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Witness Runs for Counter Machines?

Clark Barrett1, Stéphane Demri1,2, and Morgan Deters1

1 New York University, USA, 2 LSV, CNRS, France

Abstract. In this paper, we present recent results about the verifica-
tion of counter machines by using decision procedures for Presburger
arithmetic. We recall several known classes of counter machines for which
the reachability sets are Presburger-definable as well as temporal logics
with arithmetical constraints. We discuss issues related to flat counter
machines, path schema enumeration, and the use of SMT solvers.

1 Introduction

Infinite-state systems. Model-checking is a standard approach to verifying prop-
erties of computing systems [CGP00] and it is known that dealing with infinity
or unboundedness of computational structures leads easily to undecidable verifi-
cation problems. Such problems include testing boundedness (checking whether
a counter in a counter machine takes a finite amount of values) and those deal-
ing with model-checking temporal formulae in which atomic formulae can state
properties about unbounded values (e.g., arithmetical constraints about counter
values). Roughly speaking, techniques for the verification of infinite-state sys-
tems stem from exact methods in which potentially infinite sets of configurations
are finitely represented symbolically to semi-algorithms that are designed to be-
have well in practice. When exact methods can produce decision procedures,
this is because an underlying finite structure can be identified in the verifica-
tion problem. For instance, the set of reachable configurations can be effectively
represented symbolically, typically by a formula in Presburger arithmetic, for
which satisfiability is known to be decidable [Pre29]. The use of Presburger
arithmetic for formal verification has been advocated in [SJ80]. Finiteness can
also occur in a more subtle way, as in well-structured transition systems [FS01],
for which termination is guaranteed thanks to underlying well-quasi-orderings,
see e.g. [Kos82,OW05].

Counter machines. Counter machines are well-known infinite-state systems that
have many applications in formal verification. Their ubiquity stems from their
use as operational models for several purposes, including for instance for broad-
cast protocols [FL02], for programs with pointer variables (see [BBH+06]) and
for logics for data words, see e.g. [BL10]. However, numerous model-checking
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problems for counter machines, such as reachability, are known to be unde-
cidable. Many subclasses of counter machines admit a decidable reachability
problem, such as reversal-bounded counter automata [Iba78] and flat counter
automata [CJ98,Boi99,FL02]. These two classes of machines admit reachabil-
ity sets effectively definable in Presburger arithmetic (assuming some additional
conditions, unspecified herein). In general, computing the transitive closures of
integer relations is a key step to solve verification problems on counter machines,
see e.g. [BW94,CJ98,Fri00,FL02,BIK09].

Flatness. Flat counter machines are counter machines in which each control
state belongs to at most one simple cycle (i.e., a cycle without any repetition
of edges). Several classes of such flat operational devices have been identified
and reachability sets have been shown effectively Presburger-definable for many
of them, see e.g. [FO97,CJ98,Boi99,FL02,BIK09]. This provides a decision pro-
cedure for the reachability problem, given a prover for Presburger arithmetic
validity. Effective semilinearity boils down to check that the effect of a loop
can be characterized by a formula in Presburger arithmetic (or in any decidable
fragment of first-order arithmetic). The results for flat counter machines can be
then obtained by adequately composing formulae for loops and for finite paths.
However, this approach, briefly described in this paper, suffers from at least two
drastic limitations. First, flatness in counter machines remains a strong restric-
tion on the control graph, though this has been relaxed by considering flattable
counter machines, see e.g. [BFLS05,LS05,Ler13] and Section 3.5, where a ma-
chine may not itself be flat, but is known to have a flat unfolding with the same
reachability set. The second limitation is due to the fact that reachability ques-
tions are not the only interesting ones and the verification of properties expressed
in dedicated temporal logics is often desirable, see e.g. [DFGvD10].

In this paper, we present a selection of results about the verification of
counter machines, at times assuming flatness, from reachability problems to
model-checking problems with temporal logics. We follow an approach similar
to [Fri00] to translate verification problems into Presburger arithmetic satisfia-
bility. We focus on flattable counter machines and how to compute flat unfoldings
by enumerating path schemas while invoking SMT solvers to optimize this enu-
meration. This part of the paper presents preliminary results, and it will be the
subject of a dedicated paper.

Satisfiability Modulo Theories. Deciding Presburger arithmetic fragments is es-
sential to verify properties of programs; see e.g. [Sho79] and [SJ80] for an early
use of Presburger arithmetic for formal verification. Most well-known SMT
solvers deal with quantifier-free linear integer formulae, also known as quantifier-
free linear integer arithmetic (‘QF_LIA’ in the parlance of SMT-LIB [BST12]).
For instance, this includes Z3 [dMB08], CVC4 [BCD+11] and Alt-Ergo [Con12],
to cite a few of them. However, dealing with quantifiers is usually a difficult
task for SMT solvers that are better tailored to theory reasoning. Many general-
purpose SMT solvers (including CVC3, CVC4, Z3, Yices, Alt-Ergo) do accept
formulas with quantifiers and they handle them in roughly the same way, through
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heuristic instantiation. Z3 is unique in that it implements several quantifier-
elimination procedures as preprocessing steps, including a procedure for Pres-
burger arithmetic (‘LIA’ in SMT-LIB). It is worth also mentioning automata-
based tools dealing with satisfiability such as MONA [BKR96], LASH [BJW01]
or TAPAS [LP09]. Even though Presburger arithmetic admits quantifier elimi-
nation, it is known that eliminating quantifiers can be computationally expen-
sive (see e.g., [RL78,Grä88]). Recent developments propose a promising, lazy
approach for quantifier elimination [Mon10].

2 Machines with Registers

In this section, we briefly present Presburger arithmetic (PA), the class of Pres-
burger counter systems, and standard subclasses.

2.1 Presburger arithmetic in a nutshell

Presburger arithmetic (PA) has been introduced by M. Presburger in [Pre29]
where it is shown decidable by quantifier elimination. This decidability result on
the theory of addition is regarded today as a key result in theoretical computer
science.

Let VAR = {x, y, z, . . .} be a countably infinite set of variables. Terms are
expressions of the form a1x1 + · · · + anxn + k where a1, . . . , an are constant
coefficients in N, k is in N and the xi’s are variables. Variables and terms come
with their interpretations when the variables are interpreted by natural numbers.
A valuation v is a map VAR→ N and it can be extended to the set of all terms
as follows: v(k) = k, v(ax) = a× v(x) and v(t + t′) = v(t) + v(t′) for all terms
t and t′. Formulae are defined by the grammar below:

φ ::= t ≤ t′ | ¬φ | φ ∧ φ | ∃ x φ

where t and t′ are terms and x ∈ VAR. A formula φ is in the linear fragment def⇔
φ is a Boolean combination of atomic formulae of the form t ≤ t′. The semantics
for formulae in (PA) is defined with the help of the satisfaction relation |= that
determines the conditions for the satisfaction of a formula under a given valuation
(we omit the Boolean clauses):

– v |= t ≤ t′
def⇔ v(t) ≤ v(t′),

– v |= ∃ x φ def⇔ there is n ∈ N such that v[x 7→ n] |= φ where v[x 7→ n] is equal
to v except that x is mapped to n.

Any formula φ(x1, . . . , xn) whose free variables are among x1, . . . , xn, with
n ≥ 1, defines a set of n-tuples Jφ(x1, . . . , xn)K def

= {〈v(x1), . . . , v(xn)〉 ∈ Nn :
v |= φ} which contains all the tuples that make true the formula φ by ignoring
the irrelevant interpretation of the bound variables and by fixing an arbitrary
ordering between the variables. For instance, Jx1 < x2K = {〈n, n′〉 ∈ N2 : n < n′}.
Let φ be a formula φ(x1, . . . , xn) with n ≥ 1 free variables x1, . . . , xn. We say that

3



JφK is a Presburger set. The satisfiability problem for (PA) is a decision problem
that takes as input a formula φ and asks whether there is a valuation v such
that v |= φ. If such a valuation exists, we say that φ is satisfiable.

Theorem 1 (Presburger Arithmetic Decidability). [Pre29] The satisfia-
bility problem for (PA) is decidable.

The satisfiability problem can be solved in triple exponential time [Opp78]
by analyzing the quantifier elimination procedure described in [Coo72]. It was
shown 2ExpTime-hard in [FR74] and to be in 2ExpSpace in [FR79]. An exact
complexity characterization is provided in [Ber80] (double exponential time on
alternating Turing machines with linear amounts of alternations).

2.2 Presburger counter systems

The systems introduced below are finite-state automata augmented with regis-
ters, also known as counters (variables interpreted as natural numbers). Tran-
sitions are labelled by arithmetical constraints on counters defined in (PA). A
Presburger counter system C = 〈Q,n, δ〉 is a structure (see e.g. [DFGvD10,Ler12])
such that

– Q is a nonempty finite set of control states,
– n ≥ 1 is the dimension of the system, i.e. the number of counters, we assume

that the counters are represented by the variables x1, . . . , xn,
– δ is the transition relation defined as a finite set of triples of the form 〈q, φ, q′〉,

where q, q′ are control states and φ is a Presburger formula whose free vari-
ables are among x1, . . . , xn, x

′
1, . . . , x

′
n. Prime variables are intended to be

interpreted as the next values of the unprimed variables.

Figure 1 contains a Presburger counter system C such that inc(i) [resp. dec(i)]
stands for the formula that increments [resp. decrements] the counter xi and
keeps unchanged the other counters. Formulae zero(i) tests if counter xi is equal
to zero but it has no effect on the counters.

Elements t = 〈q, φ, q′〉 ∈ δ are called transitions and are often represented
by q φ−→ q′. A configuration of the Presburger counter system C = 〈Q,n, δ〉 is a
pair 〈q,x〉 ∈ Q × Nn. Given two configurations 〈q,x〉, 〈q′,x′〉 and a transition
t = q

φ−→ q′, we write 〈q,x〉 t−→ 〈q′,x′〉 whenever v |= φ (in (PA)) and for every
i ∈ [1, n], v(xi)

def
= x(i) and v(x′i)

def
= x′(i). Given a Presburger counter system C,

its transition system T(C) = 〈S,−→〉 is a graph with S = Q×Nn and −→⊆ S×S

such that 〈〈q,x〉, 〈q′,x′〉〉 ∈−→ def⇔ there exists a transition t ∈ δ such that
〈q,x〉 t−→ 〈q′,x′〉. As usual, ∗−→ denotes the reflexive and transitive closure of the
binary relation −→. The binary relation ∗−→ is also called the reachability relation
of C and it is sometimes written ReachC. Similarly, we write ReachC(〈q,x〉) to
denote the reachability set {〈q′,x′〉 ∈ S : 〈q,x〉 ∗−→ 〈q′,x′〉}. A run ρ is a non-
empty (possibly infinite) sequence ρ = 〈q0,x0〉, . . . , 〈qk,xk〉, . . . of configurations
such that two consecutive configurations are in the relation −→ from T(C).
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Fig. 1. A Presburger counter system

Most verification problems on Presburger counter systems are known to
be undecidable since they include Minsky machines [Min67, Chapter 11] (see
also [Min61, Section 3]) that are Turing-complete, even if restricted to two coun-
ters [Min67, Chapter 14]. The introduction of program machines with registers
in [Min67], nowadays best known as Minsky machines, has been motivated by
proposing an alternative to Turing machines that is closely related to programs.

2.3 Decision problems

In this section, we recall several standard decision problems about Presburger
counter systems. They are mainly related to reachability questions (problems
related to temporal logics are introduced in Section 4).

Reachability problem:

Input: a Presburger counter system C and configurations 〈q0,x0〉 and 〈qf ,xf 〉.
Question: is there a finite run from 〈q0,x0〉 to 〈qf ,xf 〉?

Control state reachability problem:

Input: a Presburger counter system C, a configuration 〈q0,x0〉 and a state qf .
Question: is there a finite run with initial configuration 〈q0,x0〉 and whose

final configuration has control state qf?

Other verification problems on Presburger counter systems are worth men-
tion, though not discussed herein, including the control state repeated reachability
problem and the termination problem.

2.4 Some classes of Presburger counter systems

In this section, we introduce classes of Presburger counter systems by restricting
the general definition provided above. Additional requirements can be of dis-
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tinct nature: restriction on syntactic resources (number of counters, etc.), restric-
tion on the control graph (e.g., flatness) and semantical restrictions (reversal-
boundedness, etc.).

Counter systems. A counter system C = 〈Q,n, δ〉 is a Presburger counter system
such that for each transition t = q

φ−→ q′ ∈ δ, φ can be written as φg∧φu, where φg
(guard) is a Boolean combination of atomic formulae of the form t ≤ t′ built over
x1, . . . , xn and φu (update) is a formula of the form

∧
i∈[1,n] x

′
i = xi + b(i) where

b ∈ Zn. The transition t is also written q
〈φg,b〉−−−→ q′. Minsky machines [Min67] are

counter systems such that each update can change at most one counter and the
guards are restricted to > and to zero-tests. The Presburger counter system in
Figure 1 is indeed a counter system with the above meaning.

A vector addition system with states [KM69] (VASS for short) is a counter

system such that all the transitions are of the form q
〈>,b〉−−→ q′. So, a VASS can

be represented by a tuple V = 〈Q,n, δ〉 where Q is the finite set of control
states and δ is a finite subset of Q × Zn × Q. A famous result states that the
reachability problem for VASS is decidable [May84,Kos82,Ler09]. It has been
the subject of the book [Reu90] and its proof requires many non-trivial steps
involving graph theory, logic and theory of well-quasi-orderings. Nevertheless, the
exact complexity of the reachability problem is open: we know it is ExpSpace-
hard [Lip76] and no primitive recursive upper bound exists. In [Ler09], existence
of semilinear separators in case of non-reachability in VASS leads to promising
developments.

A note to the reader. Counter systems are the main class of Presburger
counter systems considered in this document. However, we are aware that the
current term might be confusing: when we really want to mean the full class of
systems, we will use the more general term ‘Presburger counter system.’

Reversal-bounded counter systems. In this section, we consider counter systems
for which the atomic formulae in guards are of the form t ≤ k or t ≥ k with
k ∈ Z and t is of the form

∑
i aixi with the ai’s in Z. There is no real restriction

with the class introduced earlier except that we require that atomic formulae
occur in a certain way.

A reversal for a counter occurs in the run of some counter system when
there is an alternation from nonincreasing mode to nondecreasing mode and
vice-versa. Below, we propose a slight generalization from [BD11] that captures
the notion of reversal-boundedness from [Iba78]; reversal-boundedness applies to
counters but also to terms occurring in guards. Let C = 〈Q,n, δ〉 be a counter
system and T be a finite set of terms including {x1, . . . , xn}. From a run ρ =
〈q0,x0〉, 〈q1,x1〉, . . . of C, in order to describe the behavior of counters and terms
varying along ρ, we define a sequence of mode vectors md0,md1, . . . (of the same
length as ρ) such that each mdi has profile T→ {↗,↘}. Intuitively, each value
in a mode vector records whether a term is currently in an increasing phase
or in an decreasing phase (this includes the counters themselves as in standard
reversal-boundedness). Given t =

∑
i aixi and a counter vector x, we write
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x(t) to denote the integer
∑
aix(i). We are now ready to define the sequence

md0,md1, . . . By convention, md0 is the constant map ↗. For every j ≥ 0 and
t ∈ T, we have mdj+1(t)

def
= mdj(t) when xj(t) = xj+1(t), mdj+1(t)

def
=↗ when

xj+1(t)− xj(t) > 0 and mdj+1(t)
def
=↘ when xj+1(t)− xj(t) < 0. Let Revt =

{j ∈ [0, len(ρ)−1] : mdj(t) 6= mdj+1(t)}; we say that ρ is r-T-reversal-bounded for
some r ≥ 0

def⇔ for all t ∈ T, card(Revt) ≤ r. Given a counter system C, we write
TC to denote the set of terms t occurring in atomic formulae of the form t ∼ k
with ∼∈ {≤,≥} augmented with the counters in {x1, . . . , xn}. An initialized
counter system 〈C, 〈q,x〉〉 is reversal-bounded def⇔ there is r ≥ 0 such that every
run from 〈q,x〉 is r-TC-reversal-bounded. When T is reduced to {x1, . . . , xn}, T-
reversal-boundedness is equivalent to reversal-boundedness from [Iba78]. Note
that the counter system in Figure 1 is {x1, x2}-reversal-bounded from any initial
configuration of the form 〈q1,x0〉.

Compared to the subclasses considered so far, reversal-bounded counter sys-
tems are augmented with an initial configuration so that existence of the bound
r is relative to the initial configuration. Secondly, this class is not defined from
the class of counter systems by imposing syntactic restrictions but rather se-
mantically. The main property related to reversal-bounded counter systems is
the result below.

Theorem 2. [Iba78,BD11] Given a counter system C, r ≥ 0 and control states
q, q′, one can effectively compute a Presburger formula φq,q′(x1, . . . , xn, y1, . . . , yn)
such that for all valuations v, we have v |= φ iff there is an r-TC-reversal-bounded
run from 〈q, 〈v(x1), . . . , v(xn)〉〉 to 〈q′, 〈v(y1), . . . , v(yn)〉〉.

So, bounding the number of reversals in runs allows to characterize the reach-
ability sets by computing Presburger formulae. This approach can be generalized
to richer models, see e.g., [HR87,FS08,HL11].

Affine Presburger counter systems. Now, we present the class of affine Pres-
burger counter systems that substantially extends the class of counter systems
by allowing any guard that can be defined in (PA) and by giving the possibility
to have affine updates. A partial function f from Nn to Nn is affine def⇔ there
exist a matrix A ∈ Zn×n and b ∈ Zn such that for every a ∈ dom(f), we have
f(a) = Aa + b. f is Presburger-definable def⇔ the graph of f is a Presburger set
(binary relation).

A Presburger counter system C = 〈Q,n, δ〉 is affine when for every transition
q

φ−→ q′ ∈ δ, JφK is affine and there is a triple 〈φg, A, b〉 such that φg (guard)
is a formula in (PA) with free variables among x1, . . . , xn and JφK = {〈x,x′〉 ∈
N2n : x′ = Ax + b and x ∈ JφgK}. The formula φg represents the guard of
the transition and the pair 〈A, b〉 is the deterministic update function. Such a
triple 〈φg, A, b〉 is called an affine update and we also write J〈φg, A, b〉K to denote
JφK. Observe that one can decide whether a Presburger formula φ satisfies that
JφK is affine [DFGvD10, Proposition 3]. Furthermore, counter systems are affine
counter systems in which the only matrix is identity. This class of Presburger
counter systems has been introduced in [FL02].
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Observe that given t = q
〈φg,A,b〉−−−−→ q′, there is a Presburger formula ϕ(x, x′) such

that for every v, we have v |= ϕ iff 〈q, 〈v(x1), . . . , v(xn)〉〉 t−→ 〈q′, 〈v(x′1), . . . , v(x′n)〉〉.
Here is the witness formula that encodes the one-step relation:

φg(x) ∧
∧

i∈[1,n]

(x′i =
∑
j

A(i, j)xj + b(i))

Note that the composition of affine updates is still an affine update.

Presburger counter systems with octagonal constraints. A Presburger counter
systems with octagonal constraints is such that for each transition q

φ−→ q′ ∈ δ,
the formula φ is a conjunction of atomic formulae of the form ±y± z ≤ k where
y, z are variables among x1, . . . , xn, x

′
1, . . . , x

′
n, k ∈ Z and ±y stands for either y or

−y (same applies for ±z). Constraints of the form ±y±z ≤ k are called octagons
and have been considered in [BGI09]. Note that octagons include constraints of
the form y ≤ z + k or y ≤ k considered in [CJ98]. Unlike the counter systems,
in Presburger counter systems with octagonal constraints the transitions do not
necessarily lead to functional updates. Here is an example of formula labelling
a transition: φ = (x1 + 1 < x′1) ∧ (x2 − 3 = x′2). In [CJ98], Presburger counter
systems with octagonal constraints with only constraints of the form y ≤ z + k
or y ≤ k have been studied and a major result established in [CJ98] states that
the effect of any loop can be effectively defined in (PA).

Imperfect counter automata. Counter automata are defined as VASS except that
we accept also zero-tests on counters as guards. Below, we briefly consider vari-
ants of counter automata in which counter values can be decremented without
notification (a loss) or counter values can be incremented without notification (a
gain) – but not the two possibilities in the same model. A lossy counter automa-

ton is a counter automaton such that for all q ∈ Q and for all i ∈ [1, n], q
dec(i)−−−→ q

(which allows us to simulate losses). The control state reachability problem for
lossy counter automata is decidable and actually lossy counter automata form a
subclass of lossy channel systems, see e.g. [Sch02] and the reachability problem
for lossy channel systems is decidable [AJ96,FS01]. For instance, they can be
used to model lossy channel systems for which the ordering of the messages is
not relevant. In that case, each counter can store how many messages of a given
type are present in the channel. Lossy counter automata have been introduced
in [May03]. Similarly, a gainy counter automaton is a counter automaton such

that for all q ∈ Q and for all i ∈ [1, n], q
inc(i)−−→ q ∈ δ (which allows us to simulate

gains). The control state reachability problem for gainy counter automata can be
shown decidable by making a correspondence with reset VASS (VASS in which
it is possible to reset counter values) but the problem is nonprimitive recursive,
see e.g. [Sch02,Sch10]. Even though Presburger counter systems with imperfect
computations are not further discussed in the paper, they form an interesting
class of systems related to many other verification problems.
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In order to conclude this section, it is worth noting that there exist plenty
of other classes of Presburger counter systems for which reachability problems
can be solved by using (PA) (see e.g., subclasses of Petri nets). However, since
Presburger counter systems are Turing-complete, designing new (tractable) sub-
classes remains an ongoing process. In the next sections, we focus on presenting
proof techniques to solve reachability problems for some of the classes.

3 Loops, Path Schemas and Flatness

3.1 Computing loop effects in (PA)

Let C = 〈Q,n, δ〉 be a Presburger counter system. A path p of C is a finite
sequence of transitions from δ corresponding to a path in its control graph.
We write first(p) [resp. last(p)] to denote the first [resp. last] control state of a
path. A loop l is a non-empty path p such that first(p) = last(p) and we write
effect(l) to denote the effect of the loop l defined as below:

{〈x,x′〉 ∈ Nn × Nn : 〈first(l),x〉 l−→ 〈last(l),x′〉}

Similarly, we write effect<ω(l) to denote the repeated effect of the loop l:

{〈x,x′〉 ∈ Nn × Nn : 〈first(l),x〉 li−→ 〈last(l),x′〉, i ≥ 0}

The reachability problem for loops can be then defined as follows: given a
loop l from a Presburger counter system C of dimension n and two counter value
vectors x0, xf in Nn, is 〈x0,xf 〉 ∈ effect<ω(l)? Repeated effect is simply called
acceleration in [FL02, Section 3].

Note that even though effect(l) can be defined by a Presburger formula, this
does not imply that it is the case for effect<ω(l) too. Indeed, if the binary rela-
tion R is Presburger set, then this does not imply that its reflexive and transitive
closure R∗ is a Presburger set too. For instance, if R = {〈α, 2α〉 ∈ N2 : α ∈ N}
then R∗ = {〈α, 2βα〉 ∈ N2 : α, β ∈ N} is not Presburger-definable. By contrast,
if S = {〈α, α + 1〉 ∈ N2 : α ∈ N} then S∗ = {〈α, β〉 ∈ N2 : α < β, α, β ∈ N}
is a Presburger set. The question of deciding whether the reflexive and tran-
sitive closure of a Presburger-definable binary relation is Presburger-definable
is known to be intimately related to the fact that reachability relations from
Presburger counter systems are Presburger-definable, which leads to decidabil-
ity when effectiveness is guaranteed too. Indeed, consider the following loop with
q1 = qk:

q1
φ1(x1,...,x

′
n)−−−−−−−→ q2

φ2(x1,...,x
′
n)−−−−−−−→ · · · φk−1(x1,...,x

′
n)−−−−−−−−→ qk−1

φk(x1,...,x
′
n)−−−−−−−→ qk.

The effect of the loop can be represented by the Presburger formula below:

ψ(x̄, x̄′)
def
= ∃ ȳ1, . . . , ȳk φ1(x̄, ȳ1) ∧ φ2(ȳ1, ȳ2) ∧ · · · ∧ φk(ȳk, x̄′)

where x̄, x̄′, ȳ1, . . . , ȳk are sequences of variables of length n.
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In order to decide the reachability problem on the loop, it is essential to rep-
resent symbolically effect<ω(l). The best we can hope for is that effect<ω(l)
is a Presburger set. This motivates the definition below.

Definition 3. Given R ⊆ N2n, we define the counting iteration of R as the
relation RCI ⊆ Nn × N × Nn such that 〈x, i,y〉 ∈ RCI

def⇔ 〈x,y〉 ∈ Ri (i
compositions of R). R has a Presburger counting iteration if RCI is a Presburger
set.

If R has a Presburger counting iteration, then there exists a Presburger for-
mula ϕ(x̄, z, ȳ) such that JϕK = RCI. Consequently, the relation R∗ is Presburger-
definable since J∃ z ϕK = R∗. Observe that {〈α, α + 1〉 ∈ N2 : α ∈ N} has
a Presburger counter iteration witnessed by a Presburger formula of the form
x′ = x + y.

Definition 4 (The property (?) of Presburger counter systems). A class
of Presburger counter systems is said to satisfy the property (?) when, for ev-
ery loop l, effect(l) has the Presburger counting iteration and its Presburger
formula is computable.

Note in particular that this means that for every loop l, the set {〈x, i,x′〉 :

〈first(l),x〉 li−→ 〈last(l),x′〉, i ≥ 0} is effectively definable by a Presburger for-
mula ϕ?l (with 2n+ 1 free variables).

3.2 Finitary path schemas

A path schema P is a regular expression built over the alphabet of transitions
such that its language represents an overapproximation of the set of labels ob-
tained from finite runs following the transitions of P (counter values are ignored).
This notion has been extensively used since [FO97,Fri00,FL02] and this provides
a natural transition since path schemas are made of loops and paths. More pre-
cisely, a finitary path schema P is of the form p1l

∗
2p3l

∗
4 . . . l

∗
k−1pk where (1) l2,

. . . , lk−1 are loops and (2) p1l2p3l4 . . . pk is a path. The length of a path schema,
written len(P), is defined as the number of letter occurrences in the regular ex-
pression defining the path schema (no substructure sharing). Let Lan(P) denote
the set of finite words in δ∗ which belong to the language defined by P. Note
that some elements of Lan(P) may not correspond to any actual run because of
constraints on counter values. Finally, we say that a run ρ starting in a configu-
ration 〈q0,x0〉 respects a path schema P if the sequence of transitions generating
ρ belongs to Lan(P).

Path schemas are used as a means to encode the structure of a potentially
infinite set of runs. That is why, we will pay a special attention to avoid consid-
ering distinct path schemas P and P′ such that Lan(P) ⊆ Lan(P′). Containment
problem for regular expressions is PSpace-complete but co-NP-complete for reg-
ular expressions defining bounded languages, see e.g. [HRS76]. Any set Lan(P)
defines a bounded language.
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That is why, in the following we only consider path schemas such that the
loops l are not multiples of smaller loops (i.e., l = (l′)i with i ≥ 2) and no path
p contains a loop as a factor (which bounds the length of such paths). Such loops
are called simple loops. In the following, such path schemas are called good. It is
easy to see that every finite run respects a good path schema.

Lemma 5. When (?) holds, {〈x,x′〉 : 〈q,x〉 ∗−→ 〈q′,x′〉 respects P} is effectively
definable by a Presburger formula ϕP (with 2n free variables).

Effective semilinearity boils down to check that the effect of a loop can be
characterized by a formula in Presburger arithmetic (or in any decidable frag-
ment of first-order arithmetic). The above result can be then obtained by ade-
quately composing formulae for the loops and for the finite paths.

By way of example, note that the effect of the self-loop q
x′=2x−−→ q is not

definable in Presburger arithmetic since {2i : i ≥ 0} is not Presburger-definable.
By contrast, the effect of the self-loop

q
x′1=x1+2∧x′2=x2+3∧φ(x1,x2)−−−−−−−−−−−−−−−−−→ q

for any Presburger formula φ(x1, x2) is Presburger-definable since {〈x, i,x′〉 :

〈q,x〉 li−→ 〈q,x′〉} can be defined with the formula below:

ϕ(x1, x2, i, x
′
1, x
′
2)

def
= x′1 = x1+2i∧x′2 = x2+3i∧∀ y (0 ≤ y < i)⇒ φ(x1+2y, x2+3y)

Here are concrete classes to apply Lemma 5.

Theorem 6.

(I) Presburger counter systems with octagonal constraints enjoy (?) [BGI09]
(see also [CJ98] for a substantial result on a subclass).

(II) Counter systems enjoy (?) (folklore result, see e.g. [Fri00,DDS12]).

An implementation of the transitive closure of octagonal relations is done in the
tool FLATA, see e.g., [BGI09].

3.3 Flat Presburger counter systems

A Presburger counter system C is flat def⇔ every control state belongs to at
most one simple cycle (i.e., a loop in which each transition occurs at most
once). As far as we can judge, the term ‘flat’ in that sense has been introduced
in [FO97,CJ98,Fri00]. The Presburger counter system in Figure 1 is flat.

Lemma 7. Every flat Presburger counter system has a finite number of good
path schemas that is at most exponential in its size.

Of course, this is not the only way to get a finite amount of path schemas,
for instance when from an initial configuration, termination is guaranteed but
here the finite number of path schemas is structurally guaranteed.
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Theorem 8. Let C be a class of Presburger counter systems that enjoys (?).
Then, for every flat Presburger counter system from C, the reachability relation
ReachC is Presburger-definable.

This is at the heart of the decidability results for verifying safety and reach-
ability properties on flat Presburger counter systems from [CJ98,FL02,BIK09]
whereas for the verification of temporal properties, it is much more difficult to
get sharp complexity characterization, see e.g. [DDS12].

Corollary 9. Let C be a class of Presburger counter systems that enjoys (?).
The reachability problem for C is decidable.

The corollary can be obtained as follows. Consider the instance C, 〈q0,x0〉
and 〈qf ,xf 〉. We have seen that we can compute the Presburger formula φ that
encodes the reachability relation in C. It remains to check satisfiability of the
formula (

∧i=n
i=1 (xi = x0(i) ∧ x′i = xf (i))) ∧ φ assuming free variables in φ are

x1, . . . , xn, x
′
1, . . . , x

′
n. This can be done thanks to Theorem 1.

3.4 Finite monoid property in affine Presburger counter systems

Below, we present a class of affine Presburger counter systems with Presburger-
definable loop effects even though the class does not necessarily enjoy the prop-
erty (?). Given A ∈ Zn×n, let A∗ be the monoid generated from A with A∗ =
{Ai : i ∈ N}. The identity element is naturally the identity matrix A0 = I. Given
a matrix A ∈ Zn×n, checking whether the monoid generated by A is finite, is

decidable [MS77]. By way of example, with A =

(
1 0
1 1

)
, we have

A2 =

(
1 0
1 1

)(
1 0
1 1

)
=

(
1 0
2 1

)
A3 =

(
1 0
3 1

)
. . . Am =

(
1 0
m 1

)
So A∗ is not finite. Finiteness of the monoid generated from A is interesting
because of the lemma below.

Lemma 10. [BW98,Boi99,FL02] Let R ⊆ Nn × Nn be a binary relation of di-
mension n defined by the triple 〈φg, A, b〉 such that R = {〈x,x′〉 ∈ N2n : x′ =
Ax+b and x ∈ JφgK}. If A∗ is finite, then R has a Presburger counting iteration.

It is worth adding that one can also effectively compute the Presburger for-
mula encoding the relationR∗. A recent work unifying [CJ98,FL02,BGI09,BIL09]
by considering all the families of formulae labelling transitions from these works
can be found in [BIK09].

A loop in an affine counter system has the finite monoid property def⇔ its
corresponding affine update 〈φg, A, b〉, possibly obtained by composition of sev-
eral affine updates, satisfies that A∗ is finite. Let us introduce below the class of
admissible counter systems.

Definition 11. An affine Presburger counter system C is admissible iff
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1. there is at most one transition between two control states (always possible as
soon as disjunction is allowed in guards),

2. its control graph is flat,
3. each simple loop has the finite monoid property.

The restriction to admissible counter systems mainly takes advantage of
Lemma 10 as shown below.

Theorem 12. [FL02] Let C be an admissible Presburger counter system and
q, q′ ∈ Q. One can effectively compute a Presburger formula φ such that for every
valuation v, we have v |= φ iff 〈q, 〈v(x1), . . . , v(xn)〉〉 ∗−→ 〈q′, 〈v(x′1), . . . , v(x′n)〉〉.

3.5 Flattable Presburger counter systems

As observed in [CJ98,FL02,Ler03,BIL09], flatness is very often essential to get
effective semilinear reachability sets (but of course this is not a necessary con-
dition, see e.g. [HP79]). However, flat Presburger counter systems are seldom
natural in real-life applications. That is why, a relaxed version of flatness has
been considered in [FO97,Fri00,LS05,DFGvD10] so that an initialized Presburger
counter system 〈C, 〈q0,x0〉〉 is flattable whenever there is a partial unfolding of
〈C, 〈q0,x0〉〉 that is flat and has the same reachability set as 〈C, 〈q0,x0〉〉. In that
way, reachability questions on 〈C, 〈q0,x0〉〉 can still be decided even in the ab-
sence of flatness. 〈C, 〈q0,x0〉〉 is initially flattable [LS05] iff there is a a finite set
of path schemas such that the configurations reachable from 〈q0,x0〉 are those
reachable by firing the sequences of transitions from one of those path schemas
(not every such sequence leads to a run). For instance, reversal-bounded ini-
tialized counter systems are initially flattable [LS05]. The fact that 〈C, 〈q0,x0〉〉
is flattable means that as far as reachability is concerned, a finite set of path
schemas captures the full reachability relation. Note that flat counter systems
are (structurally) flattable but in general it is non-trivial to compute such a fi-
nite set of path schemas, see also Section 5. This problem is also known as the
problem of finite good accelerations [FL02, Section 5].

4 Verifying Temporal Properties

Reachability problems asks for the existence of runs reaching some configuration
or control state in some specific way. Often, it is desirable to check how events are
temporally organized along a run and to specify such properties temporal logics
have been advocated since [Pnu77]. Furthermore, we wish to include in the logical
language the possibility to express directly constraints between variables of the
program, whence giving up the standard abstraction made with propositional
variables. When the variables are typed, they may be interpreted in some specific
domain like integers, real numbers, strings and so on; reasoning in such theories
can be performed thanks to satisfiability modulo theories proof techniques, see
e.g., [BSST08] and [GNRZ07] in which SMT solvers are used for model-checking
infinite-state systems. Hence, a proposition like “x is greater than the next value
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of y” can be encoded in such extended temporal logics by x > Xy but this
time the models are sequences of configurations. This means that each position
comes with a control state and a valuation for variables. Hence, the basic idea
behind the design of the logic Presburger LTL is to refine the language of atomic
formulae and to allow the possibility to compare counter values at successive
positions of the run of the counter systems. Similar motivations can be found in
the introduction of concrete domains in description logics, that are logic-based
formalisms for knowledge representation, see e.g. [Lut04].

4.1 Presburger LTL

We define below a version of linear-time temporal logic LTL dedicated to Pres-
burger counter systems in which the atomic formulae are Presburger formulae
about counter values, the temporal operators are those of LTL and first-order
quantification over natural numbers is allowed, although we shall use it in a
restricted way. Similarly, in [MP95], a mixture of first-order logic and LTL is
shown sufficient to precisely state verification problems for the class of reactive
systems.

We introduce a countable set of integer variables, say VARp = {y1, y2, . . .},
for quantification over natural numbers. Elements of VARp are distinct from the
counter variables in VAR = {x1, x2, . . .} that are free variables, only interpreted
by the counter values on configurations. We also consider a countably infinite
set Q = {q1, q2, . . .} of control state symbols. The Presburger LTL formulae are
defined as follows: φ ::= ψ | q | φ∧φ | ¬φ | Xφ | φUφ | ∃ y φ, where ψ is a
Presburger formula with free variables in VARp ∪VAR from the linear fragment
of (PA) and q ∈ Q. The symbols X and U are respectively the classical operators
next-time and until from LTL.

The models of Presburger LTL formulae are infinite runs from Presburger
counter systems whose set of control states is included in the countable set Q.
A model ρ of dimension n for Presburger LTL is an element of (Q × Nn)ω for
some finite subset Q ⊆ Q. An environment E is a partial map VARp → N. The
empty environment is denoted by ∅. The satisfiability relation |= is defined as
follows between a model ρ of dimension n, a position i ≥ 0, an environment E
and a formula in which the free variables are among VARp ∪ {x1, . . . , xn}.

The relation |=E is defined on runs ρ = 〈q0,x0〉, . . . , 〈qk,xk〉, . . . such that:

– ρ, i |=E q
def⇔ q = qi,

– When ψ is a Presburger formula from the linear fragment with free variables
included in VARp∪{x1, . . . , xn}, we have ρ, i |=E ψ

def⇔ vi |= ψ in Presburger
arithmetic where vi is a conservative extension of E such that for every
j ∈ [1, n], vi(xj) = xi(j),

– ρ, i |=E ¬φ
def⇔ ρ, i 6|=E φ,

– ρ, i |=E φ1 ∧ φ2
def⇔ ρ, i |=E φ1 and ρ, i |=E φ2,

– ρ, i |=E Xφ
def⇔ ρ, i+ 1 |=E φ,

– ρ, i |=E φ1Uφ2
def⇔ there is j ≥ i such that ρ, j |=E φ2 and ρ, k |=E φ1 for all

i ≤ k < j.
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– ρ, i |=E ∃ y φ iff there is a natural number m ∈ N such that ρ, i |=E[y 7→m] φ.

As usual, we pose Fφ
def
= >Uφ and Gφ

def
= ¬F¬φ. Semantics with finite runs

instead of infinite runs can be defined similarly. A semi-closed formula is an
Presburger LTL formula such that no integer variable from VARp is free. By
construction, the counter variables x1, . . . , xn are always free and are inter-
preted as the current counter values. In the decision problems defined below, we
only consider semi-closed formulae and therefore there is no need to specify an
environment in the statements.

For instance, one can express that the first counter strictly increases at every
step: G ∃ y (y = x1 ∧X(x1 > y)). Similarly, the first counter takes a finite number
of values along the run can be expressed by ∃ y G(x1 ≤ y).

Let us start by presenting the satisfiability problem for Presburger LTL:

Input: A Presburger LTL semi-closed formula φ with free counter variables x1,
. . . , xn.

Question: Is there a model ρ ∈ (Q× Nn) of dimension n such that ρ, 0 |=∅ φ?

Observe that for satisfiability checking, it is not necessary that the model
is derived from a Presburger counter system. Let us turn to existential model-
checking problem for Presburger LTL:

Input: A Presburger counter system C = 〈Q,n, δ〉, an initial configuration
〈q0,x0〉 and a semi-closed formula φ in Presburger LTL.

Question: Is there an infinite run ρ starting at 〈q0,x0〉 such that ρ, 0 |=∅ φ?

Temporal logics with Presburger constraints has been developed, for in-
stance, in [BEH95,CC00,BDR03]. Some of them have quite expressive decid-
able fragments. Undecidability of the existential model-checking problem for
Presburger LTL can be shown using the undecidability of the halting problem
for Minsky machines, see e.g., [CC00]. Still, using SMT solvers can be done for
checking bounded reachability problems, see e.g., [BFM+10].

In the rest of this section, we present fragments of Presburger LTL obtained
by restricting first-order quantification over natural numbers. First, let us observe
that if we restrict ourselves to formulae in which temporal operators are not in
the scope of first-order quantification, then we get a fragment of Presburger LTL
that is very similar to plain LTL. Indeed, atomic formulae are arithmetical con-
straints between counter values and they can be understood as high-level propo-
sitional variables; whence the automata-based approach for LTL can be easily
adapted to this fragment. In that fragment, the arithmetical constraints are only
local and in the construction of Büchi automata, the existence of transitions be-
tween states depends on the satisfiability status of Presburger formulae. Below,
we provide restrictions in which the temporal operators may occur in the scope
of first-order quantification.

Comparing successive counter values. Given a Presburger formula ψ(z1, . . . , zk),
we shall write ψ(Xi1xj1 , . . . , X

ikxjk) to denote the formula below

(∃ y1, . . . , yk Xi1(y1 = xj1) ∧ · · · ∧ Xik(yk = xjk) ∧ ψ(y1, . . . , yk),
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where y1, . . . , yk are new variables distinct from the free variables that are present
in ψ(z1, . . . , zk). It is easy to see that ψ(Xi1xj1 , . . . , X

ikxjk) is interpreted as the
formula ψ(z1, . . . , zk) in which each variable za takes the value of xja at the iath
next configuration. For instance, x1 = Xx2 specifies that the next value of x2 is
equal to the current value of x1. Similarly, G(x1 = Xx1) states that counter 1 has
a constant value along the model. In Section 4.2, we present a simple fragment
of Presburger LTL by allowing first-order quantification only for formulae of
the form ψ(Xi1xj1 , . . . , X

ikxjk) and Presburger formulae (at the atomic level) are
quantifier-free too. It is worth observing that we use ’X’ as the next-time temporal
operator whereas ’Xx’ refers to the value of x at the next position.

Freeze operator. In order to verify properties on Presburger counter systems,
we want also to be able to compare counter values. For that, it is possible to
define the so-called ‘freeze operator’ with formulae of the form ↓jr φ interpreted
as ∃ yr (yr = xj ∧ φ) that store counter values. There are counterpart formulae
of the form ↑jr interpreted as yr = xj that perform equality tests. Intuitively,
the modality ↓jr is used to store the value of the counter j into the register r;
the atomic formula ↑jr holds true if the value stored in the register r is equal
to the current value of the counter j. The formula G(↓11 XG¬ ↑11) states that
the first counter has distinct values at distinct positions. Freeze operator has
been introduced in numerous works, sometimes with different motivations, see
e.g. [Hen90,Gor94,Fit02,LP05]. It is also sometimes used implicitly as for the
temporal semantics for imperative programs that may use first-order temporal
logics, see e.g. [MP92]. For instance, the statement that the program variable
x never decreases below its initial value can be expressed by the formula below
that uses a form of freeze operator: ∃y (x = y) ∧ G(x ≥ y). Recent results on
satisfiability and model-checking problems can be found in [FS09,DLS10].

4.2 The logic CLTL with finite window

As mentioned earlier, we shall define the logic CLTL as a strict fragment of
Presburger LTL such that first-order quantification at the level of temporal for-
mulae is restricted to macro formulae of the form ψ(Xi1xj1 , . . . , X

ikxjk). Conse-
quently, there is no more quantification over integer variables from VARp and
no variable in VARp occurs in CLTL formulae. The logic CLTL has atomic for-
mulae from the linear fragment of (PA) except that variables are replaced by
expressions of the form Xix where x ∈ VAR is a variable and Xi is understood as
a sequence of i consecutive symbols X. The expression Xix is interpreted as the
value of x at the ith next state. Given a CLTL formula φ, we define its X-length
len(φ)X as the maximal number i such that an expression of the form Xix occurs
in φ. Intuitively, the X-length defines the size of a frame/window of consecu-
tive states that can be compared. The models of CLTL are pairs of sequences
σ = 〈σ1, σ2〉 such that σ1 : N → (VAR → N), σ2 : N → Q for a finite subset
Q ⊆ Q. The satisfaction relation is defined as for LTL except at the atomic level:

– σ, i |= q iff σ2(i) = q,
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– σ, i |= ψ(Xl1x1, . . . , X
lnxn) iff 〈σ1(i+ l1)(x1), . . . , σ1(i+ ln)(xn)〉 ∈ JψK.

– σ, i |= Xφ iff σ, i+ 1 |= φ,
– σ, i |= φUφ′ iff there is j ≥ i such that σ, j |= φ′ and for every i ≤ l < j, we

have σ, l |= φ.

As usual, a formula φ ∈ CLTL is satisfiable whenever there exists a model
σ such that σ, 0 |= φ. We write CLTLln to denote the restriction of CLTL to
formulae with at most n variables and X-length less or equal to l (below the value
ω is used for some syntactic resource when there is no restriction). CLTL0 denote
the fragment in which the arithmetical constraints deal only with current counter
values. Note that there is a logspace reduction from the satisfiability problem
for CLTL to the satisfiability problem for CLTLω restricted to formulae of X-
length at most 1 (CLTL1

ω), see e.g. [DLN07]. The proof is done by renaming
terms and requires an unbounded amount of variables in CLTL1

ω. For instance,
the expressions x1, . . . , X3x1 are encoded by G(x′′ = Xx′ ∧ x′ = Xx ∧ x = Xx1)
(assuming that x, x′ and x′′ are new variables) and each occurrence of Xx1 [resp.
X2x1, X3x1] is replaced by x [resp. x′, x′′]. For reductions between satisfiability
problems, the introduction of new variables is harmless.

The halting problem for Minsky machines can be easily reduced to the sat-
isfiability problem for CLTL or to the existential model-checking problem for
CLTL, leading to simple undecidability proofs. In the sequel, we show how to
restrict the class of counter systems or the logical language in order to regain
decidability.

Given a fragment F of (PA) (not necessarily restricted to the linear fragment
as for CLTL), we write CLTL(F) to denote the variant of CLTL in which atomic
formulae built over the quantifier-free linear fragment of (PA) are replaced by
formulae from F (the definition of the satisfaction relation is update accordingly
without significant changes). Similarly, we write CLTLln(F) (n ≥ 1, l ≥ 0) to
denote the restriction of CLTL(F) to formulae such that the variables are among
{x1, . . . , xn} and the X-length is bounded by l.

Fragment F0 is defined as follows:

F0 3 φ ::= xi < xj | xi = xj | xi ≤ k

where k ∈ N. Fragment F1 is defined as follows:

F1 3 φ ::= xi ∼ xj + d | xi ∼ d

where d ∈ Z and ∼∈ {<,>,≤,≥,=}. For instance, x1 = X8x2 + 1 ∈ CLTL8
2(F1)

and XXX(Xx1 ≥ 27) ∈ CLTL1
1(F0). The logic CLTL defined in [CC00] is precisely

CLTL1
ω(F1). By way of example, let us quote a few interesting results.

Theorem 13. (I) Satisfiability problem for CLTL(F0) is PSpace-complete, see
e.g. [DD07,DG08,ST11]. (II) Satisfiability problem for CLTL1

1(F1) is PSpace-
complete [DG09]. (III) Satisfiability problem for CLTL2

1(F1) or for CLTL1
2(F1)

is undecidable [DG09], see also [CC00].

17



4.3 Model-checking linear-time properties

Flat counter systems. Below, we state several recent results about model-check-
ing problems for subclasses of counter systems for which the complexity is rela-
tively low. We recall that guards in counter systems belong to the linear fragment
and the updates are in Zn.

Theorem 14. [DDS12] Model-checking flat counter systems with CLTL0 is NP-
complete (also holds with past-time temporal operators).

The NP upper bound is obtained as follows given a flat counter system with
initial configuration 〈q0,x0〉 and a formula φ in CLTL0:

– Guess a good infinitary path schema P from 〈q0,x0〉. Infinitary path schemas
are of the form p1l

∗
2p3l

∗
4 . . . l

∗
k−1pkl

ω
k .

– Guess an unfolded path schema P′ from P by eliminating disjunctions in
guards and counter values (but at the cost of adding new atomic proposi-
tions). Unfolding a path schema amounts to copying loops a (polynomial)
number of times while adding atomic propositions or constraints in guards
to guarantee that each visit in a new loop satisfies the same guards.

– Build an existential Presburger formula that encodes all the runs respecting
P′ from 〈q0,x0〉 (all the quantified variables are loop counters).

– Guess a run respecting P′ and check whether it satisfies φ symbolically. Each
loop may be visited an exponential number of times, but a stuttering theorem
allows the symbolic model-checking algorithm to perform efficiently.

Efficient solvers for quantifier-free (PA) are required to make feasible the above
algorithm. By contrast, we get a little higher complexity with linear µ-calculus
or first-order logic (FOL).

Theorem 15. [DDS13] Model-checking flat counter systems with linear µ-cal-
culus or with FOL both with arithmetical constraints is PSpace-complete.

It is unclear what are the counterpart results for flat Presburger counter
systems with octagonal constraints.

LTL on VASS. Structural restrictions seem more efficient to reduce the compu-
tational complexity of temporal model-checking. By way of comparison, model-
checking vector addition systems with states with linear µ-linear calculus (with-
out arithmetical constraints) is already ExpSpace-complete [Hab97].

Let us present a fragment of Presburger LTL introduced in [Jan90] such
that the atomic formulae are either control states or atomic formulae of the
form xi ≥ k or ¬(xi ≥ k) with k ∈ N. The temporal logic with fairness TLF
is defined as a logic on VASS for which formulae are defined by the grammar
q | xi ≥ k | ¬(xi ≥ k) | φ ∨ φ | φ ∧ φ | GFφ, where q ∈ Q and
k ∈ N. Observe that TLF formulae are not closed under negations and the tem-
poral properties are intersection or union of fairness conditions. Decidability of
(existential) model-checking problem for TLF restricted to VASS is established
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in [Jan90] by reduction into the reachability problem for VASS. Fairness condi-
tions on VASS can be also found in [GS92]. Moreover, it is worth noting that the
operator F cannot be expressed in TLF, otherwise undecidability would hold. In-
deed, in [HR89] a linear-time temporal logic (on Petri nets) is shown undecidable
with the temporal operator F, Boolean connectives and atomic formulae of the
form xi ≥ k and “transition t is the next one in the run.” Finally, other logical
formalisms interpreted on VASS runs can be found in [Esp94,AH11,BS11] where
complexity/decidability results are established.

Bounding the number of reversals. Results about model-checking reversal-boun-
ded counter systems with LTL equipped with arithmetical constraints can be
found in [BD11,HL11]. Below, we recall the definition for the reversal-bounded
model-checking problem (RBMC). Its peculiarity is that the input initialized
counter systems are not necessarily reversal-bounded but the input contains an
explicit bound r about the maximal number of reversals within a run. Moreover,
given a formula φ in CLTL, we write Tφ to denote the terms of the form t ∼ k
occurring in it. The problem RBMC is defined as follows:

Input: a counter system C, an initial configuration 〈q0,x0〉, a formula CLTL φ
(with atomic formulae of the form t ∼ k), a bound r ∈ N (in binary),

Question: Is there an infinite run ρ from 〈q,x〉 such that ρ, 0 |= φ and ρ is
r-T-reversal-bounded with T = TC ∪ Tφ?

The computational complexity for RBMC can be precisely characterized; the
upper bound can be obtained by a refined analysis on runs, see e.g. [GI81,BD11].

Theorem 16. [BD11,HL11] RBMC is NExpTime-complete.

Actually, one can also establish that global model-checking is possible for
RBMC [BD11], i.e., the set of initial configurations for which there is a run sat-
isfying a given temporal formula from CLTL is effectively Presburger-definable.

4.4 A quick look at a branching-time extension

The logic Presburger LTL is interpreted on linear runs but it is possible to extend
it to its CTL? version by interpreting the formulae on the underlying transition
systems of the Presburger counter systems and by adding quantifications over
paths, see e.g. [BG06,DFGvD10]. The formulae for Presburger CTL? are defined
as follows: φ ::= ψ | q | φ ∧ φ | ¬φ | Xφ | φUφ | A φ | ∃ y φ where ψ is a
Presburger formula with free variables included in VARp ∪VAR from the linear
fragment and q ∈ Q. Semantics for Presburger CTL? is provided via models that
are transition systems obtained from Presburger counter systems. Again, the sat-
isfaction relation |= is parameterized by an environment E . Given a Presburger
counter system C = 〈Q,n, δ〉 with transition system T(C) = 〈S,−→〉, the satisfac-
tion relation |=E is defined at position i of the run as for Presburger LTL except
for quantifications over paths: ρ, i |=E A φ

def⇔ for all infinite runs ρ′ starting
at configuration ρ(i), we have ρ′, 0 |=E φ. First-order quantification over counter
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values allows us to state many interesting properties in Presburger CTL? such as
determinism (for all the configurations reachable from the initial configuration,
there is at most one successor configuration):

A G(
∧

i∈[1,n]

¬∃y(E X(xi = y) ∧ E X(xi 6= y))) ∧ (
∧
q∈Q
¬(E Xq ∧ E X¬q)).

Similarly, boundedness (the set of configurations reachable from the initial con-
figuration is finite) can be stated with ∃y, y′ A G

∧
i∈[1,n] y ≤ xi ≤ y′.

Model-checking problem for Presburger CTL? is defined as follows: given
a Presburger counter system C with transition system T(C) = 〈S,−→〉, an ini-
tial configuration 〈q0,x0〉, and a semi-closed formula φ from Presburger CTL?,
determine whether for every run ρ from 〈q0,x0〉, we have ρ, 0 |= φ.

Theorem 17. [DFGvD10] Model-checking admissible Presburger counter sys-
tems with Presburger CTL? is decidable.

The proof provides a reduction into satisfiability in (PA) by encoding the
runs by tuples of natural numbers. Indeed, every admissible Presburger counter
system is flat and therefore it has a finite amount of good path schemas. Runs re-
specting a path schema can be encoded as tuples of natural numbers by counting
how many times the loops are visited. Temporal formulae are then encoded by
internalizing the semantics into (PA) itself. Other decidability and complexity
results can be found in [BP12,CKL13]. Nevertheless, it remains open whether
modal µ-calculus (with atomic arithmetical constraints on counter values) can
be shown decidable on admissible Presburger counter systems.

5 Path Schema Enumeration

In this section, we explain the interest of designing algorithms for the enumera-
tion of finitary path schemas and how to prune the search space by subsumption.
We present a preliminary version of an algorithm for enumerating path schemas.
More details and developments will be provided in a forthcoming paper. Only
finitary path schemas are discussed in this section but infinitary ones could be
generated in a similar way. Moreover, we assume that we are dealing with a class
of Presburger counter systems satisfying the property (?), recalling Definition 4
on page 10, such as the class of counter systems where the guards are Boolean
combinations of linear constraints and the updates in Zn are those from VASS.

5.1 Why path schema enumeration?

As is well-known, Presburger counter systems are Turing-complete and it is
undecidable to check the existence of a run satisfying a given property (even
for very basic ones). However, approximating the Presburger counter systems
by looking at a subclass of runs provides a means to produce answers in some
cases. For example, a finite set of path schemas is a simple way to represent
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a (potentially) infinite set of runs. Being able to generate path schemas in a
structured and controlled fashion while using structural properties of the control
graph as well as arithmetical constraints of counter values will be helpful to test
the existence of runs satisfying some property.

A wish list for generating path schemas. Even though it is not difficult to gen-
erate path schemas in a fair and complete way by tracing the transitions, the
details of the enumeration are quite important but often underestimated, see
e.g.. [BFLS05,DFGvD10] (see some exception in [Ler03]). First, we want an
enumeration strategy that is efficient in practice. Previous work has left open
the question of efficient enumeration of path schemas, as the results have been
of a theoretical nature, and path schemas didn’t have to be enumerated explic-
itly. Second, we want an enumeration strategy that will find a finite set of path
schemas that fully captures the behavior of a Presburger counter system, if pos-
sible. As noted earlier, some classes of Presburger counter systems are known to
have a finite number of good path schemas. For flat Presburger counter systems,
the number of good path schemas is exponential in the size of the control graph
whereas for flattable initialized Presburger counter systems, the number of path
schemas is finite but with no specific bound on this number. Finally, we want
an enumeration strategy in which we have a clear way of detecting whether we
have enumerated sufficiently many path schemas to capture the behavior of the
Presburger counter system.

Enumerating path schemas can also be viewed as a way to underapproximate
the set of runs; this is similar to a standard approach to consider subclasses of
runs by bounding some features and to search for ‘bounded runs’ that may satisfy
a desirable or undesirable property. Examples include reversal-bounded counter
machines (which have a bound on the number of reversals) [HR87,BD11,HL11],
context-bounded model-checking (where there is a bound on the number of con-
text switches) [QR05], and of course bounded model-checking (BMC) (where
there is a bound on the distance of the reached positions), see e.g. [BCC+03].

5.2 Pruning the search space: path schema subsumption

Let C = 〈Q,n, δ〉 be a Presburger counter system and P1, . . . , PN , P be finitary
path schemas such that first(P1) = · · · = first(PN ) = first(P) and last(P1) =
· · · = last(PN ) = last(P), i.e., all the path schemas start and end by the same
control states. One can think of P1, . . . , PN as the path schemas already in our
database whereas P is a new path schema for which we have to decide whether
we keep it or not. Such a path schema P must be consistent, i.e., there exists a
finite run that respects it. The path schema P is consistent w.r.t. the initial con-
dition φinit(y1, . . . , yn) iff the formula ∃ x1, . . . , xn ∃ x′1, . . . , x′n φinit(x1, . . . , xn)∧
ϕP(x1, . . . , xn, x

′
1, . . . , x

′
n) is valid. Then, comes subsumption. The set {P1, . . . , PN}

subsumes P w.r.t. the initial condition φinit(y1, . . . , yn) (and with respect to
reachability) def⇔ the formula below is valid:

∀ x1, . . . , xn ∀ x′1, . . . , x
′
n (φinit(x1, . . . , xn) ∧ ϕP(x1, . . . , xn, x

′
1, . . . , x

′
n))⇒
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∨
i∈[1,N ]

∃ z1, . . . , zn φinit(z1, . . . , zn) ∧ ϕPi(z1, . . . , zn, x
′
1, . . . , x

′
n)

For the class of counter systems, the consistency problem is NP-complete,
and the subsumption problem can be expressed in the fragment of (PA) with
at most one quantifier alternation. The above subsumption notion can be also
formulated as follows. A path schema P enriched with φinit(y1, . . . , yn) defines a
set of finite runs such that the initial counter values satisfy φinit(y1, . . . , yn) and
the run respects P. Moreover, such a pair defines a set of counter values—those
that have been reached at the end of the runs, say [P]φinit

def
= {xf : 〈q0,x0〉

∗−→
〈qf ,xf 〉 respects P and φinit(x0)}. Counter values are therefore extracted from
runs. Now, subsumption can be formulated as follows: [P]φinit

⊆ [P1]φinit
∪ · · · ∪

[PN ]φinit
. There exist other means to extract witness counter values from runs. A

pattern φpat is a formula from Presburger LTL without first-order quantification
(see Section 4) and with free occurrences of the integer variables y1, . . . . yα that
are therefore interpreted rigidly. By way of example, we consider the version of
Presburger LTL on finite runs. Let us define the set of tuples [P]φpat,φinit

obtained
by extracting the parameter values from runs respecting P and whose initial
configuration satisfies φinit (see the semantics in Section 4):

[P]φpat,φinit

def
= {E : ρ = 〈q0,x0〉

∗−→ 〈qf ,xf 〉 respects P, φinit(x0) & ρ, 0 |=E φpat}

Note that [P]φinit above corresponds to [P]φpat,φinit with

φpat
def
= F(x1 = y1 ∧ · · · ∧ xn = yn ∧ ¬X>)

Let us define the generalized path schema subsumption problem: {P1, . . . , PN}
subsumes P with respect to the initial condition φinit(y1, . . . , yn) and the prop-
erty/pattern φpat

def⇔ [P]φpat,φinit ⊆ [P1]φpat,φinit ∪ · · · ∪ [PN ]φpat,φinit (of course, a
Presburger counter system is also part of the instance).

Lemma 18. For any class of Presburger counter systems satisfying (?), there is
a reduction from the generalized path schema subsumption problem to the validity
problem for (PA).

The proof consists in encoding the runs satisfying a path schema by tuples
and then to use the standard translation from LTL to first-order logic. The initial
condition φinit and atomic formulae in PLTL formulae are already Presburger
formulae, so do not require special treatment in the translation process.

5.3 How to deal with quantifiers

Note that Presburger formulae built to perform subsumption tests contain quan-
tifiers. Most well-known Satisfiability Modulo Theories (SMT) solvers can deal
with quantifier-free formulae, also known as linear arithmetic (LIA). For in-
stance, this includes Z3 [dMB08], CVC4 [BCD+11], and Alt-Ergo [Con12], to
cite a few of them; see also Pugh’s Omega test [Pug92].
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However, as observed earlier, dealing with quantifiers is usually a difficult
task for SMT solvers. Fortunately, quantifiers can be eliminated but this may
be expensive computationally. Cooper’s elimination procedure [Coo72], when
considering ∃ x ψ with quantifier-free ψ, does not assume that ψ is in disjunctive
normal form (a disjunction of conjuncts, with conjuncts made of literals). This is
a remarkable difference with the original algorithm presented in [Pre29]. Indeed,
transforming a propositional formula into an equivalent formula in disjunctive
normal form may cause an exponential blow-up. A more advanced improvement
of Cooper’s procedure can be found in [RL78]; recent developments propose a
lazy approach to quantifier elimination [Mon10].

5.4 An algorithm that builds cycle schemas and path schemas

In this section, we present an algorithm to generate path schemas from a Pres-
burger counter system. It proceeds by building path schemas of larger and larger
sizes. An outer loop ensures that all path schemas of some constant size k − 1
have been built before the generation of path schemas of size k is attempted.
The algorithm is inherently iterative, and its first k iterations enumerate all path
schemas of size less than or equal to k.

Path schemas are generated by building upon smaller path schemas. Given
a path schema of size k − 1, the algorithm extends it by adding a transition;
the result is a new path schema of size k. Path schemas may also be extended
by cycles, and for this, the algorithm detects and maintains cycle schemas (see
below). These cycle schemas are detected by using smaller path schemas.

Preliminary definitions: cycle schemas and suffixes. A cycle schema L is a path
schema starting and ending by the same control state. The set of cycles generated
by a cycle schema L is precisely Lan(L). We write Lan	(L) to denote the smallest
set of paths such that Lan(L) ⊆ Lan	(L) and if t1 · · · tα ∈ Lan	(L), then
t2 · · · tαt1 ∈ Lan	(L). The set Lan	(L) can be also obtained from Lan(L) by
considering all possible rotations of loops.

Path schemas can be concatenated assuming that constraints on control
states are respected. Let P = P1 · P2 be a path schema obtained by concate-
nating two path schemas such that (1) P2 starts by q′ and is of length at least
one, (2) P2 ends by q, (3) there is a transition t = q

φ−→ q′. Obviously, P2 · t is a
cycle schema. P2 is called a suffix of P. Similarly, let P = P1 · (l)∗ · P2 be a path
schema with l = p1 · p2, such that (1) p2 starts by q′, (2) P2 ends by q, (3) there
is a transition t = q

φ−→ q′. Obviously, p2 · (l)∗ · P2 · t is another cycle schema.
p2 · (l)∗ ·P2 is called an augmented suffix of P. By definition, an augmented suffix
is any suffix obtained in one of the two above-mentioned ways. A simple suffix is
a suffix without a loop, i.e., a non-empty sequence of transitions being the suffix
of a path schema.

ps-complexity. A path p ∈ δ∗ has ps-complexity k def⇔ there is a path schema
P of length k such that p ∈ Lan(P) and no path schema P′ of strictly smaller
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size verifies p ∈ Lan(P′). In a sense, the ps-complexity of a path measures how
concisely the path can be represented with the help of path schemas generated
from the Presburger counter system. Similarly, a run ρ has ps-complexity k def⇔
there is a path schema P of length k such that ρ respects P and for no path
schema P′ of strictly smaller size, ρ respects P′. The relative length of a loop
l with respect to control state q0 is equal to the length of l plus the minimal
distance between the initial control state q0 and a control state occurring in l

(can be infinite, can be equal to the length of l if q0 occurs in l). Again, no
constraints about counter values are involved at this stage.

Subsumption test. Our algorithm is parameterized by a subsumption test. When
a path schema is subsumed by the set of path schemas previously discovered, it
is not itself enumerated. This leads to less redundant results, and to less work
being done by the algorithm at larger k. It also leads to an easy termination test:
during a level k, if no new path schemas are enumerated, then the algorithm has
already enumerated a finite set of path schemas that “capture” the behavior of
the system (w.r.t. the subsumption test).

The algorithm. Below, we present the algorithm in which PS (k) is the set of path
schemas of size k discovered. CS (k) is the set of cycle schemas discovered with rel-
ative length k. We write PS+(k)

def
=
⋃
k′≤k PS (k′) and CS+(k)

def
=
⋃
k′≤k CS (k′).

The input is a Presburger counter system C, with initial state q0 and initial con-
dition φinit(x1, . . . , xn). The input contains a path schema eligibility test (called
test) so that PS (k)

test←− P is a shorthand for: if test(φinit, P,PS+(k)) then

PS (k) ←− PS (k) ∪ {P}. When the test returns true, a new path schema is in-
cluded in PS (k) (typically by performing a subsumption check). The output of
the algorithm is PS+(k).

1. PS (0) is initialized to the empty path schema starting at control state q0
2. k ←− 1
3. while PS+(k − 1) 6= ∅ do

(a) for each P ∈ PS+(k − 1) and t ∈ δ s.t. first(t) = last(P) do
{ look for path schemas ending with a transition }
i. if there exists no simple suffix S of P · t s.t. first(S) = last(S) then

PS (k)
test←− P · t { add path schema P · t to level k }

ii. for each augmented suffix S of P s.t. first(S · t) = last(S · t) do
{ add cycle schema S · t to level len(S · t) }
CS (len(S · t))←− CS (len(S · t)) ∪ {S · t}

(b) { add path schemas ending with a cycle }
for each L ∈ CS+(k) and prime cycle l ∈ Lan	(L) s.t. len(l) ≤ k do

for each P ∈ PS (k − len(l)) s.t. last(P) = first(l) do

PS (k)
test←− P · l { add P · l to level k }

(c) k ←− k + 1; endwhile
4. return PS+(k)
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Properties of the algorithm. The algorithm has several nice properties such as be-
ing parameterized by an eligibility test and it produces only good path schemas
(see line 3(a)(i)). It is natural to wonder about the purpose of the eligibility test.
Whenever a new path schema is built by the algorithm, we do not systematically
insert it in the working set of path schemas (represented by PS (k) or PS+(k)).
Indeed, it may happen that there is no run that respects it when starting by
the initial control state q0 and when satisfying the initial constraint on counter
values. In that case, there is no point to include it in the working set of path
schemas. When path schemas are generated with the purpose to abstract a po-
tentially infinite set of runs, only consistent path schemas are inserted. Similarly,
a new path schema may be subsumed by the working set of path schemas and if
the property to be checked on runs can be safely pruned, such a new path schema
can be discarded. The eligibility test allows to parameterize the algorithm by any
kind of Boolean function to test whether a new path schema can be inserted or
not. On the other hand, it might be useful to enumerate path schemas regardless
the arithmetical constraints on counter values, which corresponds to consider the
algorithm when the test always returns true. Consequently, the eligibility test
provides a means to eliminate new path schemas depending on the purpose of
the path schema generation.

Theorem 19 below states that the algorithm generates all the cycle schemas
and path schemas when constraints on counter values are ignored. A nice way to
ignore such values is to assume that the test returns always true, which amounts
also to view the counter system as a standard labelled transition system.

Theorem 19 (Completeness). Consider the algorithm in which the main test
returns true. After completing the kth step of the main while loop:

(†) For every loop l of relative length at most k, there is a cycle schema L ∈
CS+(k) such that l ∈ Lan	(L).

(††) For every path p starting at control state q0 of ps-complexity at most k,
there is a path schema P ∈ PS+(k) such that p ∈ Lan(P).

With subsumption on counter values, a complete version of the algorithm
can be obtained if cycles are generated independently of cycle schemas. At the
time of writing this paper, we have designed such an algorithm, based on the one
presented above. If cycle schemas are used to generate cycles during the course
of the algorithm, then the enumeration procedure is known to be incomplete in
the sense of case (††) in Theorem 19; that is, some path schemas may be missed
at step k that are necessary to describe a path of ps-complexity k. However,
this does not prevent us from using this algorithm for certain applications where
completeness is less important, as useful path schemas might still be generated.
Implementation and tests will be part of future work.

6 Conclusion

In this paper, we have recalled several classes of Presburger counter systems
for which reachability sets are computable Presburger sets. Though this is a
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desirable property to provide decision procedures on such machines, it is not
sufficient if model-checking temporal properties are required; indeed, we may
need to specify how intermediate configurations occur (see e.g. [DDS12]). For
instance, the exact complexity of model-checking temporal properties for flat
admissible Presburger counter systems is still open.

We have recalled several results from the literature and we emphasize that the
generation of path schemas is a key problem for formal verification of Presburger
counter systems. This is not really new (see e.g. [FO97,Boi99,Ler03,LS05]) but
it is becoming an important issue, at least as important as the design of optimal
decision procedures as far as worst-case complexity is concerned. The paper has
been designed to put some light on this problem. However, an efficient generation
of path schemas means that redundant path schemas should be eliminated as
early as possible in the enumeration process. A comparison with the algorithm
for acceleration technique in FAST [Ler03] or LASH [Boi99] will be in order.

We have introduced the notion of subsumption to take care of redundancy
and again subsumption can be checked by testing the satisfiability of a quantified
Presburger formula. This is a real challenge to deal with such quantified formu-
lae in the framework of path schemas enumeration since most SMT solvers do
not behave so nicely with quantified formulae, see e.g. [dMB08,BCD+11]. Part
of our future work is dedicated to design a path schema generation algorithm
that invokes SMT solvers for quantified Presburger formulae.
Acknowledgements: The second author thanks the colleagues involved in fruit-
ful collaborations about Presburger counter systems along the years; including
members of the ANR Project REACHARD, R. Lazić (Warwick University), A.
Dhar and A. Sangnier (LIAFA), and members of the ACSys group at NYU.
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