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In this paper, we solve a separation of singularities problem in the Bergman space. More precisely, we show that if P Ă C is a convex polygon which is the intersection of n half planes, then the Bergman space on P decomposes into the sum of the Bergman spaces on these half planes. The result applies to the characterization of the reachable space of the one-dimensional heat equation on a finite interval with boundary controls. We prove that this space is a Bergman space of the square which has the given interval as a diagonal. This gives an affirmative answer to a conjecture raised in [HKT20].

Introduction

For Ω Ă C, an open set in the complex plane, we denote by HolpΩq the space of holomorphic functions on Ω. Given Ω 1 and Ω 2 two open subsets of C with non empty intersection, a natural question is to know whether every function f P HolpΩ 1 X Ω 2 q can be written as a sum of two functions f 1 P HolpΩ 1 q and f 2 P HolpΩ 2 q, i.e. does the equality HolpΩ 1 XΩ 2 q " HolpΩ 1 q`HolpΩ 2 q hold ? This problem is known as the separation of singularities problem for holomorphic functions and has a quite long history. A simple example is given by Ω 2 " tz P C | |z| ă r 2 u and Ω 1 " tz P C | |z| ą r 1 u with 0 ă r 1 ă r 2 . Then Ω 1 X Ω 2 is a ring and the problem can be solved affirmatively using Laurent series. Poincaré [Poi92, V, Ch. 3, § 21] discussed the solution in the particular case when Ω 1 " Czr´1, 1s and Ω 2 " Cz pp´8, ´1s Y r1, `8qq, and Aronszajn [START_REF] Aronszajn | Sur les décompositions des fonctions analytiques uniformes et sur leurs applications[END_REF] gave a positive answer for any pair pΩ 1 , Ω 2 q of open sets in C.

The separation of singularities problem is a special case of the First Cousin Problem which reduces the problem to solving a B-equation and can be reformulated in sheaf cohomology terms (see [START_REF] Hörmander | An introduction to complex analysis in several variables[END_REF]Thm 1.4.5 and Thm 5.5.1]). The First Cousin problem has been solved a few years after Aronszajn, first by Oka [START_REF] Oka | Sur les fonctions analytiques de plusieurs variables. III-Deuxième problème de Cousin[END_REF] on domains of holomorphy and then in the Cartan seminar [START_REF] Cartan | Séminaires ENS[END_REF] on Stein manifolds. Today, it is well-known that the First Cousin Problem on C is equivalent to the Mittag-Leffler theorem (see [START_REF] Hörmander | An introduction to complex analysis in several variables[END_REF]] and [AM04, section 9.4]).

We would also like to mention two other simple proofs of the separation of singularities problem. The first one, given by Havin [START_REF] Havin | The separation of the singularities of analytic functions[END_REF] (see also [START_REF] Aizenberg | Separation of singularities for holomorphic functions[END_REF] or [START_REF] Mityagin | Linear problems of complex analysis[END_REF]), is based on a very beautiful duality argument. The second one, given by Müller and Wengenroth [MW98, Theorem 1], uses the open mapping theorem and Roth's fusion lemma, and establishes a link between this problem and approximation theory.

A related question is to know whether there exists a bounded linear operator T : HolpΩ 1 X Ω 2 q Ñ HolpΩ 1 q ˆHolpΩ 2 q, f Þ Ñ pf 1 , f 2 q, such that f " f 1 `f2 . Mityagin and Khenkin [START_REF] Mityagin | Linear problems of complex analysis[END_REF] proved that such an operator does not always exist.

The problem has attracted a lot of interest in particular in Banach spaces of analytic functions. A challenging situation is the separation of singularities problem in the space H 8 of bounded analytic functions, which arises naturally in connection with interpolation problems [START_REF] Polyakov | Continuation of bounded holomorphic functions from an analytic curve in general position into the polydisc[END_REF][START_REF] Polyakov | Integral formulas for solution of the B-equation, and interpolation problems in analytic polyhedra[END_REF]. Havin, Nersessian [START_REF] Havin | Bounded separation of singularities of analytic functions[END_REF], Havin [START_REF] Havin | Separation of singularities of analytic functions with preservation of boundedness[END_REF], and Havin, Nersessian, Ortega-Cerdá [START_REF] Havin | Uniform estimates in the Poincaré-Aronszajn theorem on the separation of singularities of analytic functions[END_REF] solved it in several general configurations. Unlike the classical problem, they proved also that the problem has not a positive solution for arbitrary pairs of open sets, giving a lot of instructive counterexamples. The authors used an explicit Cauchy integral approach in the first two papers cited above and a reduction to the B-equation (as in the modern solution of the classical problem) in the last paper. They constructed bounded linear separation operators explicitly in both cases.

Another interesting situation previously studied concerns Smirnov spaces. Assume that Ω is a simply connected domain in the complex plane with at least two boundary points. We say that f P HolpΩq belongs to the Smirnov space E p pΩq p0 ă p ă `8q if there exists a sequence pγ n q nPN of rectifiable Jordan curves eventually surrounding each compact subset of Ω such that }f } p E p " sup nPN ż γn |f pzq| p |dz| ă 8.

For 1 ď p ă `8, E p pΩq is a Banach space. We mention that when the conformal mapping from the unit disk D to Ω has bounded and invertibly bounded derivative, then the Smirnov space is isomorphic to the corresponding Hardy space (see [START_REF] Duren | Theory of H p spaces[END_REF]Theorem 10.2]). Aizenberg [Aiz14, Theorem 2] solved the problem for the Smirnov space E p (1 ă p ă `8) in the case of the intersection of k bounded domains with regular boundaries (Ahlfors-regularity). The proof relies heavily on a strong result by David [Dav84], who studies the boundedness of the Hilbert transform on such regular curves. It can easily be generalized to finitely multiply connected domains using the same argument (see [START_REF] Duren | Theory of H p spaces[END_REF]p. 182] for the definition of Smirnov space on a finitely connected domain). He also gave the same kind of result (with more regularity hypotheses) for the Hardy space in several complex variables (see [START_REF] Aizenberg | Separation of singularities for holomorphic functions[END_REF]Theorem 9] for the definition of this space and the theorem).

Müller and Wengenroth [MW98, Theorem 3] proved that solving the problem on the space A of holomorphic functions which are continuous up to the boundary is equivalent to prove a Roth fusion type lemma. In the same vein, Kaufman [HN94, section 16.18] asked for a solution to the problem on the space A pnq of functions which have their first n derivatives in A. He mentionned that a positive answer for any n ě 1 would provide information on the triviality of A pnq pΩ 1 X Ω 2 q, where triviality means

A pnq pΩ 1 X Ω 2 q " HolpCq |Ω 1 XΩ 2 .
The aim of this paper is two-fold. We first discuss the problem of separation of singularities for another prominent space of holomorphic functions, namely the Bergman space, and in particular on convex polygons (but not only). This is a very natural problem since, besides Hardy, Dirichlet and Fock spaces, the Bergman space is a central space in complex analysis bearing still a lof of challenging problems. The second aspect, and which was a central motiviation of this work, is that the Bergman space -in particular on a square -appears to be a keystone for identifying the reachable states of the 1-D heat equation on a finite interval with boundary controls. Characterizing these reachable states is a very prominent problem in control theory and has captivated a lot of research efforts since the groundbraking work of Fattorini and Russell in the early 70's [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] and who showed that the reachable states in this setting extend to holomorphic functions on a square the diagonal of which is the interval on which the heat equation is controlled. More recently, an accelerating activity has taken place in order to better understand the exact nature of these holomorphic functions (see for instance [START_REF] Schmidt | Even more states reachable by boundary control for the heat equation[END_REF][START_REF] Martin | On the reachable states for the boundary control of the heat equation[END_REF][START_REF] Dardé | On the reachable set for the one-dimensional heat equation[END_REF]), culminating in the paper [START_REF] Hartmann | From the reachable space of the heat equation to Hilbert spaces of holomorphic functions[END_REF] where it was shown that the reachable states are sandwiched between two well known Hilbert spaces of holomorphic functions: the Smirnov space (which is a companion space to the Hardy space) and the Bergman space on the square (more detailled information on this problem will be given below). It was also conjectured in that paper that the set of reachable states "is not far of coinciding with" this Bergman space [HKT20, Remark 1.3]. Another key result in this connection was established very recently in [START_REF] Orsoni | Reachable states and holomorphic function spaces for the 1-D heat equation[END_REF] who showed that the reachable states are exactly given by the sum of two Bergman spaces on suitable sectors (see also [START_REF] Kellay | Sharp reachability results for the heat equation in one space dimension[END_REF] for another proof given subsequently of this result), and which establishes the connection with the purely complex analytic problem of separation of singularities. In view of the result [START_REF] Orsoni | Reachable states and holomorphic function spaces for the 1-D heat equation[END_REF] mentioned above, our result applied in a very simple situation provides an affirmative answer to the conjecture raised in [HKT20, Remark 1.3] and thus the definite characterization of the reachable states of the 1-D heat equation on a finite interval with boundary controls.

Results on separation of singularities in Bergman spaces

We will now turn to our first set of results concerning separation of singularities in Bergman spaces. Note that this problem is mentioned explicitely in [BKN18, p.17] without an exact reference.

Let us begin with the definition and some well-known facts. Let ω be a nonnegative mesurable function on Ω. For 1 ď p ă 8, the weighted Bergman space A p pΩ, ωq consists of all functions f P HolpΩq such that }f } p A p pΩ,ωq :"

ż Ω |f px `iyq| p ωpx `iyqdxdy ă `8.
When ω " 1, A p pΩ, ωq is the classical Bergman space which we simply denote by A p pΩq. When p " 2, A 2 pΩq is a Reproducing Kernel Hilbert Space (RKHS) and we denote by k Ω λ its reproducing kernel, i.e. for any f P A 2 pΩq and any λ P Ω, f pλq " @ f, k Ω λ D L 2 pΩq . Clearly, A 2 pΩq is a closed subspace of L 2 pΩq, and the corresponding orthogonal projection, called Bergman projection, is given by

pP Ω f q pλq " A f, k Ω λ E L 2 pΩq , λ P Ω. (1) 
The most prominent case is when Ω is the unit disk in the complex plane D " tz P C : |z| ă 1u and ω " 1. Then for λ P D (see e.g. [DS04, Section 1.2]),

k D λ pzq " 1 πp1 ´λzq 2 , z P D. (2) 
Also, if Ω 1 and Ω 2 are two open subsets of C, and ϕ : Ω 1 Ñ Ω 2 is a conformal mapping, it is well-known (see [QQ17, Chapter VIII, Theorem 4.9, p.280] or [DS04, Chapter 1, § 1.3, Theorem 3]) that we have the following conformal invariance property

k Ω 1 λ pzq " k Ω 2 ϕpλq pϕpzqqϕ 1 pzqϕ 1 pλq (3) 
The following weight will play a central rôle in our study: for N P N, we write

ω N pzq " p1 `|z| 2p q ´N . ( 4 
)
We start with a quasi separation of singularities theorem, in the sense that we have to add a weight with decay at infinity. It deals with general open sets Ω 1 and Ω 2 of C such that Ω 1 zΩ 2 and Ω 2 zΩ 1 are far. Note that this condition already appears in [START_REF] Havin | Bounded separation of singularities of analytic functions[END_REF]Cor. 3.3] as an easy case for solving the separation of singularities problem in H 8 . Theorem 1.1. Let 1 ă p ă 8. Let Ω 1 and Ω 2 be open sets of C such that Ω 1 X Ω 2 ‰ H. If distpΩ 1 zΩ 2 , Ω 2 zΩ 1 q ą 0, then we have A p pΩ 1 X Ω 2 q Ă A p pΩ 1 , ω 1 q`A p pΩ 2 , ω 1 q.

The previous theorem is based on a reduction to the B-equation, as in the modern solution of the classical problem (see [START_REF] Hörmander | An introduction to complex analysis in several variables[END_REF]Thm 1.4.5] or [AM04, Thm 9.4.1]), and on Hörmander type L p -estimates for the B-equation. This method was already used in [Ors20, Thm 1.2] to prove another kind of weighted separation theorem (see Corollary 1.10 below for an improvement of this theorem). Using the fact that polynomials not vanishing on Ω are invertible multipliers of the Bergman space on a bounded domain, will allow us to show our first "real" (i.e. unweighted) separation result for bounded intersections.

Corollary 1.2. Under the same hypotheses as in Theorem 1.1, if in addition Ω 1 XΩ 2 is bounded and

Ω 1 Y Ω 2 ‰ C, then A p pΩ 1 X Ω 2 q " A p pΩ 1 q `Ap pΩ 2 q.
The case when distpΩ 1 zΩ 2 , Ω 2 zΩ 1 q " 0 is more intricate. Let us begin with the simplest configuration of interest for us: Ω 1 and Ω 2 are half planes which intersect perpendicularly. By rotation and translation we can of course reduce the situation to the upper and right half planes: C `" tz P C | Impzq ą 0u and C `" tz P C | Repzq ą 0u. We write C ``" C `X C `for the resulting quarter plane.

Theorem 1.3. Let 1 ă p ă 8. Then A p pC `q `Ap pC `q " A p pC ``q.

The proof of this theorem is strikingly simple when p " 2 where it uses only the explicit form of the reproducing kernels of the two half planes. Though the same idea does not apply to arbitrary sectors we can reduce that general situation to right angle sectors which leads to our next result.

Theorem 1.4. Let 1 ă p ă 8. Let H 1 , H 2 be two half planes such that Σ :" H 1 X H 2 ‰ H is a sector. Then A p pΣq " A p pH 1 q `Ap pH 2 q.

The main result of this part of the paper is the separation of singularities problem for n half planes, the intersection of which is a convex polygon.

Theorem 1.5. Let 1 ă p ă 8. Let H 1 , H 2 , . . . , H n be half planes such that P :"

Ş n k"1 H k ‰ H is a convex polygon. Then A p pPq " ř n k"1 A p pH k q.
It is worth mentioning that when Ω is a polygon it is known that Schwarz-Christoffel mappings allow to send the upper half plane conformally onto Ω, so that with (3) it is possible to define the Bergman kernel for A 2 pΩq. However, already for a square, the understanding of the corresponding reproducing kernel is a very non-trivial matter.

Let us consider a special case illustrating the above results: Ω " tz " x `iy P C : 0 ă x ă 1, 0 ă y ă 1u i.e. Ω is the unit square with sides parallel to the coordinate axes and lower left corner 0. Let Ω 1 " C ``and Ω 2 " p1 `iq ´C``. Then Ω " Ω 1 X Ω 2 , and Theorems 1.4 and 1.5 yield the following immediate consequence which will resolve the conjecture on the reachable states of the 1-D heat equation on a finite rod with boundary controls as discussed in the next section.

Corollary 1.6. We have A p pΩq " A p pC ``q `Ap pp1 `iq ´C``q .

It turns out that we can apply Theorem 1.5 to more general domains. More precisely, we will consider non-empty, bounded intersections of convex domains Ω 1 and Ω 2 . Then the boundaries BΩ 1 and BΩ 2 can meet in single points or along curves. We will assume that there are only finitely many single points and arcs, i.e. BpBΩ 1 X BΩ 2 q is finite (by BΩ we mean the boundary of a two dimensional manifold Ω, and by BE the boundary of a one-dimensional manifold E).

Theorem 1.7. Let 1 ă p ă 8. Let Ω 1 and Ω 2 be two open convex sets in C such that (i) Ω 1 X Ω 2 is non-empty and bounded, (ii) The set B pBΩ 1 X BΩ 2 q is finite. Then A p pΩ 1 X Ω 2 q " A p pΩ 1 q `Ap pΩ 2 q.
All these theorems have weighted versions with weights ω l (l P N). Let us mention another direct consequence. Recall that the Dirichlet space DpΩq consists of all functions f holomorphic on Ω satisfying f 1 P A 2 pΩq (since the formerly stated results for Bergman spaces work for 1 ă p ă 8, we can also consider the corresponding Dirichet type spaces which are rather called Besov spaces). Applying the above decompositions to f 1 and taking anti-derivatives yields the corresponding decompositions in Dirichlet spaces. Note the following general results.

Proposition 1.8. Let Ω 1 and Ω 2 be two simply connected domains in C such that

Ω 1 X Ω 2 ‰ H. If A 2 pΩ 1 X Ω 2 q " A 2 pΩ 1 q `A2 pΩ 2 q then DpΩ 1 X Ω 2 q " DpΩ 1 q `DpΩ 2 q.
An application of this observation solves the control problem of the heat equation with Neumann boundary control.

Finally, we emphasize that our proofs do not work for p " 1. This situation already occurs in Aizenberg's result for the Smirnov space [START_REF] Aizenberg | Separation of singularities for holomorphic functions[END_REF]. While in his work it is the failure of boundedness of the Riesz projection which makes obstruction, here it is the Bergman projection which is not bounded on L 1 . This leads to the following open question.

Question: Is there a positive solution to the separation of singularities problem in E 1 and A 1 ?

The reachable states of the 1-D heat equation

Let us now turn to an important application of the separation of singularities in Bergman spaces: the control of the 1-D heat equation with boundary controls. More precisely, we consider the heat equation on the segment r0, πs with Dirichlet boundary control at both ends.

$ ' ' ' & ' ' ' % By Bt pt, xq ´B2 y Bx 2 " 0 t ą 0, x P p0, πq, ypt, 0q " u 0 ptq, ypt, πq " u π ptq t ą 0, yp0, xq " f pxq x P p0, πq, (HE) 
Let pT t q tě0 be the semigroup generated by the Dirichlet Laplacian on p0, πq. For any u :" pu 0 , u π q P L 2 loc pp0, `8q, C 2 q -the so-called input (or control) functionand f P X :" W ´1,2 p0, πq (the dual of the Sobolev space W 1,2 0 p0, πq), this equation admits a unique solution y P C pp0, `8q, Xq (see [TW09, Prop. 10.7.3]) defined by @t ą 0, ypt, ¨q " T t f `Φt u

(5)

where Φ t P LpL 2 pr0, τ s, C 2 q, Xq is the controllability operator (see [TW09, Prop. 4.2.5]). For f P X and τ ą 0, we will say that g P X is reachable from f in time τ if there exists a boundary control u P L 2 pp0, τ q, C 2 q such that the solution of (HE) satisfies ypτ, ¨q " g. We denote by R f τ the set of all reachable functions from f in time τ .

Main question: Can we describe explicitely the set R f τ ?

There is a large literature on this problem that we shall recall briefly here. We first mention that R f τ does not depend on the initial condition f P X, which means by (5) that R f τ is the linear space Ran Φ τ . So, it will be denoted by Ran Φ τ from now on and called reachable space. Secondly, it does not depend on time (see [START_REF] Fattorini | Reachable states in boundary control of the heat equation are independent of time[END_REF], [START_REF] Seidman | Time-invariance of the reachable set for linear control problems[END_REF], or [HKT20, Remark 1.1]). Finally, the functions in Ran Φ τ can be extended analytically to the square D " z " x `iy P C ˇˇ x ´π 2 `|y| ă π 2 ( . The description of the reachable space started in the pioneering work [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] and has been improved successively in [START_REF] Schmidt | Even more states reachable by boundary control for the heat equation[END_REF], [MRR16, Thm 1.1], [DE18, Theorem 1.1], [HKT20, Proposition 1.1, Thm 1.2], [START_REF] Orsoni | Reachable states and holomorphic function spaces for the 1-D heat equation[END_REF]; see also [START_REF] Kellay | Sharp reachability results for the heat equation in one space dimension[END_REF] for a recent survey on this problem and some other related problems. The key result obtained in [START_REF] Orsoni | Reachable states and holomorphic function spaces for the 1-D heat equation[END_REF] is the following (see also [KNT20, Section 7] for another proof given subsequently of this result).

Theorem 1.9. Let ∆ " tz P C | |arg pzq| ă π{4u.

We have RanΦ τ " A 2 p∆q `A2 pπ ´∆q.

By rotation and rescaling, Corollary 1.6 immediately yields

A 2 pDq " A 2 p∆q `A2 pπ ´∆q, (6) 
which gives the following characterization of the reachable space.

Corollary 1.10. We have RanΦ τ " A 2 pDq.

This proves the conjecture stated in [HKT20, Remark 1.3]. This implies also obviously the following inclusion.

Corollary 1.11. We have A 2 pDq Ă X :" W ´1,2 p0, πq.

The paper is organized as follows. In Section 2 we prove the separation of singularities results, and in Section 3 we give a more transparent proof to Corollary 1.6 and apply the results to several related problems on reachable spaces of the heat equation. 

Proof of theorems

Proof of Theorem 1.3. Obviously we only have to show the reverse inclusion. So, let us start with f P A 2 pC ``q. Using the conformal invariance property (3) applied to the kernel on D introduced in (2) and using the conformal map ϕ :

C `Ñ D, ϕpzq " z ´i z `i ,
we obtain first the reproducing kernel on C `,

k C λ pzq " ´1 πpz ´λq 2 , λ, z P C `.
The kernel for C `is deduced from this just by a suitable rotation

k C λ pzq " 1 πpz `λq 2 , λ, z P C `.
Finally, for the kernel on the quarter plane C ``, use ϕ :

C ``Ñ C `, ϕpzq " z 2 to get k C `λ pzq " ´4z λ πpz 2 ´λ 2 q 2 , λ, z P C `Àn
easy computation leads to the following key observation:

k C λ `kC λ " k C `λ , @λ P C ``. (7) 
For a function f defined on C ``, we write S C `f (resp. S C `f ) for the trivial extension of f by 0 on C `(resp. C `) outside C ``, i.e.

S C `f pzq " # f pzq if z P C `0 if z P C `zC `ànd
correspondingly for S C `f . Hence, since f was assumed in A 2 pC ``q, for every λ P C ``, we have

f pλq " A f, k C `λ E L 2 pC ``q " ż C ``f pzqk C `λ pzqdApzq " ż C ``f pzq ´kC λ pzq `kC λ pzq ¯dApzq " ż C `SC `f pzqk C λ pzqdApzq `żC `SC `f pzqk C λ pzqdApzq " A S C `f , k C λ E L 2 pC `q `AS C `f , k C λ E L 2 pC `q.
Finally, using the Bergman projection introduced in (1), we obtain on

C `f " P C `pS C `f q `PC ``S C `f ˘P A 2 pC `q `A2 pC `q. ( 8 
)
The result follows. Consider the case p ‰ 2. Pick f P A p pC ``q. Since k C λ (resp. k C λ ) belongs to L q pC `q (resp. L q pC `q) for q ą 1, the right hand side is well-defined for f P L p pC ``q if 1 ď p ă 8. In addition, it is well-known (see [BBG `04, Thm. 1.34]) that P C (resp.

P C `) is bounded from L p pC `q (resp. L p pC `q) onto A p pC `q (resp. A p pC `q) if and only if p ą 1. Finally, equality (8) holds for all f P A 2 pC ``q X A p pC ``q and this last space is dense in A p pC ``q (see Remark 2.1 below), hence by continuity it holds also for every f P A p pC ``q. The proof is complete.

It should be pointed out that the above argument yields a linear bounded separation operator.

Remark 2.1. For a general open set Ω Ă C, the density of A 2 pΩq X A p pΩq in A p pΩq is a difficult problem (see [Hed02, Proposition 2.2]) but in our specific case it follows from [BBG `04, Proposition 1.17] who showed the result for Ω " C `.

Indeed, moving back and forth between A p pC `q and A p pC ``q via the change of variables fomula T p F pzq " z 2{p F pz 2 q, F P A p pC `q, z P C ``, will produce the desired result. More precisely, in order to approximate a function F P A p pC `q by A 2 pC `qfunctions the authors of [BBG `04] introduce the following regularization of F by shifting and multiplying with a suitable function: F ε,α pzq " F pz `iεqG α pεzq, where G α pzq " p1 ´izq ´p2`αq , α ě 0 and ε ą 0. Clearly F ε,α pzq Ñ F pzq, when ε Ñ 0, for every z P C `. As observed in [BBG `04, Proposition 1.3], the function F pz `iεq is in the Hardy space of the upper half plane H p pC `q which allows an application of the dominated convergence theorem (actually to horizontal p-means of F ε,α ) when ε Ñ 0, which yields that F ε,α Ñ F in A p pC `q. Consequently f ǫ,α :" T p F ǫ,α Ñ f in A p pC ``q. It remains to prove that f ε,α P A 2 pC ``q, i.e.

f ε,α " T p F ǫ,α " z 2{p F pz 2 `iεqG α pεz 2 q " z 2{p´1 p1 ´iεz 2 q α T 2 F ε,0 pzq is in A 2 pC ``q. Since F ε,0 ď C ε {p1 `|z|q 2 ,
we have F ε,0 P A 2 pC `q, and so f ε,α P A 2 pC ``q can now be reached by an appropriate choice of α depending on p (note that T 2 F ε,0 is locally bounded at 0, so that only the case 1 ă p ă 2 needs consideration of a suitable α).

Remark 2.2. Obviously, the theorem holds for every half plane the intersection of which is a right-angle sector.

We will now move on to the proof of Theorem 1. We can of course reduce the situation to the case a " 0, and consider ∆ b 0 " C `X H 1 where H 1 is the half plane ∆ b b´π . While it is very tempting now to apply the same idea above to an arbitrary sector ∆ b 0 , the magic decomposition of the reproducing kernel on the right-angle sector breaks down. Indeed, with formula (3) in mind one can of course explicitely compute the kernel for H 1 which amounts essentially to multiply z and λ by a suitable unimodular constant α (more precisely α " e ipπ´bq ) in the expression of k C λ pzq. However, the same transformation formula (3) applied to transform the kernel of C `to that of ∆ b 0 involves a power function: ϕpzq " z π{b . A computation shows that the kernels of the half planes do not add up to the kernel of the sector.

Proof of Theorem 1.4. As already mentioned it is enough to prove the result for

Σ " ∆ b 0 , H 1 " C `and H 2 " C θ :" ∆ b ´π`b , with 0 ă b ă π: A p p∆ b 0 q " A p pC `q `Ap p∆ b ´π`b q. ( 9 
)
The heart of the proof is contained in the following lemma which shows in a way that we can double the opening of the sector. where we have chosen the branch cut to be p´8, 0s. Let T : A p pC ``q Ñ A p p∆ b a q be the isometric isomorphism associated with ϕ, i.e @g P A p pC ``q, T g " pg ˝ϕqpϕ 1 q 2{p . Pick f P A p p∆ b a q. Then g :" T ´1f belongs to A p pC ``q. So, by Theorem 1.3, there exist g 1 P A p pC `q and g 2 P A p pC `q such that g " g 1 `g2 on C ``. Hence f " T g " T g 1 `T g 2 " pg 1 ˝ϕqpϕ 1 q 2{p `pg 2 ˝ϕqpϕ 1 q 2{p . Remark now that the branch cut has been choosen such that ϕ continues analytically on ∆ We are now in a position to prove the theorem. We start from A p p∆ θ 0 q, where we assume for the moment that π{2 ă θ ă π. Since minpπ, 2θq " π, the lemma yields A p p∆ θ 0 q " A p p∆ π 0 q `Ap p∆ θ ´θq so that f P A p p∆ θ 0 q decomposes as f " f 1 `f2 (considered on ∆ θ 0 ) with f 1 P A p p∆ π 0 q " A p pC `q and f 2 P A p p∆ θ ´θq. Since π{2 ă θ we have ∆ θ ´θ Ą ∆ θ θ´π which yields (9). We will proceed by an inductive application of the lemma. In order to better understand this induction, let us also illustrate the case when π{4 ă θ ă π{2. In order to not overcharge notation we will only mention the underlying sectors and not write out the Bergman spaces, see Figure 4.

It is clear from here that after n steps of applications of the lemma, there are

2 n sectors ∆ p2 n ´kqθ ´kθ
, k " 0, . . . , 2 n ´1 (when p2 n ´kqθ ą π or kθ ą π it should be replaced by π).

In the general case, let N P N ˚be the least natural number such that 2π ă 2 N θ. Observe that when 0 ď k ď 2 N ´1 (which corresponds to one half of the possible k's), then p2 N ´kqθ ě p2 N ´2N´1 qθ " 2 N ´1θ ą π, so that ∆ p2 N ´kqθ ´kθ Ą C `, while for again that as soon as p2 N ´kqθ ą π or kθ ą π in the procedure, it should be replaced by π.) Hence, any function f P A p p∆ θ 0 q will be decomposed into 2 N functions, one half of which is in A p pC `q and the other one in A p p∆ θ ´π`θ q.

2 N ´1 ă k ď 2 N ´1, we have kθ ą π so that ∆ p2 N ´kqθ ´kθ Ą ∆ θ ´π Ą ∆ θ θ´π . (We mention ∆ θ 0 ∆ θ ´θ ∆ 2θ 0 ∆ 3θ ´θ ∆ θ ´3θ ∆ 4θ 0 ∆ 2θ ´2θ
The next result claims that Theorem 1.4 also holds for Bergman spaces with the same weight ω N pzq " p1 `|z| 2p q ´N (see (4)).

Corollary 2.4. Let H 1 , H 2 be two half planes such that S θ :" H 1 X H 2 ‰ H is an angular sector. For any N P N, we have A p pS θ , ω N q " A p pH 1 , ω N q `Ap pH 2 , ω N q.

Proof. The direct inclusion is obvious, let us prove the converse one. Denote by z 0 a complex number such that distpz 0 , S θ q ą 0 and P pzq " pz ´z0 q 2N . Pick f P A p pS θ , ω N q, then f P belongs to A p pS θ q, and by Theorem 1.4, there exists f1 P A p pH 1 q and f2 P A p pH 2 q such that f P " f1 `f 2 . Hence, f " P f1 `P f2 :" f 1 `f2 with f 1 P A p pH 1 , ω N q and f 2 P A p pH 2 , ω N q.

We will now prove Theorem 1.1 which is an almost-separation of singularities in the simplest case. Denote by B the Cauchy-Riemann operator B " 1 2 p d dx `i d dy q. The main idea is to reduce the problem to a B-equation and to use Hörmander type L pestimates for the solution of the B-equation. The estimates are certainly well-known to experts but we include a proof for completeness.

Lemma 2.5. Let 1 ă p ă 8. Let Ω Ă C be an open connected set such that Ω ‰ C. If f P L p pΩq then there exists a solution u of the equation Bu " f on Ω such that u P L p pΩ, ω 1 q.

Note that we do not look for a solution in L p pΩq but we allow a weight to appear which makes the problem solvable in the setting under consideration. Still, this solution will be sufficient for our purpose.

Proof. The case p " 2 is a particular case of the famous Hörmander L 2 -estimates [Hör07, Thm 4.2.1]. From now on, let 1 ă p ‰ 2 ă 8.

For bounded Ω the result can be found in [FS91, Sec. 2, p.134] and follows from Young's inequality and properties of the Cauchy kernel 1 s´z . Indeed, the classical solution (i.e the solution with minimal weigthed L 2 -norm) of Bu " f on Ω is given by

upzq " 1 π ż Ω f psq s ´z dApsq and satisfies }u} L p pΩq ď }f } L p pΩq › › › › 1 z › › › › L 1 pΩ´Ωq ď C}f } L p pΩq ( 10 
)
where C depends only the diameter of Ω ´Ω " tu ´v : u P Ω, v P Ωu.

For the general case, let z 0 P C be such that distpz 0 , Ωq ą 0 and set Qpzq " z ´z0 . Denote by g the function g " f Q . Clearly, u g satifies Bu g " g if and only if Bu f " f , where u f " Qu g . It thus suffices to prove the existence of a solution u g to Bu g " g such that u g P L p `Ω, p1 `|z| p q ´1˘. For this, we choose u g to be the classical solution of Bu g " g on Ω defined by u g pzq " u Ω g pzq " 

1

Considering u

ΩXDpζ,2q g as the solution to the B-problem on the bounded domain Ω X Dpζ, 2q, we obtain by (10)

}u ΩXDpζ,2q g } L p pΩXDpζ, 1qq ď }u ΩXDpζ,2q g } L p pΩXDpζ, 2qq ď C}g} L p pΩXDpζ, 2qq ď C 1 `|ζ| }f } L p pΩXDpζ, 2qq ď C 1 `|ζ| where C is essentially given by › › 1 z › › L 1 pDpζ, 2q´Dpζ, 2qq ď › › 1 z › › L 1 pDp0, 4qq
and thus independent on ζ.

For u ΩzDpζ, 2q g , Hölder's inequality gives for all z P Dpζ, 1q,

u ΩzDpζ, 2q g pzq ď }f } L p pΩzDpζ, 2qq › › › › 1 pz ´¨qQ › › › › L p 1 pΩzDpζ, 2qq ď # C 1`|ζ| if p ă 2 C if p ą 2
where p 1 is the conjugate exponent of p, and C is independent on ζ.

Putting the above estimates together, and observing that 1 `|ζ| » 1 `|z| for z P Dpζ, 1q, we get

|u g pzq| ď C 1 `|ζ| `# C 1`|ζ| if p ă 2 C if p ą 2 ď # C 1 1`|z| if p ă 2 C 1 if p ą 2 (pick for instance C 1 " 2C). Hence ż Ω |u g pzq| p 1 `|z| p dApzq ď # ş Ω C 1 1`|z| 2p dApzq if p ă 2 ş Ω C 1 1`|z| p dApzq if p ą 2 ă 8.
Restating the previous lemma in the spirit of Hörmander's result is to say that the solution u of Bu " f satisfies ż

Ω |upzq| p p1 `|z| 2 q p dApzq ď C p ż Ω |f pzq| p dApzq.
In particular, this is coherent in the power of p1 `|z| 2 q with Hörmander's result which yields exactly the above estimate for p " 2 (with a simpler proof). However, our argument does not work for p " 2.

The proof below follows essentially the argument [AM04, Theorem 9.4.1] combined with the L p -estimates from the previous lemma.

Proof of Theorem 1.1. Pick f P A p pΩ 1 X Ω 2 q. Take χ a bounded C 8 -function such that χ " 1 on Ω 1 zΩ 2 and χ " 0 on Ω 2 zΩ 1 . Since distpΩ 1 zΩ 2 , Ω 2 zΩ 1 q ą 0, we can assume that ∇χ is uniformly bounded (note that it vanishes outside Ω 1 X Ω 2 ). So we can define h 1 " f p1´χq on Ω 1 and h 2 " f χ on Ω 2 . Using the analyticity of f , we have Bh 1 " ´f Bχ " ´Bh 2 on Ω 1 X Ω 2 , which implies the existence of a C 8 -continuation v such that v " Bh 1 on Ω 1 and v " ´Bh 2 on Ω 2 . Since Bχ is bounded, v belongs to L p pΩ 1 Y Ω 2 q and by Lemma 2.5, there exists u P L p pΩ 1 Y Ω 2 , ω 1 q such that Bu " v. Finally, defining f 1 " h 1 ´u on Ω 1 and f 2 " h 2 `u on Ω 2 , we obtain f " f 1 `f2 on Ω 1 X Ω 2 and f i P A p pΩ i , ω 1 q by definition of u. The proof is complete. Now, a multiplier argument gives us a general separation of singularities result.

Proof of Corollary 1.2. Let z 0 be such that distpz 0 , Ω 1 Y Ω 2 q ą 0, and write P pzq " pz ´z0 q 2 . Pick f P A p pΩ 1 X Ω 2 q, then g :" P f belongs also to A p pΩ 1 X Ω 2 q since P is bounded on Ω 1 X Ω 2 . So, by Theorem 1.1, g " g 1 `g2 with g 1 P A p pΩ 1 , ω 1 q and g 2 P A p pΩ 2 , ω 1 q. Therefore f " g P belongs to A p pΩ 1 q `Ap pΩ 2 q.

With the same argument used in Corollary 2.4, we obtain the following weighted version of Theorem 1.1.

Corollary 2.6. Let Ω 1 and Ω 2 be open sets of C such that Ω 1 X Ω 2 ‰ H. If distpΩ 1 zΩ 2 , Ω 2 zΩ 1 q ą 0, then for any l P N, we have A p pΩ 1 XΩ 2 , ω l q Ă A p pΩ 1 , ω l`1 qÀ p pΩ 2 , ω l`1 q.

Before proving Theorem 1.5 we need an auxiliary result on decompositions of Bergman spaces on unbounded intersections of half planes. This is provided by the following lemma.

Lemma 2.7. Let n ě 2 and H 1 , . . . , H n be half planes such that Ω :" Ş n k"1 H k is non-empty, convex and unbounded. Then for any l P N, we have

A p pΩ, ω l q Ă n ÿ k"1 A p pH k , ω l`pn´1q q.
Proof. Pick f P A p pΩ, ω l q. We can assume that Ω has exactly n sides, otherwise just add the zero function. Let us prove the result by induction. If n " 2, Ω is either a sector or a strip. In the first case, the result follows from Corollary 2.4. When Ω is a strip, then dpH 1 zΩ, H 2 zΩq ą 0 and the result follows from Corollary 2.6. So the base case of the induction is established.

Assume now that the lemma is true for every 2 ď n ă N . We shall prove it for N . Since Ω is convex and N ě 3, the boundary BΩ is path connected. Without loss of generality we can assume that the half planes H 1 , . . . H N are ordered such that the sides S 1 , . . . , S N of BΩ satisfy

S i Ă BH i , S i X S i`1 ‰ H (1 ď i ď N ´1),
and S 1 and S N are the unbounded sides of BΩ. Then, writing Ω " ´ŞN´1

i"1

H i ¯X S N ´1 Ω Ω 1 Ω 2
Figure 5: The decomposition of Ω as the intersection of Ω 1 and Ω 2 .

pH N ´1 X H N q :" Ω 1 XΩ 2 (see Figure 5), we obtain f " f 1 `f2 with f 1 P A p pΩ 1 , ω l`1 q and f 2 P A p pΩ 2 , ω l`1 q. Indeed, this follows from Corollary 2.6 since Ω is convex and unbounded, and distpΩ 1 zΩ 2 , Ω 2 zΩ 1 q " |S N ´1| ą 0. Finally, using the induction hypothesis on Ω 1 and Ω 2 (observe that Ω 2 is a sector so that the weight is not changed here), we conclude the inductive step, which proves the lemma.

Proof of Theorem 1.5. Again we will prove the result by induction. If n " 3, P is a triangle and we make the decomposition P " Σ 3 X Ω where Σ 3 is the angular sector H 1 X H 2 and Ω is an unbounded domain, as in Figure 6. We will again denote by S i the sides of P and S i Ă BH i . As previously, distpΣ 3 zΩ, ΩzΣ 3 q ą 0, so by Corollary 1.2 we have

A p pPq " A p pΣ 3 q `Ap pΩq. (11) 
(Observe that the corollary does not require any convexity assumption, and no weights appear here.) Hence, it remains to decompose Ω which will be done writing Ω " Θ 1 X Θ 2 , as in Figure 6. Again, distpΘ 1 zΩ, Θ 2 zΩq ą 0, so by Theorem 1.4, we have

A p pΩq Ă A p pΘ 1 , ω 1 q `Ap pΘ 2 , ω 1 q. ( 12 
) Define Σ 2 " H 1 X H 3 and Σ 1 " H 2 X H 3 . Clearly Σ k Ă Θ k , k " 1, 2
, and so

A p pΘ k , ω 1 q Ă A p pΣ k , ω 1 q, k " 1, 2. (13) 
From ( 11)-(13), we obtain A p pPq Ă ř 3 k"1 A p pΣ k , ω 1 q. It can be checked that

Ť 3 k"1 Σ k ‰ C,
so that there exists z 0 with distpz 0 , Ť 3 k"1 Σ k q ą 0. Define P pzq " pz ´z0 q 2 . Then, for f P A p pPq, the function g " P f is also in A p pPq (multiplication by P is actually an invertible operation on A p pPq), which implies that g can be written as g " g 1 `g2 `g3 with g i P A p pΣ i , ω 1 q. Thus, f " g P "

ř 3 k"1 g k P .
Hence, setting f k " g k P , and since }g k } A p pΣ k ,ω 1 q is comparable to }f k } A p pΣ k q " }g k {P } A p pΣ k q , we obtain that f belongs to ř 3 k"1 A p pΣ k q. This means that A p pPq " ř 3 k"1 A p pΣ k q and using Theorem 1.4, we obtain the base case of the induction. Now, assume that the result is true for every 3 ď k ă n. There are two cases. First suppose that P has two non-consecutive non-parallel sides (see Figure 7). Denote by S 1 , . . . , S n its ordered sides (S i X S i`1 ‰ H, S n X S 1 ‰ H) and H 1 , . . . , H n the corresponding half planes. Let S i and S j be two non-parallel sides with j ě i `2.

P Σ 3 Ω S 1 S 2 S 3 Θ 2 Θ 1 Ω z 0 Θ 1 Σ 1 S 2 S 3
Write Ω 1 " Ş j k"i H k and Ω 2 " Ş kRpi,jq H k (we denote ri, js " ti, i `1, . . . , ju and pi, jq " ti `1, . . . , j ´1u). Observe that Ω 1 and Ω 2 have the sides S i and S j in common. It is clear that P " Ω 1 X Ω 2 and distpΩ 1 zΩ 2 , Ω 2 zΩ 1 q " min lPpi,jq kRri, js distpS l , S k q ą 0. So, by Corollary 1.2, we have A p pPq " A p pΩ 1 q `Ap pΩ 2 q. Since S i and S j are non-parallel, one of the sets Ω i is a polygon and the other one is unbounded. Les us assume that Ω 1 is a polygon. Using Lemma 2.7 with l " 0, we obtain A p pΩ 2 q Ă ř kRpi, jq A p pH k , ω n´1 q, and hence

A p pPq Ă A p pΩ 1 q `ÿ kRpi, jq A p pH k , ω n´1 q,
where Ω 1 is a polygon with lower degree. By the induction hypothesis, A p pΩ 1 qfunctions decompose in the required way into A p pH k q-functions where k P ri, js.

In order to manage the second term, we need to get rid of the weight ω n´1 . This will again be done using the multiplication by an appropriate polynomial vanishing neither on H k , k R pi, jq nor on Ω 1 . For that, observe that Ω 2 is an unbounded convex domain, and S i and S j are non-parallel. We claim that there exists z 0 R Ť kRpi, jq H k Y Ω 1 . Indeed, for every k R pi, jq, H k Ă H i Y H j , and moroever Ω 1 Ă H i Y H j (convexity comes into play here). Since S i and S j are non parallel, H i Y H j ‰ C, and it is enough to pick z 0 R H i Y H j with distpz 0 , H i Y H j q ą 0. The polynomial we are looking for is P pzq " pz ´z0 q 2pn´1q . Pick now f P A p pPq. As in the previous corollary, writing g " P f , we have g P A p pPq and so, by the reasoning above, g " g 1 `řkRpi, jq g 2,k with g 1 P A p pΩ 1 q and g 2,k P A p pH k , ω n´1 q, and hence f 2,k " g 2,k {P P A p pH k q. Also, since multiplication (and division) by P is an invertible operation on A p pΩ 1 q, we have f 1 " g 1 {P P A p pΩ 1 q, and by the induction hypothesis (applied to Ω 1 ) f 1 decomposes into a sum of A p pH k q-functions, k P ri, js: Secondly, suppose that all non-consecutive sides of P are parallel. Then n " 4 and P is a parallelogram. We treat this case directly. As in the first case, we denote by S 1 , . . . , S 4 the consecutive sides of P, H 1 , . . . , H 4 the corresponding half planes and Σ k " H k X H k`1 (with H 5 " H 1 ) the angular sectors. We make the same decomposition : A p pPq " A p pΩ 1 q `Ap pΩ 2 q where Ω 1 " H 1 X H 2 X H 3 and Ω 2 " H 3 XH 4 XH 1 . This time Ω 1 and Ω 2 are both unbounded and distpΩ 1 zΩ 2 , Ω 2 zΩ 1 q ą 0. Using Theorem 1.1 we get A p pPq Ă A p pΩ 1 , ω 1 q `Ap pΩ 2 , ω 1 q. Next we apply Lemma 2.7 to each of these spaces to get A p pPq Ă ř 4 k"1 A p pH k , ω 3 q (notice that the weight is given by 1 `pn ´1q " 3 since we intersect 3 half planes). Observe that in this case H 1 Y H 2 Y H 3 " C (and similarly for H 3 , H 4 , H 1 ), so that at this step we cannot find a z 0 allowing the multiplication trick by a polynomial. Instead, we use Corollary 2.4, to get sectors:

f " f 1 `ÿ kRpi, jq g 2,k P P ÿ kPri,js A p pH k q `ÿ kRpi,jq A p pH k q. P Ω 1 Ω 2 S 2 S 3 . . . S 6 P Ω 1 Ω 2 H 2 H 6 H 1 z 0
A p pPq Ă 4 ÿ k"1
A p pH k , ω 3 q " A p pΣ 1 , ω 3 q `Ap pΣ 3 , ω 3 q, where Σ 1 " H 1 X H 2 and Σ 3 " H 3 X H 4 . Now, there exists a point z 0 which is not in Σ 1 Y Σ 3 , so that we can use the multiplication trick as in the first case: f P A p pPq implies g " f P P A p pPq splits into g " g 1 `g2 with g 1 P A p pΣ 1 , ω 3 q, g 2 P A p pΣ 3 , ω 3 q. With the suitable choice of P we compensate again the weight so that f 1 " g 1 {P P A p pΣ 1 q and f 2 " g 2 {P P A p pΣ 3 q. Hence A p pPq Ă A p pΣ 1 q `Ap pΣ 3 q, and we conclude using Theorem 1.4.

Let us indicate how the above results apply to more general separation of singularities problem in Bergman spaces, and not only on polygons.

Proof of Theorem 1.7. Assume that Ω 1 Ć Ω 2 and Ω 2 Ć Ω 1 , otherwise the problem is trivial. Let us make some additional observations.

• By assumption, Ω 1 and Ω 2 are convex, so that Ω 1 X Ω 2 is also convex (and non-empty), hence BpΩ 1 X Ω 2 q is the image Γ of a Jordan curve γ.

• BΩ 1 XBΩ 2 includes at least two points and if we write B pBΩ 1 X BΩ 2 q :" tz 1 , . . . , z n u pn ě 2q, we have

BpΩ 1 X Ω 2 q " Γ " n ď k"1 Γ z k ,z k`1 , pz n`1 :" z 1 q where Γ z k ,z k`1 is the path in BpΩ 1 X Ω 2 q connecting z k to z k`1 . Moreover, Γ z k ,z k`1 Ă BΩ 1 or Γ z k ,z k`1 Ă BΩ 2 . Note that it can happen that Γ z k ,z k`1 Ă BΩ 1 X BΩ 2 .
• By convexity, rz k , z k`1 s Ă Ω 1 X Ω 2 . Let us start assuming n ě 3. Pick f P A p pΩ 1 X Ω 2 q. Write P z 1 ,...,zn :" Int pConvptz 1 , . . . , z n uqq "

n č k"1 H z k ,z k`1
where H z k ,z k`1 is the half plane associated to the side rz k , z k`1 s of the polygon (see Figure 8), and note that by convexity P z 1 ,...,zn Ă Ω 1 X Ω 2 . So f P A p pP z 1 ,...,zn q and by Theorem 1.5 there exist f 1 , . . . , f n such that f k P A p pH z k ,z k`1 q and f " ř n k"1 f k . It remains to prove that each f k belongs either to A p pΩ 1 q or to A p pΩ 2 q. Let i k P t1, 2u be the index such that Γ z k ,z k`1 Ă BΩ i k (when Γ z k ,z k`1 is in both boundaries, we can pick either of the values 1 or 2 for i k ). Two cases may occur. If Γ z k ,z k`1 " rz k , z k`1 s, then, by convexity, Ω i k Ă H z k ,z k`1 and the result follows:

f k P A p pH z k ,z k`1 q Ă A p pΩ i k q. So, assume that Γ z k ,z k`1 ‰ rz k , z k`1 s and write O z k , z k`1 :" č j‰k H z j ,z j`1 X Ω i k Ă Ω 1 X Ω 2
(one side of the polygon has been replaced by the arc

Γ z k ,z k`1 ). Since f k P A p pH z k ,z k`1 q it is obvioulsy in A p pH z k ,z k`1 XΩ i k q. We claim that it extends to a function in A p pΩ i k q. By definition O z k , z k`1 Ă H z j , z j`1 , j ‰ k. Therefore, we have f k " f lo omo on PA p pΩ 1 XΩ 2 qĂA p pOz k , z k`1 q ´ÿ j‰k f j lo omo on PA p pHz j ,z j`1 qĂA p pOz k , z k`1 q P A p pO z k , z k`1 q. Thus f k P A p pH z k ,z k`1 Y O z k ,z k`1 q Ă A p pΩ i k q.
Finally, assume that n " 2. It is sufficient to add a point z 3 which belongs to B pΩ 1 X Ω 2 q z tz 1 , z 2 u, and construct P z 1 , z 2 , z 3 as before. The rest of the proof is dealt with as in the previous case.

It it worth mentioning that convex sets with infinitely many intersections can be constructed easily. 

z 1 z 2 z 3 z 4 Ω 1 Ω 2 P z 1 ,z 2 ,z 3 ,z 4 O z 4 ,z 1 Γ z 4 ,z 1 H z 2 ,z 3 H z 3 ,z 4 H z 1 ,z 2

Reachable states of the heat equation

As already discussed in the first section, the result [Ors20, Theorem 1.1], which states that RanΦ τ " A 2 p∆q `A2 pπ ´∆q

together with our Corollary 1.6 yield the final characterization of the reachable states of the 1-D heat equation with L 2 -boundary controls

RanΦ τ " A 2 pDq, (15) 
as stated in Corollary 1.10. In this section we would like to make some additional observations on this and related control problems. Also, the general arguments presented in Section 2 leading to Theorem 1.5 might hide the very simple ideas which are actually behind Corollary 1.6 and thus leading to (15). For this reason, we would like to present here a more direct proof of Corollary 1.6 based on Corollary 1.2 and Theorem 1.3 (case p " 2).

A direct proof to Corollary 1.10

As already mentioned several times (see for instance Remark 2.2), the decomposition ( 14) is invariant by rotation and dilation. So, writing Σ 2 :" p1 `iq ´C``a nd denoting by D 1 the square D 1 :" C ``X Σ 2 (see Figure 9), it is enough to show that A 2 pD 1 q " A 2 pC ``q `A2 pΣ 2 q. Let z 0 P CzpC ``Y Σ 2 q and P pzq " pz ´z0 q 2 which is bounded and non-vanishing on D 1 , so that multiplication by P is an isomorphism onto A p pD 1 q. In particular f P A 2 pD 1 q if and only if g " P f P A 2 pD 1 q.

The proof decomposes into 3 steps. We have already met some arguments in the proof of Theorem 1.5 when considering the case of a parallelogramme P. Step 1: Let S 1 and S 2 be the half strips S 1 " tz " x `iy P C | y ą 0, 0 ă x ă 1u and S 2 " p1 `iq ´S1 . Note that D 1 " S 1 X S 2 (see Figure 10). Since D 1 is bounded and distpS 1 zD 1 , S 2 zD 1 q ą 0, by Corollary 1.2, there exist g 1 P A 2 pS 1 q and g 2 P A 2 pS 2 q such that g " g 1 `g2 on D 1 . This step is complete. Step 2: Denote by Q 1,1 and Q 1,2 (respectively Q 2,1 " Σ 2 and Q 2,2 ) the left and right quarter planes the intersection of which is S 1 (resp. S 2 ) (see Figure 11). We can repeat the same argument as in the previous step (applying Theorem 1.1) and obtain g 1 " g 1,1 `g1,2 (resp. g 2 " g 2,1 `g2,2 ) with g 1,i P A 2 pQ 1,i , ω 1 q (resp. g 2,i P A 2 pQ 2,i , ω 1 q).

Step 3: Remark that Q 1,2 " C ``and Q 2,1 " Σ 2 . So that we already have g 1,2 `g2,1 P A 2 pC ``, ω 1 q `A2 pΣ 2 , ω 1 q, solving the problem for g 1,2 and g 2,1 . Let us show the same for g 1,1 and g 2,2 . Denote by H 1,1,1 " C `the upper half plane by and H 1,1,2 " 1 ´C`t he left half plane translated by 1 (resp. H 2,2,1 and the lower half plane translated by 1 and H 2,2,2 the right half plane) the intersection of which is Q 1,1 (resp. Q 2,2 ), see Figure 12. By Corollary 2.4 with Remark 2.2, g 1,1 belongs to A 2 pH 1,1,1 , ω 1 q `A2 pH 1,1,2 , ω 1 q and g 2,2 belongs to A 2 pH 2,2,1 , ω 1 q `A2 pH 2,2,2 , ω 1 q. Now, observing that

Q 1,2 " C ``Ă H 1,1,1 , C ``Ă H 2,2,2 , Σ 2 Ă H 1,1,2 and Σ 2 Ă H 2,2,1
, we obtain that g 1,1 belongs to A 2 pC ``, ω 1 q `A2 pΣ 2 , ω 1 q and the same is true for g 2,2 . Thus g P A 2 pC ``, ω 1 q `A2 pΣ 2 , ω 1 q. Finally, by definition of P , f " g P belongs to A 2 pC ``q `A2 pΣ 2 q, which concludes the proof. 

Q 1,1 S 1 Q 1,2 Q 2,1 S 2 Q 2,2
Q 1,1 H 1,1,2 H 1,1,1 H 2,2,1 H 2,2,2 Q 2,2

Remarks on related control problems

In this subsection we discuss some related control problems for the heat equation. The first one is mentionned in [START_REF] Kellay | Sharp reachability results for the heat equation in one space dimension[END_REF] and the others in [START_REF] Hartmann | From the reachable space of the heat equation to Hilbert spaces of holomorphic functions[END_REF].

Smooth boundary control

In [START_REF] Kellay | Sharp reachability results for the heat equation in one space dimension[END_REF], Kellay, Normand and Tucsnak gave a characterization of the reachable space when the control is smooth. Let s P N and denote by W s,2 L `p0, τ q, C 2 ˘the Sobolev type space given by W s,2 L `p0, τ q, C 2 ˘:" # v P L 2 `p0, τ q, C 2 ˘ˇˇˇˇ@ 1ďkďs, d k v dt k PL 2 pp0, τ q, C 2 q and @0ďkďs´1, d k v dt k p0q"0 + .

Write also `A2 p∆q `A2 pπ ´∆q ˘psq :" ! f P A 2 p∆q `A2 pπ ´∆q ˇˇ@1 ď k ď s, f p2kq P A 2 p∆q `A2 pπ ´∆q )

Then, combining their propositions 5.1 and 7.1, they proved that Ran ´Φτ |W s,2 L pp0, τ q, C 2 q ¯" `A2 p∆q `A2 pπ ´∆q ˘psq .

(16)

Similarly as above, we let pA 2 q psq pDq be the space of functions f P A 2 pDq such that f p2kq P A 2 pDq for all 1 ď k ď s. Using Corollary 1.10, result (16) immediately leads to Corollary 3.1. We have Ran ´Φτ |W s,2 L pp0, τ q, C 2 q ¯" pA 2 q psq pDq.

Neumann conditions

It is also possible to ask for a description of the reachable space for other types of boundary conditions. For Neumann boundary conditions, the result follows directly from Corollary 1.10 and a trick used in [START_REF] Hartmann | From the reachable space of the heat equation to Hilbert spaces of holomorphic functions[END_REF]. We remind that we are searching the reachable space of the equation 

Again, for every initial condition g P L 2 p0, πq and every control function u " pu 0 , u π q P L 2 pR `, Cq, the previous equation ( 17) admits a unique solution y P C `r0, `8q, L 2 p0, πq ˘. We denote by Φ N N τ the controllability map associated to this equation. Let DpDq be the Dirichlet space on D, which consists of all holomorphic functions F in D such that F 1 P A 2 pDq. As noted in [HKT20, Prop. 5.2], w is a solution of (17) if and only if y " Bw Bx is a solution of (HE) with initial condition f " g 1 . Thus the next result follows.

Corollary 3.2. We have RanΦ N N τ " DpDq. Denote by D 2 the square D 2 " tz " x `iy P C | |x| `|y| ă πu. So, using Corollary 1.10 on r´π, πs we obtain r y P A 2 pD 2 q and r yp´zq " ´r ypzq, @z P D 2 . Respectively, if r y P A 2 pD 2 q and @z P D 2 , r yp´zq " ´r ypzq, then r y |r0, πs is a solution of (18). Thus, we have proved Corollary 3.3. Denote by RanΦ 0D τ the reachable space of (18). We have RanΦ 0D τ " f P A 2 pD 2 q ˇˇ@z P D 2 , f p´zq " ´f pzq ( :" A 2 odd pD 2 q.

Dirichlet condition at one end

Neumann condition at one end

Finally, let RanΦ 0N τ be the reachable space for Neumann boundary condition at one end, i.e the reachable space of (17) with u 0 " 0. Using an even extension and with the same kind of arguments as in the previous case, we obtain Corollary 3.4. We have RanΦ 0N

τ " tf P DpD 2 q | @z P D 2 , f p´zq " f pzqu :" D even pD 2 q " f P HolpD 2 q ˇˇf 1 P A 2 odd pD 2 q ( .
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 2 Figure 2: The sector ∆ b a .
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 3 Let a, b be real numbers such that ´π ď a ă b ď π. Then A p p∆ b a q " A p ´∆minpπ, 2b´aq a ¯`A p ´∆b maxp´π, 2a´bq ¯.Proof. Let ϕ : ∆ b a Ñ C ``be the conformal mapping given by ϕpzq " pe ´ia zq π 2pb´aq
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 3 Figure 3: One step of the induction.
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 4 Figure 4: Iterrative applications of Lemma 2.3 in the decomposition of the sector ∆ θ 0 .
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 6 Figure 6: Decomposition of a triangle.
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 7 Figure 7: Decomposition of P as Ω 1 X Ω 2 with a possible numbering of S i , and the domain H i Y H j . (S 2 and S 6 are two non-consecutive non-parallel sides.)
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 8 Figure 8: Intersection of two convex open sets.
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 9 Figure 9: The decomposition of D 1 as the intersection of C ``and Σ 2 .
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 10 Figure 10: Step 1 -Decomposition of D as the intersection of S 1 and S 2 .
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 11 Figure 11: Step 2 -The decompositions of S 1 and S 2 .
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 12 Figure 12: Step 3 -The decompositions of Q 1,1 and Q 2,2 .

  Now, we are looking for the reachable space for Dirichlet boundary condition at one end on the interval i.e. the reachable space of the equation

				$ ' ' ' & ' ' ' %	yp0, xq " gpxq By Bt pt, xq ´B2 y Bx 2 pt, xq " 0 ypt, 0q " 0, ypt, πq " u π ptq	x P p0, πq. t ą 0, x P p0, πq, t ą 0,	(18)
	Note that if y is a solution of (18), then its odd extension r y to r´π, πs is a solution
	of	$ ' ' ' &	Br y Bt	pt, xq	´B2 r y Bx 2 pt, xq " 0	t ą 0, x P p´π, πq,
		' ' ' % ypt, ´πq " ´uπ ptq, r r ypt, πq " u π ptq	t ą 0,

r yp0, xq " gpxq x P p´π, πq.

Acknowledgements

The authors would like to thank Joaquim Ortega-Cerdà for some helpful discussions.

* This research was partially supported by the project ANR-18-CE40-005 and by the Joint French-Russian Research Project PRC CNRS/RFBR 2017-2019.