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ABSTRACT 

This study considers the effect of mechanic.al stirring of V(IVl solutions and of the presence of solid sus­
pensions on the V�;;;/) 

oxidation current measured on a graphite electrode, with the objective of a better 
understanding of the electrochemic.al reactions taking place in a vanadium redox flow battery (VRFB). Our 
research question was to determine whether the presence of different kind of solid particles (inert glass 
spheres, VOS04 powder and nanometric ketjen black (KB)) could be beneficial to the electrochemical per­
formances of the VRFB. The experimental method consisted in measuring the anodic limiting current of 

a VOS04-H2S04-H20 solution on a rotating graphite cylinder, by linear sweep voltammetry. 

In the absence of solid particles, we show that the mass transfer coefficient dependence against the an­
gular velocity of both the electrode and an additional stirrer obey to a power law (k = f(wY )) with an 
exponent y found to be lower than the theoretic.al value. The beneficial effect on the mass transfer of 
V02+ at the interface observed with low fraction of inert glass particles dramatically disappears as the 
spheres fraction incre.ases. This is attributed to the decre.ase of the available free volume for the diffu­
sion. When the solid consists of VOS04 particles, the anodic current decreases as the mass fraction of 
the solid increases, whic.h demonstrates the absence of any significant beneficial effect of the dissolution 
of the VOS04 grains in the diffusion layer. Conversely, an important increase (- 40%) of the oxidation 
current is observed when KB particles were introduced at low fractions (0.15%) in the bulk, thanks to 
the electronic percolation cre.ated by the KB. However, this beneficial effect disappears for higher mass 
fraction of both vanadium or KB solid particles, because of the destruction of the aggregates enabling the 
electron to be driven into the bulk. 
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. Introduction

In recent years, sources of renewable energies have been in­
olved to supply 'green' energy for human uses. However, their 
ntermittency is considered to be a major disadvantage and ade­
uate technologies should be developed to store this energy and 
estore it according to demand. Amongst the various techniques 
otentially used to store electrical energy, the electrochemical stor­
ge has a number of advantages [ 1 ]. Technologies such as redox 
low batteries (RFB) gained new interest in recent years. Their par­
icularity is that the reactive species are stored outside the reactor, 
n storage tanks, thus enabling to increase the amount of energy 
tored, by increasing both the capacity of the storage tanks and 
lso the concentration of the active species. The RFB enables an 
g
o
t• Corresponding author. 

E-mail address: tzedakis@chimie.ups-tlse.fr (T. Tzedakis). 

trps://doi.org/10.1016/j.electacta.2021.137909 
deal power / energy decoupling, thus facilitating the design of in­
ustrial units for energy production and transformation [2]. 

The ail vanadium redox flow batteries (VRFB) involve vanadium 
lectroactive species in four different oxidation states; This charac­
eristic enables to avoid irreversible cross-contamination that con­
titutes a major drawback for other RFBs, such as Fe/Cr systems (3-
]. However, the main disadvantage of this battery is related to the 
ow quantity of electroactive material stored per unit of volume; 
hus the commercial VRFB delivers around 45 Wh/L (6,7], which is 
ore than three folds lower than the energy claimed for solid Li­

on battery - 150 Wh/kg [8] (without flow). This is mainly due to 
he limited solubility of vanadium salts (- 2 M), strongly depend­
ng on the vanadium valence, the temperature and the sulfuric acid 
oncentration usually used as supporting electrolyte for the first 
eneration of VRFB (9,10]. Various methods have been proposed to 
vercome this problem: The use of a mixed acid supporting elec­
rolyte HCI - H2S04 (11] or CH3S03H - H2S04 (12], and the addi-
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Nomenclature 

a, a ′ , a ′ ′ : constants 

b, b ′ and b ′ ′ : constants 

AE: auxiliary (or counter) electrode 

F: faraday constant (96,500 C.mol −1 ) 

E: potential (V). Without any specific indication, 

all the potentials were expressed versus the 

SCE 

EIS: electrochemical impedance spectroscopy 

CSS: cross shaped stirrer 

C: molar concentration (mol.L −1 , or M) 

D and D eff. ‘diffusion’ and ‘effective diffusion’ coefficients 

(m 

2 .s −1 ) 

d glasses : mean diameter of the glass spheres (m) 

d e : characteristic length (m) 

I, I lim 

: current and limiting current (A) 

k: mass transfer coefficient (m . s −1 ) = a ′ + b ′ ×
ω 

γ ⇒ l lim 

= a ′′ × S + b ′′ S × ω 

γ ,

N glasses : number of glass spheres per cm of distance, in 

a direction between the wall of the cell and the 

axis of the RCE 

n: electron number 

r: potential scan rate (V.s −1 ) 

Re : reynolds number = υ ρ d e / μ
RFB: redox Flow Batteries 

RCE: rotating Cylinder Electrode (here used as the 

WE graphite made). 

S: surface (m 

2 ) 

Sc : schmidt number = v /D 

SCE: saturated calomel electrode (here used as ref- 

erence electrode) 

Sh: sherwood number = k d e / 

D = a + b × Re γ × Sc κ = the Leveque 

correlation 

T: temperature ( °C) 

VRFB: vanadium redox flow batteries 

WE: working electrode 

γ and κ constants dependant of the system (for sim- 

ple geometries such as the disc: γ = 1/2 and 

κ= 1/3) 

ε: volume fraction available for diffusion 

λ and λ′ : constants in the equation I lim 

as a function of 

ω 

μ and v : dynamic and kinematic viscosities respectively 

(Pa.s and m 

2 .s −1 , respectively) 

ρ: specific gravity (kg.m 

−3 ) 

s : solubility (mol.L −1 , or M) 

τ : tortuosity (real trajectory/normalized trajec- 

tory) 

υ: velocity (m.s −1 ) 


: volumetric fraction of the solid in the suspen- 

sion 

ω: angular velocity (RPM or rad/s) 

ion of stabilizing agents in order to prevent or reduce the precip- 

tation of vanadium species [13] . 

Nevertheless, the stability of vanadium solutions is still com- 

romised by the precipitation of one of the four oxidation states 

t least, as they do not have the same behaviour as a function 

f the operating conditions [14] . Typically V 

(V) exhibits the low- 

st solubility ( s ) and can precipitate as a function of the state of

harge of the battery (the solubility s increases when the tem- 

erature decreases and the sulfuric acid concentration increases), 
hile V 

(II) , V 

(III) and V 

(IV) have an opposite behaviour (the solubility 

 increases when the temperature increases and the sulfuric acid 

oncentration decreases) [9] . The precipitation of any of the redox 

anadium specie can induce negative effects on the overall perfor- 

ance of the battery: Capacity losses, increasing resistance, cluster 

ormation, membrane degradation due to particles collisions, etc. 

9] . Moreover, the granulometry of the generated solids strongly

epends on the operating conditions.

However, the impact of the presence of these solid particles on 

he electrochemical behaviour of the electroactive species has not 

een studied extensively and this constitutes the general purpose 

f the present study: To understand the effect of an eventual pre- 

ipitation of the vanadium salts on the battery current. More pre- 

isely, our research question is to determine whether the presence 

f solid particles could be beneficial to the electrochemical per- 

ormances of the VRFB, by contributing to (i) increase the mass 

ransfer and (ii) compensate the depletion of the concentration in 

he diffusion layer. Moreover, the present study aims at examin- 

ng the effect of solid particles on the electrode current in the case 

here a specific ‘liquid-solid’ suspension involves an electroactive 

aterial. 

To achieve these objectives, it was chosen to quantify the effect 

f various solid particles (inert glass spheres, solid vanadium grains 

nd nanometric ketjen black (KB)) by measuring by voltammetry 

he steady state oxidation current of V 

(IV) on a rotating graphite 

ylinder electrode (RCE) inserted into a classical three electrodes 

ell. When required the cell was equipped with a cross-shaped stir- 

er (referred as CSS) to ensure a homogeneous distribution of the 

articles. The V 

(IV) /V 

(V) redox couple was selected because the V 

(IV 

xidation current can be measured using simpler operating condi- 

ions with comparison to V 

(II) /V 

(III) , which requires an inert atmo- 

phere. 

The studies were carried out in order to examine the effect of 

ach type of particles on different physicochemical phenomenon: 

i) The effect of the collisions generated by the glass spheres on

the mass transport of the dissolved VO 

2 + at the interface;

ii) The ability of solid VOSO 4 particles to supply VO 

2 + , by disso- 

lution, at the depleted interface and thus to contribute to en- 

hance the current (in addition to the effect of collisions);

ii) The enhancement of the current by electronic percolation gen- 

erated by the KB nanoparticles; indeed, in this case it is sus- 

pected that the nanoparticles create an electric frame enabling

an extension of the electrode in solution and thereby the in- 

crease of the electrochemical active surface area (leading to an

increase of the current).

. Material and methods

.1. Vanadium (IV) 

The vanadium (IV) solution was prepared in 3 M sulfuric acid 

14] , with the following chemicals:

• Vanadium (IV) sulfate oxide pentahydrate VOSO 4 •5H 2 O from

VWR Chemicals (technical, 97%) and from CHEMOS (technical,

97%);
• NormaPur H 2 SO 4 supplied from Sigma Aldrich;
• Ultrapure water

The solution saturated by V 

(IV) contains the salt at its reported 

olubility i.e. 1.5 M [10] . The operating temperature was chosen at 

0 °C to avoid any precipitation of the product (VO 2 ) 2 SO 4 at the

lectrode. Indeed, its solubility increases when the temperature de- 

reases [15] . 



Fig. 1. Left : Sketch of the experimental setup as seen directly through the cell (lateral view) and from the bottom of the cell (bottom view); 1 = working electrode, 

2 = Luggin capillary containing the reference electrode (SCE), 3 = counter electrode, 4 = additional cross shaped stirrer. Right: Photos of the setup. 
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.2. Solid particles 

Several solid-liquid suspensions, at various mass fractions were 

repared by mixing solid particles with the vanadium (IV) satu- 

ated solution. 

The following particles were used: 

• Glass spheres with a specific gravity of ~ 1.1 g/cm 

3 and a gran- 

ulometry in the range of 9 < d glass spheres in μm 

< 13 (average

diameter = 11 μm ).
• Solid particles of VOSO 4 •5H 2 O with a specific gravity of

2.5 g/cm 

3 and a granulometry in the range of ~ 3 < mean par- 

ticle diameter in μm < ~ 600). Same provider as above.
• Ketjen black nanoparticles (KB, EC-600JD, n ° 41,611,374, Ak- 

zoNobel) is introduced into a solution of V 

(IV) containing or

not VOSO 4 •5H 2 O solid particles in H 2 SO 4 at 3 M. The mixture

was stirred overnight, until obtaining a totally wet powder (val- 

idated by a sedimentation of the KB in the absence of stirring).

Under stirring the KB powder is uniformly distributed into the

solid and no flocs were observed.

.3. Experimental setup 

The potentiostat used is a VOLTALAB PGZ 100/ potentio- 

tat/galvanostat VoltaMaster controlled by the voltamaster 4 soft- 

are. The experiments were carried out in a conventional three 

lectrode cell from Metrohm ( Fig. 1 ) having 100 cm 

3 of capacity 

nd the following electrodes were used: 

- Working electrode: Graphite cylinder screwed on the body of a

classical rotating electrode assembly to form a RCE. The used 

rotation frequencies are in the range of 30 0–150 0 RPM. The 

geometric surface area of the working electrode is 7.07 cm 

2 

(sum of both the lateral area of the cylinder and the surface 

of the disc forming its base). 

- A saturated calomel electrode (SCE) was used as reference elec- 

trode for all the experiments; It is immersed into a Lug- 

gin capillary tube containing the supporting electrolyte (3 M 

H 2 SO 4 ). Because of the particular shape of the working elec- 

trode, we chose to locate the extremity of the Luggin cap- 

illary at ~ 1 mm of the middle of the lateral area of the 

graphite cylinder for all experiments (see Fig. 1 ). 

- A platinum plate with 2.25 cm 

2 / face of geometrical surface

area was used as auxiliary electrode and located in front of 
the RCE. The used potentiostat is powerful enough, enabling 

to manage the system without any limitation caused by the 

relatively small surface of the counter electrode compared to 

that of the working electrode. 

Special care is taken to keep always the same positions of the 

lectrodes for all the experiments. Besides, ohmic drop compensa- 

ion was performed on the basis of the value of the resistance of 

he solution between WE and RE; This resistance was measured by 

lectrochemical impedance at the OCP. 

In order to maintain a uniform (fluidized) suspension, possibly 

ontaining high fractions of vanadium sulphate solid particles, it is 

ecessary to have an efficient stirring system. The rotation of the 

CE is insufficient to ensure a perfect mixing of the suspension 

hat is why an additional PTFE-made stirrer (CSS cross-shaped) 

as manufactured and used ( Fig. 1 ); Its diameter is 3 cm, and the

lades are 4 mm thick. It is also fixed on a rotating electrode body, 

n order to control the stirring rate in the same way as the RCE. 

. Results and discussion

The ‘global’ half electronic reaction (1) assumed to occur at the 

orking electrode is: 

OSO 4 •5H 2 O + H 2 O → ½ {(VO 2 ) 2 SO 4 .1 

•5H 2 O} + e − + ( ½
SO 4 

− + ½ H 

+ ) + H 

+ + 4.25 H 2 O (1) 

In a simplified form, assuming the dissociation of the 

OSO 4 •5H 2 O to VO 

2 + (in fact to the complex [VO(H 2 O) 5 ] 
2 + [ 10 ,

6 ]), the reaction (1) can be written as following: 

O 

2 + + H 2 O → VO 2 
+ + e − + 2H 

+ (1 

′ ) (E ° = 1.25 V/SCE)

Note that this reaction releases 5 molecules of water from 

he dissociation of the VOSO 4 •5H 2 O and captures 1.5 for the 

VO 2 ) 2 SO 4 .1 •5H 2 O (results in press). The reduction of VOSO 4 •5H 2 O

ccurs at the counter electrode. 

This section is structured in two parts: The first one (3.1) con- 

erns the study of the effect on the vanadium oxidation current, of 

he stirring of vanadium solutions by both the RCE and the CSS; 

 similar study was carried out in the second part (3.2) in the 

resence of three different solid particles (each one devoted to the 

tudy of the effect of one parameter): (i) inert glass spheres, (ii) 



Fig. 2. i : Effect of the stirring rate of the working electrode on the shape of the current-potential curves obtained at the quasi-steady state for the oxidation of a solution

of V (IV) to V (V) . ω = 30 0, 60 0, 90 0 , 120 0, 150 0, 180 0 RPM for the curves I = f(E) 1 to 6, respectively. Curves 7 and 8: residual current at respectively 1200 and 1800 RPM. 

Primary data: [V (IV) ] = 1.5 mol.L −1 in [H 2 SO 4 ] = 3 mol.L −1 ; S WE = 7.07 cm 

2 ; r = 10 mV.s −1 ; T = 10 °C; WE = rotating cylindrical electrode graphite made (RCE) ( diameter 

1 cm , height 2 cm) ; AE = Pt. Ohmic drop corrected (EIS). 

ii : Evolution of ln (I) as a function of ln ( ω), where ω is the angular velocity of the electrode; the currents were extracted from graph (I) without subtraction of the residual

current. a : ln I at 1 . 1 V, in A = f ( ln ω ) ; b: ln I at 1 . 3 V, in A = f ( ln ω ) . 
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olid particles of the VOSO 4 •5H 2 O and (iii) ketjen black nanoparti- 

les. 

.1. Characterization of the V(IV) oxidation current without solid 

.1.1. Effect of the stirring rate of the working electrode on the 

urrent – potential curves for the V 

(IV) oxidation without particles 

Since the experimental setup contains two elements (RCE and 

SS) that are not usually used for electrochemical studies, it is im- 

ortant to understand the effect of the coupled stirring on the cur- 

ent of the vanadium oxidation. First, the effect of the stirring rate 

f the RCE was studied without rotation of CSS from the current- 

otential curves of a saturated vanadium solution at 10 °C. 

In Fig. 2 i, it is shown that increasing the angular velocity in the 

ange from 300 to 1800 RPM causes the current to increase more 

han twice. For angular rates lower than 600 RPM, the I = f(E) 

urve exhibits a classical form, with a plateau (1.08 < E (V) < 1.4) 

orresponding to a mass transfer limitation. Increasing the angu- 

ar velocity of the electrode causes the curves to be deformed, the 

lope of the plateau is not constant. The latter increases with the 

otation frequency (see also Fig. 2 ii), thus suggesting that the (av- 

rage) mass transfer coefficient depends not only on the stirring 

ntensity but also on the applied potential or the flowing current. 

his seems strange, because the oxidation of the V 

(IV) to V 

(V) curve 

xhibits a plateau with a constant limiting current [ 17 , 18 ]. 

One plausible explanation could be the modification of the in- 

erfacial concentration of H 

+ , because according to the reaction (1 

r 1 ′ ), two H 

+ were generated by oxidized vanadium. The increase 

f the acid concentration causes the enhancement of the residual 

urrent which overlays with the vanadium current and leads to the 

urve deformation. 

The Fig. 2 ii clearly shows a linear evolution of the natural log- 

rithm of the current against the natural logarithm of the angular 

elocity ω. The magnitude of the current was measured at the be- 

inning of the plateau i.e. 1.1 V (see curve 1, Fig. 2 ) and at the be-

inning of the oxidation of the solvent i.e. 1.3 V (see curve 7 and 8,

ig. 2 ). As indicated above, the slopes of the straight lines increase 

hen the potential where the current was read increases. 

 : ln I at 1 . 1 V, in A = −2 . 48 + 0 . 27 × ln ω rad/s R 

2 = 0 . 995 

(2) 

 : ln I at 1 . 3 V, in A = − 2 . 73 + 0 . 38 × ln ω rad/s R 

2 = 0 . 999 (3)

It is important to mention that: 
- The current picked at two different potentials of the I = f(E)

curves can be considered as a limiting current I lim 

=
n F S k C V ( IV ) , where k is mass transfer coefficient, expressed as

a power law of the angular velocity of the stirrer:

k = a + b × ω 

γ ⇒ I lim 

= a × S + b S × ω 

γ

( See appendix ) (4) 

the magnitudes of these slopes (0.27 and 0.38) are lower than 

the slope predicted by the Levich correlation ( I lim 

= f ( ω 

0 . 5 ) ) 

for a rotating disc electrode in very well defined conditions 

[ 19 –21 ]. 

- The working electrode is a rotating cylinder having two elec- 

troactive areas: The bottom section which is a disc and its

peripheral/cylindrical area. The measured limiting current is a

contribution of both faces of the electrode, and the relative con- 

tribution of each part needs to be determined.

We will try to get a better understanding of the electrodes’ be- 

aviour in the following sections. 

.1.2. Respective contributions of the disc and the cylinder faces of 

he working electrode on the V 

(IV) oxidation current 

Current potential curves were plotted for various conditions 

 Fig. 3 i) in order to try to examine independently the effects of 

oth the disk and the cylinder surfaces of the working electrode, 

n the mass transfer under stirring conditions. The solution used 

s the V 

(IV) at saturation (1.5 M). To that end the RCE was prepared

n two ways: 

• The disk was insulated with a thin adhesive scotch tape and the

curves I = f(E) were plotted for the external cylindrical surface,

see Fig. 3 i curves 1 to 6C.
• The external cylindrical surface was isolated with the same thin

adhesive tape, trying to avoid any modification of the geome- 

try of the cylinder (i.e. no roughness, the whole tape surface is

completely smooth); Then the I = f(E) curves were plotted on

the disk active face and presented in Fig. 3 i, curves I = f(E) 1 to

6D.

The first observation is that the magnitude of the current mea- 

ured with the cylinder alone (curves 1 to 6C) is about 5 to 6 times

igher than the current measured with the disc alone (curves 1 to 

D). Besides, the surface ratio (S c / S d ) between the cylinder and 

he disc is equal to ∼ 8. Taking into account that the limiting cur- 

ent is proportional to the surface area and to the mass transfer 



Fig. 3. i : Effect of the stirring rate of the working electrode (RCE) on the shape of the current-potential curves obtained at the quasi-steady state for the oxidation of a

solution of V (IV) to V (V) . Angular velocity ω = 30 0, 60 0, 90 0 , 120 0, 150 0, 180 0 RPM, respectively for the curves I = f(E) 1 to 6. Top/group C: Curves obtained with the 

cylinder alone while the disc is masked; Bottom/group D: Curves obtained with the disc alone while the cylinder is masked.

WE = rotating graphite (disc or cylinder, diameter 1 cm, height 2 cm); [V (IV) ] = 1.5 mol.L −1 in [H 2 SO 4 ] = 3 mol.L −1 ; S cylinder / S disc = ( ∼ 6  3 
∼0 . 78 

) ∼ 8 ; r = 10 mV.s −1 ; T = 10 °C; 

AE = Pt. Ohmic drop corrected with the initial value of the solution resistance (EIS). 

ii : Plots of ln I = f (ln ω) ; The currents were extracted from the Fig. 3 i , without subtraction of the residual current. C 1 and C 2 correspond to the cylinder at respectively 1.1 

and 1.3 V; D 1 and D 2 correspond to the disc at respectively 1.1 and 1.3 V.
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oefficient of the V 

(IV) , these results evidence the need to deter- 

ine and to compare the equations linking the mass transfer and 

he angular velocity for both geometries, the disc and the cylin- 

er. It seems that the transfer is more efficient for the disc than 

or the cylinder, but this needs to be confirmed. The current was 

easured at two potentials (1.1 and 1.3 V) for both the cylinder 

nd the disc; Then the curves ln I = f ( ln ω ) were plotted and pre-

ented in Fig. 3 ii. The graph exhibits linear relations for all the ex- 

mined cases: 

C 1 : Cylinder at 1 . 1 V 

↔ ln I at 1 . 1 V, in A = −3 . 14 + 0 . 37 ln ω rad/s R 

2 = 0 . 98 (5) 

C 2 : Cylinder at 1 . 3 V 

↔ ln I at 1 . 3 V, in A = −3 . 13 + 0 . 42 ln ω rad/s R 

2 = 0 . 99 (6) 

D 1 : Disc at 1 . 1 V 

↔ ln I at 1 . 1 V, in A = −4 . 15 + 0 . 22 ln ω rad/s R 

2 = 0 . 99 (7) 

D 2 : Disc at 1 . 3 V 

↔ ln I at 1 . 3 V, in A = −4 . 24 + 0 . 29 ln ω rad/s R 

2 = 0 . 99 (8) 

Note that, considering the disc alone, the slope found (~ 0.2 to 

.3 as function of the potential used) is practically the half of the 

heoretical value predicted by the Levich law ( I lim 

= λ ω 

0 . 5 ) for a 

otating disc electrode. This discrepancy is attributed to the fact 

hat our operating conditions do not fulfil all criteria (indicated be- 

ow) required for the application of the law: 

- The ratio of “the diameter of an inert surface around the disk”

to “the diameter of the electroactive surface of the disc” needs

to be at the least equal to 10, to enable the correct flow of

the solution. Here, because of the chosen form of the graphite

cylinder, the whole surface of the disc is reactive, instead of a

small disc surrounded by a Teflon non-reactive area, enabling

the establishment of a stabilized and defined interfacial flow

[20] .

- The ratio of “the vessel diameter” to “the electrode diameter”

needs to be at the least equal to 10 to avoid border effects (here

the ratio is (~ 3)).

Concerning the cylinder, the slope found (~ 0.35 to ~ 0.42) is

lso practically the half of the theoretical value predicted in the 

ibliography ( I lim 

= λ′ ω 

0 . 7 [21] ). Note that, the exponent of 0.7

as obtained with a metallic cylinder inserted between two inert 
ylinders of the same diameter and a cylindrical counter electrode 

aving a diameter larger than that of the WE. The discrepancies 

ould be caused by: (i) a non-uniform electrical field because of 

he particular geometry of the chosen system: The CE is a plane 

late of platinum and the current density to the rear surface area 

f the cylinder is very low, thus reducing its effective electroactive 

urface area, and, 

(ii) A non-uniform flow around the bottom border of the cylin- 

er (similarly to the disc). Here, if we assume an upward flow from 

he bottom of the beaker to the disc, we can conclude that the so- 

ution arriving to the disc (i.e. the basis of the cylinder) is deviated 

ar from the cylinder, thus reducing the flux arriving to the lateral 

rea of the electrode (possible eddies near lateral wall). However 

his effect seems to be cancelled as the angular speed of the elec- 

rode increases. 

Another parameter which can influence the answer of the elec- 

rode could be the activation of the surface area of the graphite 

18] . As a matter of fact, oxygenated groups (C-O) at the surface

f the graphite seem to enhance the electrocatalytic activity of the

raphite.

In the present study the electrode has been polished (as much 

s possible in the same conditions for all the plots), but no extra 

ctivation was performed before any recording of the current. Thus 

 part of its surface could remain covered by oxygenated groups 

hile the other part is not and this is difficult to be controlled, 

ecause of the easy oxidation (chemical or electrochemical) of the 

raphite. 

A comparison of the sum of the individual currents (surface of 

he disc and lateral surface of the cylinder) to the current obtained 

ith the whole electrode (RCE) was performed and the results 

ere presented in Fig. 4 . There is practically no difference ( �I < 

.6% at ω = 300 RPM) between both currents (2 and 4) measured 

t 1.1 V. For the currents measured at 1.3 V, the observed differ- 

nce, even slightly higher ( �I < 0.9% at ω = 300 RPM), remains 

ow. Thus, the current is slightly higher for the entire WE than for 

he sum of the two redesigned ones; However the ‘low’ differences 

bserved monotonically decrease as ω increases, and could be at- 

ributed to some disturbances, created by the adhesive scotch tape 

extremities of the electrode not perfectly masked), on the solution 

ow. The observed effect of these disturbances mitigates as the ro- 

ation rate increases. 

To sum up, the stirring affects the current but its effect is lower 

han the effect theoretically predicted by the correlation found in 

ibliography [ 20 , 21 ], because the operating conditions are different 



Fig. 4. Comparison of the logarithmic evolutions of the V (IV) oxidation currents

(measured at 1.1 and 1.3 V) as a function of the logarithm of the angular veloc- 

ity of the graphite WE (RCE), obtained in the two following cases:

- the whole electrode surface is operative; Curves: (re- 

sults extracted from Fig. 2: Graph (I)).

- the magnitude of the current corresponds to the sum of both the magnitudes of

the currents obtained with the disc and the cylinder; curves: 3- ● (I at 1.1 V) and

(results extracted from Fig. 3: Graph (I)).

f

i

3

e

p

d

t

w

s

F

V

l

B

p  

i

t

d

c

t

b

‘

l

Table 1

Slope values obtained from the linear regression of Eq. (4) : ln (I) = const. + γ × ln 

( ω) for the curves of Fig. 5 – graph (II).

Cross shaped stirrer (RPM) 0 300 600 900 1200 1500

Fig. 5 graph (II), curve N ° 6 7 8 9 10 11

γ ω RCE < 600 RPM 0.57 0.55 0.43 0.28 0.11 0.07

ω RCE > 600 RPM 0.57 0.55 0.47 0.44 0.42 0.40
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rom those made to establish the theoretical laws used for compar- 

son. 

.1.3. Effect of the coupled stirring rates of both the working 

lectrode and the cross-shaped additional stirrer on the current –

otential curves for the V 

(IV) oxidation 

The second step is to study the effect of the cross-shaped ad- 

itional stirrer on the magnitude of the current as well as on 

he mass transfer. To that end, several current-potential curves 

ere plotted in various stirring conditions (not shown here to 

ave place). Their general form is similar to the ones shown in 

igs. 2 and 3 . 

The magnitude of the limiting current of the oxidation of the 

 

(IV) to the V 

(V) was determined as a function of the angular ve- 

ocity for both RCE and CSS (in the range from 300 to 1500 RPM; 

oth stirrers rotating in the same direction), and the results are 

resented in Fig. 5 . The graph (I) in this figure presents the lim-

ting current dependence on the angular velocity of the CSS, ob- 

ained for various angular velocities of the RCE. The general ten- 

ency shows that increasing the stirring causes the current to in- 

rease for both the RCE and CSS. However, a closer examination of 

he current evolutions shows two different areas, attributed to two 

ehaviors: 

- For angular velocities of the cross shaped stirrer ω CSS 
< ∼ 600

RPM, and for values of the ω RCE 
< ∼ 9 00 RPM (i.e. the first

two points of the curves 1 to 3), the limiting current: (i) in- 

creases when ω RCE increases, and (ii) remains practically con- 

stant when ω CSS increases. For these low angular velocities, the

effect of the rotation of the CSS is not perceptible because the

effect of the agitation of the RCE, predominates.

- Staying at angular velocities of the CSS < ∼ 600 RPM, the increase

of the rotation of the RCE (10 0 0 < ∼ ω RCE in RPM 

≤ 1500 RPM),

(i.e. the first two/three points of the curves 4 and 5) causes

the limiting current of the vanadium oxidation: (i’) to increase

when ω RCE increases, and (ii’) to significantly decreases when

ω CSS increases.

To sum up (for the left side of the graph I), it is obvious that

low angular speeds of the CSS’ do not affect the current, while the 

atter decreases if ω increases. Assuming that the RCE causes an 
CSS 
pward flow from the bottom of the vessel to the disc, we can 

onclude that the rotation of the CSS prevents this motion and the 

olution is drifted far from the electrode, thus increasing the thick- 

ess of the diffusion layer (created by the RCE) and consequently 

educing the global flux of the V 

(IV) . 

However, it is important here to consider this effect because 

hen studying the suspensions, strong agitation of the CSS is nec- 

ssary to supply the required power enabling the motion of the 

olid particles, which constitutes a goal of this study. 

The right side of the curves in graph (I) of Fig. 5 , corresponds

o the evolution of the limiting current as a function of the angu- 

ar rates of the CSS and for ω CSS > 600 RPM (for several rotation

requencies of the RCE). At constant rotation of the RCE, the magni- 

ude of the current increases with the angular rate of the CSS. This 

s an interesting result because these ‘high’ angular velocities ( ω CSS 

600 RPM) are required to allow the fluidization of the suspen- 

ion. Besides, for these ‘high’ rotations the current also increases

ith the stirring of the RCE (~ 0.35 to ~ 0.6 A).

The graph (II) in Fig. 5 reports ln I lim 

= f( ln ω RCE ) for the vari-

us angular velocities of the cross shaped stirrer (0 ≤ ω CSS in RPM 

1500). Each curve in this graph (II) reports the points obtained 

or one ω CSS in graph (I) i.e. the points found on each perpendic- 

lar line passing through an angular velocity of the cross shaped 

tirrer. The curve 6, for example, presents the points (current) read 

n graph (I), on the vertical Y-axis, at the origin of the horizontal 

-axis i.e. immobile CSS, ω CSS = 0.

The graph clearly shows two different shapes for the curves:

he curves 6, 7 and 8, obtained at low angular rates of the stirrer 

 ω CSS is respectively equal to 0, 30 0 and 60 0 RPM), are practi-

ally identical on the graph, and exhibit a linear evolution. This 

onfirms the above conclusion about the ‘low effect’ of the agita- 

ion of the CSS on the limiting currents for ω CSS ≤ 600 RPM. The 

urves 9, 10 and 11 were obtained at higher angular rates of the 

tirrer ( ω CSS equals 90 0, 120 0 and 150 0 RPM, respectively). They 

xhibit two different domains: on the left side the limiting current 

s practically constant, meaning that the stirring of the CSS cancels 

he effect of the stirring by the RCE and on the right side of the

urves, ln I lim 

increases linearly with ln ω RCE , meaning that the 

ass transfer enhancement produced by the RCE predominates. 

Note also that in this graph (II) the effect of the stirring of the 

SS on the limiting current can be observed by the points found 

n each perpendicular line passing through an angular velocity of 

he RCE. 

Table 1 provides the slopes γ of the curves ln I lim 

= f(ln ω RCE )

ccording to Eq. (4) (for both ranges ω RCE < 600 RPM and ω RCE >

00 RPM) obtained for a given angular velocity of the CSS. In the 

bsence of stirring of the CSS ( ω CSS = 0 RPM), the exponent γ is 

ound to be equal to ~ 0.6 which is intermediate between 0.5 (disc) 

nd 0.7 (cylinder). 

For all the carried out experiments, this exponent γ decreases 

s the angular velocity of the CSS increases. For angular rates of 

he RCE lower than 600 RPM, the exponent γ is strongly affected 

y the rotation of the CSS, and is almost cancelled for ω CSS = 1500

PM meaning that the agitation of the CSS mitigates the effect of 

he rotation of the RCE on the current. 

Conversely, for angular rates of the RCE higher than 600 RPM, 

ven if the coefficient γ is affected (slightly decreases from 0.47 to 



Fig. 5. Graph (I) : Dependence of the limiting current of the oxidation of V (IV) versus the angular velocity of CSS ( ω CSS in RPM ), for various angular velocities of the graphite 

RCE (each curve was obtained at constant ω RCE , respectively curve N ° / ω RCE in RPM : ) . 

Graph (II) : Logarithmic evolution of the limiting current as a function of the logarithm of the angular velocity of the graphite RCE (ln ω RCE ), for various stirring rates ω CSS

of the cross shaped stirrer (each curve was obtained at constant ω CSS , respectively curve N ° / ω CSS in RPM : ) . 

Primary data concerning the I = f(E) curves: WE = rotating graphite; [V (IV) ] = 1.5 mol.L −1 in [H 2 SO 4 ] = 3 mol.L −1 ; r = 10 mV.s −1 ; T = 10 °C; AE = Pt. ohmic drop corrected 

(EIS).
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Fig. 6. Curve showing the evolution of the vanadium oxidation limiting current

measured at E = 1.1 V as a function of the mass fraction of added glass spheres 

into a 60 mL solution of V (IV) at 0.75 M; [H 2 SO 4 ] = 3 M. Glass beads with a specific 

gravity of ~ 1.1 g/cm 

3 and a granulometry in the range of 9 < d glass spheres in μm < 13 

(average diameter = 11 μm ). 

Primary data for the monitoring of the I = f ( E ) curves; r = 10 mV/s; T = 10 °C; 

WE = graphite cylinder; RE = ECS; AE = Pt plate, CSS at 1500 RPM; RCE at 1500 

RPM.
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.4), the low observed decrease translates the fact that the effect 

f the RCE on the flux of the vanadium transferred to the interface 

redominates against the effect of the CSS. 

Even if the coefficient γ informs about the effect of the rota- 

ion of each element (RCE and CSS) on the transferred vanadium 

ux, what is important to note is that the rotation of both stirrers 

ontributes to increase the mass transfer. 

The effect of the rotation of the CSS is more significant for high 

 > 600 RPM) angular rates, and this:

- Is typical of the geometry of the used electrochemical cell,

- Will be very important to ensure the motion of concentrated

suspensions of vanadium.

The results, obtained for a saturated solution of V 

(IV) , will be

sed as reference in the study of the impact of solid particles on 

he response of the system. 

.2. Study of the solid – liquid suspensions 

The presence of solid particles in the posolyte V 

(V) / V 

(IV) (but 

lso in the negolyte V 

(II) / V 

(III) ) can significantly affect positively or 

egatively the performances of the battery. Indeed, as a function of 

he rate of the discharge or recharge of the system, precipitates can 

ppear and as a function of their size they can stick on the elec- 

rodes and cause some passivation. Moreover, the motion of the 

igger size particles close to the interface ‘electrode-suspension’ 

ould contribute to enhance the molar flux of the active species, 

ncreasing therefore the current. In other words, the shock of the 

articles at the interface can be assumed to contribute to statisti- 

ally reduce the thickness of the diffusion layer, thus enhancing the 

ass transfer. Another effect of the solids could be the decrease of 

he effective diffusion coefficient, and both parameters will be ex- 

mined in the next section. 

.2.1. Effect of the fraction of the solid: glass spheres 

Current-potential curves were plotted in suspensions made of 

 0.75 mol/L solution of the V 

(IV) and various contents of inert 

olid glass spheres. Because their specific gravity (1.1 g/cm 

3 ) is 

lower than that of the vanadium acidic solution’ most of the glass 

pheres float, and this requires therefore a strong stirring to ob- 

ain a uniformly distributed suspension. The I = f(E) curves (not 

hown here) have a similar shape as those obtained above; Fig. 6 

hows the evolution of the current of the oxidation of V 

(IV) versus 
he mass percent of the spheres. The curve shows a strong influ- 

nce of the solid: The measured current in the examined range 

aries from 0.3 A to ~ 0.05 A. For low mass fraction of the spheres 

 

< ∼20 % ) the current lightly increases ( < ∼ 15%), probably because an 

nhancement of the mass transfer of the vanadium arriving at the 

nterface is caused by the collisions of the spheres into the diffu- 

ion layer. 

However for higher fractions ( > ∼ 30%) of the solid particles the 

urrent dramatically decreases until being practically cancelled for 

5% of solid particles into the suspension. 

The solid spheres constitute an obstacle to the dissolved vana- 

ium motion; Their presence in the solution causes the decrease 

f the effective diffusion coefficient of the V 

(IV) , because of the de- 

reasing space to diffuse in the bulk. 

Indeed, 50 g of the glass spheres represent a volume of solid 

f 45.4 mL, added into 60 mL of liquid. Assuming the additivity of 

he volumes is applicable (total volume of the suspension = 105.4 

m 

3 ) and the mean diameter of the glass spheres is d g = 11 μm

their granulometry ranges from 9 to 13 μm) then, the number of 

articles (6.52 × 10 10 particles) represents a volumetric fraction of 

he solid φmax = 0.43 and the volume fraction available for the 

iffusion is ε = (1- φmax ). 



Fig. 7. Graph (I) : Current potential curves obtained on a graphite RCE, immersed in Liquid-Solid suspensions containing dissolved V (IV) (60 cm 

3 , at saturation i.e. 1.5 mol/L)

and various mass fractions of the solid VOSO 4 •5H 2 O as indicated: 1/Pink: 0 g; 2/brown: 5.7 g; 3/grey: 11.4 g; 4/red: 22.8 g; 5/blue: 34.2 g; 6/green: 45.5 g (total molar 

quantity of the V (IV) in equivalent mol/L of suspension: 1.5, 1.79, 2.05, 2.5, 2.88, 3.21). Curves 1 to 6 obtained without correction of the ohmic drop. Curve 1 ′ = the same 

solution than for curve 1, with corrected ohmic drop (EIS). WE = graphite RCE; CE = Pt plate; [H 2 SO 4 ] = 3 M; r = 10 mV/s; T = 10 °C; ω RCE(RPM) = ω CSS(RPM) = 1500 RPM. 

Graph (II) : Evolution of the current measured at 1.6 V as a function of the added solid particles of VOSO 4 •5H 2 O (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.).
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If the glass spheres are equally dispersed into the electrochem- 

cal vessel, that represents N g = 641 glass spheres per cm of dis- 

ance, in a direction between the wall of the cell and the axis of 

he RCE. 

Then, the tortuosity (9) is equal to 1.4, and enables to access 

he effective diffusion coefficient D e f f (10). 

= 1 + ( π − 2 ) × d g × N g

2 

(9) 

 e f f = 

ε 

τ
D = 0 . 41 × D (10) 

This result shows that the diffusion coefficient falls at about 

0% of its initial value, which could partially explain the current 

ecrease, but not its complete cancellation. Note that the masking 

f the electrode’s accessible surface by the glass spheres could also 

ignificantly affect the current. 

Indeed, assuming roughly a thickness of the diffusion layer in 

he range from 50 to 100 μm, it is possible to stack maximum 

bout ten glass spheres, which represents an important barrier, 

ven if these spheres have an important size and could relatively 

e easily removed from the electrode’s surface. 

To summarize, the enhancement in the vanadium molar flux ar- 

iving at the interface (by the motion of the spheres into the diffu- 

ion layer) is not really significant for the low fractions of the glass 

pheres. Furthermore, the current decreases rapidly when the frac- 

ion of added glass spheres increases, mainly because of the reduc- 

ion of the available space for the diffusion of the vanadium. 

.2.2. Effects of the fraction of the VOSO 4 solid particles and of the 

tirring of the suspension 

Various I = f(E) curves were plotted on a graphite rotating 

ylinder used as anode and immersed into a suspension contain- 

ng a solution saturated in V 

(IV) /1.5 M and various mass fractions 

f solid particles of VOSO 4 ; the results are indicated in Fig. 7 . 

Curve 1 was obtained with the saturated solution of the dis- 

olved V 

(IV) at 1.5 M (in [H 2 SO 4 ] = 3 M). The curve exhibits a

arge range of overpotential (from ~0.8 to ~1.6 V) before reach- 

ng the beginning of a plateau and the corresponding limiting cur- 

ent. The strong shift of the I = f(E) curve could be attributed (i)

o a slow/partially irreversible system, but also (ii) to the signifi- 

ant ohmic drop because of the important current flowing (I max ~

.3 A or 1.8 kA/m ²). The curve 1 ′ , obtained under the same condi-

ions, but with correction of the ohmic drop (measurement of the 
esistance of the solution between the WE and the RE by EIS), ex- 

ibits a classical shape, showing (i) a limited activation overpoten- 

ial range (from ~ 0.8 to ~ 1 V), and (ii) a ‘diffusion-plateau’ cor- 

esponding to a mass transfer limitation for the V 

(IV) . This shape 

learly indicates that the corresponding redox system (V 

(IV) / V 

(V) ) 

s rapid/quasi-reversible. 

The curves 2 to 6 of Fig. 7 (I), obtained by adding, into 

he saturated solution of V 

(IV) , increasing quantities of the solid 

OSO 4 •5H 2 O, show that the current (measured at 1.6 V) decreases 

s the amount of the added powder increases, and the decrease 

until ~ 46%) reaches a pseudo-plateau for solid particles fractions 

igher than ~ 30% ( Fig. 7 , graph II). 

Moreover, as the solid fraction increases the curve deformation 

s amplified, (for example curves 2, 3 and 6 for solid fractions re- 

pectively 10, 20 and 75%), even with an ohmic drop correction 

sing the initial measured resistance of the solution. 

Except the fact that no increase of the current was observed 

or the very low fractions of solid added (not examined in fact), 

his behaviour appears to be similar to the one observed in the 

ase of inert glass spheres ( Fig. 6 ), and the same conclusion can 

e made: The solid contributes to reduce the volume of the liquid 

nto which the V 

(IV) diffuses, thus reducing its flux arriving to the 

lectrode. However, because of the extended size range of the solid 

anadium particles (~ 3 < d p in μm < ~ 600) it is not easy to carry

ut a rigorous and deep quantitative analysis of the system. 

These results show that, at constant stirring, the increase of 

he fraction of the solid particles of the vanadium does not seem 

o significantly enhance the current. This means that, under these 

onditions, nor the collisions of the particles on the electrode sur- 

ace, nor the dissolution of the solid particles, contribute to signif- 

cantly increase the rate of the vanadium oxidation. In addition to 

hat, for the higher fractions of the solid in the suspension ( > 30%) 

 negative effect was observed and the current decreases, that is 

hy it seems important to avoid operating with a liquid/solid sus- 

ension in the electrochemical reactor. 

The effect of the stirring of a suspension containing a constant 

uantity of the VOSO 4 powder, on the limiting current of the vana- 

ium oxidation, was examined and the results were indicated in 

ig. 8 . The curves 1a to 3a were obtained under various angular 

ates of the RCE keeping the CSS immobile, while for the curve 4a 

oth the RCE and the CSS are used. The curves 1 to 3 were im-

orted from Fig. 2 for comparison. 

The curves (2a) and (3a) exhibit a classical shape with a dif- 

usion plateau of which intensity increases with the stirring; The 



Fig. 8. I = f ( E ) obtained for various stirring on a graphite RCE, immersed in Liquid- 

Solid suspension containing dissolved V (IV) at 1.5 mol/L and solid VOSO 4 , the total 

vanadium concentration in the suspension is equivalent to 2.35 mol of V (IV) /litre

of suspension (which corresponds to 80% of the solubility in solid form); For the

curves 1a to 3a the angular velocities ω RCE are 30 0, 60 0 and 150 0 RPM, respec- 

tively and ω CSS = 0 RPM. For the curve 4a, ω RCE = ω CSS = 1500 RPM; Curves 1, 

2 and 3 are imported from Fig. 2 for ω RCE = 30 0, 60 0 and 1500 RPM, respectively. 

WE = graphite RCE; CE = Pt plate; [H 2 SO 4 ] = 3 M; r = 10 mV/s; T = 10 °C; Curves 

obtained with correction of the ohmic drop (EIS).
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Fig. 9. Evolution of the V (IV) oxidation current measured at 1.6 V as a function of

the added mass of the solid VOSO 4 •5H 2 O, for various mass fractions of the ket- 

jen black (KB). The origin of the abscises correspond to a saturated solution of the

V (IV) (1.5 mol/L). Curves number- KB mass/ mass%: 1- 0 g/ 0%; 2- 0.1 g/0.12%; 3-

0.25 g/0.31%; and 4–0.7 g/0.86%. Points: Experimental results; Lines: Interpolated

evolutions. Primary data for I = f ( E ) (curves not shown here): WE = graphite RCE; 

CE = Pt plate; [H 2 SO 4 ] = 3 M; T = 10 °C; ω RCE = ω CSS = 1500 RPM; r = 10 mV/s; 

V initial = 60 cm 

3 . Curves obtained without correction of the ohmic drop. The sus- 

pensions were prepared as indicated in Section 2.2 .
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urve (1a) obtained with an angular rate of 300 RPM exhibits the 

ame features, except that the limiting current slightly decreases 

or applied potentials higher than 1 V/SCE. This decrease is due 

o the depletion of active material in the diffusion layer; In fact, 

he applied stirring is insufficient to renew the interfacial layer so- 

ution, nor to lift the solid particles. This phenomenon disappears 

or higher stirring rates (curves 2a and 3a). 

Increasing the angular rate of the RCE causes the current to in- 

rease in all the examined cases. 

As a matter of fact, for the liquid-solid suspension, the logarith- 

ic analysis of the current, measured on the curves 2a and 3a, led 

o the correlation (11). The same analysis performed for the curves 

 and 3 (from Fig. 2 ) led to the correlation (2) for which the slope

s very close to the previous one: 0.27 against 0.25 (but the mag- 

itude of the current was lower). 

n I at 1 . 1 V, in A = − 1 . 78 + 0 . 25 × ln ω rad/s (11) 

The limiting current is enhanced when the CSS is activated 

curve 4a): at 1.4 V, the current is 0.95 A, 0.7 A and 0.48 A for

he curves 4a, 3a and 3, respectively. At high angular velocities ( ω 

CE = ω CSS = 1500 RPM) the coupled stirring appears to be syn- 

rgistic and enhances the current. 

To conclude, at a constant solid mass fraction of the suspen- 

ion, the stirring appears to have a positive effect on the cur- 

ent, even if this effect is lower than what is theoretically ex- 

ected (see previous discussion). In addition, the comparison of 

he magnitude of the limiting currents, (curve 2 and 2a, or 3 and 

a) shows that in presence of solid particles the current is ~ 80% 

igher than without particles. Under strong stirring, the vanadium 

ass transfer appears to be enhanced compared to the one mea- 

ured in the absence of solid in the saturated solution. This be- 

aviour is confirmed with the introduction of the additional stir- 

ing (CSS/1500RPM/curve 4a, Fig. 8 ). Besides, to avoid any decrease 

n the transferred flux of the vanadium, during a preparative elec- 

rolysis carried out under mass transfer limiting conditions (such 

s the condition in 1a), it is necessary to ensure sufficient stirring 

f the suspension. 

These results are not contradictory with the results observed 

hen studying the effect of the solid fraction on the current; In- 

eed, here the solid fraction remains constant and the stirring en- 

ances the transfer, while in the previous situation the stirring re- 

ains constant and the fraction of the solid increases thus decreas- 

ng the available volume for the diffusion of the vanadium ions. 
Note that another objective of this study was to examine if the 

issolution of the solid particles of the vanadium could eventually 

ompensate its depletion in the vicinity of the interface, thus en- 

bling an increase of the oxidation current. The obtained results do 

ot allow to conclude on this point: indeed, because of the strong 

tirring (required to maintain a uniform/fluidized suspension) and 

he subsequent increases of the current, it is not easy to observe 

ny effect by the dissolution of the vanadium. Moreover at con- 

tant stirring, when increasing the solid fraction, the current de- 

reases in both cases (VOSO 4 or inert glass spheres); Here also it is 

ifficult to evidence any effect of the dissolution of the vanadium 

articles on the current. 

.2.3. Influence of ketjen black (KB) on the oxidation current 

This part aims to study, by plotting several I = f(E) curves, the 

ffect of KB on the vanadium V 

(IV) oxidation limiting current. As 

entioned before, the addition of KB is expected to extend the 

urface of the electrode in the bulk (exploiting the adhesion of KB 

ggregates on the current collector) [22] . The carbon nanoparticles 

re suspected to induce an increase of the current by a percolation 

henomenon enabling to carry out the reaction (1) or (1 ′ ) in any 

oint of the suspension. Thus the electron released by the vana- 

ium would be driven from KB grain to KB grain up to the inter- 

ace. 

The following procedure was applied in order to monitor the 

 = f(E) curves: a certain mass fraction of the KB was added into 

 saturated solution of V 

(IV) ; Then, the effect of the mass fraction 

f the solid particles of the VOSO 4 •5H 2 O was studied and the cur- 

ent was measured at 1.6 V. This sequence was repeated for three 

ifferent mass fractions of KB. 

The curve (1) in Fig. 9 obtained (without KB) for suspensions 

ontaining various mass fractions of VOSO 4 •5H 2 O, shows that the 

agnitude of the current decreases when the mass fraction of 

he solid vanadium salt increases, a similar behaviour to that ob- 

erved above ( Fig. 7 , §3.4.2). The introduction of a low mass frac- 

ion of the KB (0.1 g/0.12 mass%, Curve (2)) in the saturated solu- 

ion ([V 

(IV) ] = 1.5 mol.L −1 , first point on the left) causes the current

o increase of ~ 40% (1.52 A), thus confirming that at low fractions 

he KB acts as an electronic conductor enabling electronic percola- 

ion i.e. the electrons produced by the V 

(IV) oxidation can be driven 

y the KB aggregates from the bulk to the RCE surface in some ex- 

ent length. 
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When VOSO 4 •5H 2 O solid particles are added into this suspen- 
ion of V/KB (curve (2)), the current decreases and the decrease 

s enhanced as the mass fraction of the added vanadium solid in- 

reases. The previously involved problem of the decrease of the 

ux of VO 

2 +,  created by the solid particles of the vanadium, could

gain be a possible explanation. In addition, here, the introduced 

olid particles of the vanadium interacts with the KB nanoparti- 

les, thus leading to solid adducts (KB-Vanadium). These particles 

break’ the KB aggregates thus preventing the electron conduction 

o the collector. 

Note that, even if the current decreases when the% of solid 

anadium increases (curve 2), its magnitude remains higher than 

he one measured without KB (curve 1) for all the examined frac- 

ions of the solid vanadium. 

For higher fractions of KB (0.25 g/0.31% for curve 3 and 

.7 g/0.86% for curve 4), the observed current dramatically de- 

reases when the% of solid vanadium increases. This means that 

 “concentrated” suspension of the KB negatively affects the vana- 

ium oxidation current, while a “low” fraction has a beneficial ef- 

ect. This strange behaviour needs many studies to be understood; 

 possible explanation could be that in a concentrated suspen- 

ion of KB nanoparticles, in the absence of any surfactant, an ag- 

lomeration of the KB nanoparticles can occur, thus creating higher 

izes aggregates which are consequently less performant against 

he electronic conduction in the bulk, they can even constitute 

ore effective barriers to the V 

(IV) mass transport. 

To sum up, a low percentage of the KB has a noticeable ben- 

ficial effect (increase of 40%) on the V 

(IV) oxidation current, but 

igher contents of KB become a drawback and lead to the decrease 

f this current. 

Note that, perfect reproducibility of these results is difficult to 

btain because there are various operating factors difficult to con- 

rol (polishing of the RCE, ohmic resistance of the suspension con- 

aining KB and solid VOSO 4 •5H 2 O , perfect mixture of KB and solid 

OSO 4 •5H 2 O) . So the uncertainties of these results ( Fig. 9 ) are es-

imated in the range from 10 to 15%. 

. Conclusions

The present experimental work was devoted to study the oxi- 

ation of dissolved vanadyl sulfate (VO 

2 + → VO 2 
+ ), in solution or 

n suspension in the presence of solid particles such as inert glass 

pheres, VOSO 4 particles and KB nanoparticles. Current-potential 

urves were plotted on a graphite rotating cylinder (RCE) in or- 

er to examine the effect of various operating conditions on the 

agnitude of the current. An additional cross shaped stirrer (CSS) 

as used for the lifting and the mobilization of the solid particles 

ventually present in the suspension. 

The dependence of the mass transfer coefficient against the an- 

ular velocity of the RCE and of an additional cross shaped stir- 

er (CSS) was examined in various cases; The evolution follows a 

ower law ( k = f( ω 

γ ) ), with an exponent γ always lower than

he theoretical value, because of the non-rigorous respect of the 

equired operating conditions, initially set for the Lévêque correla- 

ion. 

The beneficial effect observed on the mass transfer of the V O 

2+ 

t the interface ( Fig. 6 , the current increases by ~ 15%) for low ( <

0%) fractions of the glass spheres, is attributed to the motion of 

he particles. However, increasing the solid glass spheres fraction 

p to 45% dramatically affects the current which falls practically to 

ero, because of a shrinkage of the available space for vanadium 

iffusion (the diffusion coefficient decreases by ~ 60%). 

The effect of solid particles on V O 

2+ oxidation current was 

xamined in order to evidence: (i) their contribution to the in- 

rease of the mass transfer at the interface and (ii) their ability 

o supply, by dissolution, depleted VO 

2+ in the diffusion layer. No 
ignificant increase of the anodic current was observed for low 

ass fraction of the vanadium particles; Conversely, the increase 

f the solid fraction by ~ 30%, is detrimental to the anodic current 

 Fig. 7 ) which falls until ~ 46% (for similar reasons as for the glass

pheres). Besides, as the solid fraction increases, the I-E curves are 

trongly deformed because of the important ohmic drop between 

he WE and the RE. These facts show the absence of any important 

eneficial effect of the dissolution of the VOSO 4 grains present into 

he diffusion layer at the interface electrode/solution. 

On the other hand, the stirring appears to strongly affect the 

urrent ( Fig. 8 ). Indeed, at a constant solid mass fraction in the 

uspension, the current increases 4 folds when the angular veloc- 

ties of the RCE and the CSS increase from 300 to 1500 RPM and 

rom 0 to 1500 RPM, respectively. 

Lastly, the presence of low mass fractions of KB nanoparticles 

0.12%) appears to be beneficial to the vanadium oxidation current 

increase of 40%), thanks to the electronic percolation created by 

he KB aggregates which ensure the electrons transport to the col- 

ector. However, this benefice is attenuated when: (i) solid particles 

f the VOSO 4 are introduced into the suspension, and (ii) higher 

ass fraction of the KB nanoparticles are involved. Attractive in- 

eractions between VOSO 4 solid particles and KB nanoparticles, or 

ven between KB nanoparticles amongst themselves (in absence of 

ny surfactant) are probably responsible for the destruction of the 

B aggregates and the disruption of the electronic conduction in 

he bulk. 
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ppendix 

The limiting current (A1) measured on a I = f(E) curve is pro- 

ortional to the mass transfer coefficient k . 

 lim 

= n F S k C V ( IV ) (A1) 

 can be expressed as a power law (A2) of the angular velocity ω 

f the stirrer using the Leveque correlation (A3): 

 = a ′ + b′ × ω 

γ (A2) 

h = a + b × R e γ × S c κ (A3) 

Indeed, substituting the Sherwood, Reynolds and Schmidt num- 

ers (see definitions in nomenclature), the correlation becomes: 

k d e 

D 

= a + b ×
(

υρd e 

μ

)γ

×
(

μ

ρ × D 

)κ

(A4) 

Assuming that the velocity υ in the Reynolds number is the an- 

ular velocity of the stirring device (RCE or CSS), then the equation 

an be written as: 



k

fi

o

I

R

[

[

[

[

[

 = 

a × D 

d e 
+ 

(
b × D 

1 −κ × d 
γ −1 
e × ργ −κ × μκ−γ

)
× ω 

γ ⇒ k 

= a ′ + b ′ × ω 

γ

This relation shows the dependence of the mass transfer coef- 

cient to the angular velocity of the stirrer, and consequently that 

f the limiting current: 

 lim 

= n F C V ( IV ) S 
(
a ′ + b ′ × ω 

γ
)

⇒ I lim 

= a ′′ × S + b ′′ S × ω 

γ

(A5) 
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