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Both the number of man-made objects in space and human ambitions have been growing for the last few decades. This trend causes multiple issues, such as an increasing collision probability, or the necessity to control the space system with high precision. Thus, the need to perform an accurate estimation of the position and velocity of a spacecraft. This article aims at using Taylor Differential Algebra (TDA), an uncertainty propagation method, by implementing an ephemeris propagation tool designed to propagate long term trajectories. It will be used in the case study of Snoopy, the lost lunar module of mission Apollo 10, to explore new scenarios thanks to Monte-Carlo estimations, performed on the data gathered by this propagator.

Introduction

Propagation of uncertainties is crucial in orbital mechanics, as every measurement of an orbit comes with an error. To that end, the impact of such errors has to be quantified in order to estimate the position and velocity of the spacecraft with a given level of uncertainty. Thanks to these estimations, it is possible to approximate the collision probability of two objects, or the risk of failure of a rendezvous, for instance.

Several uncertainty propagation methods can be considered. The first one being to find a solution to the Fokker-Planck Equation, a partial differential equation satisfied by the Probability Density Function (PDF), see [START_REF] Acciarini | On the solution of the fokker-planck equationwithout diffusion for uncertainty propagation inorbital dynamics[END_REF]. This way, the PDF of the position of the spacecraft could be used easily. However, solving such an equation can be computationally expansive, especially for complex models due to heavy matrix computation.

It is the main reason why work has been directed toward Monte-Carlo estimations [START_REF] Robert | Monte Carlo Statistical Methods[END_REF]. However, propagating a large number of trajectories can be very timeconsuming and requires a lot of resources to parallelize computations. Therefore, Monte-Carlo estimations based on polynomial maps have been widely used over the past decades, particularly in orbital mechanics.

The aim of this article is to develop a methodology to perform faster Monte-Carlo estimations in orbital mechanics without loss of accuracy. This study will be structured into two parts. At first, the Monte-Carlo estimation methodology will be laid out, beginning with the description of the dynamics modelling, followed by the uncertainty propagation method. Then, this method will be applied to the case of Snoopy, the lost lunar module of mission Apollo 10.

Background

Groundbreaking work on uncertainty propagation using TPSA (Truncated Power Series Algebra) was carried out in 1986 by M. Berz to describe particle beam dynamics [START_REF] Berz | Modern Map Methods in Particle Beam Physics[END_REF]. He developed a mathematical frame to perform algebraic, differential, and functional operations on polynomial maps which represent variables and their uncertainties. The main advantage of this method is that the polynomial maps need to be computed only once to then be evaluated in an arbitrarily large number of points. In other words, to perform a Monte-Carlo estimation with N samples, only one expansive computation of the maps will be needed, followed by N affordable polynomial evaluations, while classic Monte-Carlo requires N propagations. It can be shown that for any problem, there exists an N that makes Monte-Carlo based on TPSA more affordable than classic Monte-Carlo, see [START_REF] Armellin | Asteroid close encounters characterization using differential algebra: The case of apophis[END_REF].

This sets the stage for researchers using Taylor Differential Algebra (TDA) in orbital mechanics to propagate uncertainties on spacecraft and celestial bodies. Much work on the potential of TDA in this field has been carried out by R. Armellin, P. Di Lizia, A. Wittig, F. Bernelli-Zazzera, K. Makino and M. Berz since the end of the 1990's, see [START_REF] Armellin | Asteroid close encounters characterization using differential algebra: The case of apophis[END_REF][START_REF] Wittig | Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting[END_REF]. They developed a domain splitting strategy to compute uncertainties over a long period of time using TDA. They used the case of asteroid (99942) Apophis to evaluate their method [START_REF] Wittig | Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting[END_REF]. This strategy leads to a cartography of the uncertainty space, allowing to increase the precision of the estimation and to separate critical sets of the uncertainty space from non-critical ones. Their work is implemented in the DACE tool developed at Politecnico Di Milano in C++, see [START_REF] Massari | Nonlinear uncertainty propagation in astrodynamics using differential algebra and graphics processing units[END_REF]. Audi, developed by Dario Izzo and Francesco Biscani, also implements TDA in C++ and in Python (PyAudi), see [START_REF] Izzo | darioizzo/audi: Multiple Precision Differential Algebra[END_REF]. It is designed to be the fastest implementation of TDA, due to the efficient manipulation of vectors of polynomials. Others developed their own tool, such as E. Bignon et al. [START_REF] Bignon | Accurate numerical orbit propagation using polynomial algebra computational engine pace[END_REF], who designed the computational engine PACE.

The use of TDA-based Monte-Carlo is not generalized, since other ways to perform such estimations have proven to be efficient. For instance, Generalized Polynomial Algebra (GPA) delivers similar results using a Chebyshev interpolation, see [START_REF] Ortega Absil | De-orbiting and re-entry analysis with generalised intrusive polynomial expansions[END_REF][START_REF] Vasile | Set propagation in dynamical systems with generalised polynomial algebra and its computational complexity[END_REF]. This paper will use Snoopy as a case study, see [START_REF] Adamo | Earth departure trajectory reconstruction of apollo program components undergoing disposal in interplanetary space[END_REF]. This service module for Apollo 10 was jettisoned in a heliocentric orbit in 1969 and was not traced with precision. Snoopy is now reported missing, and one of the hypotheses regarding its whereabouts consists in believing that Snoopy reentered the Earth's atmosphere in 2015 under the name of space debris WT1190F. This scenario was investigated at ISAE-SUPAERO in collaboration with CNES [START_REF] Hautesserres | Research of the history of wt1190f and that of snoopy[END_REF][START_REF] Villanueva Rourera | Snoopy's trajectorydebris identification[END_REF]. They managed to compute a trajectory of trust for Snoopy, and various scenarios for the backward propagation of debris WT1190F, given the available data. Even though these two trajectories have a similar behaviour, as shown in figure 1, some of their proprieties remain different. Indeed, the eccentricity of the two orbits differs, and the fact that no reentry has ever been observed regarding Snoopy's trajectory raises questions. However, the initial state vector of Snoopy is tainted with errors, the dynamics are chaotic, and the two computed trajectories are similar from a graphical point of view, which requires extensive research. 

Methodology

This section displays the methodology for uncertainty propagation. To begin with, the dynamics modelling will be presented in part 3.1, followed by an introduction to TDA, and how Ordinary Differential Equations (ODE) can be solved in this algebra in part 3.2. Then, numerical analysis methods will be exposed, in part 3.3, to quantify the precision of the propagation. Afterwards, the propagation tool will be validated in part 3.4 to asset its performances. Once the TDA propagator is implemented, Monte-Carlo estimations can be performed. Part 3.5 focuses on finding a criterion to characterize Snoopy's behaviour near Earth, that can be evaluated thanks to Monte-Carlo methods.

Dynamics modelling

In this paper, the body under study will be called "spacecraft", even though this whole methodology can be applied to any object considered as a point mass.

The aim is to approximate the acceleration -→ γ exerted on the spacecraft under study. This approximation will deliver an ODE of order 2, linking the position -→ r to the acceleration, thanks to Newton's second law:

- → r = - → γ (1) 
Solving this equation will provide the position and the velocity of the spacecraft.

The chosen dynamics model is based on ephemerides because of its high degree of accuracy compared to the N -body-problem, but with a higher computational cost. The library SpiceyPy provided by JPL, see [START_REF] Folkner | The planetary and lunar ephemerides de430 and de431[END_REF], will be used to access the positions and velocities of the selected attracting bodies. The impact of the mass of the spacecraft is neglected on the trajectories of the celestial bodies. Furthermore, Solar Radiation Pressure (SRP) is the only perturbation taken into account, with a spherical model provided by R. M. Georgevic, see [START_REF] Georgevic | Mathematical model of the solar radiation forceand torques acting on the componentsof a spacecraft[END_REF].

Thus, by using the solar system barycenter as the origin and J2000 as the reference frame, the acceleration exerted on the spacecraft is:

- → γ = body∈bodies - → γ body + - → γ SRP (2) 
With each gravitational acceleration generated by a celestial body computed independently in Cartesian coordinates as follows:

- → γ body = µ body • - → r body -- → r - → r body -- → r 3 (3) 
With µ body the mass parameter of a given body, and • the Euclidean norm.

And with SRP acceleration computed as follows:

- → γ SRP = - C R K SRP S m • - → r Sun -- → r - → r Sun -- → r 3 (4) 
With K SRP = 1.0227.10 17 kg.m/s, m the spacecraft's mass, S the spacecraft's surface exposed to SRP, and C R the coefficient of reflexivity of the spacecraft, see [START_REF] Georgevic | Mathematical model of the solar radiation forceand torques acting on the componentsof a spacecraft[END_REF].

Then, the acceleration can be written as follows :

- → γ = body∈bodies - → γ body (5) 
By adding changing the value of µ Sun by :

µ Sun = µ Sun - C R K SRP S m (6) 
Once the acceleration -→ γ is known, the ODE 1 can be solved to know the position and velocity of the spacecraft.

Using the TDA structure to solve ODE

Implementing an ODE solver Form the perspective of TDA, considering f , a sufficiently regular function of v variables, or T f , its Taylor expansion at order k is equivalent, see [START_REF] Berz | Modern Map Methods in Particle Beam Physics[END_REF]. Algebraic operations (+, -, ×, /) can be defined for the polynomials, as well as multiplication by scalars, derivation, integration, composition, sin, exp, etc... This set is a differential algebra of finite dimension

equal to k D v = k + v v .
For this paper, the Python library PyAudi, developed by D. Izzo and F. Biscani, was used to implement such a structure, thanks to its optimization for the computation of vector of polynomials, see [START_REF] Izzo | darioizzo/audi: Multiple Precision Differential Algebra[END_REF]. It can then be used to propagate a trajectory with a classic numerical integration algorithm.

For instance, the propagation of the following Cauchy problem:

ẏ(t) = f (y(t), t) y(0) = y 0 (7) 
Then Euler's explicit method to approximate the solution of equation 7 is for a step h, for n ∈ N, with t n = n • h, and with y(t n ) = y n :

y n+1 = y n + hf (y n , t n ) + O(h 2 ) (8) 
If the measure of y 0 is tainted with errors, [y 0 ], the class of equivalence of y 0 in k D v is considered. It is a polynomial with its constant part equal to y 0 and with a non-constant part that represents the uncertainty space of y 0 up to the order n. Applying Euler's method [START_REF] Georgevic | Mathematical model of the solar radiation forceand torques acting on the componentsof a spacecraft[END_REF] to [y 0 ] delivers a Taylor expansion of the solution at each step, thanks to the algebra structure of k D v :

[y n+1 ] = [y n ] + hf ([y n ], t n ) + O(h 2 ) ( 9 
)
The sequence [y n ] n∈N is a set of polynomials with the uncertainties on y 0 as variables. Therefore, evaluating the impact of the initial uncertainties has a low computational cost since evaluating polynomials is cheaper than propagating a new set of initial conditions. The use of Euler's explicit method shows that any other ODE solver can be implemented following this method, since they only involve algebraic operations well-defined thanks to algebra structure.

In this paper, the algorithm DOP853 will be used to integrate the acceleration of equation 2, see [START_REF] Hairer | Solving Ordinary Differential Equations I Nonstiff Problems[END_REF]. This method is robust, of order 8, and has an adaptive step size. Moreover, the float vector needed to compute the error for the step size control will be provided by computing the constant part of the polynomial vector.

Comparing computational costs between classic Monte-Carlo simulation and TDA-based Monte-Carlo Propagating polynomial maps instead of real numbers has several advantages, even though one propagation of polynomial variables is more expensive. Computing N ∈ N * trajectories with similar initial conditions is one of them, as shown by R. Armellin et al. [START_REF] Armellin | Asteroid close encounters characterization using differential algebra: The case of apophis[END_REF]. On the one hand, N propagations are needed with real numbers, for a total duration of:

∆t real = N ∆t prop,real
On the other hand, one polynomial propagation is needed with N polynomial evaluations, for a total duration of:

∆t poly = ∆t prop,poly + N ∆t eval
By computing the ratio r N = ∆t real ∆t poly :

r N = ∆t prop,real ∆t prop,poly N + ∆t eval (10) 
Since ∆t eval < ∆t prop,real , there is a

N 0 ∈ N that verifies: ∀N ∈ N, N > N 0 ⇒ r N > 1. Moreover, r N converges towards ∆t prop,real ∆t eval
when N → ∞. Therefore, for large sample sizes, TDA-based Monte-Carlo has a cheaper computational cost. This trend can be observed in figure 1: N rN 10 9.9.10 -2 10 2 9.1.10 -1 10 3

5.0 10 4 9.1 10 5

9.9 With ∆t prop,real = 10 -2 s, ∆t prop,poly = 1s, and ∆t eval = 10 -3 s, which are typical values for these computation times.

Modeling SRP uncertainties Since the variables of the polynomials are used to evaluate the propagation of uncertainties, at least six variables are needed in order to capture uncertainties on the state vector. Moreover, uncertainties on the SRP are crucial in the case of long propagations, and they need to be modelled as well. To minimize computation time, all the uncertainties on SRP are represented by only one variable instead of three for S, C R , and m:

[ - → γ SRP ] = K SRP • [C R ] • S m • - → r r 3 (11) 
With:

δC R C R = δC R C R 2 + δS S 2 + δm m 2 (12) Since the dimension of k D v is k + v v
, the dimension of the algebra modelling the uncertainties on the SRP for each source of error can be compared with the dimension of the simplified algebra with fewer variables. This ratio

k r v = k Dv (k+2)
Dv is used to compare these two algebras:

k r v = 1 1 + k v+1 1 + k v+2 < 1 ( 13 
)
Since v = 7 in this work : The ratio of equation 13 of the two dimensions captures the number of coefficients to be computed for each operation on an element of the TDA. In other words, it can be seen as the computation time ratio between the two algebras. From this point of view, and thanks to table 2, it is clear that modelling SRP uncertainties with only one variable is much more efficient.
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Performing numerical analysis

Finding the right integration step Knowing what integration step to use is crucial considering the high computational cost of TDA propagation. On the one hand, a large integration step will affect the precision of the trajectory. On the other hand, a small integration step will generate rounding errors due to the higher number of integration steps needed to propagate the trajectory over a given window. Furthermore, an integration step smaller than needed will provide a trajectory more accurate than required and will only increase the computational cost.

To find a good compromise, a reference trajectory will be propagated with a small enough step: h ref . Several over trajectories will be then computed with a step h n that is a multiple of h ref :

h n = nh ref (14) 
With n ∈ {2, 5, 10, 20, ...1000} for instance. Then, for each state vector from the trajectory integrated with the step h n , there will be a state vector at the same date in the reference trajectory. It means that the relative error between the reference trajectory and any other trajectory can be computed.

Such method allows finding the right integration step by plotting the norm of the mean relative error over the whole integration window. An example of application of this method can be found in part 4.1.

Evaluating the sensitivity of a polynomial trajectories In order to determine along which dimensions the uncertainties have the most impact, a sensitivity analysis is performed.

For a given polynomial trajectory, each variable will be evaluated alternately with all the other variables almost equal to 0, to avoid the loss of information in cross terms. These evaluations will be performed with a value equal to 10 -5 times the initial conditions associated to the variable, and also with a value equal to the standard deviation of the associated uncertainties.

This study, for which there is an example in part 4.1, will set the stage for domain splitting methods.

Propagator implementation and validation

Internal structure of the Propagator The code is structured around seven main classes: the Toolbox, the Spacecraft, the Propagator, the Integrator, the Trajectory and the Estimator. The first one is a general Toolbox designed to manipulate vectors of elements of the TDA, or to change the reference frame or the central body of an entire Trajectory. The Spacecraft stores SRP parameters, initial conditions, and the uncertainties on the spacecraft. The Propagator implements the dynamics, and it propagates the Trajectory of a given Spacecraft with its epoch, initial state vector, and parameters thanks to its Integrator that performs all the computations. The resulting object is a Trajectory that contains the list of all the computed state vectors, their dates, the Spacecraft and the reference frame. The Estimator takes a Trajectory as input and performs Monte-Carlo estimations. This structure is summed up by figure 2, the red arrows represent the main flow of information in the code.

Evaluating the propagation tools by using the comet Siding Spring

Siding Spring is a comet known for its parabolic trajectory around the Sun and its close encounter with Mars in October 2014 [START_REF] Farnocchia | High precision comet trajectory estimates: the mars flyby of c/2013 a1 (siding spring)[END_REF]. The comet's trajectory is available on SPICE from 2000 to 2016. It allows the evaluation of the precision of a new model.

The trajectory of Siding Spring was propagated for a year, 6 months before the date of the close encounter with Mars in October 2014, and 6 months after it. The initial state vector is the one provided by SPICE. Then, the constant part of the propagation was compared at each step in figure 3, for all 6 components of the state vector, with the trajectory given by SPICE. The order of magnitude of the relative error between the two models is about 10 -8 , which causes an absolute error of ≈ 1km for positions and ≈ 10 -8 km/s for velocities. Although this accuracy might be acceptable for classic orbital mechanics problems, it may not be enough for computing a chaotic trajectory such as that of WT1190F, see [START_REF] Hautesserres | Research of the history of wt1190f and that of snoopy[END_REF]. Moreover, no data were found regarding the mass, the surface or the coefficient of reflexivity of the comet. These had to be guessed, and can also explain such an error.

estimation

Modelling initial uncertainties on Snoopy The following algorithm 1 is used to create a sample of size N = 2.5.10 4 of Cartesian initial conditions, with y kep the measured Keplerian initial conditions, see [START_REF] Adamo | Earth departure trajectory reconstruction of apollo program components undergoing disposal in interplanetary space[END_REF]: It has been selected to pick the Keplerian coordinates uniformly. However the way to pick these coordinates is the one described by McKay et al. [START_REF] Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF] as the latin hypercube method, known for its smaller variance compared to naive uniform choice of the initial condition.

Estimating the probability of Snoopy's presence Monte-Carlo methods are a way to estimate integrals with a statistical method, see [START_REF] Robert | Monte Carlo Statistical Methods[END_REF]. The goal is to estimate an integral of the form:

I = R d φ(x)f (x)dx (15) 
With f a density of probability, and d ∈ N the dimension of the problem. The Monte-Carlo estimator of I is as follows:

ÎMC N = 1 N N i=1 φ(X i ) ( 16 
)
Where N ∈ N and the random variables in the sequence (X i ) i∈N are independent and identically distributed (IID) random variables following the distribution f . The law of large numbers ensures that ÎMC

N -→ E(φ(X 1 )) = I when N → ∞, with E(•) the expectation.
In the case of Snoopy, the random variables X i will be the uncertainties on the state vector and on SRP. The main goal is to decide whether or not Snoopy has reentered the Earth's sphere of influence (SOI). To that end, the probability of presence p R (t) of Snoopy in a given sphere S(R) with R > 0 the radius, centered on Earth will be estimated at each time step t. The expression of p R (t) is:

p

R (t) = R 3 1 S(R) x Earth f (x)dx ( 17 
)
Depending of the time t and the radius R, it becomes possible to isolate windows of reentry for Snoopy. Based on expression 16, the Monte-Carlo estimator of p R (t) is:

pN R (t) = 1 N N i=1 1 S(R) X i Earth ( 18 
)
The law of large numbers insures that:

pN R (t) -→ E(1 S(R) X 1 Earth ) = p R (t) (19) 
Furthermore, it is possible to estimate the relative error made by the Monte-Carlo estimator with the following sequence, see [START_REF] Robert | Monte Carlo Statistical Methods[END_REF] :

ε N R (t) = V ar(p N R (t)) pN R (t) = 1 pN R (t) -1 √ N → 0 (20) 
In other words, the estimator of equation 20 offers a way to compute the error made about its estimation, based on the size of the sample N and on the estimation itself. However, if pN R (t) = 0, the error estimator is not defined, but the confidence interval at 99.9% for N = 2.5.10 4 of pN R (t) = 0 is, according to [START_REF] Hanley | If nothing goes wrong, is everything all right? interpreting zero numerators[END_REF] [10]: 0, 6.9 N = 0, 2.76.10 -4 (21)

It is now possible to estimate the probability of Snoopy's presence and the associated error in all situations.

Results & discussion

The methodology developed in section 3 will now be applied to the case of Snoopy. A numerical analysis will be performed before computing Snoopy's trajectory in the TDA. Then, the uncertainties on Snoopy's state vector and SRP will be estimated. Finally, the probability of Snoopy's presence in the Earth's SOI will be computed.

Performing Numerical Analysis on the Trajectory of Snoopy

Integration step for Snoopy To find the right integration step, the method described in part 3.3 is used. The reference step is h ref = 1500s and the results of this analysis are referenced in figure 4:

Fig. Numerical analysis of the impact of the integration step on the integration error

Since the local precision of the integration core has an order of magnitude set to 10 -13 , there is no need to have an integration step delivering a greater precision than the one guaranteed by DOP853. This is why the integration step for Snoopy is set to h = 2days = 172800s, so that the magnitude of the mean global relative error will be similar to the local integration error.

Sensitivity analysis on Snoopy's trajectory A first propagation is carried out to evaluate the sensitivity of the trajectory with respect to each variable, as explained in part 3.3, the results are stored in table 3.

Variable

Mean relative error = σ = 10 The SRP has a very low effect on the trajectory for variations with a classic magnitude (10 -5 ). However, since the value of C R is not known, these large uncertainties cause a strong dependency of the trajectory on C R .

Furthermore, it appears that the impact of y, ẋ, and ẏ on the trajectory compared to the other variables is important. It means that a poor approxima-tion of one of these three variables will have more consequences on the overall approximation that it would on x, z, and ż.

Computing Snoopy's trajectory

In order to propagate Snoopy's trajectory, the same set of initial conditions as those found in L. Villanueva Rourera's study was used, see [START_REF] Villanueva Rourera | Snoopy's trajectorydebris identification[END_REF]. These are centered on the Solar System barycenter in J2000 on 1969 May 28 00:00:00 TDB (Temps Dynamique Barycentrique), see table 4 Computing the distance between Snoopy and the Earth is the main goal of this propagation, see figure 5.

This trajectory corresponds to the one displayed in figure 1, which validates the propagator.

The main potential reentry window occurs during the third approach of Snoopy to the Earth, between 3.5.10 This is the main zone of investigation for a potential reentry of Snoopy, and the aim will be to verify if the uncertainties on Snoopy's initial state vector and on the SRP exerted on it can deliver a potential window of reentry in the Earth's SOI.

Estimating the probability of Snoopy's presence

Evaluating initial uncertainties Following algorithm 1, the behaviour of Cartesian uncertainties is observed using histograms, see figure 7. Based on histograms such as 7, the Cartesian uncertainties follow distributions that are modelled as normal distributions. Their empirical means and standard deviations are stored in table 7. This value is higher than the relative uncertainties on the state vector (≈ 10 -6 ), but it epitomizes the fact that parameters at stake for SRP are hard to evaluate for a spacecraft remaining in space a long time, and subject to many phenomena. Indeed, debris may have struck Snoopy at any moment in its lifetime, solar radiations may have changed the coefficient of reflexivity over time, and the exposed surface is not always the same. Being conservative on the uncertainty of these three parameters ensures that no potential scenario is avoided.

Axis

However, taking dynamical changes in the parameters of SRP into account with uncertainties on a static parameter is a strong hypothesis. Alternatively, it could prove interesting to allow one additional variable to model these phenomena with a dynamic law.

Unlike expression 11, two variables [C 1

R ] and [C 2 R ] could be used instead of only [C R ]. The acceleration would then be:

[ - → γ R ] = K SRP • g t, - → r , [C 1 R ], [C 2 R ] • S m • - → r r 3 (23) 
This modification could allow us to consider a large variety of scenarios g depending on the time or on the state vector itself, and could be generalized to all parameters for an arbitrarily large number of variables. This idea will be the subject of future work

Probability of Snoopy's presence The probability of Snoopy's presence in several spheres around the Earth was computed. These spheres have a radius that is a multiple of the radius of the Earth's sphere of influence. These values are evaluated on the whole window of potential reentry highlighted in figure 6, and the normalized trajectory is represented in dashed lines on the following figures. Error bars computed thanks to equations 20 and 21 are displayed in figure 8, but are too small to be observed in practice. 

Conclusions and future work

In this paper, a methodology to compute a large number of possible trajectories for a spacecraft was delivered. This method implements Taylor Differential Algebra. Moreover, the of these trajectories is faster than a classic propagator. The ability to generate a large amount of trajectories allows to perform Monte-Carlo estimations with a high degree of precision.

This methodology was applied to the mysterious case of Snoopy, the lost lunar module of mission Apollo 10. The generated trajectories allowed to estimate the probability of Snoopy's presence in small spheres centered on Earth. This criterion makes it possible to determine whether or not Snoopy reentered in the Earth's atmosphere.

In this study, the model developed for the modelling of the Solar Radiation Pressure allowed to gain significant performances as all the uncertainties of SRP are modelled by a single variable.

Moreover, the sensitivity analysis of Snoopy's polynomial trajectory highlighted the decisive role of the uncertainties on y, ẋ, ẏ and C R . It means that a poor Taylor approximation along one of these dimensions has more consequences than on the three other dimensions.

Finally, it is obvious that Snoopy approaches the Earth dramatically. Nevertheless, there is yet no statistical evidence that it will enter the Earth's sphere of influence during the expected window. Therefore, a reentry of Snoopy in the Earth's atmosphere is unlikely. This can be nuanced by the fact that there is no way to determine if the probability of Snoopy's presence in the Earth's SOI is 0 because of poor Taylor's approximations or if this result would still be obtained by large Monte-Carlo estimations without the use of TDA.

Future work with this code will be dedicated to switching from a full-Python architecture to a Python interface towards a compiled language to increase the performances dramatically. Indeed, while Python is flexible and makes the prototyping of a tool very simple, its versatility causes the code to be less efficient than a C++ code. The expected performances will be used to perform domain splitting, in order to reduce the approximation error considerably. However, since domain splitting requires to propagate several trajectories in parallel, it is very time-consuming to split the domain at a high scale. Nevertheless, the dimensions where to perform domain splitting will be chosen thanks to the sensitivity analysis lead in this paper. Finally, propagating the trajectory of WT1190F could also be interesting, to perform combined estimations with Snoopy's trajectory.

Fig. 1 :

 1 Fig. 1: Distance in km from Snoopy (blue) and WT1190F (pink) to Earth. Credits : D. Hautesserres
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 23 Fig. 2: Simplified diagram of the ephemeris TDA propagator

Algorithm 1 :

 1 State vector uncertainties generation Result: (δyi) i∈[0,N -1] initialization; i = 0; y = Keplerian2Cartesian(y kep ); while i < N do Pick δy kep uniformly; y kep = y kep + δy kep ; y = Keplerian2Cartesian(y kep ); δyi = y -y; i = i + 1 end
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 56 Fig. 5: Distance from Snoopy to the Earth

Fig. 7 :

 7 Fig. 7: Uncertainties along the y axis
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 8 Fig. 8: Probability of Snoopy's presence near Earth

Table 1 :

 1 Values of r N for several values of N

Table 2 :

 2 Value of n r 7 for various TDA orders

Table 3 :

 3 Evaluating the sensitivity of Snoopy's trajectory

  .

	Coordinate	Value
	x	-5.981273207875668.10 7 km
	y	-1.281441253471675.10 8 km
	z	-5.559141789418507.10 7 km
	ẋ	2.521242690627454.10 1 km.s -1
	ẏ	-1.202240051772716.10 1 km.s -1
	ż	-5.308019902031308km.s -1

Table 4 :

 4 Initial conditions of SnoopyThe number of digits for these coordinates is the same as L. Villanueva Rourera's, which is the maximum accuracy available for double precision floats.Snoopy's trajectory was then computed on Python 3.7 running on Intel Xeon Gold 6126 CPUs at 2.6GHz with the integration parameters of table 5, while parameters used to model the dynamics are referenced in table 6.

	Parameter	Value
	Start date	1969 May 28 00:00:00
	End date	2016 Jan 01 00:00:00
	Step	hsnoopy = 172800s
	Absolute tolerance position 10 -7 km
	Absolute tolerance velocity 10 -13 km.s -1
	Relative tolerance	10 -13
	TDA order	5

Table 5 :

 5 Integration parameters for Snoopy with DOP853

  8 s past J2000 and 4.05.10 8 s past J2000,

	Parameter	
	Point masses Sun, Mercury barycenter,
		Venus barycenter, Earth, Moon,
		Mars barycenter, Jupiter barycenter,
		Saturn barycenter, Uranus barycenter,
		Neptune barycenter, Pluto barycenter
	SRP	True
	mSnoopy	3351.032kg
	CSRP	1
	S	12.56637m 2

Table 6 :

 6 Dynamical parameters of Snoopy

Table 7 :

 7 Mean and standard deviation of the empiric distribution of the uncertainties on initial conditions of SnoopyChoosing the uncertainties on SRP is much more arbitrary than uncertainties on the state vector, these values are stored in table 8.

	Parameter Value
	δm m δS S δC SRP C SRP	2.5.10 -1 10 -1 10 -1

Table 8 :

 8 Uncertainties on SRP parameters

	According to equation 12, the following expression delivers the uncertainties
	on SRP:		
	δC R C R	= 0.29	(22)
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