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Abstract

We present a class of polymodal logics for which the set of
terms indexing the modal connectives can be hierarchized in two
levels: the set of Boolean terms and the set of terms built upon
the set of Boolean terms. The semantical structures of the logics
contains a family of binary relations that can be viewed as an
homomorphism between semilattices. Various results related to
decidability, axiomatization and computational complexity are
established by faithfully translating the logics into more stan-
dard modal logics. The paper is a short survey of results ob-
tained by translation for various logics of the above kind from
the literature.
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1 Introduction

The information logics derived from Pawlak’s information systems
[Paw81] are polymodal logics such that the relations in the models
correspond to relations derived from information systems. Let us
recall the peculiarities of such logics. First, numerous propositional
modal logics can be defined from semantical structures of the form
M = (W, (Ra)aeM, V) where W is a non-empty set, (Ra)acy is a
family of binary relations over W, M is the set of modal expressions
and V is a meaning function that is, for each propositional variable p,



V(p) € W. The well-known propositional dynamic logic PDL (see e.g.
[Har84]) uses this kind of semantical structures. In the sequel, such
logics are called standard modal logics. By adding a Boolean dimen-
sion to the standard modal logics we obtain a class of logics (the logics
with Relative Accessibility RElations or shorter, the “Rare-logics”)
that includes numerous information logics (see [Orto84a, Orto84b]).
At the syntactical level, we replace the set of modal constants (upon
which is built the set M of modal expressions) by a set of expres-
sions of the form r(a) with o € P where the set P is built upon a
set P = {0; : i € w} of parameter constants and is closed under the
Boolean operators N, U, —. The syntactic construction r(.) announces
a parameter expression. The semantical structures are of the form
(W,PAR, (Rp)pcpar,V) where PAR is a non-empty set of parame-
ters, V also maps homomorphically every Boolean expression « to a
subset of PAR and V(r(a)) = Ry (o) for any a € P. According to the
algebraic properties of (Rp)pcpar, different types of logics are defined
(see e.g. [Orlo89, Bal97, Kon97]).

The main result of the paper states that there exist satisfiability-
preserving transformations between Rare-logics and the corresponding
standard modal logics (validity-preserving maps can be also designed).
The translations are interesting for their own sake, for instance they
help understanding what is brought by adding a Boolean dimension
to a logic. By taking advantage of such translations, we provide a
uniform framework to prove decidability for various Rare-logics from
[Orlo84a, Orto89, Orto88, Bal96a, Bal97]. Moreover, we show how it
can also help to define proof systems for the Rare-logics. Quantitative
aspects about computational complexity are also briefly discussed.

As far as we know, the notion of Rare-logic appeared in the lit-
erature in [Oro88] where various Rare-logics are described to model
reasoning in the presence of incomplete information. Hilbert-style and
Rasiowa-Sikorski-style calculi for some Rare-logics have been defined
in [Bal96a, Bal97, Kon97]. Recently, in [BO99], a classification of logics
with relative accessibility relations has been proposed. None of these
works tackle the problem of relating Rare-logics with more standard
modal logics in a systematic way. Moreover, in these works, decid-
ability issues are not their concern. Decidability of information logics
has been established in the past by using filtration-like and restriction-
like techniques (see e.g. [Vak9l, Dem98a]). Herein, we use a different
approach that interprets a Rare-logic into a standard modal logic fol-



lowing the general framework established from [Tar53].

The paper is organised as follows. In Section 2, we define the class
of standard modal logics as well as the class of Rare-logics considered in
the paper. In Section 3, we define general properties about semilattices
and then show how they can be used to define satisfiability-preserving
maps between Rare-logics and standard modal logics. In Section 4, we
establish various decidability results whereas in Section 5 we provide a
sufficient condition to prove that the satisfiability problem of a Rare-
logic is in the complexity class EXPTIME (that is, it can be solved
by a deterministic Turing machine in exponential-time with respect to
the size of the input formulae). In Section 6, we propose a general
recipe to define proof systems for Rare-logics that is illustrated on a
particular example. We round off the paper by open questions that
are worth being investigated.

This paper is a full version of the extended abstract [Dem98b].
Most of the results of this paper can be extended to the case when
nominals are allowed in the language (see [DG00a, DK98]) or to the
case when the accessibility relations of the semantical structures can
be of arbitrary arity (see also [DG00a]). Some other related works can
be found in [DG00a, Dem99, DGOOb].

2 Modal logics

2.1 Language

Let OP = {®1,...,®s} be a (possibly empty) finite set of operators
such that p(®;) € w\ {0} denotes the arity of ®;. A set M= {a,b,...}
of modal expressions is the smallest set that contains a non-empty
countable set Mg of basic modal expressions and it is closed under OP
with respect to the arity map p. A modal language L is defined as a
pair ((OP, p,My, M), Forg) where Forg = {p,q,...} is a countable set of
propositional variables. The formulae ¢ of L are inductively defined as
follows: ¢ == p | ¢p1 Ap2| —¢ | [a]¢ for p € Forg and a € M. The
set of L-formulae is denoted For. Standard abbreviations include 1,
T, (a), V, =, &. We write sub(¢) to denote the set of subformulae of
the formula ¢.



2.2 Kripke-style semantics

A relation operation g maps any set U to a mapping g(U) : P(U™) x
... X P(Uin) — P(Uin+1) with iy, ...,49,41 > 1 and iq,...,i,.1 do not
depend on U. (i1,...,ip+1) is the profile of g and n is its arity. We
also require that if there is an 1-1 mapping f : U — U’, then for any
(X1,...X,) € P(UL) x ... x P(U™),

U)Xy, X)) = g(U)(f(X1), ..., f(Xn)))

An operator interpretation 7 maps the set OP into the set of relation
operations such that for any @ € OP such that p(®) = n, the profile
of Z(®) is (2,...,2,2), an n + 1-tuple. A similar definition is used
in [DO99]. An L-frame F is a pair (W, (Ra)acM) such that W is a
non-empty set and for any a € M, Ra C W?2. An L-model M respecting
some operator interpretation I is a structure M = (W, (Ra)aem: V)
such that (W, (Ra)aey) is an L-frame, V' is a map V' : Forg — P(W)
and for any ©(ai,...,a,) €M, Rya,,.. a,) = Z(®)(W)(Ra,,- - -, Ra,)-
The formula ¢ is satisfied by the worldw € W in M iff M, u |= ¢ where
the satisfaction relation |= is inductively defined as follows:

def

. M,ulE=p & ue€V(p), for any p € Forp;
 Mu ¢ E not M,u = ¢
MukEoAy E Muls¢and M, u =,
 Mu = alg & for all W € Ra(u), M,u' = ¢.

N

A formula ¢ is true in an L-model M (denoted by M = ¢) & for
any u € W, M,u |= ¢. ¢ is valid in an L-frame F (denoted by F | ¢)
& M = ¢ for any L-model based on F.

2.3 Classes of logics

An L-normal modal logic L is defined as a triple (L,Z,C) such that Z
is an operator interpretation and C is a class of L-models respecting
Z. A standard modal logic is an L-normal modal logic such that the
set of basic modal expressions is a countable (possibly finite) set My =
{co,c1,...} of constants. An L-formula ¢ is said to be L-valid iff ¢ is
true in all the £-models. An L-formula ¢ is said to be L-satisfiable iff
there exist an £-model M = (W, (Ra)acm, V) and v € W such that
M, u |= ¢. We say that ¢ is a logical L-consequence of ¢ (in symbols



¢ =) & for any L-model M, M = ¢ implies M = 1). As usual,
we say that the modal logic £ has the finite model property (fmp) iff
each L-satisfiable formula ¢ has an £-model of finite cardinality.

A set of modal expressions is said to be designed for Rare-logics if
each basic modal expression is of the form r(«) where « is a parameter
expression and ‘r’ is an arbitrary symbol fixed in the rest of the paper.
The set P = {a,3,...} of parameter expressions is the smallest set
containing a countable set Py = {J; : i € w} of parameter constants
and it is closed under the Boolean operators N, U, —. A P-valuation V
is amap V : P — P(PAR) such that for any ay,as € P,

e V(o) € P(PAR); V(—a1) = PAR\ V(m);
o ViayNag) =V(an) NV(a); V(g Uag) = V(ag) UV (ag).

For any o, € P we write « =1 [resp. a = (3, a« C (] when for
any P-valuation V, V(a) = 0 [resp. V(a) = V(B), V(a) C V(B)].
The relations = and C are known to be decidable (by decidability of
classical propositional logic for instance). Let L be a modal language
designed for Rare-logics. An L-model M = (W, (Ra)acym, V) is said to
be designed for Rare-logics & there exist a non empty set PAR, a
family (Rp)pcpar of binary relations over W and a P-valuation V'
such that for any a € P, Ry (o) = R,(q)- Such a model M is denoted
(W,PAR, (Rp)pcprar, V") where V" is a map V" : (For UPUM) —
P(PAR)UP(W)UP(W?) such that the restriction of V" to P is V/,
the restriction of V" to Forg is V and for any a € M, V" (a) = Ra.

We write F'r? to denote the class of structures (W, R) where W is
a non-empty set and R C W2,

Definition 2.1. Let L be a modal language designed for Rare-logics.
An L-normal modal logic £ = (L,Z,C) is said to be a Rare-logic iff
there is a class X C Fr2 such that C is the class of L-models M =
(W,PAR, (Rp)pcpar, V) respecting 7 satisfying for any ) # P C
PAR, (W,Rp) € X. v

L is also written (L,Z,C, X). What mainly motivates the intro-
duction of the class of Rare-logics can be found below. During the
last decade, the information logics derived from Pawlak’s information
systems [Paw81] have been the object of quite active research. An in-
formation system can be seen as a structure (OB, AT') such that OB
is a non-empty set of objects, AT is a non-empty set of attributes and



each attribute at € AT, is a mapping at : OB — P(Val,) where
Valg: is a non-empty set of values. For each object o and for each
attribute at, at(o) is the set of possible values of o with respect to the
attribute at. This is at least one possible reading for at(o) (one can
think also about its conjunctive reading). Usually, at(o) is assumed to
be non-empty. Such structures are intended to capture some aspects
of incomplete information. In that setting, various derived relations
between objects can be defined. We recall below the indiscernibility
and positive similarity relations. For any 01,00 € OB, A C AT,

e o1ind(A)oy & for any at € A, at(o1) = at(oy);
e o1sim(A)oy & for any at € A, at(o1) Nat(oy) # 0.

o1ind(A)oy can be read as follows: the objects 01 and oy cannot be dis-
tinguished modulo the set of attributes A. Similarly, o;sim(A)oq iff 01
and o9 are similar modulo A. The polymodal logics obtained from the
information systems are multimodal logics such that the relations in
the Kripke-style semantical structures correspond to relations between
objects in the underlying information systems. Usually, such logics are
supposed to perform reasoning about information systems. It is not
clear to us that those logics satisfy their initial goal however they offer
other remarkable properties. For instance, the accessibility relations
in the models are interdependent; for instance, if B C A C AT, then
ind(A) C ind(B). Moreover, the set of modal terms can be hierar-
chized in two levels: the set of Boolean terms (interpreted as “sets of
attributes”) and the set of modal expressions (interpreted as “derived
relations from information systems”).

The main purpose of this work is to associate a standard modal
logic to each Rare-logic in order to study the Rare-logic via properties
of the standard modal logic. In general, the standard modal logics
and the Rare-logics share neither the same type of modal language
nor the same type of semantical structures. However, the main non-
technical difference between these logics can be found in the following
observation. Two kinds of syntactic objects can be distinguished for
standard modal logics: the modal expressions (interpreted as binary
relations) and the formulas (interpreted as sets of worlds). In the Rare-
logics, a third kind of syntactic objects is introduced: the parameter
expression (interpreted as sets of attributes). This third component
introduces new constraints on the semantical structures and this is
our intention in this paper to show why this seemingly increase of



complexity is sometime only superficial.

Definition 2.2. Let £ = (L,Z,C, X) be a Rare-logic. The standard
modal logic L4 from L is the structure (Lg, Z4,C4) such that

e L; is the modal language obtained from L by replacing {r(«a) :
« € P} by the set {c; : i € w} of modal constants;

[ ] Id:I;

e for any Lg-model M = (W, (Ra)acy, V), M € Cq E M re-
spects Z, and the relations generated from {Rc¢ : ¢ € My} with
intersection belong to X.

\%

In [DGOOa, Part I], the definition of the standard modal logic from
a Rare-logic is more involved and more general. Indeed, in the present
paper, we only provide developments for a single (forthcoming) class
of Rare-logics. In this work, we shall consider algebras (D, ) of type
(2) such that MM is commutative, associative, idempotent with a zero
element e. In particular, any join-semilattice [resp. meet-semilattice]
(D, <) with a bottom element L [resp. with a top element T], can be
seen as an algebra of that kind by defining for any a,b € D, allb < avh
[resp. aMb < aAb]. Similarly, any algebra (D, ) of the above kind can
be seen for instance as a join-semilattice by defining for any a,b € D,
a<b ¥ arb=> By abusing our notation, we write (D,MN,e) to
denote the algebras of the above class and we call them semilattices
with zero element e. Indeed, we shall mainly investigate Rare-logics
for which the sets of relations of the models are semilattices with zero
element. Indeed, we consider the case when the family (Rp)pcpar is

exactly a map g : (P(PAR),U, () — (P(W?),n, W?2) where

1. (P(PAR),U,0) is the semilattice where U is the set union;
2. (P(W?),11,W?) is a semilattice with zero element W?2;

3. g(0) =W?;

4. g is an homomorphism, that is for any P, P’ € P(PAR), g(P U
P) =g(P)Mg(P');
5. for any P C PAR, Rp = g(P).

P(
P(



In [Nov97, Jar97] algebraic structures similar to semilattices have been
investigated in order to study the dependence spaces and information
systems. Other conditions on the family (Rp)pcpar exist in the liter-
ature (see e.g. [Diin97, Orto93, Kon97, Bal97]). We concentrate here
on Rare-logics £ = (L,Z,C, X)) where there is an operator &y € OP
such that for any L-model M = (W, PAR,(Rp)pcpar,V), M € C

def
<~

1. M respects Z and for any ) # P C PAR, (W,Rp) € X;
2. T(@e)(W) =1

3. for any P,P' C PAR, Rpupr = Rp M Rprs;

4. Ry =W?2.

As a consequence for such Rare-logics, the class X of modal frames is
closed under M. The technical developments are done in this paper for
these kinds of Rare-logics. Other classes are treated in [DG00a, Part
1.

Example 2.1. Let LIR = (L,Z,C,X) be the Rare-logic such that
OP = {N,U*} (respectively interpreted as the intersection and the re-
flexive and transitive closure of the union on binary relations), X is
the class of equivalence relations and M is interpreted as the set inter-
section. The corresponding standard modal logic LI R is precisely the
logic DAL defined in [FACO85]. DAL is a standard (poly)modal logic
where the modal terms are built upon the modal constants {c; : i € w}
and closed under N and U*. Furthermore, each c; is interpreted as an
equivalence relation.

Let L4 = (Lg,Z4,Cq) be a standard modal logic. We write Eg to
denote the modal logic obtained from L; by adding the nullary modal
operator U and the class of models is obtained from C; by imposing

that Ry = W? (see e.g. [GP92, Hem96]). We denote by Eg_ the logic
obtained from [,g by only allowing the occurrences of U of the form
[U]. Eg is said to be U-simplifiable iff there is an effective procedure
f : For — For such that for any ¢ € For: the only occurrences
of Uin f(¢) are in the context [U] and f(¢) < ¢ is Eg—valid. For
instance, for the standard modal logic DAL -see Example 2.1 - DALY
is U-simplifiable.



3 Satisfiability-preserving maps

3.1 Constructions on semilattices

Let L be a modal language designed for Rare-logics and let My =
{ci : i € w} be a countably infinite set of modal constants (intended
to belong to the language of a standard modal logic). Let d1,...,0,
be elements of Py. For any integer £ € {0,...,2" — 1}, we write

aj, to denote the Boolean expression (also called a component) oj o

o1N...Nay, where for any s € {1,...,n}, as = 8, if bity(k) = 0 (bits(k)
denoting the sth bit in the binary representation of k) otherwise as o
—0,. For instance,

a;nfl_l - _5]_ N...N _5TL—1 N 577,

For any P-valuation V, {V(«aj) : k € {0,...,2" — 1}} is a partition
of PAR. For any parameter expression o € P such that the only
parameter constants occurring in « are in {d1,...,0,}, either o =1
or there is a unique non-empty set ¥ = {afl, ... ,afl} such that a =
a;, U...Uaj,. There exists an effective procedure that computes Y in
deterministic exponential-time in the size of . Proposition 3.1 below
states how to transform a family (Xp)pcpar into a family (YC)ceMOd

when both families can be seen as the carrier sets of semilattices.

Proposition 3.1. Let 01,...,0, be n > 0 elements of Py, ({Xp :
P C PAR},M,e) be a semilattice with zero element e and V be a
P-valuation V' : P — P(PAR) such that (H1) Xy = e and (H2) for any
P, P'C PAR, Xpupr = Xp M Xpr. Then, there is a family (Ye)ceM,,
such that

(C1) {Yc : c €Myq} is a finite subset of {Xp : P C PAR};

(C2) If v is a parameter expression built from the parameter constants
01,...,0p such that @ = o U...Uag, then Xy (q) =Yc, M...M
Ye,,.

Proposition 3.2 below states how to transform a family (Yc)cey,,
into a family (Xp)pcpar when both families can be seen as the carrier
set of semilattices with zero element.

Proposition 3.2. Let d1,...,0, be n > 0 elements of Py, (Y, e) be
a semilattice with zero element and (Yc)cey,, be an indexed family



of elements of Y. Then, there is a subalgebra of (Y., e) of the form

({Xp : P C PAR},M,e) satisfying the conditions (H1)-(H2) from

Proposition 3.1 and there is a P-valuation V : P — P(PAR) such that
(Cl) card(PAR) = 2",

(C2) If v is a parameter expression built from the parameter constants

01,...,0n such that @ = o U...Uag, then Xy (4) =Yc, M...M

Ye, .

U

Proof: Let (({Xp: P C PAR},M,e),V) be the structure defined as

follows:

e PARE{0,...,2" —1};

d

e Xy © ¢ and for any ) # P C PAR, Xp = MiepYe, (M is
commutative, associative and each P is finite);

e for any s € {1,...,n}, V(6,) € {k € PAR : bit,(k) = 0} (for
the other parameter constants V' is not constrained until V is a
P-valuation which is always possible).

(({Xp: P C PAR;},e,M), V) satisfies the required conditions. By
way of example, let us check that the condition (C2) holds. First,
observe that for any k € {0,...,2" — 1}, V(aj) = {k}.

Xv(a) = Xv(a* U..Ua* ) (normal form of «)
Y
= Xv(ar )u..uv(ar) (V is a P-valuation)
i1 i

= Xv(ag) M- N &Xv(ay) (by (H2))

= X{“} M...rl X{”}
4 (by construction)
Q.E.D.

In Proposition 3.1 and in Proposition 3.2 the Xp’s and Y¢’s are
not necessarily relations. We are going to take advantage of these
propositions when dealing with possible-world semantics for polymodal
modal logics.

3.2 Normalization

Let ¢ be an L-formula such that Po(¢) C {01, ..., 0, } where Py(¢) is the
set of parameter constants occurring in ¢ (the case when Py(¢) = 0 is
omitted herein but it poses no extra difficulties). The first normal form

10



of r(a), written Ny (r(a)), is the basic modal expression r(aj U...Ua] ).
It is similar to the canonical disjunctive normal form for the proposi-
tional calculus. In the case when a =L, Ni(r(a)) & r(5; N —d;). We
write N1 (¢) to denote the formula obtained from ¢ by substituting each
occurrence of r(a) by Ny(r(«)). Nyi(¢) is unique modulo associativity
and commutativity of U and N (which is harmless in the sequel). The
technique of components has been firstly used for information logics by
B. Konikowska (see e.g. [Kon97]) in order to define Rasiowa-Sikorski
proof systems for relative similarity logics. The second normal form of
¢, written No(¢), is the formula obtained from N;(¢) where each occur-
rence of 7(aj U...Uaq; ) has been substituted by r(a )&c...©cr(af).
Obviously, ¢ < Na(¢) is L-valid.

3.3 Satisfiability-preserving map

Let us define the mapping ¢ from the set of L-formulae into the set of
Eg—formulae where L4 is the standard modal logic from £ -see Defi-
nition 2.2. For any L-formula ¢, t(¢) is obtained from N2(¢) by the
following replacements of the basic modal expressions: 7(d; N —d1) is
replaced by U and 7 () is replaced by ¢y, for k € {0,...,2" —1} where
n = card(Po(¢)).

Example 3.1. Let £ be the Rare-logic defined in Example 2.1 and ¢
be the L-formula:

[r(01)]p A [r(61 N d2)]g A [r(d1 NI N —61) U* r(d2)]p
By definition, t(¢) = [co N ca]p A [cola A [UU* (co N cy)]p.

Proposition 3.3 below states that ¢ is a satisfiability-preserving
transformation from L-satisfiability into £g—satisﬁability.

Proposition 3.3. [DG00a, Part I] ¢ is L-satisfiable iff ¢(¢) is Eg—
satisfiable.

The proof of Proposition 3.3 uses the semilattice structure of the

family of relations of the models.
Proof: First assume that ¢ is L-satisfiable. So there exist an £-model

(W, PAR, (Rp)pcpar,V)

11



and w € W such that M,w = ¢ and therefore M, w = Na(¢). The
structure ({Rp : P C PAR},M,W?2) and the map V satisfy the hy-
pothesis of Proposition 3.1 with the set of parameter constants oc-
curring in ¢. If such a set is empty, ¢ is a formula of the classical
propositional calculus and therefore the proposition trivially holds.
Otherwise, by Proposition 3.1, there is a family (Yc)cepy, satisfying
the conditions (C1) and (C2) from Proposition 3.1. Let M’ be the
£Y-model (W, (Ra)acm, V') such that,

def

e for any p € Forg, V'(p) = V(p);

e for any c € My Rc¢ & Yec;

* Rea,,..a,) &t I(®)(W)(Ra,,...,Ra,) for ®(ai,...,as) €M (of
LY.

It is a routine task to check that M’ is an Eg—model. Furthermore,
for any o € P occurring in ¢ such that o = of U... U], Ry =
Rcil@ﬁm@ﬁcil = RV(NQ(Q)) and for any « € P such that o =1, Rv(a) =
Ry=W xW. So M w |= t(¢).

Now assume that t(¢) is ﬁg—satisﬁable. So there exist an £g—model
M = (W, (Ra)aem,V) and w € W such that M,w = t(¢). The
restriction of (Ra)acy to Mo, say (Rc)ceM,, satisfies the conditions (H1)
and (H2) from Proposition 3.2. By Proposition 3.2, there is a structure
({{Rp: P C PAR},N, W?) and a P-valuation V" : P — P(PAR) such
that

1. {Rp : P C PAR},N, W?) is a semilattice with zero element
WZ.

2. Ry = W? and for any P, P’ C PAR, Rpup = Rp M Rpr;

3. card(PAR) = 2".

Let M' = (W, PAR, (Rp)pcpar, V') be the L-model such that

e V' restricted to P is the restriction of V”;

e for any p € Forg, V'(p) = V(p);

o V/(®(a1,...,a,) CI(@)W)(V'(@1), .-, V/(as))
for any ®(ay,...,as) € M (of L).

It is easy to check that M’ is an L-model. Additionnally, for
any a € P occurring in ¢ such that o = of U...Uq;, Ry(q) =

12



Rcil@ﬁm@ﬁcil and for any a € P such that a« =1, Ry () = Ry. So
M w = No(¢). Q.E.D.

Proposition 3.3 entails that Lg is decidable only if £ is decidable.
Proposition 3.4 will help stating the converse.

Proposition 3.4. There exists a polynomial-time many-one reduc-
tion (see e.g. [Pap94]) from £g-satisﬁability into L-satisfiability.

The idea of the proof of Proposition 3.4 consists in defining a re-
verse map of t.

Using the construction of the proof of Proposition 3.3, one can
prove the proposition below.

Corollary 3.5. Let £ be a Rare-logic from the class considered so far.

1. L-satisfiability is decidable iff Eg—satisﬁability is decidable.

2. L has the finite model property iff Eg has the finite model prop-
erty.

3. Any L-satisfiable formula ¢ has an £-model such that card(PAR)
olol

4. 1t £Y is U-simplifiable, then L-satisfiability is decidable iff £J~
is decidable and £ has the finite model property iff Eg_ has the
finite model property.

Example 3.2. Let £ be the Rare-logic (L,Z,C, X) such that OP =
{N,0,*,U,71}, X = Fr? and N [resp. o, *, U, ~!] is interpreted as the
intersection [resp. composition, Kleene star, union, converse|. PDL
with the operators o,* ,U,”! /N (and without the test operator '?’) is
a fragment of [,g and does not have the finite model property -see e.g.
[Vak92]. By Corollary 3.5, £ does not have the finite model property.

The flexibility of the translations allows an extension when nomi-
nals are included in the language (see e.g. [DGO00Oa, Part II]) although
it is technically more involved. So when Rare-logics can be trans-
lated into well-known modal logics, we may obtain straightforward re-
sults about the Rare-logics (decidability and possibly complexity upper
bounds, ...).
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4 Decidability

4.1 A logic of indiscernibility relations.

Indiscernibility (see Section 2.3) is a central concept to study rela-
tionships between objects in information systems [Paw81]. The logic
of indiscernibility relation LIR has been introduced in [Orlo93] and it
has been defined in Example 2.1.

Proposition 4.1. The LIR-satisfiability problem is decidable iff the
DAL-satisfiability problem is decidable.

Proof:(sketch) Since LIRg is U-simplifiable, by Corollary 3.5, LIR is
decidable iff LIRg* is decidable. LIREIJ* is exactly the logic DAL
defined in [FACO85] to which is added the universal modal connective
[U]. One can show that DAL (or equivalently LIR;) is decidable iff
LIRY~ is decidable. Indeed, for any formulae ¢,%, ¢ =rrr, ¢ iff
[a]¢ = 1 is LIRg-valid with a & ¢; U* ... U* ¢, and {c1,...,c,} is
the set of modal constants occurring in {¢,1}. The other direction

is shown in [DGO00a, Part II] by using some techniques from [GP92].
Q.E.D.

Decidability of DAL is open although various attempts to prove
such a result can be found in the literature (see e.g. [AT89]). This
fact is rather surprising considering that after all, DAL is similar to
various other polymodal logics, among them the Propositional Dy-
namic Logic. It is not difficult to show that if PDL with converse
and intersection is decidable (which is commonly conjectured in the
literature) then DAL is also decidable. By contrast, the logic “LIR
without U*”, say LIR’, is known to be decidable. Indeed, LIR’ is de-
cidable iff LIRId ~ is decidable. However, LIR:iU* is decidable (see e.g.
[Dem99]). Consequently, the logic of indiscernibility relations defined
in [Orto84b] is decidable.

4.2 A logic with knowledge operators.

The logic with knowledge operators LKO has been introduced in [Orto89]
to model reasoning in presence of incomplete information. The on-
tology from which are defined the semantical structures of LKO is
alternative to the usual Kripke-style semantics. Indeed, the worlds
in a model are not interpreted as knowledge states but as objects.

14



Similarly, the relations are not interpreted as compatibility relations
but as indiscernibility relations between objects with respect to sets
of agents. The set of formulae of LKO is the smallest set that con-
tains Forg and it is closed under —, A and under the unary operators
from {K(«) : @ € P} where P is a set of parameter expressions. An
LKO-model

M = (0B, AGT, (Rg)qcacr,V)

is a structure such that:

1. OB is a non-empty set of objects; AGT is a non-empty set of
agents;

2. for any Q,Q" € AGT, Rg is an equivalence relation, Rgug =
Ry N Rgr and Ry = OB x OB;

3. V is a mapping Forg UP — P(OB)UP(AGT) such that V(p) C
OB for any p € Forg and V restricted to P is a P-valuation.

The satisfiability relation |= is defined as usual, except for the following
condition: M, w = K(a)¢ & either for any w' € Ry (a)(w), M,w" =
¢ or for any w' € Ry ()(w), M,w" |F ~¢. K(a)$ can be interpreted
by: the set a of agents knows whether ¢ holds (see e.g. [Orto89]).
The notion of LKO-validity, LKO-satisfiability, ..., are defined in the
standard way. Let g be the mapping from the set of LKO-formulae
into the set of LIR'-formulae such that

o g(p) € p for any p € Forp; g(—¢) = —g(¢) ;
o g(P A1) = g(d) Ag(yh); g(K(a)p) < [r(a)]g(d) V [r(a)lg(—).

Proposition 4.2. For any LKO-formula ¢, ¢ has an LKO-model of
the form (OB, AGT, . ..) iff g(¢) has an LIR'-model of the form (OB, AGT, .. .).

As a corollary, LKO-satisfiability problem is decidable. Moreover,
it is possible to define a polynomial-time many-one reduction from
LKO-satisfiability into LIR/-satisfiability using renaming techniques
(see e.g. [Min88]).

4.3 Modal logics with a fixed set of parameters

The language L of the modal logics for parameters contains a fized
countable set PAR of parameters. The modal expressions of the lan-
guage are the subsets of PAR. Hence, the modal operators are indexed
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by sets of parameters. Such logics have been considered for instance in
[Bal96b, Bal97]. To be precise, we shall not deal with sets but rather
with a finite representation of certain sets. This representational as-
pect shall be emphasize when needed but this is really necessary since
we wish to establish decidability results. For example, we want to
be able to decide whether two sets that occur in a formula are equal,
which seems to be a reasonable requirement.

By an L-frame (for such kinds of logics) we understand a pair
(W, (Rp) pcpar) such that W is a non-empty set and for any P C PAR,
Rp is a binary relation on W. By an L-model M, we understand a
triple (W, (RP)PCPARaV> such that F = (W, (RP)PCPAR> is an L-
frame and V is a mapping Forg — P(W). The satisfiability relation is
defined in the usual way. In this paper, by a modal logic for parameters
L , we understand (this is a restricted sense in comparison with the
notion introduced in [Bal97, DG00al) a triple (L, X,C) such that

e L is a language for modal logics for parameters;
e X is a class of modal frames;

e C is the class of L-models such that for any M = (W, (Rp) pcpar; V)

1. Ry = W? and for any P, P’ C PAR, Rpup: = Rp N Rpr;
2. for any ) # P C PAR, (W, Rp) € X.

The notion of L-satisfiability, £-validity, logical £-consequence etc,

. are defined in the usual way. Let £ be a modal logic for parameters

(L, X,C). The Rare-logic RARE(L) = (L', Z/,(’, X') is called the Rare-
logic from L &

def

e L' is a language for Rare-logic such that OP = {N} and Z inter-
prets N as set intersection;

o X' ¥ X

e (' is the unique set of L’-models respecting Z' making RARE(L)
a Rare-logic of the class considered so far.

Let £ be a modal logic for parameters. Let ¢ be an L-formula
such that the only sets occurring in ¢ are Xy, ..., X,,. For any integer
k€ {0,...,2" — 1}, we write X} to denote the set

X;Evin...ny,
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where for any i € {1,...,n}, ¥; & X; if bit;(k) = 0 otherwise ¥; &
PAR \ X;. Hence, X} is a concrete set (not a Boolean expression as
done until now). The set {X; : k € {0,...,2" — 1}, X} # 0} is a
partition of PAR. For each set X; we associate a parameter constant
;. For any integer k € {0,...,2" — 1}, we write of to denote the

Boolean expression aj, 41N ...Nay, where for any i € {1,...,n},
a; 8 if bit;(k) = 0 otherwise 5, We write t(¢) to denote the
RARE(L)-formula obtained from ¢ by substituting X; # 0 by ¢(X;)

defined below by
t(X;) = r({aj k€ {0,...,2" — 1}, X} # 0, bit;(k) = 0})

In the case when X; = ), 0 is substituted by r(d;N—d1). It is worth
noting that since we have not yet fixed the mode of representation of
the sets P C PAR, it might not be decidable to know whether X} =0
or X; = (. But, we can show that

Proposition 4.3. ¢ is L-satisfiable iff ¢(¢) is RARE(L)-satisfiable.

Proof: Let M = (W, (Rp)pcpar, V) be an L-model and w € W such
that M, w |= ¢. Consider the RARE(L)-model M’ = (W, PAR, (Rp) pcpar: V')
such that

def

e for any P C PAR, Rp = Rp;
e the restriction of V'’ to the set of propositional variables is V;

o for any j € {1,...,n}, V/(§;) € X;.

Hence for any j € {1,...,n}, V/'(t(X;)) = X;. It is a routine task to
check that M’ w = t(¢) and M’ is a RARE(L)-model.

Now let M’ = (W, PAR,(Rp)pcpar,V’') be a RARE(L)-model
and w € W be such that M, w = t(¢). The set PAR does not
have to be equal to PAR (fixed for £). Consider the £-model M =
(W, (RP)PQPARJ V') such that

e V is the restriction of V' to the set of propositional variables;

o for any k € {0,...,2" — 1} and = € X}, Ryyp & Ryy(ar) and

def

R@ =W x W;
e for any ) # P C PAR, we write {X/,..., X} } to denote the

217
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such that P C X! U...UX}. {X},..., X} always exists and
is unique. We define Rp as follows

Rp = (R 12 e X ue{l,....1}}

It is a routine task to check that the definition is correct. We can
also show that for any P, P’ C PAR Rpypr = Rp N Rp:. It remains
to prove that Rx,, = Ry (x,,)) for ¥ € {1,...,n}. First, for any
j€{0,...,2" — 1}, if XJ* # (0, then Rx; = RV’(a;)'

Bx; = RU{X;;;ke{o,...gnq},bz’tj(k):o,x;;;éa)}
(by definition of the X;’s)
= ﬂ{RXI: 1k e {0, v, 20— 1},bitj(k') = O,X'];k #* @}
= ﬂ{va(a’t) ke {O, .. .,2” - 1},blt](k) = O,X’: 7é (Z)}
(see the preliminary remark)
= Rv/(Ufazkef0,...,2n 1} bt (k)=0,X7 £0})
(M’ is a RARE(L)-model)
= Ry (s(x2))

Q.E.D.

Corollary 4.4. Let £ be a modal logic for parameters. Let Z be a
class of L-formulae such that for any ¢ € Z it is decidable whether
(see the notations above) (D1) X; is empty where X;,..., X,, are rep-
resentations of the sets occurring in ¢ and (D2) X is empty (0 <
k < 2" —1). Then, if the corresponding Rare-logic RARE(L) has a
decidable satisfiability problem, then the L-satisfiability problem for
the fragment Z is decidable.

Let PAR = {p1,p2, ...} be a countable set of parameters (not neces-
sarily finite). A natural representation of the finite subset {p1,...,px}
of PAR is {Fp1,...,pp}/ . {F?, "}/ and ’, are symbols of the language.
Each cofinite subset PAR\{p1, ..., px} can be represented by {“p1, ..., pr}°.
'{¢ and ’}*’ are symbols of the language. Let Z/¢ be the set of £-
formulae such that only finite or cofinite sets of parameters occur and
the representation above is used. Then Z7¢ satisfies the hypothesis of
Corollary 4.4. Moreover, if the representation of a set Y occurs in a
formula, then the representation of the set PAR \ Y can also occur in
a formula of Z7¢. Similar classes of formulae have been considered for
instance in [Bal97].

By way of example we can state that
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Proposition 4.5. Let £ = (L, X,C) be a modal logic for parameters.
L-satisfiability restricted to some Z satisfying (D1) and (D2) in Corol-
lary 4.4 is decidable when X is either the set of transitive frames or
the set of reflexive and transitive frames.

Other decidability results for logics with relative accessibility rela-
tions (involving nominals) can be found in [DK98].

5 Complexity

The map t defined in Section 3 may increase exponentially the size
of formulae although the number of subformulae does not change. In
this section, we provide a sufficient condition so that L-satisfiability
is in EXPTIME. That is, it can be solved by a deterministic Turing
machine in exponential-time (see e.g. [Pap94]).

Lemma 5.1. Let ¢ be a formula.

1. t(¢) can be computed in deterministic time O(2P1(D) for some
polynomial p;(.);

2. card(sub(¢)) = card(sub(t(¢)));
3. |t(¢)] is in O(2r2(9D) for some polynomial py(.);
The proof is by simple inspection of the definition of ¢.

Proposition 5.2. Let £ be a Rare-logic of the kind considered so far.

1. There is a polynomial-time many-one reduction from Eg—satisﬁability
into L-satisfiability.

2. If the Eg—satisﬁabﬂity can be solved by a deterministic Turing
machine in time O(qy (|¢|) +292(card(sub(®))) for some polynomials
q1(.) and g2(.), then L-satisfiability is in EXPTIME.

Proof: (1) See Proposition 3.4. (2) We know that ¢ is L-satisfiable
iff t(¢) is Eg—satisﬁable. By using Lemma 5.1, deciding whether ¢ is
L-satisfiable requires time in

O(2P1(|¢|) + q1(2pz(|¢|)) + qu(card(sub(cb))))

which is also in time O(2P(9D) for some polynomial p(.). Q.E.D.
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Corollary 5.3. [Dem99] LIR -satisfiability and LKO-satisfiability are
EXPTIME-complete.

To establish the complexity lower bounds, general results from
[Hem96] are used.

6 Proof systems for LKO

Proposition 3.3 is not only meaningful to prove decidability or the finite
model property but it also helps to define proof systems for Rare-logics
from proof systems for the corresponding standard modal logics. In
the sequel, we concentrate on the logic LKO that can be equipped
with Hilbert-style proof system [Dem99]. Let £ be a Rare-logic of the
class studied so far and Eg be the corresponding standard modal logic.
Assume that Eg is equipped with a proof system F*. A proof system
F for £ should first be able to simulate the normalization process. For
instance, the following equivalences have to be encoded:

L. [r(a)lp < [r(B)]p when o = §;
2. [r(eUB)lp & [r(e) @ r(8)]p-

For instance 1. and 2. above can be viewed as axiom schemes of
Hilbert-style systems. The rest of the calculus F consists of F* where
only normalized formulae are admitted and the basic modal expres-
sions of the form r(§ N —¢) should play the role of U. By normalized
formula, we mean a formula ¢ such that Na(¢) = ¢ modulo associa-
tivity and commutativity of N and U. Then, in F the basic modal
expressions of the form r(aj) play the role of the modal constants cy
in F*. Although described at some informal level, this program can be
easily implemented for particular logics and proof systems. This was
first done in [Kon97] for logics with relative similarity relations. This
has been more systematically pursued for Hilbert-style proof systems
in [DGO00a, Part II]. By way of example, the Hilbert-style proof system
Fiko for the logic LKO is composed of the axiom schemes

e the tautologies of the Propositional Calculus;

e K(a)p = K(a/)p when a C o/; o A K(a)p A K(a)(p = q) =
K(a)q;

o K(a)(K(a)p = p); K(a)p < K(a)-p.
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and of the inference rules

1. modus ponens: w;

2. necessitation: ﬁ for any a € P.

Proposition 6.1. [Dem99] F, ¢ iff ¢ is LKO-valid.

Display Logic (DL) is a proof-theoretical framework introduced in
[Bel82] that admits a very general cut-elimination theorem. More-
over, DL generalises the structural language of Gentzen’s sequents in
a rather abstract way by using multiple complex structural connectives
instead of Gentzen’s comma. A display logic calculus for LKO can be
found in [DGOOD].

7 Concluding Remarks

In this paper, we have presented many-one reductions between sat-
isfiability problems for Rare-logics and standard modal logics. Both
directions have been investigated and in some sense, we have seen
that the Rare-logics can be very similar to standard modal logics. The
present short survey has been the opportunity to present results for
particular classes of Rare-logics (because of lack of space the presen-
tation of other classes had to be skipped but most of them can be
found in [DGO00a]). When the standard modal logics corresponding
to the Rare-logics are well-known, we get serious insights about the
Rare-logics (decidability, axiomatization, complexity upper bounds,
..). Solving the following open questions will help solving similar
questions for Rare-logics thanks to the translation presented here:

1. Axiomatization and decidability status of DAL (if PDL + con-
verse and intersection is decidable then DAL is decidable);

2. Decidability of Combinatory PDL (CPDL) [PT91] with converse
and intersection.

References

[AT89] D. Archangelsky and M. Taitslin. A logic for data descrip-
tion. In A. Meyer and M. Taitslin, editors, Symposium on Logic
Foundations of Computer Science, Pereslavl-Zalessky, pages 2—11.

21



[Bal96a]

[Bal96b]

[Bal97]

[Bel82]

[BO9Y)

[Dem98a]

[Dem98b)

[Dem99]

[DGO00a)

[DGOOD)]

[DKOS]

Springer-Verlag, Lecture Notes in Computer Science, Vol. 363,
July 1989.

Ph. Balbiani. A modal logic for data analysis. In W. Penczek
and A. Szalas, editors, 21st Symposium on Mathematical Founda-
tions of Computer Sciences (MFCS’96), Krakow, pages 167-179.
Lecture Notes in Computer Science, Vol. 1113, Springer-Verlag,
1996.

Ph. Balbiani. Modal logics with relative accessibility relations.
In D. Gabbay and H.J. Ohlbach, editors, Conference on Formal
and Applied Practical Reasoning (FAPR’96), Bonn, pages 29-41.
Springer-Verlag, June 1996.

Ph. Balbiani. Axiomatization of logics based on Kripke models
with relative accessibility relations. In [Oe97], pages 553-578,
1997.

N. Belnap. Display logic. J. of Philosophical Logic, 11:375-417,
1982.

Ph. Balbiani and E. Orlowska. A hierarchy of modal logics with
relative accessibility relations. J. of Applied Non-Classical Logics,
special issue in the Memory of George Gargov, 9:303-328, 1999.

S. Demri. A class of decidable information logics. Theoretical
Computer Science, 195(1):33-60, 1998.

S. Demri. Coping with semilattices of relations in logics with
relative accessibility relations (extended abstract). In E. Ortowska
and A. Szalas, editors, 4th International Seminar on Relational
Methods in Logic, Algebra and Computer Science, pages 43-47,
September 1998.

S. Demri. A logic with relative knowledge operators. J. of Logic,
Language and Information, 8(2):167-185, 1999.

S. Demri and D. Gabbay. On modal logics characterized by models
with relative accessibility relations: Part I and Part II. Studia
Logica, 2000. To appear.

S. Demri and R. Goré. Display calculi for logics with relative
accessibility relations. J. of Logic, Language and Information,
9(2):213-236, 2000.

S. Demri and B. Konikowska. Relative similarity logics are decid-
able: reduction to FO? with equality. In JELIA 98, pages 279-293.
Lecture Notes in Artificial Intelligence, Vol. 1489, Springer-Verlag,
1998.

22



[DOYY]

[Diin97]
[FACOS5]
(GPY2]

[Hars4]

[Hem96]

[J4r97]

[Kon97]

[Min88]

[Nov97]

[0e97]

[Orto84a]

[Orto84b]

S. Demri and E. Ortowska. Every finitely reducible logic has the
finite model property with respect to the class of <>-formulae.
Studia Logica, 62(2):177-200, 1999. Special issue edited by M.L.
Dalla Chiara and D. Mundici. Selected papers in honour of Ettore
Casari.

I. Diintsch. Rough sets and algebras of relations. In [Oe97], pages
95-108, 1997.

L. Farinas del Cerro and E. Orlowska. DAL - A logic for data
analysis. Theoretical Computer Science, 36:251-264, 1985.

V. Goranko and S. Passy. Using the universal modality: gains and
questions. J. of Logic and Computation, 2(1):5-30, 1992.

D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, edi-
tors, Handbook of Philosophical Logic, Volume II, pages 497-604.
Reidel, Dordrecht, 1984.

E. Hemaspaandra. The price of universality. Notre Dame Journal
of Formal Logic, 37(2):173-203, 1996.

J. Jarvinen. Representation of information systems and depen-
dences spaces, and some basic algorithms. Licentiate’s thesis,
1997.

B. Konikowska. A logic for reasoning about relative similarity.
Studia Logica, 58(1):185-226, 1997.

G. Mints. Gentzen-type and resolution rules part I: propositional
logic. In P. Martin-Lof and G. Mints, editors, International Con-
ference on Computer Logic, Tallinn, pages 198-231. Springer Ver-
lag, Lecture Notes in Computer Science, Vol. 417, 1988.

M. Novotny. Applications of dependence spaces. In [Oe97], pages
247-289, 1997.

E. Orlowska (ed.). Incomplete Information: Rough Set Analysis.
Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidel-
berg, 1997.

E. Orlowska. Logic of indiscernibility relations. In A. Skowron,
editor, 5th Symposium on Computation Theory, Zaboréw, Poland,
pages 177-186. Lecture Notes in Computer Science, Vol. 208,
Springer-Verlag, 1984.

E. Ortowska. Modal logics in the theory of information systems.
Zeitschrift fiir Mathematik Logik und Grundlagen der Mathematik,
30(1):213-222, 1984.

23



[Or1o88]

[Or1o89]

[Orto93]

[Pap94]
[Paw81]
[PTY1]

[Tar53]

[Vako1]

[Vak92]

E. Ortowska. Kripke models with relative accessibility and
their applications to inferences from incomplete information. In
G. Mirkowska and H. Rasiowa, editors, Mathematical Problems in
Computation Theory, pages 329-339. Banach Center Publications,
Volume 21 PWN - Polish Scientific Publishers, Warsaw, 1988.

E. Ortowska. Logic for reasoning about knowledge. Zeitschrift fir
Mathematik Logik und Grundlagen der Mathematik, 35:559-568,
19809.

E. Orlowska. Reasoning with incomplete information: rough set
based information logics. In V. Alagar, S. Bergler, and F. Dong,
editors, Incompleteness and Uncertainty in Information Systems
Workshop, pages 16-33. Springer-Verlag, October 1993.

Ch. Papadimitriou. Computational Complezity. Addison-Wesley
Publishing Company, 1994.

Z. Pawlak. Information systems theoretical foundations. Infor-
mation Systems, 6(3):205-218, 1981.

S. Passy and T. Tinchev. An essay in combinatory dynamic logic.
Information and Computation, 93:263-332, 1991.

A. Tarski. Undecidable Theories. Studies in Logic and the founda-
tions of Mathematics. North-Holland Publishing Company, 1953.
In collaboration with A. Mostowski. and R. Robinson.

D. Vakarelov. Modal logics for knowledge representation systems.
Theoretical Computer Science, 90:433-456, 1991.

D. Vakarelov. A modal logic for cyclic repeating. Information and
Computation, 101:103-122, 1992.

24



