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.  An introduction to Multipole Modelling 

The surrounding chapters in this book highlight the pivotal role of the charge distribution in 

the qualitative and quantitative characterization of chemical bonds, and in the determination of 

molecular and crystal properties. Hence, the motivation to obtain accurate analytical models of 

the charge distribution, that arises from the electron density (ED).. Providing such models is 

the aim of the multipole modelling, summarized in this section. Next, the XD  and Mo-

ProSuite programs, two among the most widely used packages in charge density analysis, will 

be described. These programs utilize the multipolar atom model and allow the determination, 

representation, and the property analysis of electron densities in crystal structures – be they 

molecular, polymeric, ionic or elemental, including metals. 

It is well known that crystal structures can be determined by the means of single crystal X-

ray diffraction experiments. As X-rays interact with electrons, diffraction experiments image 
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the ED distribution in the crystal, from which the positions of atomic nuclei in the unit cell can 

be deduced. The aim of routine X-ray diffraction experiments is indeed often limited to the 

determination of the three-dimensional structure of the studied compound. In other words, the 

experimentally measured ED is interpreted only in terms of local maxima, indicating where the 

nuclei are located in the unit cell. The most common methods to determine the crystal structures 

resort on a simple model, where the crystal is seen as an assembly of non-interacting atoms and 

the corresponding electronic distribution is described as a collection of spherically symmetric 

atomic electron densities, centred on the coordinates of the corresponding nuclei. The atoms 

may define a molecule or not, but this does not affect the model which is invariant with respect 

to a prejudicial chemical insight (i.e. the connectivity among atoms). A molecule, whose ED is 

approximated in this way, is called a “promolecule” within the field of charge-density studies, 

nowadays termed “quantum crystallography” (see part III, chapter 9).    

   

. .  The shortcomings of spherical atom model  

 

In the process of determining a crystal structure, the stage of refinement is especially im-

portant and needs to be briefly recalled here. The crystallographic refinement corresponds to 

the process of adjusting parameters of the structural model against the data provided by the X-

ray diffraction experiment. In routine structure determination, the refined parameters are the 

atomic fractional coordinates and the mean square displacements of nuclei, around their equi-

librium positions, due to thermal vibrations. These can either be seen as isotropic, leading to 

one single parameter per atom, or anisotropic, described by up to six independent values within 

the framework of a harmonic model. In crystallographic refinements, the approximation of non-

interacting atoms is called “Independent Atom Model” (IAM), valid for both molecular and 

non-molecular crystals. Indeed, atomic parameters are optimized by minimizing an error func-

tion 𝑆 written as a sum, over all used experimental data, of squared differences between ob-

served (𝐹 �⃗� ) and computed (𝐹 �⃗� ) structure factors amplitudes, or intensities. Such 

procedure is therefore termed as “least-squares refinement”:  

𝑆 = 𝑤 ⃗

⃗

𝐹 �⃗� − 𝐹 �⃗� (10.1) 

where �⃗� is the scattering vector and  𝑤 ⃗ a weighting coefficient related to the experimental 

uncertainty associated to the corresponding 𝐹 �⃗� . The calculated structure factor 𝐹 �⃗�  

depends on the model which is adopted for the atomic electron distribution and nuclear vibra-

tion. The least squares minimization is inherently non-linear, but it can be linearized by using 

as variables the shifts from an initial model of the parameters needed to minimize 𝑆. This im-

plies an iterative process that eventually converges to the set of best parameters that minimize 



the disagreement between 𝐹 �⃗�  and 𝐹 �⃗� . Noteworthy, for a more accurate model, 

such as the multipole model, the IAM could be a reasonable starting point. 

For a unit cell containing 𝑁  atoms, the calculated structure factor is written as: 

𝐹 �⃗�  =   𝑓 �⃗�   𝑇 �⃗�  exp 2𝑖𝜋𝐻. 𝑟 (10.2) 

where, for the 𝑗  atom, 𝑇 �⃗�  is the Debye-Waller factor depending on the thermal dis-

placement parameters, 𝑟  is the vector of its fractional coordinates and 𝑓 �⃗�  represents its scat-

tering factor. The atomic scattering factor (or form factor) is the Fourier transform of the atomic 

electron density. In the IAM model, given the spherical approximation of atomic electron den-

sities in real space, the scattering factors are spherically symmetric in the reciprocal space as 

well. For a given chemical species, they depend only on the norm �⃗� = sin(𝜃) 𝜆⁄  of the scat-

tering vector �⃗�, with 𝜃 being the Bragg angle and 𝜆 the wavelength of the X-ray beam used in 

the experiment.  

 

A major drawback of the promolecular ED approximation is that, although acceptable to 

build a sufficiently correct structural model, it is chemically inconsistent. In fact, the wave-

function that produces such a density does not represent a bound state and the typical features 

of chemical bonding would be missing. This should not surprise us, because the percent differ-

ence between a purely spherical distribution of electrons in atoms and the correct electron den-

sity is of the order of magnitude of %. In order to better describe the asphericities, a more 

sophisticated model is necessary, which relies on extra parameters. The augmented number of 

parameters of an accurate ED modelling requires significant extension of the diffraction reso-

lution. A consensual resolution limit of 𝑠𝑖𝑛(𝜃) 𝜆⁄ = .  Å-  is often taken as a reference. Above 

this limit the resolution becomes “subatomic”. If coupled with high precision measurements of 

the diffracted intensities, deviations from the spherical ED approximation become clearly visi-

ble. The main deformations from sphericity affect of course the valence electron density, mainly 

because of chemical bonding. Importantly, these electrons scatter only at low resolution (i.e. 

below 𝑠𝑖𝑛(𝜃) 𝜆⁄ = .  Å- ). Nevertheless, the high-resolution data are important because they 

allow fixing with precision nuclear positions and atomic displacement parameters as they 

strongly depend on core electrons that dominate the diffraction at high-resolution. In turn, this 

enables reducing the correlation between position parameters and the additional parameters 

necessary to accurately describe the electron density. 

The quality of the refined model can be assessed by computing Fourier transformation maps 

of the difference between the observed structure factors amplitudes and their computed equiv-

alents, see eq. ( . ).  
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𝜌 (𝑟)   =
1

𝑉
𝐹 �⃗� − 𝐹 �⃗�

⃗

exp(i𝜑 ) exp −2𝑖𝜋𝐻. 𝑟 (10.3) 

 

where  𝜑   represents the phase of the computed complex structure factor 𝐹 �⃗� .       

If using an IAM model, these residual electron density maps reveal accumulations of non-

modelled ED on covalent bonds (where they are found shared by the bonded atoms), or at ex-

pected positions of electron lone pairs [ ] (Coppens ). An example of residual map can be 

found in Fig. . . High and localized peaks in maps of 𝜌 (𝑟) clearly indicate that the spher-

ical atom approximation is insufficient, because the information available from the diffracted 

intensities is not and cannot be properly exploited with the IAM model. Even worse: the refined 

positional and thermal atomic parameters are in this case necessarily biased by the non-mod-

elled aspherical distribution of the valence ED. This is especially true for the atomic anisotropic 

displacement parameters, which represent the only degrees of freedom accessible in the IAM 

approach to partially account for the anisotropic features of the ED. In this case, the deformation 

ED and the atomic displacement parameters are said to be convoluted, and the IAM model is 

therefore wrong in trying to reproduce both the electron density and the atomic displacements.  

 

 

Fig. . : Fourier residual map in the plane of urea, after IAM refinement with MoPro of the 

estradiol-urea diffraction data up to 𝑠𝑖𝑛(𝜃) 𝜆⁄  = .  Å-  (Parrish et al., ). Contour +/- .  

e/ Å .  Positive: blue; negative: red; zero: yellow lines. 

 



 

. .  The multipolar atom model  

 

Obviously, the objective of properly modelling the fine electron density details, and at the 

same time properly de-convoluting atomic displacements parameters and deformation ED fea-

tures, can only be achieved using a more adequate atomic model than the crude spherical ap-

proximation of the IAM approach. This is exactly the purpose of the multipole model, elabo-

rated by, among others, Hansen and Coppens [ ], Stewart [ , ] and Coppens [ ]. The multipole 

model preserves the partition of the electron density in terms of atomic contribution, which 

characterizes the IAM model. However, the atomic terms are no longer spherical. In fact, the 

atomic electron density 𝜌 (𝑟) result from the sum of three terms, accounting respectively 

for the core, the spherical and the aspherical deformation of valence electrons:  

𝜌 (𝑟) = 𝜌 (|𝑟|) + 𝜅 𝑃 𝜌 (𝜅|𝑟|) + 𝜅 𝑅 (𝜅 |𝑟|) 𝑃 𝑌 (𝜃, 𝜑) (10.4) 

The total molecular electron density 𝜌 (𝑟) is then obtained by summing up these atomic 

contributions describing so-called “multipolar pseudo-atoms”:  

𝜌 (𝑟) =  𝜌 (𝑟) (10.5) 

Let us now describe in more detail equation ( . ), as it is central in multipole modelling. 

The first term accounts for the core electron shell of the considered atom. As these electrons 

are usually not involved in interatomic bonds, in the Hansen & Coppens model, they are kept 

unperturbed so that 𝜌 (|𝑟|) follows the same spherical approximation as atoms in the IAM 

model with a fixed number of electrons. More precisely, 𝜌 (|𝑟|) is a spherically averaged 

core ED computed from theoretical wave-functions of the ground state electronic configuration 

of the unperturbed isolated atom. The parameters of the core orbital functions (coefficients and 

exponents of Slater type functions) come from Roothaan-Hartree-Fock calculations (see for 

example Clementi &Roetti [ ]) or from Dirac-Fock numerical solution of the atomic Schrö-

dinger equation and wave-function fitting (Su & Coppens [ ]; Macchi & Coppens [ ]).  

The second term in eq. ( . ) describes the spherical part of the valence electron shell. This 

ED is calculated like the core density from the corresponding valence orbitals of the atomic 

wave-function, however the associated population 𝑃  is allowed to vary in the course of the 

refinement as well as the associated volume. Indeed, the  𝜌 (𝜅|𝑟|) term represents here a 

spherical valence ED, normalized to one electron. The 𝑃  parameter allows to represent the 

charge flow among atoms of the compound and consequently gives access to an estimation of 

the experimental atomic charge. Indeed, knowing 𝑁 , the number of valence electrons in the 
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neutral state, the atomic charge 𝑞 can be defined by simply computing the difference 𝑞 =

𝑁 − 𝑃 .  

 

The spherical valence term depends also on the 𝜅 coefficient, which is again an atomic 

parameter that can be fitted in the course of the refinement. This 𝜅 parameter describes the 

contraction or expansion of the valence electron shell around the atomic nucleus. If 𝑃  in-

creases (for example for the most electronegative atoms), the increased electron-electron repul-

sion produces an expansion of the atomic volume. Because in the 𝜌 (𝜅|𝑟|) term, 𝜅 appears as 

a parameter scaling the radial coordinate |𝑟|, the expansion of the shell implies 𝜅 < 1. In fact, 

when 𝜅 < 1, then  𝜅|𝑟| < |𝑟| which means that the same valence ED value is found at a larger 

value of |𝑟|, corresponding to an expanded spherical valence shell. The inverse situation occurs 

when 𝜅 > 1: in this case, the valence shell is contracted. In eq. ( . ), the 𝜅  factor is due to a 

normalization factor of the atomic orbital functions, as 𝜌 (𝜅|𝑟|) should remain normalized to 

one electron.  

 

The third term in the Hansen & Coppens model accounts for non-spherical features of the 

valence electron density deformation. At variance from the other two terms, which are spheri-

cal, the third term is written by splitting the radial (function of |𝑟|) and the angular (function of 

(𝜃, 𝜑)) dependencies of the aspherical valence ED using, respectively, single−𝜁 Slater-type 

functions 𝑅  and density-normalized real spherical harmonics 𝑌 . The outer sum in eq. ( . ) 

runs over a positive integer 𝑙, which corresponds to the order of spherical harmonic functions 

used to model the considered atom. The second summation runs over a second integer 𝑚 with 

−𝑙 ≤ 𝑚 ≤ +𝑙. Clearly, this resembles the mathematical representation of the angular part of 

hydrogenic orbitals in quantum mechanics; however, it is important to understand what the 

difference is. Orbitals are atomic wave-functions, whereas the multipole formalism models 

atomic electron densities. The density of an atomic orbital is the square of the orbital function, 

which implies squaring also the angular part. In analogy with the atomic orbitals, it is conven-

ient to adopt the spherical coordinates (|𝑟|, 𝜃, 𝜑). While a global coordinate system (equal for 

all atoms) would be computationally easier, Hansen and Coppens ( ) suggested instead the 

possibility to adopt a local coordinate system for each atom [ ]. This is defined using orthonor-

mal Cartesian basis vectors chosen to follow the local symmetry around the considered atom or 

anyway a pseudo-symmetry generated by the chemical environment. The atomic axes are gen-

erally defined by using interatomic vectors towards bonded neighbour atoms. 

The single−𝜁 Slater functions, representing the radial dependency of the aspherical valence 

ED, are node less atomic orbitals expressed by the general formulas:  

𝑅 (𝜅 |𝑟|)   =  
𝜁

(𝑛 + 2)!
  (𝜅 |𝑟|)   exp(−𝜁𝜅 |𝑟|)                                      (10.6) 



The parameters 𝑛  and 𝜁 are related to coefficients of analogous hydrogenic orbital functions 

(Clementi and Raimondi,  [ ]). At variance from core and spherical valence, constructed 

from Roothaan type atomic wave-functions (meaning that each orbital is a combination of many 

Slater type functions), the aspherical radial part is a single Slater type orbital transformed into 

a Slater type density function (meaning 𝜁 = 2𝜁 ). In addition, the 𝜁 values are taken as 

averages of energy optimized single-𝜁 valence orbitals, computed by theoretical methods for 

the electron shells of isolated atoms. This means that for the valence shell of a second raw atom 

(e.g. C), only one radial density function is used, with a 𝜁 exponent that is the twice the average 

between exponents for single-𝜁 orbitals s and p.  

 

The exponents 𝑛  should be in principle determined by the valence orbitals (𝑛 = 2(𝑛- )), 

where 𝑛 is the principal quantum number of the atomic orbital). However, in order to satisfy 

Poisson equation, 𝑛   ≥ l. This implies that for higher poles (for which 𝑙 > 2(𝑛- )) a direct 

connection between the radial density function and the valence atomic orbital function is lost. 

Suitable sets of values are given, for various atomic species, in the library files of specialized 

multipole modeling programs such as XD  or MoProSuite. Being an integer, 𝑛  remains 

fixed during the refinement of a multipole model, whereas the 𝜁 exponents can be optimized 

using a 𝜅  scaling similar to the 𝜅 scaling of the spherical valence. A change in 𝜅′ implies a 

larger or smaller exponent of the Slater type radial density function and therefore a contracted 

or expanded density shell, respectively. Indeed, computing the root of the derivative of 

𝑅 (𝜅 |𝑟|) with respect to |𝑟| leads to a maximum value located at |𝑟| = 𝑛 (𝜁𝜅 )⁄ . Again, the 

𝜅  factor found in the last term of eq. ( . ) is required for normalization purposes. The as-

pherical deformation integrates over all space to zero (assuming 𝑃 = 0) as it describes a re-

organization of valence electrons whose total amount is imposed by the 𝑃  value.  

 

. .  The spherical harmonic functions 

 

The real spherical harmonics 𝑌 (𝜃, 𝜑) are used as density functions in eq. ( . ) to repre-

sent the angular dependencies of the valence non-spherical deformation ED. Real spherical har-

monics are very important functions found in many fields of mathematics, physics and quantum 

chemistry. They are related to the real parts of the angular portion of the solutions to Laplace 

equation Δ𝑓(𝑟, 𝜃, 𝜑) = 0 in three dimensions. 𝐴s 𝑌 (𝜃, 𝜑) are solely angular functions, they 

can be defined on the surface of a sphere of unitary radius, where they are orthogonal. In other 

words, they form a basis set with closure property, so that they can be linearly combined and 

complemented by a radial dependency to model any anisotropic three-dimensional shape. This 

is exactly what is achieved in the Hansen & Coppens multipole formalism. The closure property 

is very important because it assure that any product of two such functions is a linear combina-

tion of spherical harmonics.  
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Because density functions arise from orbital products, and the angular part is equally im-

portant as the radial part described above, spherical harmonics are ideal for the atomic multi-

polar expansion. Core and spherical valence only use one spherical harmonic (the monopole, 

which is the total symmetric irreducible representation of the spherical symmetry group). On 

the other hand, combinations of angular real spherical harmonics, modulated by Slater radial 

functions, are able to model the shape of atomic valence electron densities which are deformed 

from sphericity upon formation of interatomic bonds. Even if they depend only on angular di-

rections, 𝑌  functions can be plotted in various ways in three dimensions. For instance, their 

standard representation consists in distorting a unit sphere, by scaling each point radially by the 

absolute value of the 𝑌  function, then coloring it based on its sign. Apart for 𝑙 = 0 which 

corresponds to 𝑌  of purely spherical (monopolar) shape, this method of representation high-

lights the presence of positive and negative lobes, or “poles”, separated by angular directions 

for which the function is equal to zero (Fig. . ).  

 

They are orthonormal multipolar functions on which is based the “multipole” modelling. 

For instance, when 𝑙 = 1, the three 𝑌  spherical harmonics are dipolar functions, characterized 

by one single negative and one single positive pole. The value of 𝑙  found in the external 

sum of eq. ( . ) depends on the nature of the considered atom, as 𝑙  dictates the shapes and 

the symmetries of the highest order of real spherical harmonics used in the modelling. For in-

stance, hydrogen atoms, involved in a single covalent bond, are often described by a single 

dipolar function (hence 𝑙 = 1) oriented along the bond. This way, the positive lobe of the 

single spherical harmonic (for instance 𝑌 ) accounts for the accumulation of electrons shared 

along the covalent bond between the hydrogen atom and its neighbour. 

 

Fig. . : Representations of real spherical harmonics up to the order 𝑙 = 3 using the 

method given in the text. Positive poles are drawn in green, negative ones in orange. The 

reference Cartesian basis is represented for each multipole. The associated spherical coordi-

nates system is represented next to the monopolar function (𝑙 = 0).  



 

  

. .  Guidelines on the multipolar atoms 

As rule of thumb, one can consider that 𝑙 = 1 (dipoles) is sufficient for hydrogen atoms, 

𝑙 = 3 (octupoles) is adequate for first-row atoms while 𝑙 = 4 (hexadecapoles) should 

be used for heavier atoms. However, we have to consider which atomic orbitals form the va-

lence shell and what is the atomic stereochemistry. H atoms only have a s orbital, but they 

form one bond and therefore feature a preferential direction of polarization of the electron den-

sity. For this reason, a dipolar function along this special direction is necessary. The flexibility 

of the electron density model strongly depends on the treatment of the atomic thermal motion.  

 

For instance, using an anisotropic model for hydrogen atoms nuclei enables extending to 

𝑙 = 2 (quadrupoles). Alkylic, tetrahedral (sp  hybridized) C atoms are obviously different 

from olefinic or aromatic (sp  hybridized) ones. The former requires more flexible description 

than the latter, and expansion to hexadecapoles is necessary. Similarly, fluorine is often mod-

elled in the literature using a multipolar expansion up to hexadecapoles in order to better rep-

resent its three lone pairs [ ]. Transition metal elements have 𝑑-type electrons in their valence 

and their orbital products produce hexadecapolar density functions, which are therefore essen-

tial for a proper modelling. For the same reason, 𝑓-block elements require 𝑙 = 6.  

Of course, the aspherical deformation term of the Hansen & Coppens model includes pa-

rameters that must be adjusted against experimental data in a crystallographic refinement. These 

parameters are the multipole populations 𝑃  and, as for the spherical valence deformation de-

scribed above, the expansion/contraction parameter 𝜅 . The multipole populations, 𝑃 , repre-

sent fractions of electrons being “moved” from the region of negative values (a pole) of the 

corresponding 𝑌  function toward the region of positive values. This way, the number of va-

lence electrons of the considered atom depends only on 𝑃 , whereas the deformation from 

sphericity is represented by the set of 𝑃  coefficients. Hence the ED of atoms is deformed 

when they become involved in chemical bonds, as it is the case in molecules. The 𝑃  popula-

tion, associated to the 𝑌  monopolar spherical harmonic is a special case as it allows to de-

scribe, just as 𝜌 (𝜅|𝑟|), a spherical component of the valence ED. Often, the 𝑃  valence 

population is fixed to zero in a multipole refinement, but is deemed necessary mostly to model 

the diffuse outer 𝑠-electron shell of transition metal atoms when 𝑃  is used for the 𝑑-electrons.  

 

In the crystallographic refinement based on the multipole formalism, as implemented in the 

XD  and the MoProSuite programs, the minimized function 𝑆 takes exactly the same form 

than eq. ( . ), using structure factors amplitudes (or intensities) depending now on the ED 

parameters described previously. More precisely, as the atomic scattering factor is the Fourier 

transform of the atomic ED, the multipolar parameters appear in aspherical scattering factors, 

Fourier transform of the aspherical electron density defined in eq. ( . ). For a given multipolar 
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pseudo-atom 𝑗 included in the structure factor expression (eq. ( . )), the corresponding aspher-

ical scattering factor 𝑓 ,  takes the form:  

𝑓 , �⃗� = 𝑓 , �⃗� + 𝑃 𝑓 ,
⃗

+ 𝑃 𝑓
⃗

(10.7) 

in which 𝑓 , �⃗�  and 𝑓 ,
⃗

 are the core and valence isotropic form-factors obtained 

by Fourier transform of the spherical 𝜌 (|𝑟|) and 𝜌 (𝜅|𝑟|) electron densities, respectively. 

Similarly, 𝑓
⃗  is the Fourier transform of the aspherical ED function (third term in eq. 

( . )) and depends on the direction of the scattering vector. Hence, 𝑓 ⃗  is the contribution 

of the (l,m) multipole function (radial and angular part) to the scattering factor, whose detailed 

expression and calculation can be found in Coppens ( ) [ ]. The dependence in �⃗� 𝜅⁄  or 

�⃗� 𝜅⁄  of the valence form factors reflects the fact that a scaled 𝜌 (𝜅|𝑟|) in direct space re-

sults in an inversely scaled scattering function in reciprocal space. This “inverse scaling” rela-

tionship between direct and reciprocal space has an important practical consequence in multi-

pole modelling. Indeed, atomic core electron shells are necessarily more contracted, around the 

nucleus, than the spherical valence shells. Their scattering factors obey to an inverse relation-

ship: core electrons scatter further in the reciprocal space than valence electrons. Consequently, 

data related to the valence electron distribution are located in the low or the medium resolution 

ranges of diffracted intensities, while information related to core electrons (and, indirectly, to 

atomic nuclei) are located also at high-resolution. This actually offers a practical way to par-

tially solve the convolution problem mentioned before. Refining the structural parameters using 

the IAM model and against data located only in the very high-resolution range allows avoiding 

the bias due to the non-modelled valence deformation ED affecting the lower resolution. Such 

procedure is termed “high order refinement”, in reference to the larger values of Bragg angles 

characterizing the high-resolution ranges of diffraction data.  

To summarize, beyond atomic fractional coordinates and the atomic displacement parame-

ters, the multipole formalism implies extra parameters to model the ED of an atom. There are 

two 𝜅 and 𝜅  expansion/contraction coefficients, the spherical valence populations 𝑃  and 

(𝑙 + 1)  multipoles populations 𝑃  (including the additional spherical 𝑃 ). Assuming 

𝑙 = 4 (hexadecapole level) a total of  parameters per atom are necessary, although often 

𝑃  is not refined and the contraction/expansion parameters 𝜅 and 𝜅  are cumulatively refined 

for atoms of the same element in similar chemical environments. This reduces the parameters 

to  per atom,  per atom type and one (or more) scale parameter necessary because the meas-

ured intensities are on an arbitrary scale. 

 

. .  Extensions of the multipole model. 



For the sake of completeness, it must be noted that several modifications of the original 

multipole model [ ] (Hansen and Coppens, ) have been tested and can be found in the 

literature. All these modifications of the multipole model have in common to further increase 

the number of atomic parameters needed to represent a given pseudo-atom, but underline its 

powerful inherent flexibility. 

 For instance, core polarization effects in, mostly inorganic, crystals of very high diffracting 

power have been modelled by allowing the refinement of an extra core population parameter 

𝑃  associated to a dedicated contraction/expansion coefficient 𝜅  [ ]. This is achieved 

simply by replacing the 𝜌 (|𝑟|) term in eq. ( . ) by 𝜅 𝑃 𝜌 (𝜅 |𝑟|), in which 𝜌  is 

normalized to one electron. The refinement of  core may also be useful when refining against 

theoretical structure factors which may yield high residual density around the nuclei. The  core 

may correct for the mathematical discrepancy between theoretical density issued from Gaussian 

functions and the modelled density using Slater functions [ ].   

 

Another extension of the multipole model is the use of several 𝜅  parameters each associated 

to a given level of the multipolar expansion. In other words, in this approach, 𝜅  become a 

function of 𝑙 and is included in the outer sum of eq. ( . ) [ ]. Similarly, another noteworthy 

modification of the multipolar expansion radial functions consists in the duplication of the as-

pherical valence deformation term of eq. ( . ), in order to introduce a second 𝜁 Slater exponent 

[ ]. This allows performing double-𝜁 multipole refinements providing more flexibility to the 

radial dependency of the aspherical valence term than in the conventional, single-𝜁, Hansen & 

Coppens model. 

  

An overwhelming majority of published charge-density studies based on the multipolar for-

malism reported expansions limited to 𝑙 = 4. However, studying elements with many elec-

tronic shells (like heavier elements of the main groups, transition metal atoms, lanthanides or 

actinides) imposes the use of modified forms of the Hansen & Coppens equation to account for 

deformation effects occurring in their inner electron shells. An approach which has been suc-

cessfully tested in such cases consists in attributing one term akin to the full eq. ( . ) to each 

electron shell of the heavy element, and extending its multipole expansion up to 𝑙 = 6 or 

𝑙 = 7 to model the ED of their highly aspherical orbitals of large principal quantum num-

bers [ - ].  This further increases the number of parameters of the model, which can be prob-

lematic in a least-square refinement. At first, there is a serious risk of overfitting: increasing the 

number of degrees of freedom may lead to model experimental noise, or chemically irrelevant 

features. Secondly, the least-squares method is sensitive to the “observation over parameter” 

ratio, which should be maintained over about . The inverse of the least-squares normal matrix 

is the variance-covariance matrix of the least-squares variables. The very last stage of a refine-

ment should include all atomic parameters and an inversion of the full least-squares normal 
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matrix, to ensure a correct final convergence of the refinement and to gain access to uncertain-

ties on the model parameters. 

 

. .  Constraints and restraints. 

This step might be problematic if the number of refined parameters is too large. Fortunately, 

applying constraints on the structural and ED parameters of the multipolar pseudo-atoms is a 

way to reduce the size of the least-squares matrix. Alternatively, restraints applied can render 

the normal matrix definite positive.  Constraints give a fixed target to a parameter or to a derived 

function while restraints allow for a tolerance around the target value. There are two main types 

of constraints/restraints on the charge density.  

The first one corresponds to local symmetry. The choice of the local Cartesian axis system 

associated to a pseudo-atom (Fig. . ) can be done in such a way that it follows the local 

pseudo-symmetry of the considered atom’s neighbourhood. In this case, only the multipole 

populations 𝑃  of real spherical harmonics 𝑌  satisfying these symmetries will be freely re-

fined. Other 𝑃  values will be constrained to a zero value or restrained to be close to zero 

within a standard deviation 𝜎 . Symmetry constraints, of course, hold also for atoms lying on 

special positions in the unit cell. The 𝑌  that are not invariant under the point symmetry oper-

ations of their Wyckoff position, must be discarded and their associated 𝑃  fixed to zero.  

The second category of constraints/restraints are called chemical equivalences: multipolar 

pseudo-atoms of the studied compound that are chemically equivalent (same nature, same co-

valent neighborhood, same hybridization …) are forced to share the very same (constraint) or 

similar (restraint) ED parameters. Constraints results in a diminished number of refined varia-

bles while restraints increase the number of observations. Applying, until the very last stages 

of the multipolar refinement, such chemical and symmetry constraints/restraints on the ED have 

been shown to be especially relevant to reduce the risk of overfitting [ , ]. 

 

 . .  Assessing the data and model quality 

A multipole modelling, eventually providing a chemically meaningful and accurate experi-

mental electron density model of a studied compound, is usually not an easy task. At first, it 

requires experimental data of adequate quality. As already stated, collecting X-ray diffraction 

data of subatomic resolution is a compulsory requirement, but might not be sufficient. The dif-

fraction experiment must indeed be conducted at cryogenic temperature. Low temperature re-

duces the thermal smearing of the electron density and for this reason increases the scattered 

intensities. This makes ED easier to observe and model. At the same time, a stronger scattering 

implies better precision of the measurement. To yield a well observable deformation density 

the thermal displacement parameters of atoms should be lower than typically .  Å . For the 

same reason, the presence of static disorder in the unit cell will hamper the observation of the 

deformation density. Anyhow, the overall diffraction data quality should be optimized by tar-

geting close to % completeness, very high redundancy and strong signal over noise ratio of 



the collected intensities. For crystal containing heavy elements (sulphur, chlorine, bromine, 

metals…), it is necessary to make proper absorption correction.  

All resolution shells are equally important for a multipole modelling.  As stated earlier, the 

low and medium resolution ranges carry information related to the scattering of valence elec-

trons while the highest resolution ranges concern core electrons. Moreover, crystals described 

in highly symmetric space groups, enabling merging of many equivalent reflections are usually 

more favourable. Centrosymmetric space groups are preferable, if possible, to eliminate the 

uncertainties of the phase of structure factors.  

Although the focus is here on the determination of multipolar density models against exper-

imental diffraction data, nothing disallows to perform a multipolar refinement against theoreti-

cally computed structure factors. This approach is actually very commonly followed, as it al-

lows comparing experimental and theoretical ED models or their derived properties based on a 

common formalism [ ].   

To conclude, let us enumerate some criteria that can be used to evaluate the quality of a 

multipolar refinement. Because a multipole model is somewhat an extension of the IAM typi-

cally adopted for conventional structure solution, the traditional agreement factors, such as 

𝑅(𝐹) or 𝑤𝑅2(𝐹), and the goodness-of-fit (𝐺𝑜𝑓(𝐹)), hold:  

𝑅(𝐹) =
∑ 𝐹 �⃗� − 𝐹 �⃗�⃗

∑ 𝐹 �⃗�⃗

(10.8) 

𝑤𝑅2(𝐹) =
∑ 𝑤 ⃗⃗ 𝐹 �⃗� − 𝐹 �⃗�

∑ 𝑤 ⃗⃗ 𝐹 �⃗�
(10.9) 

𝐺𝑜𝑓(𝐹)  =
∑ 𝑤 ⃗⃗ 𝐹 �⃗� − 𝐹 �⃗�

𝑛 − 𝑛
(10.10) 

where  𝑛  is the number of experimental data and 𝑛  the number of refined parameters. 

Alternatively, these discrepancy indices can be written using net integrated intensities (or 

squared structure factors amplitudes), instead of 𝐹 �⃗�  and 𝐹 �⃗� , leading to 𝑅(𝐼), 

𝑤𝑅2(𝐼) and 𝐺𝑜𝑓(𝐼). 

 

Of course, a multipole model should produce a significant improvement compared with 

IAM and indices should be lower. However, improved R-factors is not a sufficient criterion to 

ensure the chemical validity of the refined ED model. This is why the model itself and the 

resulting deformation density must be carefully analysed during the multipolar refinement pro-

cess. Notably, ED parameters must stay within realistic ranges of values. As a rule of thumb, 

𝑃  populations larger, in absolute value, than about .  can be considered suspect. Similarly, 

𝜅 or 𝜅  parameters are expected to stay relatively close to unity.  values are expected to be 
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smaller/larger than unity for electronegative/electropositive atoms, respectively. Notably, 𝜅  

values significantly deviating from unity undoubtedly indicate a problem in the refinement, 

which might be due to an incorrect definition of the 𝑛  or 𝜁 parameters of the radial functions 

of the corresponding atom. The 𝜅  parameters are actually well known to be difficult to refine 

in a multipole modelling. They are sometimes restrained or even fixed to values taken from the 

literature or from theoretical computations, especially for hydrogen atoms for which recom-

mended ’ values are in the [1.2-1. ] range [ ].  

The multipolar ED model should be visually checked using for instance static deformation 

electron density maps Δ𝜌 (𝑟). They are simply obtained by subtracting to eq. ( . ) spherical 

and neutral atomic references (eq. ( . )). This way, such maps highlight the deformation (both 

spherical and aspherical) of the valence ED and are said “static” as they are obtained directly 

from the Hansen & Coppens model without including any effects of atomic displacement pa-

rameters: 

Δ𝜌 (𝑟) =  𝜌 (𝑟) − 𝜌 (𝑟) (10.11) 

where 𝜌 (𝑟) corresponds to eq. ( . ) and 𝜌 (𝑟) = 𝜌 (|𝑟|) + 𝑁 𝜌 (|𝑟|). Exam-

ples of static deformation density maps can be seen in Fig. .  and . .  

 

 

Fig. . : Example of deformation electron density map in the plane of urea molecule, after 

charge density refinement of the estradiol/urea crystal [ ]. Contours are the same as in Fig. 

. . While the bonding density is well defined, the electron lone pairs on the oxygen atom are 

weaker than expected presumably due to the non-centrosymmetric space group and the rela-

tively high thermal motion Ueq> . Å . 



 

Finally, the non-modelled deformation electron density peaks visible after the IAM refine-

ment should eventually vanish as they are accounted for by the multipole atom model. Hence, 

the final residual electron density map should be flat, apart from randomly distributed weak 

peaks related to experimental noise. At the end of the multipolar refinement, it is strongly rec-

ommended to use residual density analysis (RDA) tools, such as jnk RDA [ ]. Significant 

deviations from the ideal distribution of a Gaussian noise might be indicative of an error in the 

electron density model or of systematic errors in the diffraction data.  

 

10.2 The MoProSuite software package  

 

. .  Overview of the programs 

MoProSuite is a versatile least-squares refinement package which implements both the IAM 

and the Hansen & Coppens multipole models. It is compatible with the structural and the elec-

tron density refinement of crystal structures ranging from small compounds to reasonably sized 

macromolecules. Besides the features related to the least-squares refinement, MoProSuite also 

allows the computation and the representation of a wide range of ED-derived properties, such 

as the electrostatic potential and the topology of the electron density. MoProSuite is made of 

several modules we shall now describe. The core components of MoProSuite are the MoPro, 

VMoPro and Import MoPro programs [ , ].  

Import MoPro is a utility program for the conversion of common crystal structure file for-

mats (such as CIF, INS, RES, PDB, XD, xyz …) into the one needed by the MoProSuite pro-

grams. Import MoPro can determine suitable atomic local axis systems (needed to orient ED 

deformation functions of eq. ( . )) following the local pseudo-symmetry of the considered 

atoms. These optimal atomic axes are written in the MoPro parameter file by Import MoPro 

and allow the definition of chemical and symmetry constraints on ED parameters.  

MoPro is dedicated to the least-squares refinement. It implements the usual chemical equiv-

alences and symmetry constraints used in multipole modelling, but also numerous restraints 

applying both on structural and on electron density parameters. Available restraints and con-

straints can be automatically generated by MoPro and written in dedicated text files. Therefore, 

they can be afterward checked or edited by the user. Restraints in MoPro are of two kinds: 

target or similarity restraints. Target restraints force parameters or functions of parameters (e.g. 

interatomic distances) to remain close to target values within a given tolerance. Similarity re-

straints impose that values of two parameters, or function of parameters, must stay similar 

within a user-defined tolerance. Restraints are implemented in the least-square refinement by 

adding terms to the minimized residual function 𝑆 (eq. ( . )), which becomes:  
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𝑆 = 𝑤 ⃗

⃗

𝐹 �⃗� − 𝐹 �⃗� + 𝑤 𝑓 − 𝑓 + 𝑤 (𝑔 − ℎ) (10.12) 

where 𝑁𝑡 and 𝑁𝑠 are the number of target and similarity restraints of a given type. ℎ and 𝑔 

are parameters or functions of parameters whose values must remain similar. 𝑓  is the target 

value of the restrained function 𝑓. 𝑤  and 𝑤  are the weights associated to the target and simi-

larity restraints, respectively. A strong weight will reduce the tolerance of deviations between 

restrained parameters. The restraints implemented in MoPro increase significantly its versatil-

ity, making it compatible with the refinement of protein or nuclei acids structures at atomic or 

subatomic resolution. In this optic, MoPro also implements the conjugate-gradient minimiza-

tion approach which allows when the number of parameters is large to avoid the costly matrix 

inversion needed in standard least-squares routines.  

 

MoPro is interfaced with the ELMAM  electron density database [ - ]. This library con-

tains transferable multipolar pseudoatoms describing many common organic chemical groups. 

These pseudoatoms have been obtained by averaging multipolar parameters issued from nu-

merous accurate subatomic resolution charge density analyses of small compounds (amino ac-

ids, various organic molecules…). Parameters were averaged per “atom types”, i.e. per atoms 

presenting similar covalent neighborhood, and can be transferred to any molecular structure 

containing compatible atom types. This approach, rooted in the so-called “transferability prin-

ciple”, allows fast reconstructions of multipolar ED models of large biological molecules. The 

resulting transferred model can be exploited directly to compute ED derived properties [ ] or 

be used as a starting model for a constrained multipolar refinement, assuming diffraction data 

of sufficiently high resolution is available [ , ].  

In addition, MoPro proposes a model combining real and additional virtual spherical atoms 

as an alternative to the multipole modelling [ , ]. In this approach, the charge density can be 

refined using a model based on real spherical atoms and additional dummy charges on the co-

valent bonds and on electron lone-pair sites. Compared to multipoles, this spherical charge 

modelling needs fewer parameters to describe the deformation electron density (Fig. . ). For 

each atom, only the valence population 𝑃  and the contraction/expansion  coefficients are 

refined. Most of the deformation density is modelled and molecular electrostatic properties are 

very close to those modelled with the multipole model. A database of transferable spherical 

“real+virtual” atoms issued from theoretical calculations is also available to model structures 

at lower resolution and bio-macromolecules.   

 



  

Fig. . : (a) urea molecule with virtual atoms (in green) located on the covalent bonds and 

on the electron lone pairs sites of the oxygen atom. (b) deformation valence electron density 

map in the plane of urea modelled using transferred “real+virtual” atoms. 

 

 

VMoPro is the MoProSuite component dedicated to the computation of ED derived proper-

ties. It gives access to static electron densities or electrostatic potentials using any contribution 

of the multipolar charge density (nuclei, core, spherical or deformation valence etc…). It allows 

also the computation of Fourier maps, including dynamical electron densities. Any of these 

properties can be represented with VMoPro in the form of D contour plots (in postscript for-

mat) or exported as D regular grids (e.g. in the Gaussian CUBE format). Topological analyses 

of D scalar fields, within the QTAIM framework (see part II, chapter ) can be performed 

with VMoPro, using the electrostatic potential, the total ED or its Laplacian (which can also be 

obtained independently in the form of D or D maps). Atomic charges can be computed by 

integrating the charge density over the Bader atomic basins [ ]. VMoPro also implements the 

computation of electrostatic interaction energies using the EP/MM approach [ ].  

. .  The Graphical User Interfaces MoProGUI and MoProViewer 

MoPro runs using a user-created input commands file containing keyword base instructions 

(e.g. “mopro.inp”) containing keywords-based instructions. A complete description of all avail-

able keywords and options can be found in the MoPro documentation. By contrast, VMoPro 

and IMoPro are interactive programs. They can be used either by prompting instructions di-

rectly in the console or giving scripted input files using standard input redirection. Even if con-

venient in a console-based environment, for instance to execute the programs in batches, that 



18 
 

kind of usage can be advantageously replaced by the use of the graphical user interfaces MoPro-

GUI and MoProViewer.   

 

MoProGUI is the graphical user interface of MoPro. It allows the user to easily configure 

and execute a multipolar refinement, and to follow its outcomes, without using the keyword-

based approach needed to execute MoPro in command-line mode. Unlike with the IAM model, 

the multipolar refinement implies the notion of “refinement strategy”. Indeed, the multipole 

model is based on parameters of different types, either global (e.g. the scale factor), related to 

the structure (e.g. fractional atomic coordinates) or to the spherical and aspherical deformation 

electron density (𝑃 , 𝑃 , 𝜅 and 𝜅 ). Moreover, these parameters present various degrees of 

correlations between them (e.g. between 𝑃  and 𝜅, or between 𝑃  and thermal displacement 

parameters), can be subject of various kind of constraints or restraints and may depend on dif-

ferent resolution ranges of the available diffraction data. Altogether, it means that a multipolar 

refinement is usually not straightforward, and often implies trial and errors before obtaining an 

adequate strategy leading to a chemically meaningful electron density model.   

 

MoProGUI has been specifically designed to ease the elaboration of multipolar refinement 

strategies. It appears obvious that the various functionalities of a multipolar refinement program 

can be sorted in categories: options related to experimental data (e.g. resolution limits, I/(I) 

cut-off…), to the restraints or the constraints, to the refinement (refined parameters, number of 

refinement cycles …), to data exportation, and so on. This is exploited in MoProGUI, in which 

the user can graphically build a refinement strategy by combining groups of instructions, named 

“blocks” in the MoProSuite jargon. The refinement strategy in MoProGUI appears then as a 

list of successive blocks, which will be executed sequentially by MoPro. As said earlier, each 

block gathers categories of instructions. The first block of any MoProGUI strategy list is always 

a “Files” block. The “Files” block allows indeed to specify the (initial) atomic parameter file, 

the experimental diffraction data file and the constraints / restraints files. In this first “Files” 

block is also given the location of the library tables, provided with the MoProSuite package, 

containing default 𝑛  and 𝜁 coefficients of the atomic radial functions and the parameters of the 

orbital functions needed for 𝜌  and 𝜌  spherical ED (eq. . ). 

  

One of the most important instruction block in MoProGUI is obviously the “Refinement” 

block. It is where the user can graphically select (i) a type of parameters to refine, (ii) atoms 

which will be included in the refinement using inclusion / exclusion logic and (iii) a refinement 

method and its corresponding options. For instance, a user can, with few mouse clicks, config-

ure a refinement block corresponding to “the refinement of thermal displacement parameters 

and fractional coordinates of every non-hydrogen atoms using  cycles of least-squares matrix 

inversion method and a damping of parameter shifts of . ”. The choice of the data resolution 



limits used in a given refinement stage is made using a “Resolution” block, whose inclusion in 

the refinement strategy will affect resolution limits until the next “Resolution” block.  

Another example of block, as group of instructions, that can be included in a MoProGUI 

strategy list is the “Preparation” block. This block is intended to automatically prepare various 

kind of restraints or constraints (either structural or related to the electron density). Once exe-

cuted, this block in MoProGUI will prompt MoPro to create restraints and constraints files, 

which can be used in subsequent refinement steps. Hence it has to be executed only once, at 

early stages of the refinement. Finally, “Output” blocks can be used at any position in the strat-

egy list. Using “Output” blocks, the user can ask, for instance, for the creation of intermediary 

molecular parameter files, CIF files or files containing 𝐹 �⃗� , 𝐹 �⃗�  and associated 

phases (computed using the current model parameters) needed for Fourier maps. Instruction 

blocks can be configured in a very flexible way in the MoProGUI interface. Any block can be 

drag and dropped within the refinement strategy, commented / activated or even included in 

loops in which groups of blocks will be executed several times, for instance up to convergence 

of the refinement of a given set of parameters. They can also be renamed and saved for future 

use, which is especially convenient for “Refinement” blocks. A user can this way create a re-

finement strategy using his own set of custom preconfigured “Refinement” blocks.  

 

A last peculiarity of the MoPro / MoProGUI philosophy is the versioning of molecular pa-

rameter files. In MoPro, a parameter file contains basically the crystallographic data (e.g. cell 

parameters and symmetry operations), the global parameters (scale factor, extinction coefficient 

…), the list of atoms in the asymmetric unit with their parameters and their local atomic axis 

systems. The name of a MoPro parameter file contains a version number (e.g. “my-

compound.par ”), which will be incremented at each execution of MoPro. At the cost of a 

larger number of files ending up in the user working directory, this versioning system allows to 

keep track of what has been done along the refinement and, of course, to restart the refinement 

from any stage using the adequate parameter file version.   

 

Once MoPro is executed through MoProGUI, an “Output panel” appears in the MoProGUI 

interface. It displays data allowing the user to follow the progression and the outcome of the 

refinement strategy configured in the Input panel. Notably, the full “mopro.out” file is displayed 

and updated in real time during the progress of the refinement along with plots showing the 

evolution of user selected crystallographic agreement factors.  

 

MoProViewer is the graphical user interface for VMoPro, and a molecule / crystal structure 

viewer especially designed for the charge density field [ ]. It features specific functionalities 

related to the multipole modeling such as the representation of atomic local axes systems or 

chemical equivalences constraints using color-coded symbols. One of important features of 

MoProViewer, among many others, is its capability to allow the user to configure directly, from 
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the representation of the molecule, the computation with VMoPro of ED-derived properties. 

For instance, any D plot (or D relief maps) can be obtained with a few mouse clicks on atoms 

to define a plane, then MoProViewer runs silently VMoPro, retrieves its results and represent 

them in a dedicated contour maps viewer. D properties can be computed in a similar way, and 

can be represented in MoProViewer using D iso-surfaces, possibly colour-mapped by any 

other D property. Similarly, the search for ED critical points with VMoPro can be configured 

from MoProViewer, and the resulting bond critical points can be displayed with their associated 

bond paths. Fig. .  illustrate some of the representations of ED-derived properties available 

in MoProViewer.  

 

The software has some links to other programs developed by other authors:    

– The fractal analysis of Meindl and Henn (2008) [23] can be performed on residual (Fobs-

Fcalc) maps of XPLOR or Gaussian CUBE format computed by fast Fourier transform. 

– The analysis of diffraction data quality with program DRK [36] can be performed on the 

output reflections file using FCFW option, which replaces (Ihkl) in order to have a unitary 

goodness of fit (gof=1).  

– The SHADE or SHADE3 servers [37, 38] prepare the values of modelled anisotropic ther-

mal parameters of hydrogen atoms to be inserted in the MoPro constraints file (FIXUIJ).  

 

. .  A practical example : charge density refinement of estradiol/urea with Mo-

ProSuite. 

 

The practical use of the MoProSuite is here briefly described, based on the Estradiol-Urea 

complex (Fig. . ) published by Parrish et al. in  [ ].  

 



 

Fig. . : MoProViewer view of the thermal ellipsoids ( % probability presence) of the es-

tradiol/urea crystal structure. 

 

A tutorial based on this molecule is actually included in the MoProSuite package. Diffraction 

data “estradiol.Ihkl” and “estradiol.cif” files can be found in the “Tutorial_estradiol” examples 

folder of the MoProSuite installation directory. Upon importation of the CIF file, the program 

will set automatically the atomic axes systems to orient the multipoles, based on the neighbors.  

The first refinement step is the adjustment of scale factor. In the next step, the constraints and 

restraints need to be prepared by the program. Indeed, the stereochemical restraints (or con-

straints) are necessary for proper treatment of hydrogen atoms.  In this case, the following ones 

can be selected:  

 X-H bond distances adjusted to standard values from neutron diffraction. 

 X-H bond distances similarities (d(A-H1) ~ d(A-H2)  d). 

 Uiso thermal parameters of hydrogen riding on that of bonded atom (multiplied by 1.2 

or 1.5). 

 Equivalent atoms have same/similar charge density parameters , ’, Pval, Plm 

Multipoles of some atom obey a local symmetry (mirror, inversion centre …). 

 

The second refinement step applies on the structural parameters (XYZ & Uij). After structural 

refinement, the “experimental deformation density”, or residual ED, can be observed by com-

puting a Fourier residual map (Fig. 10.1). The signal can be enhanced by applying a “high order 

refinement”, i.e. refining XYZ and Uij of non-H atoms against high resolution reflections only 

(typically sin()/ > 0.7 Å-1).  
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When the Fourier map shows distinct bonding density and electron lone pairs with limited 

noise, the charge density can then be refined favorably. Several procedures are possible. Charge 

density parameters may be introduced progressively in the refinement, starting with multipoles 

Plm’s.  MoPro “refinement” menu allows to do customized refinement where parameters refined 

are chosen by the user. “automatic refinement” menu proposes automated procedures where all 

the parameters can be refined iteratively or together. A fully automatic procedure is also avail-

able and will most likely work for a structure with good diffraction data and no complications 

(disorder, anharmonic thermal motion, special positions…). A significant R-factor drop is ex-

pected upon multipolar refinement.  

The refinement can be carried out till convergence. Ideally all parameters should be refined 

together in the last stages.  

 

 
10.2.4 Properties derived from the charge density 

 

This paragraph highlights some of the most important properties and results which can be com-

puted from a successful charge density refinement.    

Electrostatic potential.  

The electrostatic potential 𝑉(𝑟) (ESP) can be obtained by integration over space of the total 

charge density 𝜌 (𝑟) (i.e. including atom nuclei) divided by the distance:                 

𝑉(𝑟) =  
𝜌 𝑟⃗

𝑟⃗ − 𝑟
𝑑 𝑟⃗ (10.13) 

The Hansen & Coppens modeling of the electron density enables to compute the ESP generated 

by a molecule which is far more accurate than that derived from point atom charges placed at 

the nuclei. Electrostatic potential provides more information than the electron density on the 

chemical reactivity and the intermolecular interactions. Several types of representations can be 

selected (Fig. 10.6). For instance, the C=O electronegative group of urea forms bifurcated hy-

drogen bonds with the NH2 group of a neighbor urea molecule (Fig. 10.6c); in the molecular 

dimer, electropositive and electronegative regions are in interaction. 

 



(a) (b) (c) 

 

 

 

(d) 

 

Fig. . :  Representations of the molecular ESP using MoProViewer.  

(a) Generated and shown in the urea plane. Contours: +/- 0.05 e/Å, positive in blue, negative 

in red, zero line in green 

(b) A qualitative semi-translucent contour map of static deformation ED is shown in the urea 

plane. The estradiol molecule is surrounded by a 0.1 e/Å3 total ED isosurface coloured by 

its ESP, with the colour legend ranging from -0.25 to 0.3 e/Å. 

(c) Hirshfeld surface around the urea molecule. The surface is colored according to ESP values 

(range -0.6 to 0.3 e/Å).   

(d) ESP Isosurfaces of the estradiol molecule. Positive contour in grey: +0.2e/Å. Negative 

contour in red: -0.092e/Å. 

 

The estradiol molecule shows two electronegative lobes at -0.15 e/Å. around the two C-O-H 

groups. Less electronegative regions at V = -0.09 e/Å appear on both side of the aromatic C6 

cycle due to  electrons (Fig. 10.6d). The urea molecule generates an electronegative potential 

around the C=O oxygen atom (Fig. 10.6a,c). 

 

Laplacian. 
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The Laplacian of the total electron density shown in Fig. 10.7 is an alternative way to highlight 

electron charge local concentrations and depletions. Regions with negative Laplacian corre-

spond to local negative charge concentration. The lone pairs of the C=O oxygen atom of urea 

appear as two peaks in the Laplacian map.   

 

 

Fig. . : Laplacian of the total electron density (e/Å ). L() = 2/x  + 2/y  +  2/z .  

Contours are quasi-logarithmic ± , , × n with n = - , , , . Positive: blue discontinuous 

line, Negative: red lines. 

 

Critical points.  

The critical points (CPs) are the region of space where the gradient of a property, here the total 

electron density , is zero. Minima and maxima correspond to (3,+3) and (3,-3) CPs, respec-

tively, where the Hessian matrix 2/xixj has 3 positive/negative eigenvalues. Figure 10.8a 

shows the saddle CPs: the cycle (3,+1) CPs and the bond (3,-1) CPs within the asymmetric unit. 

After searching with MoPro all symmetry neighbors involved in hydrogen bonds around the 

estradiol molecule, the (3,-1) CPs were searched with VMoPro and are displayed in Fig. 10.8b.  

 



 

 

(a) (b) 

Fig. 10.8: Critical Points. (a) CPs within the asymmetric unit: bond CPs (in red), cycle CPs (in 

blue). For the H-bond and H…H interaction CPs (in green) the bond path is shown. (b) View 

of the intermolecular hydrogen bonds around estradiol molecule. The (3,-1) CPs and bond 

paths are shown in green.     

Tab. 10.1: Topological properties at the critical points of the hydrogen bonds. Gcp and Vcp 

are the kinetic and potential energy densities at the CP (kJ.mol-1.Bohr-3). The electron den-

sity and Laplacian values are also given.  

 

Atom 1 Atom 2 Symmetrya  Gcp   Vcp Distance Density Laplacian 

    
  

(Å) (e/Å3) (e/Å5) 

H2O O3 43504 120.0 -104.2 1.682 0.2424 4.98 

H1O O2 34402 116.8 -99.3 1.704 0.2315 4.93 

O3 H1NA 54403 81.5 -71.5 1.824 0.1950 3.36 

O1 H2NB 55403 48.1 -38.1 2.022 0.1217 2.13 

H2NA O2 44402 35.6 -26.1 2.120 0.0890 1.66 

H4 O3 45403 15.9 -10.9 2.494 0.0472 0.77 

H12B O3 43504 12.7 -8.6 2.666 0.0409 0.61 

H4 O2 34402 14.3 -10.2 2.673 0.0490 0.67 

H17 C2 43504 10.1 -7.5 2.789 0.0432 0.46 

H14 C1 43504 10.1 -7.3 2.820 0.0407 0.48 

a : Symmetry codes  

34402 :  -X-3/2 ; -Y-1 ; Z-½ ;    43504 :  X-½ ; -Y-3/2 ; -Z 

44402 :  -X-½ ; -Y-1 ; Z-½ ;     45403 :  -X-1 ; Y+½ ; -Z-½ 

54403 :  -X ; Y-½ ; -Z-½ ;         55403 :  -X ; Y+½ ; -Z-½ 
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After search of the critical points, the properties of the CPs are summarized in GcpVcp.dat file, 

which can be found in the MoPro working directory.  In addition to the electron density cp, the 

Laplacian 2cp and the ellipticity, the kinetic and potential energy density values are also re-

trieved (Tab. 10.1).  

 

Electrostatic energy.  

To understand the electrostatic forces within crystals, the energy can be computed between 

neighboring molecules using VMoPro, with or without the help of its graphical interface 

MoProViewer. In the case of the estradiol-urea complex given here as example, the electrostatic 

energy is the strongest for a urea…urea dimer interacting via a N-H…O=C hydrogen bond (Fig. 

10.8b, at the right bottom). In MoProSuite, the contribution of the electrostatic part to the lattice 

energy may be approximated by computing the Eelec value between a reference molecule and a 

surrounding shell of sufficiently large size. 

.  The XD  software package  

. .    Overview of the package 

Like MoPro, XD  [ ] is also based on the Hansen and Coppens multipolar formalism 

[ ], while being compatible also with the Stewart formalism [ ] as well as with some of the 

model extensions mentioned in . . , like the double-𝜁 valence radial function [ ] or the core 

refinement [ ].  As mentioned in section . . , a reasonable starting point for a multipolar 

refinement is the structural model obtained with an IAM refinement. For molecular crystals, 

the gold standard software are SHELX [ ] or Olex  [ ], both well tested, reliable and world-

wide adopted for many years (in particular SHELX). They both export the output of a refined 

structure as a crystallographic information file (CIF) or a res file. XD  can use both kinds 

of files to import the basic structural and experimental data, namely: 

– Unit cell parameters; 

– Atom types, setting the corresponding atomic form factors; 

– Atomic fractional coordinates within the asymmetric unit; 

– Atomic displacement parameters (isotropic or anisotropic, within the harmonic approxima-

tion); 

– Wavelength of the radiation used for the X-ray diffraction experiment; 

– Scale factor; 

– Weighting schemes adopted in the refinement (see equations 10.9 and 10.10) 

An additional file (extension hkl) contains all the measured structure factors, with their associ-

ated uncertainties and potentially the subset number, in case the data have not been previously 

merged and each reflection is present in several measurement taken in different runs of a data 

collection. The hkl file may contain also information on the path length of each reflection in the 



crystal, which could be important for an accurate (anisotropic) correction for secondary extinc-

tion. 

With these data, the appropriate xd files are generated: 

– A master file (xd.mas) with all fixed parameters (e.g. unit cell, wavelength, atom type) and 

all instructions to run the different routines of the program package. 

– An input file (xd.inp) containing all the parameters that are potentially variables of the mul-

tipole model (atomic coordinates, atomic displacement, multipole population parameters, 

scale factors, extinction coefficients).  

– The reflection file (xd.hkl), containing the same information as the one used by SHELX or 

Olex, but potentially including also all direction cosines of each reflection in case an extinc-

tion correction is applied, for example with the model by Becker and Coppens [42].  

A graphical user interface, WinXD, can read all these files and enable their manipulation, 

in particular: 

– Setting the model for the refinement (IAM model, Multipole Model, IAM or Multipole 

Model with anharmonic atomic displacement parameters). The anharmonic treatment of the 

atomic displacement parameters follows the classical treatment summarised by Johnson and 

Levy [43]. This is an expansion of the harmonic approximation, that requires up to 25 addi-

tional parameters per atom and therefore cannot be applied to all atoms in a structure, but 

only those for which it is really necessary.  

– Setting the database for the atomic density functions for the core, spherical valence and 

deformation valence, as explained in section 10.1. This means selecting among: 

o the classical Roothaan Hartee-Fock atomic wavefunctions of Clementi and Roetti [6] 

for core and spherical valence and the single-𝜁 Slater functions from Clementi and Rai-

mondi [9] for the aspherical density; 

o the relativistic wavefunctions from Su and Coppens [7] and Macchi and Coppens [8] 

for the core and spherical valence and the single-𝜁 Slater functions from Clementi and 

Raimondi [9] for the aspherical density; 

o the zero-order regular approximation atomic wavefunctions [39] for the core and spher-

ical valence (available for all atoms) and the best single-𝜁 Slater functions approximat-

ing them for the aspherical valence; 

o a free database of atomic wavefunctions, compiled by the user with the standard 

XD2016 format.  

– Defining which parameter is a variable of the model and which constraint is applied. By 

default, an electro-neutrality constraint is activated to guarantee that the total number of 

electrons in the unit cell remains constant. Additional constraints may involve the 𝜅 or 𝜅′ 

parameters. In principle, any atom may hold its own set of contraction/expansion parame-

ters, but more conveniently atoms of the same type in a similar chemical environment are 

grouped to reduce the model instability and the number of parameters. Moreover, different 
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𝜅′ may be defined for each multipole level (meaning one for the dipoles, one for the quad-

rupoles, etc.) but a simple instruction enables defining a single 𝜅′ for all the multipole levels 

of an atom type, which is the standard.  

 

Moreover, the graphical interface enables running all modules of the program, namely: 

– The file initialization module XDINI: it reads the structural files from SHELX, Olex2 or a 

crystallographic information file, and creates the XD2016 files.  

– The structure factor handling routine XDHKL: it merges the data and calculates intensity 

statistics. 

– The least square refinement module XDLSM: it launches the refinement of a model follow-

ing the specifications. 

– The Fast Fourier Transformation module XDFFT: it calculates a 3D residual density map 

and automatically locates the largest residuals (positive or negative).  

– The Fourier Transformation module XDFOUR: it calculates a 2D or a 3D residual density 

map, as well as a deformation density using the difference between the measured structure 

factors and the IAM calculated structure factors, or a model deformation density, using the 

difference between the multipole model calculated structure factors and the IAM calculated 

structure factors.  

– The module for the calculation of the properties based on the refined model XDPROP: it 

enables running topological analysis of the total electron density or electrostatic potential; 

computing all electrostatic moments; computing maps of all electron density derived func-

tions (density, gradient, Laplacian, electrostatic potential, electrostatic field, electrostatic 

field gradient, one electron potential, reduced density gradient, density overlap indicator, 

single exponential detector, kinetic and potential energy densities, electron localization 

function, and localized orbital locator).  

– The module for a comprehensive topological analysis in a crystal TOPXD: it calculates all 

density properties in a periodic 3D framework, whereas XDPROP calculates properties of 

an isolated fragment of the crystal (e.g. a molecule, a dimer, a small cluster, etc.). 

– The module for graphical representation of the calculated functions, XDGRAPH. 

– The module XDPDF: it calculates the nuclear probability density based on the refined har-

monic or anharmonic atomic displacement parameters.  

– The module XDVIB: it calculates atomic displacement parameters from theoretically cal-

culated molecular vibrational frequencies, to set in the model calculated values which do 

not need further refinement (e.g. for H atoms).  

– The module XDWTAN: it analyses the correctness of the adopted weighting scheme. 

 

The graphical interface is also linked to other routines developed externally by other authors 

but tightly connected to the multipole refinement: 



– The routine to calculate residual plots (PIXels stats), following the analysis by Meindl and 

Henn [23]. This routine is directly inserted in WinXD. 

– The routine to analyse the residual of intensities (DRK), following the work by Zhurov et 

al. [36]. This routine is directly inserted in WinXD. 

– The routine to calculate anisotropic displacement parameters for H atoms, using a rigid body 

approximation and the parameters of heavier elements in the molecule, following the pro-

cedure SHADE introduced by Madsen (2006) and Madsen and Hoser [37, 38]. This routine 

is linked externally, using the website of the program which provides the calculation. The 

graphical interface exports the proper files for SHADE or SHADE3 and import the results 

in XD2016 to continue a refinement.  

– The software MoleCoolQt [44] is linked externally. This software enables additional graph-

ical representations of calculated functions, as well as setting proper input files for special 

multipolar refinements with theoretically calculated multipolar coefficients. 

 

Other small routines enable manipulation of XD2016 files, such as operations with functions 

computed on a grid, update of model from precious refinement strategies, writing tables and 

crystallographic information files, and creating graphical files in special formats, such as the 

Persistence of Vision Raytracer. Moreover, all functions can be written in a standard cube file 

that can be visualized using many software packages available for theoretical chemistry. 

In Figure 10.9, a scheme of the working procedure of XD2016 is graphically summarized. 

 



30 
 

 

Fig. . : The flowchart of XD  modelling and bonding analysis.  

 

As introduced above, some special multipole refinement may be carried out against syn-

thetic structure factors, calculated by ab initio crystal wavefunctions, or even molecular wave-

functions (embedding the molecule in a virtual unit cell). For these kinds of refinement, the 

number of variable parameters is much smaller, because the structure factors are typically static 

(i.e. they are not convoluted with the nuclear motion), the atomic coordinates are known and 

the anomalous scattering of atoms is also neglected in the simulation. This is easily set in the 

master file of XD , which has been in fact often used to produce these models refined 

against theoretical dataset (see for example ref. [ ]). A special feature in this case is the so-

called phase constrained refinement, where the phase of each reflection (that are of course 

known when coming from a simulated dataset) are kept rigidly fixed during the refinement, 

avoiding potential artefacts for non-centrosymmetric lattices. This may be important when re-

fining a multipole model of a simulated molecular density, calculated with molecular orbital 

wavefunction and embedded in a unit cell without symmetry (typically with cubic metrics, but 

simply P  space group). To run this refinement, it is necessary that the hkl reflection file also 

contains the calculated phase of the reflection.  

 

For the scope of this textbook, the module XDPROP is very important. As mentioned, it 

calculates the electron density and electric properties of a molecule from the refined multipole 



model, the interaction energies between two (or more) molecules in the crystal, and the lattice 

energies.  

In chapter , the Quantum Theory of Atoms in Molecules (QTAIM; [ ]) has been introduced. 

QTAIM is based mainly on the partition of the one-electron density distribution, which is the 

quantity that a multipole model is reconstructing. Therefore, a QTAIM chemical bonding anal-

ysis can be carried out using a multipole model of the electron density as well as a calculated 

wavefunction. In fact, the definition of an atomic basin only requires the gradient of the electron 

density, and many properties at the stationary points of the electron density (the so-called crit-

ical points) depend on derivatives of the electron density (for example the Laplacian).  

This perfect correspondence between the wavefunction (theoretical) model and the multipolar 

(experimental or theoretical) model does not hold true for energy densities, however, because 

their calculation would require the wavefunction, which is not available from a multipole model 

(see also discussion in .  concerning the orbital vs multipolar functions). Only approximated 

quantities of energy densities can be calculated, using some known approximations for the ki-

netic energy density like the one proposed  by Kirzhnits [ ]. For this reason, the analysis in 

terms of electron localization (see Chapter ) is much less feasible and certainly less accurate 

because, apart from the experimental error and the approximation of the multipole model, there 

is an additional approximation to apply for the calculation of the kinetic energy density and all 

correlated quantities. Therefore, the error propagation may be huge. 

Even more complicated would be to retrieve from experiment a two-electron (or pair) density, 

which again requires the knowledge of the wavefunction or of the second-order reduced density 

matrix” (which is the density matrix corresponding to the pair density).    

.  Concluding remarks and outlook 

The multipolar expansion of atomic electron density has a long historical tradition, never-

theless it remains a very useful and reliable method to model the electron density distribution 

from X-ray diffraction experiments. The major pitfalls concern the data quality and therefore 

the reliability of the experiments. Nonetheless, being an approximation, there are inherent lim-

itations that may produce severe artefacts. The strength of the multipolar formalism stands in 

the ease of the interpretation of the resulting model, which maintains an atomistic perspective 

like the standard structural models for crystallography while being significantly more informa-

tive. When the diffraction data quality is not good enough for fitting the ED, the calculation of 

the model by ED database transfer is nowadays quite feasible and rarely a problem. Such a 

model is adequate to obtain an accurate structural model of very large molecular systems (up 

to proteins) for which in fact the measured data may be of poor quality.  

As discussed in this chapter, the model has also undergone sophistications that enable ex-

tracting even more detailed information (for example, on the polarization of core electrons) that 

were not forecastable a few years ago. At the same time, approximated theories enable linking 
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the multipole model also with functions that in principle cannot be directly obtained without a 

wavefunction, as for example energy densities.  

It is worth emphasizing that the multipole model is not just better than IAM in modelling 

the ED. In fact, the additional degrees of freedom in the fit remain chemically sensible because 

they can be associated with an atomic polarization due to a partial re-hybridization or a change 

of electronic state. In this respect, the multipolar model mimics the linear combination of atomic 

orbitals, the most popular approximation to solve the Schrodinger equation for a molecule. 

This constant improvement and modification enable us to expect even more astonishing 

results in the future, when perhaps very high-resolution diffraction data may become more eas-

ily available and of sufficient quality also for organic (small or large) molecules, not only for 

inorganic systems. Moreover, integration of multipole-based formalism in standard packages 

for structure refinement, may encourage even more studies to support and extend the routine 

structural studies, given that the average quality of standard X-ray diffraction equipment avail-

able in university laboratories has increased tremendously in the last decade. Based on that we 

may conclude that the multipole model will live long and, as all living beings, will continue to 

transform and evolve.  
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