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Abstract

Antimicrobial efficacy is traditionally described by a single value, the minimal inhibitory con-
centration (MIC), which is the lowest concentration that prevents visible growth of the bacterial
population. As a consequence, bacteria are classically qualitatively categorized as resistant if ther-
apeutic concentrations are below MIC and susceptible otherwise. However, there is a continuity
in the space of the bacterial resistance levels. Here, we introduce a model of within-host evolution
of resistance under treatment that considers resistance as a continuous quantitative trait, describ-
ing the level of resistance of the bacterial population. The use of integro-differential equations
allows to simultaneously track the dynamics of the bacterial population density and the evolution
of its level of resistance. We analyze this model to characterize the conditions; in terms of (a)
the efficiency of the drug measured by the antimicrobial activity relatively to the host immune
response, and (b) the cost-benefit of resistance; that (i) prevents bacterial growth to make the
patient healthy, and (ii) ensures the emergence of a bacterial population with a minimal level of
resistance in case of treatment failure. We investigate how chemotherapy (i.e., drug treatment)
impacts bacterial population structure at equilibrium, focusing on the level of evolved resistance by
the bacterial population in presence of antimicrobial pressure. We show that this level is explained
by the reproduction number R0. We also explore the impact of the initial bacterial population size
and their average resistance level on the minimal duration of drug administration in preventing
bacterial growth and the emergence of resistant bacterial population.

Keywords: Antimicrobial resistance; Evolutionary dynamics; Mathematical modelling; Non-linear
dynamical system

1 Introduction
In addition to its impact on ecological dynamics, human activities are major drivers of the evolution
of species interacting with us [1]. An example of such impact, the evolution of antimicrobial resis-
tance (AMR) among parasites of medical importance, is a growing concern across the world [2, 3].
An antimicrobial substance is a chemical agent that has the potential to interfere with the physiology
of a bacterial cell. Because of their relative size and mechanisms of action (at least for the antimi-
crobial families currently used to treat infections), a single antimicrobial molecule does not cause any
damage to a bacterium, while no bacterial population can survive in a medium fully saturated with
antimicrobials. In other words, the negative effect of an antimicrobial substance on a given bacterium’s
survival, referred to here as the antimicrobial activity and denoted A, is an increasing function of its
concentration in the medium (denoted C), with boundaries A (C) = 0 when C = 0 and A (C) → Asat

when C → Csat, where Asat and Csat are saturating threshold levels. Here, A is measured as the
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antimicrobial-related mortality rate. From this intuitive approach, it follows that there exists C? in
(0, Csat) such that A (C?) is equal to the intrinsic rate of increase and reverses the growth of a bacterial
population, all else being equal. This threshold concentration at which a bacterial population does not
grow in vitro is called the Minimum Inhibitory Concentration (MIC).

Resistance is then a continuous trait by nature referred to as antimicrobial quantitative resis-
tance (qAMR). Indeed, because of their short generation times and large population sizes, bacterial
populations show a great intraspecific genetic diversity generated through random mutations. These
mutations define distinct strains which therefore can differ by their relative susceptibility to a given
antimicrobial [4, 5]. As a consequence, the MIC can be seen as a distributed variable within the same
bacterial species, underpinned by a mapping of each strain genome to a unique MIC. These MIC dis-
tributions are experimentally assessed on a log2 -discretised scale (see e.g. the EUCAST database [6],
usually with a low skewness that spans over two or three order of magnitudes of antimicrobial con-
centrations). For instance, a recent statistical model of MIC explained by genomic data has shown, in
the case of Neisseria gonorrhoeae, that independent exponential contributions of distinct substitutions
provide a good set of regressors for estimating MIC [7]. Therefore, we here use the log difference in
MIC as a phenotypic distance between bacterial strains, with respect to antimicrobial susceptibility.
This is particularly suitable because the log scale allows the additivity of independent mutation effects,
which will later support symmetric mutation kernels.

Quantitative resistance is key to better understand the within-host evolutionary dynamics of AMR
because intermediate resistance can allow bacterial populations to survive drug concentrations below
those considered therapeutic [8], and allows the coexistence of multiple strains within the host. Here,
we introduce a continuous phenotypic trait x ∈ R, describing the level of resistance between −∞ and
+∞. We also treat this quantitative descriptor x as the label of the bacterial strain with resistance
level x. Note that any interval (a, b) with a < b and x ∈ (a, b) is also valid within the context of the
model and results developed here. However, it is important to keep in mind that, intuitively there
exist two threshold levels x0 and x1 (called reference ’sensitive’ and ’resistant’ strains) such that each
strain with resistance level (labelled by x) can be classified as ’sensitive’, ’intermediate’, or ‘resistant’
depending on whether x < x0, x0 < x < x1, or x > x1 respectively (Figure 1).

Figure 1: Classification of the resistance level x. Here x0 and x1 are reference ’sensitive’ and
’resistant’ strains.

Many mathematical models have been developed to study antimicrobial resistance evolution within
a treated host [9–20]. We also think that the literature is so vast that we would not know where to begin
since the model used then strongly depends on the question asked. However, most of the modelling
approaches devoted to AMR tackling the case of qualitative (or “binary”) resistance are generally based
on the dynamical interaction between two parasite strains leading to a binary MIC formulation [9].
This analysis ignores the evolutionary short-term transient dynamics which lead to the emergence of
resistance.

To our knowledge, no study has considered the continuous nature of AMR as for the approach
developed here. However, a similar formalism has been developed in the context of anticancer treat-
ments [21]. There are also parallels with work on linking drug-target binding kinetics with bacterial
replication by modelling the number of target molecules per bacterial cell as a positive continuous
variable [22]. We use a system of integro-differential equations modeling the dynamics of bacterial
population with density b(·, x) and resistance level x ∈ R. Resistance has a cost and thus growth and
death rates depend on the bacterial resistance level x. In addition to those effects on the death and
birth rates, bacterial population resistance level also mitigates the antimicrobial efficiency with respect
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to that population. From a theoretical point of view, some of the properties of this model build on
previous analytical quantitative genetics results developed in [23, 24].

We first describe our model and its main parameters. Next, we investigate how chemotherapy (i.e.,
drug treatment) impacts bacterial population structure at equilibrium. This includes the character-
ization of the resistance level acquired by the bacterial population in the presence of antimicrobial
pressure. We show that such a characterization is simply based on the reproduction number R0 [25],
which we prove to play the role of the invasion fitness in evolution [26]. Next, we investigate in what
conditions of the drug efficiency (measured by the antimicrobial activity relatively to the host immune
response) and the cost-benefit of resistance; we can (i) prevent bacterial growth to make the patient
healthy, and (ii) ensure the emergence of a bacterial population with a minimal level of resistance in
case of treatment failure. This is called thereafter the treatment objective. Finally, we investigate the
minimal duration of drug administration to achieve our treatment objective as a function of the initial
bacterial population size and their average resistance level.

2 Description

2.1 Scaling considerations and model overview
Of course, anyone can claim to model resistance as a quantitative trait x but this is purely a theoretical
thought exercise unless it can be clearly linked with existing nomenclature for sensitive and resistant
strains, and with existing quantitative metrics related to drug resistance, especially MIC and growth
rate. A bacterial strain is said to be resistant to a given antimicrobial if a treatment, the posology of
which does not exceed tolerance limits, is likely to fail [3, 6]. Therefore, each strain can be classified as
“sensitive” or “resistant” (R) respectively, depending on whether or not their MIC (i.e., the threshold
concentration at which a bacterial population does not grow) is below or above a therapeutic threshold
C1 defined from clinical and pharmacokinetics investigations. Following the EUCAST 2019 nomencla-
ture [6], sensitive strains can be classified as “normal exposure” (S) or “increased exposure” (previously
“intermediate”, but still denoted by I) depending on whether their MIC is respectively below or above
the pharmacologic threshold C0 corresponding to the antimicrobial concentration reached by a stan-
dard posology. They respectively, correspond to the concentration thresholds at usual (i.e. normal)
and maximum tolerable posologies and are known as the two clinical breakpoints.

Based on these definitions, for any strain of a given bacterial species exposed to a given antimicro-
bial, we can define a scale-free quantitative descriptor of AMR varying in a symmetric manner at each
mutation step such that

x :=
log
(
Cx
C0

)
log
(
C1
C0

) ∈ R,

where Cx is the MIC of the strain with respect to this antimicrobial. With this definition, the EUCAST
2019 typology [6] implies that S < 0 < I < 1 < R. With the above equation, notice that having a
negative value for the resistance level x (i.e. x < 0) just means that the given bacterial strain is more
sensitive than the reference ’sensitive’ strain (i.e. Cx < C0).

The model follows the dynamics of bacterial population and antimicrobial concentrations. The
bacterial population is assumed to be phenotypically (and genetically) diverse, with a structuration
through the level of antimicrobial resistance, here defined as a continuous trait x and referred to as
quantitative antimicrobial resistance. This quantitative antimicrobial resistance level x ranges from
−∞ to +∞, and affects different components of the bacterial population life cycle, such as growth and
death rate. Bacterial populations with a resistance level x have a density b(t, x) at time t. The main
variables and parameters of the model are listed in Table 1.
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Table 1: Model state variables and parameters
State variables Description
b(t, x) Density of bacterial population with resistance level x at time t.
B(t) Total density of bacterial population at time t.
Functional parameters Description (unit)
J(x− y) Mutation probability from resistance level x to y

per cell division (dimensionless).
p(x) Intrinsic growth rate of bacterial population with resistance level x

(cell/µg).
k(x) Killing rate of bacterial population with resistance level x due to drug (1/day).
Fixed parameters Description (unit) Value/range
pm Upper bound of the intrinsic growth rate p 10
p0 Intrinsic growth rate of the reference sensitive strain 0.95× pm
R0

0(0) The reproduction number of the he reference sensitive strain without drug 10
α Limitation on bacterial growth factor 1
Variable parameters Description (unit) range
m0 Size of the initial bacterial population (0,∞)
σ2
0 Resistance variance of the initial bacterial population (0,∞)
k0 Antimicrobial activity on the sensitive reference strain x = 0 (0,∞)
p1/p0 Reference resistant and sensitive growth rate ratio (0,1)
k1/k0 Reference resistant and sensitive drug efficiency ratio (0,1)

With fixed and variables parameters defined in the table above, other model’s parameters are calculated by:
µ = p0

R0
0(0)

, p1 = p0 × (p1/p0) and k1 = k0 × (k1/k0).

2.2 Model parameters and general hypothesis
For our model formulation and analysis, the killing rate function of the antimicrobial k(·) will be –quite
naturally– a decreasing function with respect to the resistance level x. Our primary goal here is to
define the function k(·) with two parameters, namely, k0 and k1 representing the antimicrobial activity
undergone by strains the MIC of which are exactly C0 and C1 and hereafter called reference strains
0 and 1. Therefore, we assume that the killing k(x) of the antimicrobial on the bacterial population
with resistance level x takes the form

k (x) = k0

(
k1

k0

)x
,

The qualitative shape of the curve k(x) is shown in Figure 2.
Likewise, one can define a bacterial intrinsic growth rate that incorporates the cost of resistance

(for empirical evidence of such costs (e.g., [27]). This intrinsic growth rate, denoted p, should be upper
bounded due to physiological constraints, otherwise, a strain not investing at all in AMR would have
an infinite growth rate p (−∞) = ∞, which is biologically unrealistic. Therefore, we set p (−∞) =:
pm < ∞. On the other side, a strain that takes an infinite concentration of antimicrobial to inhibit
would pay an infinite cost then compromising its growth itself, hence p (∞) = 0. Knowing p0 and p1,
the intrinsic growth rate of reference strains 0 and 1 (which can be expressed as function of k0, k1), a
suitable expression for p is

p (x) =
pm

1 +
(
pm−p0
p0

)(
p0
p1
· pm−p1pm−p0

)x ,
with 0 < p1 < p0 < pm. The qualitative shape of the curve p(x) is shown in Figure 2. Importantly,
the above functional form for p is not strictly important for our model formulation and analysis. The
main important property is that p should be a decreasing function with respect to the resistance level
x.
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Figure 2: (Left) Intrinsic growth rate p(x) of bacterial population with a level of resistance x ∈ R.
(Right) Drug activity k(x) on bacterial population with resistance level x ∈ R.

2.3 Bacterial population model with quantitative resistance level
We use an integro-differential equation to model the demographic and evolutionary dynamics of the
bacterial population. At any time t, the total bacterial population density is B(t) =

∫
R b(t, y)dy. Next,

bacterial population with resistance level y ∈ R give birth to the bacterial population with resistance

level x ∈ R at a per-capita rate J(x− y)
p(y)

(1 +B(t))
α b(t, y), where J(x − y) is the probability for

a bacterial population with resistance level y to mutate towards a level x during the reproduction
process, p(y) is the bacterial intrinsic growth rate, p(y)

(1+B(t))α is the effective growth rate, and α > 0

is a scaling constant. Thus, the number of bacteria produced at time t with resistance level x is
1

(1+B(t))α
∫
R J(x − y)p(y)b(t, y)dy. The clearance of the bacterial population with resistance level x

due to the immune system occurs at a rate µ(x). Here, we assume that the immune response µ is
constant in time. The presence of antimicrobials generates an additional mortality rate k(x), which
depends on the level of bacterial resistance. Therefore, the fraction p(y)

(1+B(t))α accounts for the density
dependence of the reproduction rate. Such a formalism is a suitable alternative in regulating the
growth of a structured population without reference to the concept of carrying capacity, which we
think is not necessarily a measurable factor for this type of population. Thus, the parameter α > 0 is
introduced only to impose the population homeostasis and does not impact our downstream results.
Taking α = 0 leads to a population with infinite growth if no effect of the immune response nor of the
antimicrobial is taken into account. Overall, the bacterial evolutionary dynamics is described by the
following differential equation∂tb(t, x) =

1

(1 +B(t))
α

∫
R
J(x− y)p(y)b(t, y)dy − (µ(x) + k(x))b(t, x); t > 0,

b(t = 0, ·) = b0(·).
(2.1)

The mutation kernel J = Jε is such that J(x − y) is the probability of mutation from resistance
level y to x. We assume a Gaussian distribution with Jε(x) = 1

ε
√

2π
e−

1
2 ( xε )

2

, where ε > 0 represents
the mutation variance in the phenotypic space. Other mutation kernels could be considered provided
that they satisfy some general properties such as positivity and symmetry (Appendix A). Preliminary
results on the model (2.1), including the existence of a unique maximal bounded dissipative semiflow,
are shown in Appendix E.

The formulation of model (2.1) allows to follow evolutionary parameters such as the average level
of resistance η(t) expressed by the whole bacterial population and the related variance σ2(t) at any
time t, as so:

η(t) =

∫
R
x
b(t, x)

B(t)
dx, and σ2(t) =

∫
R

(x− η(t))2 b(t, x)

B(t)
dx.
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Furthermore, the model (2.1) can be used to recover the classical model formulation for the qual-
itative (or "binary") resistance. Indeed, if we denoted by BS and BR the total densities of highly
sensitive (i.e. x = 0) and resistant (i.e. x = 1) bacterial populations, model (2.1) can be rewritten as

ḂS =
1

(1 +BS +BR)α
[(1− ε0)p(0)BS + ε0p(1)BR]− (µ(0) + k(0))BS ,

ḂR =
1

(1 +BS +BR)α
[ε0p(0)BS + (1− ε0)p(1)BR]− (µ(1) + k(1))BR,

(2.2)

where ε0 is the mutation probability. We briefly sketch the interpretation of System (2.2), which
will also help in better understanding of Model (2.1). Sensitive bacteria BS growth at effective rate
p(0)/(1 + BS + BR)α. Furthermore, while a proportion ε0 corresponds to a mutant growth (i.e.
mutations away from the sub-population BS), the remainder (1− ε0) corresponds to a faithful growth.
Next, the sensitive population BS is cleared at rate (µ(0)+k(0)) accounting for actions of the immune
response µ(0) and antimicrobial k(0). The same interpretation holds for the resistant population BR.
Finally, we refer to Appendix B for more details on the derivation of System (2.2).

2.4 Initial conditions
The initial bacterial population b0(x) (at t = 0) is assumed to be composed by a sensitive bacterial
population, with average resistance level x = 0. This population is characterized by two parameters:
its size (m0) and the variance (σ2

0) of its level of resistance. The higher σ2
0 , the more frequent resistant

bacteria are in the initial population. Formally, we set

b0(x) = m0 ×N (0, σ0, x),

where N (0, σ0, x) stands for the normalized density function of the Gaussian distribution at x with
mean 0 and variance σ2

0 .

3 Results
We illustrate how to use the model to simultaneously capture the bacterial population dynamics and
the evolution of antimicrobial resistance. The spread of a bacterial population in a bacteria-free en-
vironment is classically determined by calculating the basic reproduction number of this bacterial
population. However, the outcome of the evolutionary dynamics of a rare bacterial population with
resistance level y in a resident population with resistance level x is determined by the invasion fitness
based on standard adaptive dynamics methodology. Furthermore, we show that the level of the bac-
terial population at the evolutionary equilibrium of Model (2.1) will coincide with the local maximum
of the basic reproduction number. We will also show how the outcome of the treatment (success or
unsuccess) and the evolutionary bacterial resistance level strongly relies on two parameters: (i) the
resistance’s cost-benefit ratio, and (ii) the drug efficiency of the reference sensitive strain, quantified
relatively to the host immune response. Finally, notice that for all simulations, we randomly set the
parameters (Table 1), with the only purpose to illustrate our theoretical results.

3.1 Basic reproduction number R0 and invasion fitness
Following classical studies, we define the basic reproduction number R0 as the expected number of
bacteria arising from one bacterium in a bacteria-free environment [25, 28]. As shown in Appendix C,
for a bacterial population with resistance level x, this basic reproduction number is

R0(x) =
p(x)

µ+ k(x)
. (3.3)
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We use R0(x) to measure the fitness (or effective growing capacity) of a bacterial population with
resistance level x. This R0 can be seen as a product between (i) the intrinsic growth rate of new
bacterial population during their natural life time, p(x), and (ii) the lifespan of a bacterial population
with resistance level x, 1/(µ+k(x)). In the following, we denote by R0

0, the basic reproduction number
as in model (2.1) in absence of antimicrobials (i.e. when k ≡ 0).

As state in the introduction, let us first recall that the quantitative descriptor x for the bacterial
resistance level is also treated as the label of the bacterial strain with resistance level x. Then, the
spread of a rare bacterial population with resistance level y in a resident population with resistance level
x is studied using adaptive dynamics. Quite naturally, we assume R0(x) > 1, otherwise, the resident
population x is not persistent, which a bit contradicts the concept of ’resident population’. Next, to
find the evolutionary attractors, we calculate the invasion fitness fx(y), and the rare population with
resistance level y will invade the population x if and only if fx(y) > 0. The sign of this two-dimensional
function fx(y) is classically visualized using Pairwise Invasibility Plot (PIP) [26, 29–31]. As shown in
Appendix C, the invasion fitness fx(y) is written as

fx(y) =
1

(1 + bx)
α︸ ︷︷ ︸

feedback of
resident x

×R0(y)− 1. (3.4)

The environmental feedback of the resident with resistance level x conditions the ability of a rare
population with resistance level y to invade the resident population. It depends on the conditions set
out by the resident, and by (3.3), the equality (3.4) is rewritten

fx(y) =
1

(1 + bx)α
(R0(y)−R0(x)) . (3.5)

It follows that the model (2.1) admits an optimisation principle based on R0 [26, 29–31]. Indeed, the
sign of the invasion fitness fx(y) is given by the sign of the difference between R0(y) and R0(x) and
thus, the evolutionary attractors of the model (2.1) coincide with the local maxima of the R0

3.2 Typical dynamics simulated with the model
One of the parameters highlighted through our model’s analysis is the ratio

cb =
log ∆

log(1 + θ)
, (3.6)

where ∆ = (pm−p1)/p1
(pm−p0)/p0

> 1, and θ = k0−k1
k1

> 0. The ratio cb can be interpreted as the average fitness
cost-benefit ratio of the resistance for a given bacterial population. Indeed, the parameter ∆ quantifies
the relative cost of resistance of a given bacterial population, whereas θ quantifies the fitness advantage
of the reference resistant strain (x = 1) of that bacterial population. Note that ∆ ≈ 1 corresponds to
cases where the cost of resistance of the given bacterial population is negligible, and θ ≈ 0 to cases
where the fitness advantage of resistance of that bacterial population is negligible.

Before antimicrobial treatment onset, the fitness of a bacterial population (measured by its basic
reproduction number in the absence of antimicrobial, R0

0(x)) decreases with the level of resistance x,
such that wild type sensitive bacteria (x = 0) overgrow resistant ones. This is due to the cost ∆ (which
assumes ∆ > 0) of being resistant (Figure 3A).

The initiation of chemotherapy induces an average benefit (measured by θ) in the resistant bacterial
population. Indeed, the drug efficiency (k) decreases as the level of bacterial resistance x increases
(Figure 3D). Therefore, the treatment can modify the fitness landscape (which obviously will have a
very rapid effect on the distribution of x values in the population) by shifting the maximum point of
the basic reproduction number R0 from x = 0 to x = x∗ > 0 (Figure 3A).
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The model captures the evolutionary dynamics of the system following treatment onset by tracking,
at the same time, the bacterial population dynamics and the evolution of antimicrobial resistance
(Figures 3B,C,E). In the first phase, the treatment causes a decrease in the total bacterial population
density. At the end of this phase, the infection is seemingly under control (Figure 3B). The second
phase begins with an increase in both the population density and the level of resistance. This phase
occurs when the average drug resistance reaches an optimum evolutionary threshold x∗ that depends
on the amount of drug and on the fitness cost. Finally, the bacterial population is not controlled
(Figure 3B), and even worse, it completely escapes treatment having evolved a high level of resistance
(Figures 3C). Figure 3E illustrates the joint dynamics of bacterial population density and resistance.

Figure 3: Typical dynamics simulated with the model. (A) The basic reproduction numbers
R0(x) and R0

0(x) with and without drug respectively. (D) Drug efficiency k(x) and the initial bacterial
population with average level of resistance x = 0. (B) Time evolution of the total bacterial population∫
R b(t, x)dx. (C) Distribution of the bacterial population b(t, x) with respect to time t and resistance
level x. A logarithmic time scale is used to better highlight transient dynamics of the bacterial
population density (B,E), and the increase of the bacterial population resistance level (C). Here, we
have set σ0 = 0.05, m0 = 0.05, k0 = 3, p1/p0 = 0.5, k1/k0 = 0.01 and other parameters are given by
Table 1.

3.3 Evolutionary equilibrium and global dynamic
As shown above, the evolutionary attractor (x∗) of the model (2.1), in the set of resistance level R,
coincides with the local maximum of the basic reproduction number R0 (Appendix C). Furthermore,
the evolutionary attractor (x∗) characterizes the bacterial evolutionary resistance level, which is the
level of the bacterial population at the equilibrium.

An explicit expression of x∗ is difficult to obtain with our parameter setting. However, using the
EUCAST 2019 nomenclature [6] and defining the cost-benefit ratio cb by (3.6), we find that low values
of cost-benefit ratio (i.e. cb ≤ (1− p1/pm)

−1 ) can lead to either high resistance levels (i.e. x∗ ≥ 1),
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intermediate (i.e. 0 ≤ x∗ ≤ 1), or low (i.e. x∗ ≤ 0) at the evolutionary attractor. Next, intermediate
cost-benefit ratios (i.e. (1− p1/pm)

−1
< cb < (1− p0/pm)

−1) are associated with a low (i.e. x∗ ≤ 0)
or intermediate (i.e. 0 ≤ x∗ ≤ 1) levels of resistance at the evolutionary attractor. Finally, high
cost-benefit ratios (i.e. cb ≥ (1− p0/pm)

−1 ) correspond to a low resistance levels at the evolutionary
attractor (i.e. x∗ ≤ 0). See figure 4 and we refer to Appendix D for more details.

Next, we simultaneously study the epidemio-evolutionary dynamics of model (2.1) by relaxing the
time-scale separation assumption. Indeed, our analysis allows to jointly perform (i) the asymptotic
behavior of the model’s state variable b(t, ·), and (ii) the long-term behavior of the system in relation
to the space of resistance level x ∈ R. We find that the global dynamics of model (2.1) are fully
described by R0(x∗) as follows:

(i) If R0(x∗) < 1, all strains asymptotically die out and the bacterial population cannot persist, i.e.,
limt→∞

∫
R b(t, x)dx = 0 (Appendix F-G).

(ii) IfR0(x∗) > 1, model (2.1) exhibits a unique positive stationary state b∗(·) = b∗ε(·) and the bacterial
population is persistent, meaning that there exists ν > 0 such that, lim inft→∞

∫
R b(t, x)dx > ν

(Appendix H-I).

(iii) Further, if R0(x∗) > 1 and the mutation variance ε in the phenotypic space is small, the unique
positive stationary state b∗(·) is concentrated around the evolutionary attractor x∗ in the space
of resistance level x ∈ R. In other words, the average bacterial resistance level at equilibrium is
x∗ and we have b∗(·)→ δx∗(·) when ε→ 0. This convergence holds for the narrow topology, that
is, for any continuous function u ∈ C (R) one has limε→0

∫
R u(x)b∗(x)dx = u (x∗) .

3.4 Achieving a successful treatment
Combining the asymptotic results described above (Figure 3) with the classification of the evolution-
ary bacterial resistance level x∗ allows us to identify a path to achieve successful treatment, that
prevents bacterial growth. In fact, for a given cost-benefit ratio to drug resistance (cb), our analysis
allow us to determine the minimum level of drug activity on the reference strain (k0/µ), quantified
relatively to the host immune response (µ), that is required to achieve a successful treatment. This
can be done because we showed that in the plane (cb, k0/µ) it is possible to characterize three level
sets {(cb, k0/µ) : R0(x∗) = 1}, {(cb, k0/µ) : x∗ = 0}, {(cb, k0/µ) : x∗ = 1} that determine the potential
persistence of a bacterial population with an evolutionary resistance level x∗ (Figure 4).

We find that the threshold value of k0/µ for which a successful treatment holds increases non-
linearly when the cost-benefit ratio cb becomes small (Figure 4). Interestingly, the treatment is suc-
cessful if and only if (cb, k0/µ) > {R0(x∗) = 1}, which means this can happen if the evolutionary
resistance level x∗ is ‘sensitive’ (cb, k0/µ) ≤ {x∗ = 0}, ‘intermediate’ {x∗ = 0} < (cb, k0/µ) < {x∗ = 1}
or even ‘resistant’ (cb, k0/µ) ≥ {x∗ = 1} (Figure 4, gray area). The corresponding evolutionary dy-
namics are similar to that shown in Figure 5 where the total bacterial population dies out. Note
that the treatment results in the acquisition of an intermediate level of resistance x∗ by the bacterial
population (Figure 5C). However, this population is unable to grow because the treatment imposes,
at the evolutionary resistance level x∗, a fitness smaller than unity R0(x∗) < 1 (Figure 5D).

3.5 Failure in achieving a successful treatment leads to the emergence of a
resistant bacterial population whatever the cost-benefit ratio

The treatment is unsuccessful when the point (cb, k0/µ) is below the level set {R0(x∗) = 1} (Figure
4). Overall, for a given cost-benefit ratio (cb), therapeutic failure occurs when the drug activity
(k0/µ), quantified relatively to the host immune response (µ), is below a threshold characterized by
the level set {R0(x∗) = 1}. Depending on the order of magnitude of cb, such therapeutic failure
leads to the emergence of a bacterial population with high (Figure 4, area R), moderate (Figure 4,
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Figure 4: Evolutionary resistance level (x∗) with respect to the resistance’s cost-benefit
ratio (log(∆)/ log(1 + θ)) and drug efficiency (k0/µ) on the reference sensitive strain, quan-
tified relatively to the host immune response (µ). Areas R, I, and S correspond to parameter
combinations where the evolutionary level of resistance x∗ is such that x∗ ≥ 1, 0 < x∗ < 1, and x∗ ≤ 0
respectively. The treatment success holds above the level set {R0(x∗) = 1}, that is, for the zone in
gray. The treatment is unsuccessful below the level set {R0(x∗) = 1}, that is, for zones R, I and
S (below the purple curve). The curves labelled ‘x∗ = 0’ (in yellow) and ‘x∗ = 1’ (in red) indicate
’sensitive’ and ’resistant’ thresholds.
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Figure 5: Evolutionary dynamics with lethal treatment. Parameter values are
(σ0,m0, k0, p1/p0, k1/k0) = (0.05, 0.05, 20, 0.5, 0.3) or default as shown in Table 1. The vertical dashed
line in panel (B) shows the time from which the total bacterial population is always ≤ 10−10.

area I), or low (Figure 4, area S) levels of resistance. Indeed, with high cost-benefit ratio values,
cb > (1 − p0/pm)−1, therapeutic failures is always associated with the persistence of bacteria with
low resistance levels (Figure 6, zone S). A therapeutic failure with intermediate values of cost-benefit
ratios, (1 − p1/pm)−1 < cb < (1 − p0/pm)−1, leads to the emergence of bacterial populations with
either low resistance level (Figure 6, area S) or intermediate (Figure 6, zone I). Finally, when the
cost-benefit ratio is relatively low, cb < (1 − p1/pm)−1, a therapeutic failure regimen can lead to the
evolution of bacterial population with low (as in Figure 6, area S), intermediate (as in Figure 6, area
I), or high (Figure 6, zone R) resistance level.

4 Discussion
Optimizing antimicrobial treatment dosage is important in preventing bacterial growth and the emer-
gence of resistant bacteria (the Twofold Treatment Objective – TTO). Antimicrobial efficacy is tradi-
tionally described by a single value, the minimal inhibitory concentration (MIC) for a given bacterial
population. The distribution of MICs across bacterial strains is often bimodal and this metric is
therefore used to create a qualitative (or ‘binary’) classification in the two discrete categories sensitive
‘S’ and resistant ‘R’. Most modelling studies model drug resistance as a binary trait but, as shown
by the MIC, it is a continuous trait with varying degrees of intermediate resistance. This antimicro-
bial quantitative resistance (qAMR) is associated with a reduction in the bacterial killing rate of an
antimicrobial and fitness cost.

The first achievement of this work is that we introduce a continuous trait x ∈ R that describes the
normalized level of resistance –using clinical breakpoints– between −∞ and +∞. By simultaneously
addressing the population and evolutionary dynamics, the model with qAMR does not ignore the
evolutionary and epidemic short-term transient dynamics which lead to the emergence of resistance.
Furthermore, such a continuous level of resistance is shown to be strongly linked to the MIC or growth
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Figure 6: Evolutionary dynamics under sub-inhibitory drug concentrations. (Zone S) sub-
lethal dose without emergence of resistance in the bacterial population. (Zone I) sub-lethal dose with
emergence of intermediate resistance in the bacterial population. (Zone R) sub-lethal dose with emer-
gence of high resistance in the bacterial population. Parameter values are (σ0,m0, k0, p1/p0, k1/k0) =
(0.05, 0.05, 0.03, 0.5, 0.01), (0.05, 0.05, 3, 0.5, 0.01), (0.05, 0.05, 55, 0.5, 0.01) for zones S, I, and R respec-
tively. Other parameters are shown by Table 1.
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rate, which means it can be informed from actual data.
Using an integro-differential model, we precisely investigate how chemotherapy impacts bacterial

population structure at equilibrium. We first characterize the level of acquired evolutionary resistance
by bacterial populations in the presence of antimicrobial pressure. We show that this level is governed
by a single metric, the reproduction number R0, which we prove to play the role of invasion fitness in
evolution. We then build on our analysis to show which levels of both drug activity on the wild-type
sensitive bacterial population and the bacterial resistance cost-benefit ratio are required to achieve our
TTO objective. Finally, we compare the effect of lethal and sub-lethal treatments on achieving our
TTO objective, and investigate the impact of the initial bacterial population characteristics (i.e., size,
initial resistance frequency) on the minimal duration of drug administration to achieve our TTO.

Our analysis emphasizes that the potential success of the treatment does not depend on the antimi-
crobial activity (k0) alone but should we assessed with respect to the level of host immunity (µ) as well.
These results suggest that treatments with low antimicrobial activity should be limited to infections
which elicit a weak immune response (e.g. respiratory infections). They also echoed earlier studies
on the synergy between chemotherapy and immune response, e.g. [13, 15]. Our model formulation
assumes that the immune response µ is constant in time, which allows getting some precise analytical
insights into the model’s evolutionary dynamics. Furthermore, this assumption of constant immunity
is quite plausible in the early moments after the initiation of treatment. However, it is a potential
limitation and constitutes one possible extension of the model presented here.

The antimicrobial concentration in the host must not be too low, to clear the bacterial population
efficiently, but it cannot be too high without toxic effects in a patient [32]. A sub-lethal treatment is
defined here as a treatment where the drug activity k0/µ is not sufficient to avoid the persistence of
bacterial population with the evolutionary resistance level x∗. Mathematically, we have R0(x∗) > 1.
Such a configuration can occurs whatever the value of cost-benefit ratio cb for which the point (cb, k0/µ)
is below the level set {R0(x∗) = 1} (Figure 4). The corresponding evolutionary dynamics are similar
to that shown in Figure 6.

We define a lethal treatment when the drug activity k0 is enough to ensure that no bacterial
population is persistent, i.e. that R0(x∗) < 1. The threshold of this feasible range with respect to the
initial drug activity k0 and cost-benefit ratio of resistance cb is such that (cb, k0/µ) is above the level
set {R0(x∗) = 1} (Figure 4), and our TTO objective always holds in such configurations. In other
words, for any value of cost-benefit ratio cb (low, intermediate, or high), there exists a minimum drug
activity k0/µ that guarantees a lethal treatment (Figure 4, gray area). The corresponding evolutionary
dynamics are similar to that shown in Figure 5 where the total bacterial population dies out.

As pointed by some theoretical studies [12, 33, 34], a high drug dose (‘hitting hard’ or ‘aggressive
chemotherapy’) is not necessarily the best strategy to limit the spread of resistant strains. We find
that a high antimicrobial dose is necessarily to achieve our TTO objective if and only if antibiotic
resistance comes with little cost cb, quantified by the threshold (1− p1/pm)−1 (Figures 4, gray zone).
However, if the treatment fails for aggressive chemotherapy, it will favor the emergence and spread of a
bacterial population with a high resistance level (Figure 4, zone R). This phenomenon is in accordance
with the strong relationship between the resistance level of the emerging bacterial population and the
antimicrobial dose [10, 11].

The minimal duration of antimicrobial treatment to achieve our TTO objective is a debated question
in the literature [13, 33, 35, 36]. Longer treatment duration is associated with a higher frequency of
resistance at the end of the experiment [37–40], leading to the suggestion that short antimicrobial
courses may limit the evolution of resistance at the population level, and studies to determine whether
such short course duration would lead to good infection outcomes [37–40]. We quantify the minimal
duration (Top) of drug administration to achieve our TTO objective when cost-benefit ratio cb and
drug activity k0/µ (relatively to the host immune response µ) on the initial bacterial population lie
in the plane (cb, k0/µ) > {R0(x∗) = 1}(Figure 4). We define Top as the time t from which the total
bacterial population

∫
R b(t, x)dx is always ≤ 10−10 (for example the vertical dashed line in Figure 5B).

This threshold can be view as the point at which the immune response µ prevents further expansion
of the bacterial population. Overall, for a fixed initial bacterial population density, our analysis shows
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that the minimal duration of drug administration to achieve our TTO objective is relatively short as
soon as (cb, k0/µ) lies in regions that guarantee the TT0 (Figure 4, gray area). This combined effect
of the cost-benefit ratio (cb) and drug activity (k0/µ) on the time Top is shown Figure 7. We see that,
Top is relatively large around threshold values of k0/µ that guarantee our TTO objective. Next, Top
decreases exponentially with a slight increase in k0/µ compared to the threshold values for our TTO
objective. Finally, except around the threshold values of k0/µ that guarantee our TTO objective, the
time Top very short and barely varies with cb.

The characteristics of the initial bacterial population (size m0 and the frequency of resistance σ0)
are important for treatment success [10, 13, 36]. We assess the combined effect of m0 and σ0 on the
minimal duration (Top) of drug administration to achieve our TTO objective (Figure 7). Overall, the
size m0 of the initial bacterial population has a marginal effect on Top as soon as the cost-benefit ratio
cb and the initial drug activity k0/µ (relatively to the host immune response µ) is such that the pair
(cb, k0/µ) lies above the level set {R0(x∗) = 1} of Figure 4. Whatever the initial population size, our
analysis suggests that our TTO objective always holds in a relatively short time period, once the pair
(cb, k0/µ) lies above the level set {R0(x∗) = 1}. By contrast, the frequency of resistant strains initially
present σ0 has a strong impact on the minimal duration (Top) of drug administration to achieve our
TTO objective (Figure 7). Even if our TTO objective is still achieved as soon as (cb, k0/µ) lies above
the level set {R0(x∗) = 1}, the time Top increases nearly exponentially with the frequency of resistance
(Figure 7).

The within-host dynamics is often ignored by classifying hosts according to whether they are
infected with a given strain or not [19]. A such simplification fails to take into account the genetic
diversity of the bacterial resistant population [4, 5] and the short-term evolutionary transient dynamics
which lead to the emergence of resistance at the within-host level. Adopting a nested models approach
[41–43] is one option to simultaneously track the level of qAMR within the host and the between-host
evolutionary epidemiology. Our precise description of the within-host bacterial dynamics, coupled with
antimicrobial activity, immune response, and qAMR, can significantly improve the understanding of
how bacteria populations adapt to their host at the between-host scale [44].

The concentration property of model (2.1) around the evolutionary attractor x∗ is subject to the
assumption of a small mutation variance ε in the phenotypic space. More generally, this result holds as
soon as the mutation kernel distribution J verifies item 3 of Assumption A. However, that assumption
does not mean the mutation kernel has a very fast decay at infinity. We emphasize that the decay of
the mutation kernel distribution considered here (namely, Assumption A, item 3.) allows considering
the tails of a wide variety of distributions. Indeed, the shape of the distribution of mutational effects
can belong to the domain of distributions with exponential tails, truncated tails, or heavy tails that
decay as a power law [45].

Finally, in the model proposed here, mutations are assumed to be sufficiently frequent during
replication (i.e., new mutants occur during growth), and randomly displace strains into the phenotype
space at each generation according to a mutation kernel. However, this constitutes another potential
limitation in the model formulation. Indeed, in exponentially growing cells, mutations usually occur
during replication [46], but some studies indicate that mutations can be substantially higher in non-
growing than growing cultures [47]. Thus, the occurrence of new mutants depends either on the
abundance of parental cells or both the abundance and growth rate of the parental cells [48]. Therefore,
another potential extension of the model would be to allow both processes for the occurrence of new
mutants.
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Figure 7: The minimal duration (Top) of drug administration to achieve our TTO objective.
(Left) Combined effect of the cost-benefit ratio (cb) and drug activity (k0/µ), quantified relatively to the
host immune response µ, on the time Top. (Right) Combined effect of the initial bacterial population
size (m0) and the initial frequency of resistance (σ0) on the time Top.

A Model general assumptions
Model (2.1) is defined on the set L1 (R,R) and its parameters satisfy the following general assumptions:

1. Functions µ, k, and p are always positive over R. Furthermore, p is a bounded function on R
and α > 0. Finally, the function R0 defined in (3.3) is continuous on R and satisfies R0 6≡ 0 and

lim
|x|→∞

R0(x) = 0.

2. The mutation kernel J is bounded and integrable on R+, positive almost everywhere, and satisfies∫
R+ J(x)dx > 0, J(−x) = J(x).

3. The mutation kernel J decays rather rapidly towards infinity in the sense that J(x) = O
(

1
‖x‖∞

)
as ‖x‖ → ∞. In other words, lim

|x|→∞
|x|nJ(x) = 0, for all n ∈ N.

B Model formulation for the qualitative resistance
Recalling that totally sensitive and resistance bacterial levels are respectively x = 0 and x = 1, we set
b(t, x) = BS(t)δ0(x) + BR(t)δ1(x), wherein BS and BR are the total densities of highly sensitive and
resistance bacterial population. From the b-equation, we have

ḂS(t)δ0(x) + ḂR(t)δ1(x) =− (µ(x) + k(x))(BS(t)δ0(x) +BR(t)δ1(x))

(1 +BS(t) +BR(t))
−α

[p(0)BS(t)Jε(x, 0) + p(1)BR(t)Jε(x, 1)] .
(B.1)

Evaluating the equation (B.1) successively at point x = 0 and x = 1, we find{
ḂS(t) = (1 +BS(t) +BR(t))

−α
[p(0)Jε(0, 0)BS(t) + p(1)BR(t)Jε(0, 1)]− (µ(0) + k(0))BS(t),

ḂR(t) = (1 +BS(t) +BR(t))
−α

[p(0)Jε(1, 0)BS(t) + p(1)BR(t)Jε(1, 1)]− (µ(1) + k(1))BR(t).
(B.2)

Since Jε(0, 0) + Jε(0, 1) = 1 and Jε(1, 0) + Jε(1, 1) = 1, setting ε0 = Jε(1, 0) = Jε(0, 1), (B.2) yields{
ḂS(t) = (1 +BS(t) +BR(t))

−α
[(1− ε0)p(0)BS(t) + ε0p(1)BR(t)]− (µ(0) + k(0))BS(t),

ḂR(t) = (1 +BS(t) +BR(t))
−α

[ε0p(0)BS(t) + (1− ε0)p(1)BR(t)]− (µ(1) + k(1))BR(t).
(B.3)
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C The basic reproduction number R0 and maximization prin-
ciple

By formally taking the limit ε→ 0 into (2.1), this system becomes

∂tb(t, x) =
1

(1 +B(t))α
p(x)b(t, x)− (µ(x) + k(x))b(t, x). (C.4)

Assume that system (C.4) reaches a monomorphic epidemiological equilibrium Ez = bzδz, for some
level of resistance z, before a new mutation with the level y occurs. Note that Ez is the environmental
feedback of the resident z. We introduce a small perturbation in (C.4) with level y, such that b(t, x) =
bzδz(x) + u(t)δy(x) and such that the perturbation u is governed by the linearized system of (C.4)
around Ez. This reads as

u̇(t) =

[
p(y)

(1 + bz)α
− (µ(y) + k(y))

]
u(t). (C.5)

It follows from the classical adaptive dynamics results [26, 29, 49] that bacterial reproduction
number, R(y,Ez), of a rare mutant strategy, y, in the resident z-population are given by

R(y,Ez) =
1

(1 + bz)α
p(y)

µ(y) + k(y)
,

The invasion fitness fz(y) of a mutant strategy y in the resident z-population is then given by

fz(y) = R(y,Ez)− 1. (C.6)

When the environmental feedback Ez is reduced to the bacteria-free environment, we have bz = 0.
Then, the epidemiological basic reproduction number of the bacterial population with resistance level
y is calculated as

R0(y) =
p(y)

µ(y) + k(y)
.

Once a bacterial strain has spread and reached a monomorphic equilibrium, the endemic (feedback)
environment Ez becomes

bz = (R0(z))
1/α − 1, (C.7)

which is defined when R0(z) > 1 and satisfies

fz(z) = 0. (C.8)

Let us give some details on the derivation of (C.7). At the monomorphic equilibrium Ez, from (C.4)
we have,

1

(1 +
∫
R b(y)dy)α

p(x)b(x)− (µ(x) + k(x))b(x) = 0, ∀x ∈ R, (C.9)

where b(x) = bzδz(x). Taking x = z, (C.9) gives

1

(1 + bz)α
p(z)bz − (µ(z) + k(z))bz = 0.

Since bz > 0, it comes

(1 + bz)α =
p(z)

µ(z) + k(z)
= R0(z),

and (C.7) follows.
Next, we show that the model (2.1) admits a maximization principle [30, 31] based on the R0,

such that model’s evolutionary attractors (or levels of resistance at equilibrium) are characterized by
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local maximums points of R0. This point is important since, usually, the identification of evolutionary
attractors tends more to follow a mini-max procedure on an adaptive fitness landscape (see [50] for
further discussion). Indeed, by (C.6) and (C.8) we have

fz(z) =R(y,Ez)− 1

=R(y,Ez)−R(z, Ez)

=
1

(1 + bz)α
p(y)

µ(y) + k(y)
− 1

(1 + bz)α
p(z)

µ(z) + k(z)

=
1

(1 + bz)α
(R0(y)−R0(z)) .

The R0 maximization principle then holds because sign(fz(y)) = sign (R0(y)−R0(z)) .

D Maximum point of R0

Recall thatR0 = p/(µ+k). From the definition of p and k, it follows that sgn(R′0(y)) = sgn [f(y)− g(y)] ,
where f and g are positive function defined on R by

f(x) =
k(x) ln d

µ+ k(x)
, and g(x) =

bax ln a

1 + bax
,

with d = k0/k1, b = pm/p0−1 and a = p0(pm−p1)/(p1(pm−p0)). Functions f , resp. g, are decreasing,
resp. nondecreasing, monotonously on R. Therefore, there exists a unique global maximum of R0 at
x∗ ∈ R: R0(x∗) = max

x∈R
R0(x). Further, we know that x∗ ≥ 1 if and only if f(1) ≥ g(1), i.e.

x∗ ≥ 1 iff
(

1− p1

pm

)(
1 +

µ

k1

)
≤

log
(
k0
k1

)
log
(
p0
p1

pm−p1
pm−p0

) .
Similarly, we also have

x∗ ≥ 0 iff
(

1− p0

pm

)(
1 +

µ

k0

)
≤

log
(
k0
k1

)
log
(
p0
p1

pm−p1
pm−p0

) .
We now search for conditions such that R0(x∗) < 1. Note that

R0(x∗) =
p(x∗)

µ+ k(x∗)
=

pm
(µ+ k(x∗))(1 + bax∗)

.

Since f(x∗) = g(x∗) it comes

1 + bax
∗

=
(µ+ k(x∗)) log(a)

(µ+ k(x∗)) log(a)− k(x∗) log(d)
.

We then rewrite
R0(x∗) = pm

(µ+ k(x∗)) log(a)− log(d)k(x∗)

(µ+ k(x∗))2 log(a)
.

Therefore,

R0(x∗) < 1⇐⇒(µ+ k(x∗))2 log(a) > pm(µ+ k(x∗)) log(a)− pm log(d)k(x∗)

⇐⇒µ+ k(x∗)

pm
>

1

2

(
1− log(d)

log(a)

)
+

√
1

4

(
1− log(d)

log(a)

)2

+
µ

pm

log(d)

log(a)
.

(D.10)
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Next, setting R0
0 = R0|k≡0, the basic reproduction number of the model without any treatment,

we have R0
0(0) = p0/µ, that is, µ = p0

R0
0(0)

and so, (D.10) becomes

R0(x∗) < 1⇐⇒k(x∗) >
pm
2

(
1− log(d)

log(a)

)
+

√
p2
m

4

(
1− log(d)

log(a)

)2

+
p0pm
R0

0(0)

log(d)

log(a)
− p0

R0
0(0)

.

Setting

γ =
pm
2

(
1− log(d)

log(a)

)
− p0

R0
0(0)

,

the above condition becomes

R0(x∗) < 1⇐⇒k(x∗) > γ +

√
γ2 +

p0

R0
0(0)

(
pm −

p0

R0
0(0)

)
. (D.11)

E Dissipativity and positivity
Let b(t, x) be the solution of (2.1) for the initial condition b(t = 0, ·) = b0(·). Setting ζ(x) = µ+ k and
introducing the locally Lipschitzian function

f(b(t, ·))(x) =
1

(1 +B(t))
α

∫
R
J(x− y)p(y)b(t, y)dy,

equation (2.1) becomes
∂tb(t, x) = −ζ(x)b(t, x) + f(b(t, ·))(x). (E.12)

Theorem E.1 Let Assumption A be satisfied. Let b0 ∈ L1
+. Then

1. There exists a unique global solution v(·, b0) : [0,∞) → L1
+(R) of (2.1) with v(0, b0) = b0 and

v(t, b0) = b(t, ·) for all t > 0.

2. The semi-flow defined by {v(t, b0)}t is bounded dissipative and asymptotically smooth, and hence,
it admits a global attractor in L+(R).

3. The semi-flow {v(t, b0)}t is such that for any b0 ∈ L1
+(R) \ {0}

b(t, x) > 0, for all t > 0, x ∈ R.

Proof. 1. Since f : L1 → L1 is locally Lipschitz, for any b0 ∈ L1, there exists TM = TM (b0) > 0
such that (2.1) has a unique solution b ∈ C

(
[0, TM )× R, L1

)
∩ C1

(
[0, TM )× R, L1

)
, see [51]. Further,

if b0 ∈ L1
+, by (E.12), we easily find that b(t, ·) ∈ L1

+ for all t ∈ (0, TM ). This gives the local
well-posedness and positivity of (2.1). Next, we have

Ḃ(t) ≤ ‖J‖∞‖p‖∞
B(t)

(1 +B(t))
α − inf

R
ζ B(t),

which gives

B(t) ≤ max

(
‖b0‖L1 ,

[
‖J‖∞‖p‖∞

infR ζ

]1/α

− 1

)
, for all t ∈ [0, TM ). (E.13)

From where we establish the global well-posedness and bounded dissipativity in L1
+.

2. We now show that the semi-flow is asymptotically smooth, i.e., for any closed, bounded and
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positively invariant set K ⊂ L1
+, there exists a compact set Ω ⊂ L1

+ such that dh(v(t,K),Ω) → 0 as
t→∞ where uK = and dh is the Hausdorff semi-distance [52]. By (E.12) we have

b(t, ·) = e−ζ(x)tb0(·) +

∫ t

0

e−ζ(x)(t−s)f(b(s, ·))ds, for t ≥ 0, b0 ∈ L1
+.

Then, the compacity of f gives that {v(t, ·)}t is asymptotically smooth [53].
3. Let u be the unique solution of∂tu(t, x) = −ζ(x)u(t, x) +

∫
R
J(x− y)p(y)u(t, y)dy,

u(0, ·) = b0.

By the comparison principle, we have b(t, x) ≥ u(t, x) ≥ 0 for all t ≥ 0 and x ∈ R. Therefore, item 3.
follow if show u(t, x) > 0 for all t > 0 and x ∈ R. Setting U [u](x) =

∫
R J(x− y)p(y)u(y)dy on L1(R),

we find that U is continuous and generates an uniformly continuous and positive semigroup {eUt}t on
L1(R). Then, for each t ≥ 0,

eUt[b0] =

∞∑
l=0

tlU l[b0]

l!
, (E.14)

where the series converges in the operator norm. Since b0 6= 0,
∫
R J(x)dx > 0 and

U l+1[b0](x) =

∫
R
J(x− y)p(y)U l[b0](y)dy,

an iteration argument ensures the existence of l0 such that U l[b0](x) > 0 for x ∈ R and for all l ≥ l0.
From where, (E.14) gives that eUt[b0](x) > 0 for all x ∈ R. Setting ζ̄ = supR ζ(x), we then have

u(t, ·) = e−ζ̄teUt[b0] +

∫ t

0

e−ζ̄(t−s)eU(t−s)[(ζ̄ − ζ)u(s, ·)]ds ≤ e−ζ̄teUt[b0] > 0.

F Linearization at the bacteria-free equilibrium
At the bacterial-free equilibrium, the linear system of (2.1) writes

∂tb(t, x) = Lε[b(t, ·)](x),

with
Lε = Uε + T, (F.15)

and Uε[b] =
∫
R Jε(x− y)p(y)b(y)dy, T [b] = −ζb.

Proposition F.1 Let s(Lε) = sup{Reλ : λ ∈ σ(Lε)} the spectral bound of Lε.

• If s(Lε) > s(T ), then s(Lε) is an isolated and simple eigenvalue of Lε, whose eigen-space is
spanned by 0 < φ ∈ L1(R), and if λ ∈ σ(Lε) and λ 6= s(Lε), then Reλ < s(Lε).

• If there exist λ ∈ R and 0 < φ ∈ L1(R) such that Lε[φ] = λφ, then s(Lε) = λ > s(T ).

• s(Lε) > 0 (resp. = 0, < 0) if and only if r(Hε) > 1 (resp. = 1, < 1).
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Proof. By the same argument as in the proof of Lemma H.2, we find the compacity and irreducibility
of U , and the first item follows from [54](Theorem 2.2).
For the second item, let λ ∈ R and φ ∈ 1(R) such that L[φ] = λφ. Since T generates a uniformly
continuous, positive and uniformly exponentially stable semigroup, by Lemma H.2 and a general
perturbation result, note that the semigoup {eLt}t is positive. Let v ∈ L1(R) such that ‖v‖L1 ≤ 1,
then for all t ≥ 0

eLtv ≤ 1

infR φ
eLtφ =

1

infR φ
eλtφ ≤ supR φ

infR φ
eλt,

from where ‖eLt‖ ≤ supR φ
infR φ

eλt. Since the growth bound of {eLt}t coincides with s(L) it comes s(L) ≤ λ
and hence, s(L) = λ. We now show that λ > s(T ). Indeed, λφ = L[φ] = H[φ]− ζφ > −ζφ and hence
λ > − supR ζ = s(T ), from where the second item follows.
It remains to prove the last item. Assume s(L) = 0. Then s(T ) = − supR ζ < 0 = s(L). From the first
item, we find φ > 0 such that L[φ] = 0. Hence H[

√
ζpφ] = ωL[φ] +

√
ζp φ =

√
ζp φ, that is, (1,

√
ζp φ)

is an eigen-pair of H. Hence, by Lemma H.2 it comes r(H) = 1. Next, assume that r(H) = 1. Let
φ > 0 such that H[φ] = φ. Then L[φ/

√
ζp] = ω−1/2(H[φ]−φ) = 0, and the second item gives s(L) = 0.

To conclude on the last item of the proposition, it is sufficient to prove that s(L) > 0 iff r(H) > 1.
Assume s(L) > 0, then we can find φ > 0 such that L[φ] = s(L)φ. Hence, H[

√
ζp φ] = ωL[φ]+

√
ζp φ =

(s(L)/ζ + 1)
√
ζp φ ≥ (1 + k)

√
ζp φ, with k = infR ζ

−1 > 0. By iterating, it comes Hn[
√
ζp φ] ≥ (1 +

k)n
√
ζp φ for all n ≥ 1. This gives that ‖Hn‖1/n ≥ (1 + k) an hence r(H) ≥ 1 + k > 1. Conversely, let

r(H) > 1 and φ > 0 the corresponding eigenfunction. Then L[φ/
√
ζp] = ζ(r(H)−1) φ/

√
ζp ≤ cφ/

√
ζp,

with c = (r(H)− 1) infR ζ > 0. By contradiction, assume that s(L) < 0. Then, 0 /∈ σ(L) and (−L)−1

is positive as L generates a positive semigroup. Hence,

φ/
√
ζp = (−L)−1(−L)[φ/

√
ζp] ≤ −c(−L)−1[φ/

√
ζp].

As (−L)−1[φ/
√
ζp] ≥ 0, we find φ/

√
ζp ≤ 0, which leads to a contradiction. Hence, s(L) ≥ 0, and so

s(L) > 0.

G Stability results when r(Hε) < 1

Theorem G.1 1. The bacteria-free equilibrium E0 is asymptotically stable if r(Hε) < 1 and un-
stable if r(Hε) > 1.

2. When r(Hε) < 1, the bacteria-free equilibrium E0 is globally asymptotically stable in L1
+(R), that

is, for any solution b(t, ·) with initial b0 ∈ L1
+(R) \ {0}, we have

b(t, ·)→ 0 in L1
+(R) as t→∞.

Proof. 1. Proposition F.1 allows us to derive the following threshold result on the local stability of the
bacteria-free equilibrium.
2. By Theorem E.1 it suffices to prove item 2. for any b0 ∈ L1

+(R) \ {0} with ‖b(t, ·)‖L1 ≤ C for all
t ≥ 0, where C � 1. By (2.1), we have ∂tb(t, x) ≤ L[b(t, ·)](x), and by comparison principle, we find
0 ≤ b(t, ·) ≤ eLtb0, where {eLt}t is the positive semigroup generated by L. Next, by Proposition F.1,
we have s(L) < 0 because r(Hε) < 1. Furthermore, since the growth bound of {eLt}t is the same as
s(L), we conclude that

‖b(t, ·)‖L1 ≤ c0e−c1t‖b0‖L1 , ∀t ≥ 0,

for the constants c0 > 1 and c1 > 0. This ends the proof of the theorem.

20



H Equilibrium
The bacteria-free environment E0 = 0 is always an equilibrium of Model (2.1). In this section, we
discuss the existence of a nontrivial equilibrium b∗(·) > 0. From System (2.1) we find, for all x ∈ R

ω(x)

∫
R
Jε(x− y)ω(y)

√
pζb∗(y)dy = (1 +B∗)

α
√
pζb∗(x).

where ω(x) =
√
R0(x), and B∗ =

∫
b∗(x)dx. Setting v∗ =

√
pζb∗, it comes that v∗ is solution of the

following system

ω(x)

∫
R
Jε(x− y)ωv∗(y)dy = (1 +B∗)

α
v∗(x). (H.16)

Therefore, the existence of b∗(·) > 0 is strongly related to the spectral property of the linear integral
operator Hε defined on Lp(R), for any p ≥ 1, by

Hε[v](x) = ω(x)

∫
R
Jε(x− y)ω(y)v∗(y)dy. (H.17)

We then have the following theorem

Theorem H.1 Let Assumption A be satisfied. Let r (Hε) the spectral radius of operator Hε and φε > 0
the associated eigenfunction normalized such that ‖φε‖L1 = 1. Define the quantity

Kε0 =
(r (Hε))

1/α − 1∫
R

φε√
pζ

dy
. (H.18)

When r (Hε) ≤ 1, the the bacteria-free equilibrium E0 = 0 is the unique equilibrium of Model (2.1).
When r (Hε) > 1, in addition to E0, Model (2.1) has a unique nutrient-bacteria equilibrium E∗ > 0
such that

E∗(x) = Kε0
φε(x)√
p(x)ζ(x)

. (H.19)

Furthermore, an explicit formula for the spectral radius r (Hε) of Hε reads r (Hε) = rε0, where

rε0 = sup
v∈L2,‖v‖L2=1

∫
R2

Jε(x− y)ω(x)ω(y)v(x)v(y)dxdy. (H.20)

Proof of Theorem H.1. Here, we deal with the existence of the principal eigenpair for the linear
operator Hε, and we proceed by several steps. For simplicity, we do not emphasize the ε-dependency.
First, we introduce the following lemma

Lemma H.2 The following statements hold under Assumption A.

1. For each p ≥ 1, the operator Hε is compact and irreducible on Lp(R) with positive spectral
radius, r(Hε) > 0. Further, there exists a function up ∈ Lp(R) such that up > 0 a.e. and
H[up] = r(Hε)up. Furthermore, if u ∈ Lp+(R) \ {0} is such that H[u] = cu with c ∈ R, then
u > 0 a.e., u ∈ span(up) and c = r(H).

2. The common spectral value of the operator H is characterized by r(H) = r0 for all p ≥ 1; where
r0 is defined by (H.20).

Before giving details on the proof of Lemma H.2, let us quickly end with the proof of Theorem H.1.
Obviously, E0 = 0 is always an equilibrium point of the model. We now check nontrivial solution
b∗ > 0 of system (H.16). Using above notations, (H.16) rewrites H[v∗](x) = (1 + B∗)αv∗(x). From
Lemma H.2 we find r(H) = (1 + B∗)α > 1 and v∗ ∈ span(φ∗), wherein φ∗ ∈ L1(R) ∩ L∞(R) is the
principal eigenfunction of H with φ∗ > 0 a.e. and normalized by ‖φ∗‖L1 = 1. We then write v∗ = ηφ∗,
for some constant η > 0; i.e. b∗ = ηφ∗√

pζ
and B∗ = η

∫
φ∗√
ζp

dy. This completes the proof of Theorem
H.1. It remains to proof Lemma H.2.
Proof of Lemma H.2. The proof is mostly based on the Frobenius theorem, which generalizes the
Krein-Rutmann theorem for positive, irreducible, and compact linear operators in Banach lattices.
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H is a bounded operator. Since the kernel operator J ∈ L1(R) ∩ L∞(R), the operator H is a
bounded operator. Indeed,∫

|H[u](x)|p dx ≤
∫ [

ω(x)

∫
J(x− y)ω(y)|u(y)|dy

]p
dx

≤‖ω‖p∞‖J‖p∞||u||
p
Lp .

H is a compact operator in Lp (R) for any p ≥ 1. Denote by τhf , the translation of f : R→ R
by h, and defined by τhf(x) = f(x + h) for all x ∈ R. Let p ∈ [1,∞) be given. Let u ∈ Lp(R) and
h ∈ R be given. We have

‖τhH[u]−H[u]‖pLp(R) =

∫
R

∣∣∣∣∫
RN

[τhω(x)J(x− y)− ω(x)J(x− y)]ω(y)u(y)y.

∣∣∣∣p dx.

Then Young inequality yields

‖τhH[u]−H[u]‖Lp(R) ≤ ‖τhωJ − ωJ‖L1(RN )‖Ψ‖∞‖u‖Lp(R).

Since ‖τhωJ − ωJ‖L1(R) → 0 as h→ 0 one gets that

lim
h→0

τhH[u] = H[u] in Lp(R),

wherein the above convergence holds uniformly on bounded sets on Lp(R).
Next, let u ∈ Lp(R) and s > 0 be given. Then we have∫

|x|>s
|H[u](x)|p dx ≤

∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|dy

]p
dx. (H.21)

Let R > 0 be given. Consider a smooth and nonnegative function χR such that 0 ≤ χR ≤ 1, χR(y) = 1
if |y| ≤ R and χR(y) = 0 if |y| ≥ R + 1. Then, there exists some constant C = Cp > 0, such that
equation (H.21) becomes∫

|x|>s
|H[u](x)|p dx ≤Cp

∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|χR(y)dy

]p
dx

+Cp

∫
|x|>s

[
ω(x)

∫
RN

J(x− y)ω(y)|u(y)|(1− χR(y))dy

]p
dx.

Now, note that there exists some constant C > 0 independent of u (and R) such that∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|χR(y)dy

]p
dx

≤ C‖J‖p−1
∞ ||u||pLp(R)

∫
|x|>s

[
sup

|x−y|≤R+1

J(y)

]
dx.

Since the function x 7→ sup|x−y|≤R+1 J(y) belongs to L1(R), we then find a constant C > 0 such that
the previous inequality becomes∫

|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|χR(y)dy

]p
dx ≤ C‖J‖p−1

∞ ||u||pLp(R).

On the other hand, since ‖J‖L1(R) = 1, Young inequality ensures that∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|(1− χR(y))dy

]p
dx ≤ sup

|y|≥R
|ω(y)|p||u||pLp(R).
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Now, setting Bp(1) the unit ball in Lp(R), it comes that for all R > 0

lim sup
s→+∞

sup
u∈Bp(1)

∫
|x|>s

|H[u](x)|p dx ≤ Cp sup
|y|≥R

|ω(y)|p.

Finally, by Assumption A, we have ω(x)→ 0 as |x| → ∞. From where

lim
s→+∞

sup
u∈Bp(1)

‖H[u]‖Lp({|x|≥s}) = 0.

Therefore, the Fréchet-Kolmogorov theorem applies and ensures that H is a compact operator on
Lp(R).

The spectral radius of H is positive. By Assumption A, the function ω is positive on R, then
the operator H is irreducible on Lp(R), for all p ≥ 1. Then, Frobenius theorem (Theorem 4.2.13 and
Corollary 4.2.15 in [55]) applies and ensures that its spectral radius r (H) is positive and it is a simple
eigenvalue associated to an eigenvector ψ > 0 a.e. in (0, 1). Furthermore, if ζ ∈ R is an eigenvalue H
associated to an eigenvector w ∈ Lp+(0, 1)\{0} then ζ = r (H) and w > 0 a.e. in (0, 1). This ends with
the proof of Lemma H.2, item 1..

We now prove that for all p ≥ 1, r(H) = r0, with r0 defined by (H.20). Denote by rp(H)
the spectral radius of H defined on Lp(0, 1), for p ≥ 1. Then, with p = 1, by item 1. there exists a
function u1 ∈ L1(0, 1) with u1 > 0 a.e. such that r1(H)u1 = Hu1. Let q ≥ 1 be given. Again by item
1., to show that rq(H) = r1(H), it is sufficient to show that u1 ∈ Lq(0, 1). Since u1 ∈ L1(0, 1) and
J ∈ L1(0, 1)∩L∞(0, 1), then the convolution product FJ ∗ (Fu1) ∈ L1(0, 1)∩L∞(0, 1) and the result
follows from Young inequality. Finally, due to the symmetry hypothesis on the mutation kernel J , H
is self-adjoint operator and then, the Rayleigh quotient formulation for the principal eigenvalue of H
ensures that r2 (H) = r0. This completes the proof of 2. and so the proof of Lemma H.2.

I Persistence results when r(Hε) > 1

Theorem I.1 Suppose r(Hε) > 1, then the semi-flow {v(t, b0)}t is uniformly persistent, that is, there
exists a constant ν > 0 such that, for any b0 ∈ L1

+(R) \ {0}, the unique solution v(t, b0) = b(t, ·) of
(2.1) with initial data b0 satisfies

lim inf
t→∞

‖b(t, ·)‖L1 > ν.

Proof. We first establish the weak uniform persistence, that is, there exists ν1 > 0 such that

lim sup
t→∞

‖b(t, ·)‖L1 > ν1. (I.22)

By contradiction, suppose that for τ > 0, there exists bτ0 ∈ L1
+(R) \ {0} such that the unique solution

bτ (t, x) of (2.1) with initial data bτ0 satisfies

lim sup
t→∞

‖bτ (t, ·)‖L1 ≤ 2τ.

Replacing bτ0 by bτ (tτ ) for some tτ � 1 and applying item 3. of Theorem E.1, without loss of generality,
we may assume that 0 < ‖bτ (t, ·)‖L1 < τ for all t ≥ 0. Then,

∂tb
τ (t, ·) ≥ Lτ [bτ (t, ·)], (I.23)

where Lτ is the operator defined by Lτ [u(·)](x) = −ζ(x)u(x) + (1 + τ)−α
∫
R J(x − y)p(y)u(y)dy. We

also introduce the operator Hτ [u(·)](x) = −ζ(x)u(x) + (1 + τ)−α
∫
R J(x− y)p(y)u(y)dy.
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Note that Hτ → H in the operator norm as τ → 0 and where H is the operator introduced by
(H.17). Since r(H) > 1, we can choose τ0 sufficiently small that r(Hτ0) > 1, as the spectral radius
is a continuous function of compact linear operators. By Proposition F.1, s(Lτ0) > 0 and it is an
isolated and simple eigenvalue with corresponding eigenfunction φτ0 > 0 and normalized such that
‖φτ0‖ = 1. Let c > 0 be a constant such that cφτ0(x) ≤ bτ00 (x) for all x ∈ R. By Lemma H.2 and
general perturbation results, Lτ0 the semigroup {eLτ0 t} generated by Lτ0 is uniformly continuous and
positive. It comes

eL
τ0 tbτ00 ≥ eL

τ0 tcφτ0 = es(L
τ0 )tcφτ0 .

From where ‖eLτ0 tbτ00 ‖L1 →∞ as t→∞, since s(Lτ0) > 0. By the comparison principle, (I.23) gives
‖bτ0(t, ·)‖L1 ≥ ‖eLτ0 tbτ00 ‖L1 →∞ as t→∞ and leading to a contradiction.

It remains to show that there exists a constant ν > 0

lim inf
t→∞

‖b(t, ·)‖L1 > ν.

The function χ(u) = ‖u‖L1 is continuous and the compactness assumption to apply Theorem A.34
of [56] is satisfied because the semiflow v(t, b0) induced by the nonnegative solutions of (2.1) has a
compact attractor of bounded sets by Theorem E.1. By Theorem E.1, χ(b0) > 0 implies χ (v(t, b0)) > 0
and the result follows from [56].

Code availability. The code (with the MatLab Programming Language) used to simulate the model
can be accessed through the Zenodo platform at http://doi.org/10.5281/zenodo.5508202
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