| -1 < max{1 + |u 1 • . . . • u n | : i ⇒ G u 1 i 1 ⇒ G . . . ⇒ G u 1 . . . u n i n }. Since i ; u • i , there are non terminal symbols i 0 , . . . , i α , α ≥ 0, such that i 0 = i and i 0 ⇒ G i 1 ⇒ G . . . ⇒ G i α ⇒ G u • i .
In the case all the non terminal symbols i 0 , . . . , i α belongs to N 2 we can easily conclude the proof since

max{1 + |u 1 • . . . • u n | : i ⇒ G u 1 i 1 ⇒ G . . . ⇒ G u 1 . . . u n i n } ≥ |u| + max{1 + |u 1 • . . . • u n | : i ⇒ G u 1 i 1 ⇒ G . . . ⇒ G u 1 . . . u n i n }.
Suppose i j ∈ N 3 for some j ∈ {1, . . . , α}. If i j ∈ N 3 , then there is some j ∈ N 1 such that i j ⇒ * G v•j , which leads to a contradiction by definition of the partition {N 1 , N 2 , N 3 }. Suppose i j ∈ N 1 for some j ∈ {1, . . . , α}.

Hence i j ⇒ * G u • i and u • i ∈ Σ * • N 1 which is in contradiction with Lemma 7.1(I).
We define the maps pw a : FORM → N and pw s : FORM → N as follows ("a" stands for antecedent and "s" for succedent). Let φ be an L m -formula. Let [i]ψ be the occurrence of a formula occurring negatively [resp. positively] in φ. To be precise, one should define the notion of occurrence (as a finite sequence of natural numbers for instance). For the sake of simplicity, this is omitted here. In order to define pw a (φ) [resp. pw s (φ)], we define an auxiliary value pw a (φ, [i]ψ). Let [i 1]ψ 1 , . . . , [i n]ψ n , be the positive [resp. negative] occurrences of necessity formulae of φ such that the very occurrence of [i]ψ is a subformula of each [i j]φ ij (if any). In the case when some element of N

1 is in {i 1 , . . . , i n }, pw a (φ, [i]ψ) def = 0 [resp. pw s (φ, [i]ψ) def = 0], otherwise pw a (φ, [i]ψ) def = 1 + n j=1 w G (i j) [resp. pw s (φ, [i]ψ) def = 1 + n j=1 w G (i j)].
We are now in a position to define pw a (φ) [resp. pw s

(φ)]. pw a (φ) def = pw a (φ, [i]ψ) [resp. pw s (φ) def = pw s (φ, [i]ψ)]
where the sum is on the set of negative [resp. positive] occurrences of necessity formula in φ. For each ψ ∈ cl G (φ), the number of negative occurrences of necessity formula is bounded by |G| × r(φ) as well as the number of positive occurrences of necessity formula. So for ψ ∈ cl G (φ), max(pw a (ψ), pw s (ψ)) ≤ |G| 2 × r(φ) 2 × (|G| + 1).

Theorem 7.3 Let G be a finite right linear grammar logic. Then, L G msatisfiability is PSPACE-complete.

Deciding whether G is a finite right linear grammar can be done in polynomial time in |G|.

Proof. (sketch) Let us define S, meas, p card and p length . We shall write md N (Γ ∆) to denote the maximal nesting of modal connectives

[i] with i ∈ N in ψ∈Γ,∆ ψ. Observe that for Γ ∆ ∈ SEQ(φ), md N (Γ ∆) ≤ r(φ). We write pw (Γ ∆) to denote pw (Γ ∆) def = max({pw a (ψ) : ψ ∈ Γ} ∪ {pw s (ψ) : ψ ∈ ∆}).
• S, def = N 2 , < where < is the standard lexicographical ordering on N 2 extending the standard < on N;

• meas(Γ ∆) def = md N (Γ ∆), pw (Γ ∆) ; • p card (x) = 1 + |G| 2 × (|G| + 1) × x 3 ; p length (x) = 1.
Let φ be an L-formula. Condition (C3) is satisfied because card({meas(Γ ∆) : Γ ∆ ∈ SEQ(φ)}) ≤ |G| 2 × (|G| + 1) × |φ| 3 .

The condition (C4) is obviously satisfied. In order to check the condition (C5), by way of example consider an inference of a ([i]) rule for some i ∈ Σ (see notations in Section 4.1). Since for j ∈ N and u ∈ (N ∪ Σ) * , j ; u implies u ∈ Σ * ∪ Σ * • N , for j ∈ {1, . . . , k}, md N ([j]Γ j) ≥ md N (j,k ∈start j i [v j,k]Γ j). Additionnally, md N ([i]φ) = md N (φ), which guarantees that md N (.) does not strictly increase (when reading the rules upwards).

In order to show that pw (.) strictly decreases, it is sufficient to see that pw s ([i]φ) = 1 + pw s (φ) and to check that Theorem 8.1 Let G = N, Σ, P, S be a right linear grammar such that for i ∈ N , (1) i ; u implies |u| ≥ 1 and (2) i ; j • u and i ; j • u for some j ∈ Σ imply u = u . Then, L G m -satisfiability is PSPACE-complete. If G is viewed as a finite automaton A, the assumption (2) in Theorem 8.1 can be interpreted as a requirement on the determinism of A.

Proof. (sketch) Let us define S, meas, p card and p length :

• S, def = N, < ; p card (x) = x + 1; p length (x) = 1; • for any sequent Γ ∆, meas(Γ ∆) = pw + (Γ) + nw + (∆) (see Section 2 for the definitions of pw + (.) and nw + (.)).

The assumptions of Lemma 6.1 can be shown to hold.

For any grammar G satisfying the assumptions of Theorem 8.1, the proof system GL G m involves no rule with implicit contraction. For m ≥ 5, let G = {1, 2, 3}, {4, . . . , m}, P, 1 be the infinite right linear grammar with P defined as the union of {1 → 4 m } with i∈{5,...,m}

{1 → i (2 m) •2, 2 → (i•(i+1)•. . .•m) i •3, 3 → i i •(i+1) i+1 •. . .•m m 1}
The grammar G is not finite but by Theorem 8.1, L G m -satisfiability is in PSPACE.

In Theorem 8.1, it is unlikely that one can significantly relax the condition |u| ≥ 1 by allowing |u| = 0. By Theorem 7.5(2), L G 2 -satisfiability is EXPTIME-hard for the right linear grammar G = {1}, {2}, {1 → , 1 → 2 • 1}, 1 .

An open problem

By a proof-theoretical analysis, we have designed polynomial space decision procedures in a uniform framework for countably infinite right linear grammar logics. Understanding the complexity/decidability status of context-free grammar logics by proof-theoretical means seems to be a challenge worth being attacked in order to further characterize the complexity of modal logics. More precisely, let G be a context-free grammar such that for i ∈ N , {u ∈ (Σ ∪ N) * : i ⇒ * G u} is a regular language. In [START_REF] Demri | The complexity of regularity in grammar logics and related modal logics[END_REF] it is shown that L G m -satisfiability can be polynomially reduced to PDL satisfiability by replacing any occurrence of [i] by [π i] where π i is a regular expression (program) generating precisely the language {u ∈ (Σ ∪ N) * : i ⇒ * G u}. Hence, L G m -satisfiability is in EXPTIME and showing that L G m -satisfiability is in PSPACE is equivalent to showing that PDL satisfiability restricted to the program expressions π 1 , . . . , π m (if Σ ∪ N = {1, . . . , m}) is in PSPACE. Is there a natural class of PSPACE context-free grammar logics? K4, S4 should preferably fall into this hypothetical class.

•

 for j ∈ N 1 , max({pw a (ψ) : ψ ∈ [j]Γ j }) = max({pw a (ψ) : ψ ∈ j,k ∈start j i [v j,k]Γ j }) = 0 by Lemma 7.1(I); • for j ∈ N 2 [resp. j ∈ N 3], max({pw a (ψ) : ψ ∈ [j]Γ j }) ≥ max({pw a (ψ) : ψ ∈ j,k ∈start j i [v j,k]Γ j }) by Lemma 7.2(III,IV,V) [resp. by Lemma 7.2(I,II)].Theorem 7.4 below is slightly stronger than Theorem 7.3.Theorem 7.4 GSP(RLIN f) is in PSPACE. is in PSPACE. By Theorem 3.2 we conclude that L G 2 -satisfiability is PSPACE-complete.8 Infinity and PSPACE Theorem 7.3 roughly states that finiteness for right linear grammars implies an PSPACE complexity upper bound for the corresponding grammar logics. By contrast, we can show that infinity does not imply EXPTIME-hardness. The class of right linear grammar logics introduced below contains for m ≥ 2, countably infinite PSPACE logics L G m with N ∪ Σ = {1, . . . , m}.

Acknowledgments

I wish to express my gratitude to the anonymous referee for useful suggestions and remarks, to G. de Giacomo and E. Grädel for pointing me to works related to modal µ-calculus with simultaneous fixed points, to the participants of AiML-ICTL 2000 for their feedback on this work and to the AiML organizers for their kind invitation.

• i ∈ N 2 def ⇔ i ∈ N 1 and for some j ∈ N 1 and u ∈ Σ * , i ⇒ * G u • j;

N 1 , N 2 and N 3 can be computed in polynomial-time in |G|. A N 2 → N 1derivation is a sequence of the form

such that n ≥ 1, {i 0 , . . . , i n-1 } ⊆ N 2 and i n ∈ N 1 . The main properties of the partition {N 1 , N 2 , N 3 } are the following.

Lemma 7.1 Let G be a finite right linear grammar and {N 1 , N 2 , N 3 } be the partition on N defined above. Then,

For i ∈ N ∪ Σ, we define w G (i), the weight of i in G, as follows:

Observe that for i ∈ N ∪ Σ, w G (i) ≤ |G|. Lemma 7.2 contains the main properties of the map w G (.).

Lemma 7.2 Let G be a finite right linear grammar. Then,

The proof of Theorem 7.4 follows the line of the proof of Theorem 7.3 by observing that for any sequent Γ ∆ ∈ SEQ(φ), md N (Γ ∆) ≤ r(φ) and pw (Γ ∆) ≤ |G| 2 × (|G| + 1) × |φ| 2 . Moreover, from the space analysis in Section 6, we can decide whether φ is provable in GL G m in polynomial space in |G| + |φ|.

It seems difficult to extend Theorem 7.4 to a larger class of finite context-free grammars. Indeed, for the finite left linear grammar

2 -satisfiability is already EXPTIME-hard (see Theorem 7.5(1) below). By contrast, for any strongly finite contextfree grammar G, L G m -satisfiability is in PSPACE. This can be shown by translation into PDL without Kleene star. By analogy to Theorem 7.4, it is open whether the general satisfiability problem for strongly finite context-free grammar logics is in PSPACE.

By using Theorem 7.3 and [START_REF] Demri | The complexity of regularity in grammar logics and related modal logics[END_REF], one can characterize the complexity of all the bimodal regular grammar logics.

Theorem 7.5 Let L G 2 be a bimodal regular grammar logic, that is N ∪ Σ = {1, 2} (m = 2) and S = 1.

Theorem 7.5 exhausts all the possibilities of bimodal regular grammar logics. As a corollary, given a bimodal regular grammar logic L G 2 , deciding whether L G 2 is PSPACE-complete can be done in linear time in |G|. EXPTIME-hardness is roughly due to the fact that the concerned bimodal logics contain a modal connective [2] and another one [1] that is a variant of its reflexive and transitive closure (noted [2 *]), see also [START_REF] Spaan | Complexity of Modal Logics[END_REF][START_REF] Sattler | A concept language extended with different kinds of transitive roles[END_REF][START_REF] Castilho | Formalizing action and change in modal logic I: the frame problem[END_REF] for logics with a similar attribute. For instance, if M, x |= 1 φ ∧ [1]ψ for some L G ll 2 -model M, then there is y ∈ R 1 (x) such that M, y |= φ and for all z ∈ R * 2 (y), M, z |= ψ, in symbols M, y |= φ∧[2 *]ψ. These are typically the formulae of that form that are responsible for the EXPTIME-hardness of PDL [START_REF] Fischer | Propositional Dynamic Logic of Regular Programs[END_REF]Ladner 1979, Spaan 1993)