
�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/27337

 https://doi.org/10.1109/IV47402.2020.9304590

Hrustic, Emir and Xu, Zhujun and Vivet, Damien Deep Learning Based Traffic Signs Boundary Estimation. (2020) In:

2020 IEEE Intelligent Vehicles Symposium (IV), 19 October 2020 - 15 November 2020 (Las Vegas, United States).

Deep Learning Based Traffic Signs Boundary Estimation

Emir Hrustic, Zhujun Xu, and Damien Vivet

Abstract— In the context of autonomous navigation, the
localization of the vehicle relies on the accurate detection
and tracking of artificial landmarks. These landmarks are
based on handcrafted features. However, because of their low-
level nature, they are not informative but also not robust
under various conditions (lightning, weather, point-of-view).
Moreover, in Advanced Driver-Assistance Systems (ADAS),
and road safety, intense efforts have been made to implement
automatic visual data processing, with special emphasis on road
object recognition. The main idea of this work is to detect
accurate higher-level landmarks such as static semantic objects
using Deep learning frameworks. We mainly focus on the
accurate detection, segmentation and classification of vertical
traffic signs according to their function (danger, give way,
prohibition/obligation, and indication). This paper presents
the boundary estimation of European traffic signs from an
embedded monocular camera in a vehicle. We propose a
framework using two different deep neural networks in order
to: (1) detect and recognize traffic signs in the video flow and
(2) regress the coordinates of each vertices of the detected
traffic sign to estimate its shape boundary. We also provide
a comparison of our method with Mask R-CNN [1] which is
the state-of-the-art segmentation method.

I. INTRODUCTION

Traffic sign recognition and detection have become well-
known problems, especially with the increasing interest in
autonomous driving vehicles and ADAS (Advanced Driver-
Assistance Systems). Traffic signs provides strong semantic
information such as speed limitations, directions, dangers
etc., which are very useful for decision-making of such
systems. From an another perspective, traffic signs may be
considered as a very stable and easily detectable object
in the environment because they are made by construction
as very salient objects which can be used as landmarks.
Usually, landmarks are defined as geometric features such
as points, lines, or planes. In classical approaches, hand-
crafted features like Harris corners [2], SIFT [3] or SURF
[4] features are extracted from images and used as landmarks
for 3D mapping. However these are not robust under various
conditions (weather change, light, fog...), and their track is
often lost from one frame to another. In order to overcome
this issue, the use of higher level landmarks like traffic signs
should be considered. Indeed their static nature, easy shapes
and color codes makes them easier to detect, and as a con-
sequence, makes such landmarks more robust than artificial
hand-crafted ones. Yet, as we need to get the traffic sign pose
in 3D mapping space, the classical detection methods using

*This work was supported by the Agence Nationale de la Recherche
(ANR-the French national research agency) (ANR-17-CE22-0001-01) and
by the French FUI (FUI STAR: DOS0075476 00).

Authors are with Université de Toulouse, ISAE-SUPAERO, DEOS,
Toulouse, France. firstname.name@isae-supaero.fr

bounding-boxes are not precise enough. We required a pixel-
wise detection in order to detect traffic signs boundaries for
a better triangulation. On one hand, pixel-wise traffic signs
detection can be seen as a semantic image segmentation
problem, several methods tried this approach [5], but they
all are computationally, time expensive and not adapted for
critical real-time systems. On the other hand, because traffic
signs are simple shapes like ellipses, triangles, rectangles or
octagons (in the case of European traffic signs), a regression
can be made to only estimate their vertices coordinates and as
a result to get their boundaries. In this kind of approach, the
coordinates of the boundaries corners can be detected across
multiple consecutive frames, and the 3D coordinates can then
be computed by classical triangulation using camera pose
and camera internal parameters. In this article, we propose a
framework which splits the problem into two parts: the first
one consists in a Convolutional Neural Network (CNN) for
traffic sign detection using bounding boxes. These bounding
boxes are then cropped from the original image, re-sized and
passed to the second part along with the predicted class. This
second part is composed of multiple CNNs, one for each traf-
fic sign shape. The activated CNN is given by the previous
class prediction. Indeed each shape is composed of a different
number of outputs vertices that must be estimated. Each of
these CNNs applies regression to the given resized crop and
predicts its vertices coordinates. At the end of the process,
the shape of the traffic sign is obtained in the image and can
be use for additional processing such as 3D reconstruction.
Our method consists in a novel approach to regress traffic
signs boundaries. To the best of our knowledge, it is the
first method using regression on ellipses in order to estimate
non-polygonal traffic signs boundaries. Note that this article
focus on the detection and regression parts for the boundary
estimation only and do not presents the 3D reconstruction
part. The rest of this paper is structured as follows. Section II
presents the related works of traffic sign detection. Section III
explains the methodology used for solving this problem.
Finally, section IV presents the results obtained with our
approach and comparison with state-of-the-art segmentation
approach.

II. RELATED WORK

For Semantic SLAM, recognizing and detecting land-
marks objects in a frame are crucial steps for mapping and
localization. With the increasing interest in Deep-learning
these last years, Convolutional Neural Networks(CNN) have
achieved state-of-the-art performance for solving such prob-
lems. Many Convolutional Neural Networks (CNN) architec-
tures like VGG [6], GoogLeNet [7], ResNet [8] are able to

2020 IEEE Intelligent Vehicles Symposium (IV)
October 20-23, 2020. Las Vegas, USA

Detection framework

Predicted ClassCNN

..
.

Predicted

Bounding Box

..
.

..
.

..
.

..
.

Vertex regression

Crop

resize

Input Image Vertices coordinates

Input

Image

Fig. 1. Our proposed framework for boundary estimation. The detection part is done using RetinaNet, the bounding box is cropped from the original
image and passed to one of the four regression networks according to the shape of the predicted class.

automatically learn features for object recognition instead of
using hand-crafted geometric ones. These architectures are
used in many detection frameworks like Faster R-CNN [9],
YOLO [10] or RetinaNet [11], they are able to regress a
bounding box around each instance of a detected object in
a frame. According to the shape of the detected object, a
bounding box only gives a rough rectangular approximation
of its position in the image. In order to be able to get the
3D pose of an object, a pixel-wise detection is needed. This
can be done by Segmentation frameworks like SegNet [5] or
Mask R-CNN [1]. However segmentation is computationally
complex, time consuming and could fail in some cases where
the object to detect is occluded or only appears partly in the
image.

An alternative to segmentation would be boundary es-
timation using template objects [12], this method consists
in regressing four vertices (instead of two) of bounding
boxes in order to produce parallelogram boxes (Figure 2 (b)),
and not rectangular ones. Then find the affine or projection
(according to the shape of objects to detect) transformation
matrices which transforms regressed bounding box corners
to the template corners of the corresponding class. Each
template of each class defines its own vertices delimiting
the object boundary which relative position to the corners is
known. These vertices are then found back in the image using
the inverse transformation matrix, which gives the object
boundaries back in the image. This method is faster than
segmentation, but is only applicable to simple shaped objects
and requires a precise database of template objects, more-
over, the regression error is propagated through the transfor-
mations for the final prediction, finally, the parallelogram-
box is supposed to be very accurate to match the model
after transformation.

Another approach is based on keypoints detection frame-
works such as CornerNet [13] or Stacked Hourglass Net-
works [14]. They are widely used for human pose estimation
and rely on the use of Fully Convolutional Networks (FCNs),
using features predicted by the networks as Heatmaps. Coor-
dinates of the keypoints in the image are then deduced from
the heatmaps, by selecting features indexes which have the
maximal value (argmax). The main issue of this approach
is that the loss is applied to heatmaps and not directly
to coordinates because the error on coordinates can’t be

backpropagated due to the use of argmax. An alternative
is to regress directly on coordinates through fully connected
(FC) layers, however, it implies a poor spatial generalization
because FC are more prone to overfitting [15]. Recently,
DSNT layers [16] propose a good compromise between
those two approaches, it maps heatmaps to coordinates using
differentiable functions with a fully convolutional approach.

The problem with such methods is that they cannot detect
circular or elliptical shapes as they are not defined by
keypoints. More over segmentation approaches are compu-
tationally expensive. Our method propose to estimate both
polygonal and non-polygonal traffic signs boundaries in an
efficient way.

III. PROPOSED METHOD

We consider traffic signs (TS) as simple shaped static
objects that can be easily detected. This makes them good
candidates as landmarks for semantic SLAM. We propose
a method to detect their vertices in order to estimate their
boundaries. European TS shapes are restricted to four main
shapes which are : triangles, rectangles, octagons and el-
lipses. These shapes can be extended to other regions TS,
since our method handles polygonal shapes as well as non-
polygonal shapes like ellipses. As shown in Figure 1, our
method is divided into two parts, detection part and vertex
regression part. The reason we didn’t make an end-to-end
framework is because of the lack of data for our specific
problem. More details will be presented in section IV-A.

For the detection part, we use RetinaNet along with a
ResNet50 backbone which is a good compromise between
precision and execution speed when compared to other
detectors or deeper backbones, as presented in section II.
RetinaNet is pretrained on COCO dataset and trained on
GTSDB dataset [17]. For the regression part, we compare
two methods, one approach we call direct regression which
consist in regressing directly on vertices coordinates, and
the convolutional method which consist in using heatmaps
for keypoint detection.

A. Direct regression approach

For the direct regression method, we define four regression
neural networks based on a VGG architecture [6] as detailed
in Table I, one for each TS shape (Triangles, Rectangles, Oc-
tagons and Ellipses) which defines their respective outputs.

(a) (b) (c)

Fig. 2. Different approaches for pixel-wise detection for traffic signs: (a) Segmentation; (b) Boundary estimation using anchors, arrows represents
transformations. (c) Our method: Boundary estimation using vertices coordinates. (best seen in color)

TABLE I
REGRESSION NEURAL NETWORKS ARCHITECTURE - direct regression

METHOD

Layer Filter size, stride Output WxHxN
Input - 96x96x3
Conv 9x9, 1 96x96x64
Conv 7x7, 1 96x96x64
Conv 5x5, 2 48x48x64
BatchNorm - -
Conv 3x3, 1 48x48x128
Conv 3x3, 1 48x48x128
Conv 3x3, 2 24x24x128
BatchNorm - -
FC - 256
BatchNorm - -
FC - 256
BatchNorm - -
FC - Shape dependant

Fig. 3. Output vector representation according to the shape : On the left,
ellipses are represented by their center coordinates, major axis, minor axis
and the angle between the major axis and the horizontal axis. On the right,
polygons are represented by their vertices coordinates.

Note that the activated network depends on the predicted
class by the detection framework.

As presented in Figure 3, we define the output for poly-
gons as follows:

ypolygon = (x1, y1, x2, y2, · · · , xN , yN)

where xi, yi are the coordinates of the TS vertices and N is
the number of vertices of the considered shape. Ellipses are
considered as special cases, and their output is defined as :

yellipse = (xc, yc, a, b, θ)

where xc, yc are the coordinates of the ellipse center, a is the
major semi-axis, b the minor semi-axis, and θ ∈ [0;π[the
angle between the major semi-axis and the horizontal axis.

A natural loss for polygons vertices coordinates is the
Euclidean loss:

Leuc(y, ŷ) = ‖y− ŷ‖2 (1)

where y is the ground truth coordinates vector and ŷ is
the predicted output coordinate vector by the corresponding
neural network. For ellipses the Euclidean loss is applicable
to the first four parameters (xc, yc, a, b) but not for the angle
θ. To tackle this problem we split the total loss in two
parts, that is to say the total loss is the sum of the first
one corresponding to the Euclidean loss for the first four
parameters that we call position loss and the second one a
loss on the angle that we call orientation loss :

Lellipse = αwLposition + βwLorientation (2)

Where αw and βw are scaling factors. For θ we consider an-
gles in radian between 0 and π. As angles are defined modulo
[π] Euclidean loss is not adapted. To tackle this problem,
we use the atan2 function which is differentiable and well
defined on the interval [0;π[. We define our orientation loss
as following :

Lorientation(θ, θ̂) =| b−a | atan2
(
sin(θ − θ̂), cos(θ − θ̂)

)2

(3)
where θ is the ground truth value and θ̂ is the predicted value.
There is still a problem when a and b tend toward the same
value (special case of the circle when a = b) orientation loss
should be 0 because of the symmetric nature of a circle. This
is why we added the term | b−a | to make angle related loss
smaller when the considered ellipse tends toward a circle.

B. Heatmap based regression approach

For the second method, we consider a fully convolu-
tional approach, using heatmap as in Stacked Hourglass
Networks [14] for keypoint detection. We design the same
way, four regression networks, one per each traffic sign
shape. We use ResNet18, removed FC layers and replaced
downsampling layers by dilated convolutions to obtain output
resolution of 48 × 48. We also reduce output channels
to produce NS heatmaps. Where NS is the number of
vertices for the shape S which are respectively 3, 4, 8, 5 for
Triangle,Rectangle,Octagon,Ellipses. Finally, we apply
a DSNT layer as described in [16] to the heatmaps and we get
as outputs, coordinates pairs (x, y) for each vertices. Since
DSNT layers are differentiable, we can apply the loss directly
to the predicted coordinates pairs. The loss is defined as :

LDSNT (y, ŷ) = Leuc(y, ŷ) + LD(Ẑ,p) (4)

Where y is the ground truth coordinates vector, ŷ is the
predicted output coordinate vector, Leuc is the euclidean
loss as in Equation 1, Ẑ is the heatmap output normalized
using 2D Softmax, p is the spherical Gaussian generated
using ground truth coordinates and LD is the Jensen-Shannon
divergence measure. This method works well for polygons
since we can define one heatmap per vertex, but there’s an
issue with ellipses since we have to consider coordinate pairs
and not angles and distances. To apply it to ellipses we
convert our ellipses representation to the following one:

yellipse = (xc, yc, a cos θ, b sin θ,−a sin θ, b cos θ) (5)

which corresponds to coordinates of the center and of the
points on the semi-axis.

IV. EXPERIMENTS AND RESULTS

A. Dataset

Since we consider only European TS we use the Ger-
man Traffic Sign Detection Benchmark (GTSDB) [17]. This
dataset consists of 900 images, 600 for training and 300 for
validation/evaluation. Whereas their recognition benchmark
GTSRB [18] is much larger ∼ 50k images, both of the
datasets share the same 40 classes. The idea is to train a
detection framework on GTSDB to get a rough detection
and classification information (because of the lack of data)
and then improve classification, and regress on vertices using
networks pretrained on GTSRB.

For the detection part of our framework we tried and
compared multiple detection neural networks architectures
on the GTSDB Dataset (see Table II). For the regression part,
since we didn’t find any vertex annotated dataset available,
we manually annotated vertices on images taken from the
GTSRB dataset, and we used data augmentation on both
images and annotated coordinates to produce new ones such
as random rotations, translations, scaling and blur. All of the
experiments were performed on a computer equipped with a
Titan X (Pascal) GPU.

B. Detection framework

We first conducted experiments on RetinaNet [11] with
different backbones : ResNet50 , ResNet101 and ResNet152,
we also compared it to the Yolo and SSD frameworks. All
of the backbones were pretrained on the COCO dataset, and
then on the GTSRB dataset with all layers frozen except the
last three ones. We then trained the whole framework with
each backbone on the GTSDB Dataset which contains 600
images of size 1360×800 on 100 epochs with a batch size of
2 image, and using data augmentation, ADAM optimiser [19]
with a starting learning rate of α = 0.01 , we chose the model
who performed best on the evaluation set. We also did the
same procedure, on GTSDB dataset with reduced classes, we
grouped all of the TS in 4 classes according to their shapes
: Triangles, Rectangles, Ellipses and Octagons. Finally, we
also compared results with a similar detection framework
like YOLO and SSD, results are presented in Table II, using
the mAP (Mean Average Precision) metric.

TABLE II
DETECTION FRAMEWORK BENCHMARK USING DIFFERENT BACKBONES

FOR GTSDB DATASET.

mAP mAP time
Architecture all classes reduced classes (ms)
RetinaNet-ResNet50 0.67 0.94 58
RetinaNet-ResNet101 0.675 0.943 89
RetinaNet-ResNet152 0.66 0.94 99
YoloV3-DarkNet53 0.59 0.89 52
SSD 0.61 0.89 55

These results shows that the overall mAP increases when
we reduce our classes to 4 main classes. This means that our
network is able to correctly find good bounding boxes, but
often predicts the wrong class for similar traffic signs. This
is mainly due to the lack of data in the dataset (600 images).

Bounding boxes are then cropped from the original image,
and resized to 96×96 and passed to the regression part of the
framework along with the predicted class using the reduced
classes.

C. Regression framework

For the regression part, we made our own dataset using a
part of the GTSRB dataset on which we manually annotated
vertices for polygons and ellipses. 100 images have been
annotated per traffic sign shape for the training set, and 20
for the evaluation one, in total 400 images for the training set
and 80 for the evaluation set. In addition, we also annotated
images from GTSDB to increase the number of images to
approximately: 600 ellipses, 400 triangles, 150 rectangles,
120 octagons. We use data augmentation on both images
and ground truth vertices coordinates annotations in order
to produce new ones to increase the database and prevent
over-fitting.

The framework is defined by 4 neural networks with a
VGG-like architecture (Table I) which corresponds to the
direct regression method. The DSNT method consists of 4
neural networks based on ResNet18 architecture where we
replaced down-sampling layers by dilated convolutions until
we obtain a 48×48 output resolution as described in [16].
All of these networks are trained on our custom annotated
dataset during 1000 epochs with a batch size of 16 images
of size 96×96, using ADAM with a starting learning rate
of α = 0.01 and data augmentation. We defined values for
Constants αw = 4 and βw = 1 defined in Equation 2 by
experience, trying multiple values. Results are presented in
the Table III, using the accuracy metric wich corresponds to
the relative mean squared error.

Let’s note that it appeared the DSNT provided a small
improvement over the direct regression method for polygons,
but the direct regression method still gave better results on
ellipses. This may be due to lack of data in our dataset, and
to the inherent angle and orthogonality information in our
vertex representation of ellipses which may be not adapted
to describe elliptical shapes. This is a limitation of the DSNT
layer, which is applicable only to coordinates pairs which are
well-suited for representing polygons, but not for ellipses.

Fig. 4. Resulting image with boundaries drawn on the original image.
Detection bounding boxes, classes and scores are represented in red. Theses
boxes are cropped, resized and passed to the regression part to find vertices
or ellipses and then resized back and drawn to the original image (in green).
(best seen in color)

TABLE III
REGRESSION FRAMEWORK BENCHMARK USING direct regression AND

DSNT METHOD ON OUR VERTEX ANNOTATED GTSRB DATASET.

Method Accuracy
direct regression-Triangles 0.965
direct regression-Rectangles 0.951
direct regression-Octagons 0.949
direct regression-Ellipses 0.928
DSNT-Triangles 0.975
DSNT-Rectangles 0.961
DSNT-Octagons 0.951
DSNT-Ellipses 0.872

Once predictions are found on input images of the de-
tection framework, they are scaled back to the original
image size, and boundaries are printed on the original image.
See Figure 4 and 5 for some qualitative results. The main
boundary regression errors occurs on dark images (e) or on
distant objects (g), (i) and (l), this is mainly because we only
have few images of this kind annotated in our dataset. We
plan to increase our database to improve the detection and
boundary estimation.

D. Comparisons to segmentation methods

Currently, to the best of our knowledge, there are no avail-
able vertex annotated traffic sign datasets, therefore in order
to compare our method to segmentation ones, we manually
annotated vertices of polygonal traffic signs and elliptical
shaped traffic signs in the GTSDB detection dataset. (600
images for the training set and 300 for validation/evaluation
sets) From this dataset, on one hand, we deduced the minimal
bounding boxes containing our Polygonal and Elliptical traf-
fic signs, we cropped them from the image and resized them
to 96× 96 and also applied the scaling to vertex coordinates
and ellipses corresponding to our traffic signs. We trained
our four regression networks using these cropped images and
converted coordinates. On the other hand, we also produced
binary masks using polygonal and elliptical annotation of
traffic signs of our manually annotated dataset and trained a
Mask R-CNN instance (pretrained on the COCO dataset) on
the same data. Mask R-CNN is trained only on two classes :

TABLE IV
COMPARISON OF OUR FRAMEWORK WITH MASK R-CNN

Method IoU Time FPS
Our framework 0.823 0.071 14.08
Mask R-CNN 0.767 0.275 3.64
Our framework-triangles 0.81 / /
Mask R-CNN-triangles 0.78 / /
Our framework-rectangles 0.80 / /
Mask R-CNN-rectangles 0.77 / /
Our framework-octagons 0.79 / /
Mask R-CNN-octagons 0.78 / /
Our framework-ellipses 0.89 / /
Mask R-CNN-ellipses 0.73 / /

background versus traffic sign since we’re comparing to our
regression method. One important fact is that Mask R-CNN
will provide a mask that will not necessary be a polygon or
an ellipse. Because our goal is to find vertices (or ellipse
parametrization) of the considered shape, we still have to
approximate it using the provided mask. (see Figure 6).
The easiest way to compare both methods is to convert our
vertex annotated test set to binary masks that we consider as
ground truth. We also do the same for the predicted outputs
of our regression networks. We can then compute the IoU
between the ground truth masks and the ones predicted by
our method or the ones predicted by Mask R-CNN. Results
are presented in Table IV. We can see actually that our
framework performs slightly better than Mask R-CNN on
this dataset, this is probably due to the few amount of data.
The main advantages of our method are (1) that it is much
faster in execution time, which is important for real-time
critical application such as autonomous driving and (2) it can
provide very good result with a small amount of data in the
learning phase. The execution time is an average prediction
time per image (for our framework it corresponds to the
entire process: detection + regression time) (3) it can also
predict vertices (or ellipse parts) outside of the bounding box
(shapes that are only partly in the bounding box). Qualitive
results for the comparison are presented on Figure 6 Time
is computed only for the full framework and corresponds to
the mean number of ms elapsed per image.

V. CONCLUSION

We presented a light framework which is able to detect,
recognize and find boundaries of simple semantic objects
like traffic signs which can be used as landmarks. Our
solution provides very good results compared to state-of-
the-art segmentation approach. For this kind of objects, we
propose an alternative method to segmentation which is
way more computationally complex and time consuming.
Moreover, it can be easily adapted to others polygonal or
circular shaped objects such as road markings, traffic lights in
order to make it more robust to urban environments lacking
traffic signs. With such detection over time, the accurate 3D
localization of the traffic signs would be possible and would
benefit SLAM or urban cartography frameworks. Our vertex

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 5. Image results from the entire framework : In red, bounding boxes predicted by the detection framework and its associated class prediction and
score. In green, vertices and ellipses predictions from the regression part. The first row shows some good regressions, the second one ok detections, and
the last one, some bad cases.(best seen in color)

Fig. 6. Comparison with Mask R-CNN. In transparent blue, the mask
predicted by Mask R-CNN, in green the shape predicted by our regression
networks, and in black the ground truth annotated shape.

annotated traffic signs dataset can be obtained on demand.
It is a first step towards an implementation of a semantic
SLAM. Yet, there are still improvements to be made to this
framework. One of the main issue is the lack of a large
vertex annotated traffic sign dataset which is required for
this framework to work properly. Especially to make it end
to end. Next step is to triangulate in 3D the vertices of the
detected traffic signs in the video flow in order to get 3D
high-level landmarks for the semantic SLAM framework.

REFERENCES

[1] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[2] C. G. Harris, M. Stephens, et al., “A combined corner and edge
detector.” in Alvey vision conference, vol. 15. Citeseer, 1988, pp.
10–5244.

[3] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, Nov 2004.

[4] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European conference on computer vision. Springer, 2006,
pp. 404–417.

[5] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1–9.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[10] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263–7271.

[11] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[12] H. S. Lee and K. Kim, “Simultaneous traffic sign detection and bound-
ary estimation using convolutional neural network,” IEEE Transactions
on Intelligent Transportation Systems, vol. 19, pp. 1652–1663, 2018.

[13] H. Law and J. Deng, “Cornernet: Detecting objects as paired key-
points,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 734–750.

[14] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in European Conference on Computer Vision.
Springer, 2016, pp. 483–499.

[15] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[16] A. Nibali, Z. He, S. Morgan, and L. Prendergast, “Numerical coor-
dinate regression with convolutional neural networks,” arXiv preprint
arXiv:1801.07372, 2018.

[17] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel,
“Detection of traffic signs in real-world images: The German Traffic
Sign Detection Benchmark,” in International Joint Conference on
Neural Networks, 2013.

[18] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs.
computer: Benchmarking machine learning algorithms for traffic
sign recognition,” Neural Networks, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608012000457

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

