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Abstract. Automata-theoretic decision procedures for solving model-
checking and satisfiability problems for temporal, dynamic, and descrip-
tion logics have flourished during the past decades. In the paper we define
an EXPTIME decision procedure based on the emptiness problem of Biichi
automata on infinite trees for the very expressive information logic SIM
designed for reasoning about information systems. This logic involves
modal parameters satisfying certain properties to capture the relevant
properties of information systems, and provides nominals at the formula
level, Boolean expressions and nominals at the modal level, an implicit
intersection operation for relations, and a universal modality. The origi-
nal combination of known techniques allows us to solve the open question
related to the EXpTIME-completeness of SIM. Furthermore, we discuss
how variants of SIM can be treated similarly although the decidability
status of some of them is still unknown.

Keywords: computational complexity, Biichi tree automaton, information logic,
hybrid logic

1 Introduction

From logic to automata. After the works of Biichi and Rabin [Biic62,Rab69], var-
ious classes of automata turned out to be well-suited to solve decision procedures
for logical problems, including some for temporal logics (see e.g., [VW94,Var97, KVW00]),
for the p-calculus and its fragments (see e.g., [EJ99,SE89,VW86,EJS01,Var98]),
and for description logics (see e.g., [CDGL99,CGL02]) to quote three families
of logics. For instance, translating formulae in temporal logics to automata is a
standard approach for implementing model checking, see e.g., the model-checking
tool SPIN [Hol97]. More recently, such techniques have also been applied suc-
cessfully in [LSO01] to fragments of the Boolean modal logic BML introduced in
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[GP90] and to hybrid full p-calculus in [SVO01] (see also [KSV02]) opening an av-
enue to design similar decision procedures for other hybrid logics [Bla00b]. In this
paper, we will use automata-theoretic decision procedures to prove complexity
results for information logics.

Information logics. Such logics were introduced in [Paw81], and we refer the
reader to [Orto98,DO02| for a comprehensive survey on information logics. In-
formation logics are designed to model and reason about information systems.
To this purpose, information logics provide a formal specification language to
talk about relations in information systems. An information system S is de-
fined as a structure S = (OB, AT) such that OB is a non-empty set of objects,
AT is a non-empty set of attributes, and every attribute a € AT is a mapping
a:0B — P(VAL,) \ {0}, where VAL, is a non-empty set of values. For every
object  and for every attribute a, a(z) can be read as the set of possible values
of the attribute a for the object z. In that setting, various derived relations be-
tween objects can be defined. We recall some of them below (see e.g. [Or1098]).
For all zy,z2 € OB, for every A C AT,

(I) (z1,x2) € indy iff for every a € A, a(z1) = a(z2) (indiscernability);
(IT) (x1,z2) € fingy iff for every a € A, a(z1) C a(x2) (forward inclusion);
(IIT) (z1,z2) € biny iff for every a € A, a(z2) C a(xz;) (backward inclusion);
(IV) (z1,72) € simy iff for every a € A, a(z1) Na(xz) #£ 0 (similarity).

(z1,22) € ind4 can be read as follows: the objects z; and z2 cannot be distin-
guished modulo the set A of attributes. Similarly, (z1,z2) € sim4 iff 1 and z9
are similar modulo A. The other relations fina and binys admit a reading in a
similar vein.

Given an information system S = (OB, AT), we can define a structure
(OB, (Ra)acar), where (Ra)acar is a family of relations derived from S (see
e.g., the above clauses (I)-(IV)). In a more abstract setting, an information
frame is a pair (W,(Rp)pcpar) such that W and PAR are non-empty sets
and (Rp)pcpar is a family of binary relations indexed by subsets of PAR. An
information logic is defined as a multi-modal logic characterised by a class of
information frames. Since the relations derived from information systems satisfy
certain properties, the information frames usually satisfy additional conditions.
For example, it is not hard to see that, for every R € {ind, fin,bin, sim}, we
have

Rpug =RpNRg for all P,Q C PAR, and (1)
Ry is the cartesian product of the domain. (2)

Moreover, every relation Rp satisfies certain local conditions: for instance, the
indiscernability relations are equivalence relations, and the similarity relations
are reflexive and symmetric. The first information logic has been introduced in
[OP81] and many others appeared later (see e.g., [Vak91,Bal96,Kon97,Vak98,Ste98]).
Most information logics include further expressive means such a nominals whose



combination with the intersection of modal parameters and the universal modal-
ity are known to make reasoning rather complex. In the following, we will con-
centrate ourselves on one such logic, SIM, and show how a combination of a
suitable normal form for modal expressions, a tree model property, and tree au-
tomata can be used to overcome this difficulty and define an optimal decision
procedure for SIM satisfiability.

The logic SIM. Among the class of information logics, the logic SIM introduced
in [Kon97] plays a special role since it provides various expressive ingredients:
an implicit universal modality, nominals at both levels of formulae and modal
expressions, and Boolean operators in modal expressions. This highly expres-
sive logic was designed to represent and reason about relevant properties of
similarity relations sim 4. Additionally, it turned out that this logic is also well-
suited for the internalization of deduction in proof systems [Kon97] (see also
[Dem99b,Tza99,Bla00a,Sel01]). A SIM-model is a Kripke structure with reflex-
ive and symmetric accessibility relations (simp) PCPAR as abstract counterparts
of the similarity relations derived from information systems. Hence the relations
in (simp)pcpar interact according to the above conditions (1) and (2).

Our contribution. In this paper, we show that the satisfiability problem for the
logic SIM is EXPTIME-complete. The EXPTIME lower bound is a consequence
of more general results since SIM contains a universal modal connective with a
family of B modal connectives (see e.g., [Spa93,CL94,Hem96]). The EXPTIME
upper bound is established by an exponential reduction into the emptiness prob-
lem for Biichi automata on infinite trees that is known to be in PTIME (see e.g.,
[VW86,EJ88]). As mentioned previously, this technique is nowadays standard for
logics of programs, but it has never been applied to information logics. Indeed,
relative information logics contain features that are not traditionally present
in most logics of programs (e.g., the presence of nominals on the formula and
modal level, and Boolean operators in modal expressions). Recently in [LS01],
the fragment of Boolean modal logic (BML) with only the complement operator
= on relations is shown to be in EXPTIME by a reduction into the emptiness
problem for Biichi automata on infinite trees. In [SV01], such an upper bound
is also established for the hybrid full u-calculus by reduction into the emptiness
problem for parity alternating automata on infinite trees. A combination of such
recent results and an appropriate extension to handle intersection and nominals
at the level of modal expressions allows us to prove the EXPTIME lower bound
for SIM. Observe that, in [LS01], it is already shown that the fragment of BML
with only complement and intersection is NExpTiME-hard even if no — is in
the scope of N and no N is in the scope of — (see e.g., [LSO01, Figure 1]). We
show that the information logic SIM is of a lower complexity: it is in EXPTIME
even though it provides full Boolean operators in modal expressions.! This lower
complexity is due to the restrictions of the semantics of the modal expressions

! Please note that this difference is not due to an bounded/unbounded number of
atomic modal expressions—this number is unbounded in both logics mentioned.



designed to represent derived relations in information systems. A remarkable
side-effect of our result for SIM is the following. The multi-modal logic with a
universal modality [U], modal connectives of the form [¢1 N--- N¢,], where N is
interpreted as intersection on binary relations, each ¢; is interpreted as a reflex-
ive and symmetric relation, and the logic contains propositional variables and
nominals can be shown to have an ExpTIME-complete satisfiability problem.

Figure 1 shows the presence of ingredients in the logics SIM, BML, and in the
hybrid p-calculus. The operators — and N refers respectively to complementation
and intersection operated on binary accessibility relations. SIM also contains
Boolean operators but only at the level of parameters (see Sect. 2) and of course
at the level of formulae. Moreover, in Figure 1, FO2[=] refers to the existence
of a relational translation into FO2[=], the fragment of classical logic with two
variables and equality. As an outcome, the logic SIM has features that prevent
from having a natural translation into BML or the hybrid u-calculus

SIM BML |hybrid p-calculus
nominals X X
universal modality X X X
N X X
- X
FO2[=] X [DK98| X
in ExpTIME  |X, this paper X [SV01]

Fig. 1. Comparing SIM, BML, and the hybrid u-calculus

Our technical developments for SIM can be extended to the logics FORIN
and IND (see e.g., [Kon98]), where the similarity relations are replaced by for-
ward inclusion relations and indiscernability relations, respectively but with-
out nominals at the object level. This improves significantly the upper bound
from [DK98] whereas decidability for FORIN and IND could not be obtained
from the reduction into the (undecidable) fragment of first order logic with three
variables [Kah62]. The decidability status of full FORIN and IND is still open.

Plan of the paper. The rest of the paper is structured as follows. Sect. 2 presents
the logics for which the computational complexity is studied in the paper. Sect. 3
deals with normal forms for SIM formulae whereas Sect. 4 introduces the concept
of the global information for SIM-models that will play an important role. In
Sects. 5 and 6 we provide a notion of Hintikka trees for SIM-models preparing
the automata construction. For the logic SIM and variants of it, the satisfiability
problem is reduced to the emptiness problem for Biichi automata on infinite trees
in Sect. 7. Finally, we give some concluding remarks in Sect. 8.

The paper has been designed to be self-contained. Standard definitions we use
concerning automata on infinite objects can be found in [Tho90], and concerning
computational complexity in [Pap94].



2 Information Logics

In this section, we first introduce syntax and semantics of the logic SIM, then
describe the closely connected logics FORIN and IND.
The set of primitive symbols of the language for SIM is composed of

— a countably infinite set PRP = {p1, p2, ...} of propositional variables,

— a countably infinite set NOM = {x1, x2,...} of object nominals,

— a set P of parameter expressions, which is the smallest set containing a
countably infinite set PNOM = {E1, E,,...} of parameter nominals and a
countably infinite set PVAR = {Cy, Ca, ...} of parameter variables,
and that is closed under the Boolean operators N, U, —.

The formation rules of the set FOR(SIM) of SIM-formulae are those of propo-
sitional logic, where object nominals can be used in the place of propositional
variables, plus the rule: if ¢ € FOR(SIM) and A € P, then [A]¢ € FOR(SIM).
The following is an example of a (valid) SIM-formula:

[E2 n —EQ]X = [El @] Cl](X \Y p)

Moreover, for every syntactic object O, we write |O| to denote its length (or
size), that is the number of symbol occurrences in O viewed as a string. As usual,
sub(¢) denotes the set of subformulae of the formula ¢ (including ¢ itself). For
every X € {NOM,PNOM, PVAR, P}, we write X(#) to denote the elements of
X occurring in the formula ¢. Obviously, card(X(¢)) < |¢|.

Definition 1. Let PAR be a non-empty set. A P-interpretation m is a map
m : P — P(PAR) such that, for all A;, Ay € P,

— if Al,A2 € PNOM and A, # AQ, then m(Al) ;é m(Ag),

— if A; € PNOM, then m(A;) is a singleton;

- TTL(Al n Ag) = m(Al) n m(Ag) and m(A1 U A2) = m(Al) U ’ITL(AQ);
- m(—Al) = PAR \ m(Al)

PAR is referred to as a set of parameters that is the obvious counterpart of
the set of attributes in information systems. Given parameter expressions A and
B, we write A = B iff for every P-interpretation m, we have m(A) = m(B).

Definition 2. A SIM-model M is a structure M = (W, (Rp)pcpar, m), where
W and PAR are non-empty sets and (Rp)pcpar is a family of binary relations
on W such that

(uni) Ry is the cartesian product W x W;
(refl) Rp is reflexive for every P C PAR;
(sym) Rp is symmetric for every P C PAR,;
(inter) Rpug = Rp NRg for all P,Q C PAR.

Moreover, m is a mapping m : NOM UPRP UP — P(W) U P(PAR) such that
m(p) C W for every p € PRP, m(x) = {w}, where w € W for every x € NOM,
and the restriction of m to P is a P-interpretation.



Consequently, two levels of interpretation are used to define the relations in
the SIM-models. On the one hand, the parameter expressions are interpreted
within the Boolean algebra

B = (P(PAR),U,Nn,—,1,0)

for some non-empty set PAR. On the other hand, the conditions on (Rp) PCPAR
induce a semi-lattice structure of £L = ({Rp : P € B},N) with zero element
W x W.

Condition (inter) allows SIM to capture intersection on relations. Indeed,
let us write Ra for R,,(a). Then, for all parameter expressions A, B, we have
Raus = RaNRgp. By contrast, complementation and union cannot be expressed
in a similar fashion (otherwise we would get operators similar to those in BML).
Additionally, SIM contains universal modality since Ran_ is precisely the prod-
uct W x W.

The object nominals can be viewed as constants for objects and parameter
nominals as constants for attributes in information systems. Similarly, (R p) PCPAR
is an abstraction of the family (sim4)acpar derived from information systems.
Please note that, for parameter nominals, we assume that different nominals
are interpreted as different relations, i.e., we admit the so-called unique name
assumption. In contrast, object nominals can be interpreted as arbitrary sin-
gletons, i.e., we do not admit the unique name assumption. Since the set of
parameter nominals is countably infinite, an obvious consequence of the defini-
tion of the SIM-models is that every SIM-model has an infinite set of parameters.
Let M = (W,(Rp)pcpar,m) be a model. As usual, we say that a formula ¢
is satisfied by w € W in M (written M, w |= ¢) if the following conditions are
satisfied.

M,wlEp iff w € m(p) for p € PRP UNOM,;

M,wE—¢ iff not M,w = ¢;

Mow =AY iff Myw |E ¢ and M, w = ;

M, w = [A]¢ iff for every w' € W, if (w, w') € Rpp(a), then M, w' = ¢.

A formula ¢ is true in a SIM-model M (written M = ¢) iff for every w €
W, M,w = ¢. A formula ¢ is said to be SIM-valid iff ¢ is true in every SIM-
model. A formula ¢ is said to be SIM-satisfiable iff —¢ is not SIM-valid.

Theorem 3. [Vak87] The class of information frames (OB, (sima)acar) de-
rived from information systems is precisely the class of SIM-frames.

The frames are understood as parts of the models without the meaning func-
tion m. Hence, from a SIM-model for a given SIM-formula ¢, one can extract
an information system satisfying the specification ¢. Theorem 3 guarantees that
the SIM-models are the adequate structures to deal with the information frames
based on similarity derived from information systems.

The similarity logic with an infinite set of parameters defined in [Kon98]
is not strictly the logic SIM defined above but one can show that both logics
have the same set of valid formulae [DK98, Proposition 9]. Variants of SIM can
be easily designed by considering relations derived from information systems



different from similarity (e.g., forward inclusion, indiscernability). Let FORIN
[resp. IND] be the relative logic sharing its language with SIM such that a
FORIN-model [resp. IND-model] is obtained from Definition 2 by adding the
condition (trans) and by withdrawing (sym) [resp. from Definition 2 by adding
the condition (trans)]:

(trans) Rp is transitive for every P C PAR.

Decidability of the satisfiability problem for the logic SIM is shown in [DK98]
by translating SIM satisfiability into satisfiability for FO2[=], the fragment of
classical logic with two variables and equality. The reduction increases exponen-
tially the size of the formulae and FO2[=] satisfiability is in NExpTIME [GKV97].
Hence, the best known upper bound for SIM satisfiability is N2ExpTIME. Addi-
tionally, the proof in [DK98] cannot be adapted to show the decidability of IND
and FORIN since transitivity requires three variables.

More about the logic SIM and analogous information logics can be found
in [DO02].

3 Normal Forms for Parameter Expressions

In this section, we recall a notion of normal form for parameter expressions
inspired by the canonical disjunctive normal form for propositional logic. Such
normal forms play a special role for the relative information logics. Normal forms
for Boolean modal expressions with nominals have been introduced in [Kon98]
in order to facilitate the design of Rasiowa—Sikorski-style proof systems (dual
tableaux) for SIM. Such a technique has been also useful to show decidability of
SIM [DK98] and for some fragments of Boolean modal logic BML [LS01, Sect.
5] (see also [DGO0]). In this paper, we use a normal form for the Boolean modal
expressions with nominals. We recall below some definitions.

For ! > 1and n > 1, let Y = {E;,...,E;} be distinct parameter nominals
and be X = {Cy,...,C,} distinct parameter variables. For every integer k €
{0,...,2" — 1}, we denote by By the parameter expression By = A;N...N
A, where, for every s € {1,...,n}, A; = C; if bits(k) = 0 and A; = —C;
otherwise, and bits(k) denotes the sth bit in the binary representation of k£ with
n bits. Although not essential, the use of binary representation will facilitate
the presentation of technical developments. For every integer k' € {0,...,{}, we
denote by Dy the parameter expression

D, & -EiN...Nn=-E;if ¥ =0;
k= ) E otherwise.

For every integer k € {0,...,2" — 1} and for every k' € {0,...,l}, Agw E
B N Dgs. For instance, if n = [ = 2, then A372 = —C; N —Cy N Ey. The set
Comp(X,Y) of (X,Y)-components, is defined as follows:

Comp(X,Y) = {Agp | k€ {0,...,2" —1},k €{0,...,1}}.



The set Comp(X,Y) of (X,Y)-components enables us to partition every set of
parameters. Indeed, for every P-interpretation m : P — P(PAR), the family
{m(A) | A € Comp(X,Y)} is a partition of PAR [Kon98]. As a consequence,
we obtain the following property.

Lemma 4. Let A be a parameter expression built from X UY. Then either
A = —ANA or there is a unique non-empty subset {Al, ..., Al,} of Comp(X,Y)
such that A= AjU...UAL.

Lemma 4 enables us to define normal forms of parameter expressions. Let A
be a parameter expression built from X UY. The normal form of A, Nx y (A),
is defined as follows:

Ny (A {0 EFA= (AN -8
Xy o {Aklyki""7Akuyk/u} ifAEAkl,ki U---UAku,k;-

Observe that there exists an effective procedure that computes Nx y (A) in deter-
ministic time exponential in |A|+n+1. Moreover, it is known that, for all param-
eter expressions A, B built from X UY, we have A =B iff Nx y(A) = Nx v (B).
Please note that this normal form is not thought to be applied to all parameter
expressions in a SIM-formula to be tested for satisfiability (since this would ob-
viously yield an exponential blow-up), but it is used in the following section to
decide the implication relation between parameter expressions.

4 Global Information for SIM-models

Due to the presence of nominals, SIM does not have the tree model property.
Hence, to use automata-based techniques, we will define appropriate tree ab-
stractions of models, so-called Hintikka-trees. However, the expressive power of
SIM is such that the Hintikka-trees will be defined w.r.t. “global” information.
In this section, we describe this global information in SIM models. Intuitively,
global information is true at any point of the model or concerns edges which
are omitted when considering tree abstractions of (non-tree) models, i.e., edges
relating an individual to the instance of a nominal.

For instance, given an object nominal x occurring in ¢, the set of subformulae
of ¢ that hold true in the unique state satisfying x is a global information. In
this section, we generalize the global information about object nominals and the
universal modality from [SVO01]. Guessing a global information for a given for-
mula ¢ will correspond to the primary non-deterministic choice in the automata
built for ¢ (see Sect. 7).

Let ¢ be a SIM-formula, C a parameter constant, E a parameter nominal,
and x an object nominal. To avoid considering formulae containing no parameter
nominals or no parameter variables, in the remainder, we assume w.l.0.g that (1)
each formula contains at least one object nominal, and (2) each formula is of the
form ¢’ A A]_; 7[(CN—=CNE)]-x;, where x1, ...,x, are all the object nominals
occurring in ¢’. The first assumption is without loss of generality because we



can transform each SIM-formula without object nominals into an equi-satisfiable
one by conjoining it with x. The second assumption is without loss of generality
because each SIM-model interprets both CN—C and CN—CNE as the universal
relation.

In the remainder of this section, we discuss all aspects of global information
which we use to design the Biichi tree automaton accepting all (tree abstrac-
tions of) models of a SIM formula ¢. To do so, we first consider a fixed model
M = (W,(Rp)pcpar,m) of ¢ and collect, step by step, all information we
keep globally track of when abstracting from this model to the corresponding
Hintikka-tree.

4.1 Parameter Nominals

Let PNOM(¢) = {Exu,...,E;} be the set of parameter nominals and PVAR(¢) =
{C1,...,Cy} be the set of parameter variables occurring in ¢. Recall that n,l >
1. Given a P-interpretation m, there is a unique map f : {1,...,l} = {0,...,2"—
1} such that, for every k' € {1,...,1}, we have

{ke{0,...,2" =1} | m(E) € m(Bx)} = {£(K')} (UNI)

since we assume the unique name assumption for parameter nominals, and more-
over the set

(m(By) | k € {0,...,2" —1}}

is a partition of PAR. Such a map f can be encoded with O(n x I x log(l)) bits.
Moreover, for every k' € {1,...,1}, for every set X C {0,...,2™ — 1}, at most
one parameter expression in {Ay | k € X} is not interpreted as the universal
relation. Hence we have a variety of different parameter expressions that are
all interpreted as the universal relation—a situation obviously more complex
than the one in which one explicit universal modal connective [U] is part of the
language.

Let A,B be parameter expressions built on PNOM(¢) U PVAR(¢). Given
the map f : {1,...,l} — {0,...,2" — 1}, we write A C; B iff for every P-
interpretation m satisfying (UNI), we have m(A) C m(B). We have chosen to
define C¢ rather than C,, because there are far less mappings f than there are
ms, and this difference will be crucial in the following. The relation A C¢ B can
be checked in exponential-time in |A| + [B| +n + 1 since A Ty B iff

Nevar(e).enom(@)(A) \ (Ui—i {Ars € Comp(PVAR(¢), PNOM(9)) | k # £(K')})
C

Nevar(),enom(e) (B) \ (Up—i {Axw € Comp(PVAR(9), PNOM(9)) | k # f(K)}).

Indeed, the problem can be shown to be CO-NP-complete since it is a slight
variant of the validity problem of propositional logic. We write A = () to denote
ATy An—A. Obviously, A Ty B iff, for every SIM-model (W, (Rp)pcpar, m)
with m satisfying (UNI), we have Rp,8) C Rm(a)-



4.2 Universal Modalities

Set UF = {[A]y € sub(¢) | A= 0, M =9} and EF = {[A]y € sub(¢) | A =¢
0, M £ 9}. Observe that UF and EF depend on the map f but for a given
model M, the structure (f, UF, EF) is unique. The structure (UF, EF) can be
also encoded using O(|¢| x log(|¢])) bits.

4.3 Object Nominals

Let NOM(¢) be the set of object nominals and P(¢) the parameter expressions
occurring in ¢. We will fix which nominals are interpreted by the same object,
what formulae are satisfied by these objects, and how they are inter-related.
Let EQ be the unique equivalence relation on NOM(¢), NOM be the unique
map NOM : NOM(¢) — P(sub(¢)) and Ry be the unique ternary relation in
NOM(¢)? x P(¢) such that

— for all x,y € NOM(¢), (x,y) € EQ iff m(x) = m(y);

— for every x € NOM(9),
NOM (x) = {4 € sub(9) | for m(x) = {w}, M,w |=v};

— for all x,y € NOM(¢), A € P(¢), if m(x) = {w} and m(y) = {w'}, then
<X,y,A> € Ry iff <w,w’) € Rm(A)-

The triple (EQ, NOM,Ry) can be encoded using O(|¢|?) bits. Such a global
information about the model M is actually a variant of the global information
used in [SVO01].

4.4 Abstract Global Information

Next, we summarize the above mentioned aspects of global information and
define it independently of a specific model.

A global information G for ¢ is a structure (f,UF, EF, EQ, NOM, Ry) such
that

1. fisamap f: {1,...,1} = {0,...,2™ — 1} (it describes how parameter
nominals are interpreted);

2. UF and EF are subsets of {¢ € sub(¢) : ¢ = [A]¢} (UF contains the
formulae quantified universally that are true in a model, and EF contains
those formulae quantified universally in ¢ that are not true);

3. EQ C NOM(¢)? (it describes which object nominals are interpreted by the
same individual);

4. NOM is a map NOM : NOM(¢) — P(sub(¢)) (it describes the formulae
satisfied by the interpretations of nominals);

5. Ry € NOM(¢)? x P(¢) (it describes the inter-relationship between nomi-
nals).



We write Ry (A) to denote the binary relation {(x,x’) | (x,x’, A) € Rx}. A global
information G for ¢ can be easily encoded using O(]¢|?) bits.

Next, we define consistency of global informations. So far, a global informa-
tion G is simply a structure of a certain type, whereas the SIM-consistency of
G reflects the semantics of SIM.

A global information G = (f,UF,EF, EQ, NOM,Ry) is said to be SIM-
consistent iff G satisfies the following conditions:

(G1) EQ is an equivalence relation;

(G2) for every x € NOM(¢p), NOM (x) is locally SIM-consistent (to be defined
in Definition 6 below) and x € NOM (x);

(G3) {UF,EFY} is a bipartition of {[A]y) € sub(¢) | A =5 0};

(G4) for all x,y € NOM(9), (x,y) € EQ if NOM (x) = NOM (y);

(G5) for all A,B € P(¢), A Cf B implies Rn(B) € Rn(A);

(G6) for every A € P(¢), EQ is a congruence for Rx(A), and the relation
Rn(A) is reflexive and symmetric;

(GT7) for all x,y € NOM(9), if [A]lyy € NOM(x) and (x,y,B) € Ry for some
A T B, then ¢y € NOM(y);

(G8) for all (x,y,A1),...,(x,¥,An) € Rx, n > 1, and B € P(¢),
iftBCyAjU...UA,, then (x,y,B) € Ry;

(G9) for every A € P(¢), for all x,y € NOM(¢), A = 0 implies (x,y,A) € Ry.

Please note that (G6) is the place where it is important that we are consid-
ering SIM, and which would need to be modified when adapting the approach
to FORIN or IND. In order the establish the ExpTIME upper bound for SIM,
we need the result below.

Lemma 5. Checking whether a global information for ¢ is SIM-consistent can
be done in time in 209D,

The exponential bound is due to the relation C; and to the exponential
amount of triple in (G8) since in (G8),1 < n < card(P(¢)). We write GCONS(¢)
to denote the set of SIM-consistent global informations for ¢.

5 Symbolic States

In this section, we define the notion of symbolic states which represent objects
in SIM-models.

Definition 6. Let X be a subset of sub(¢) for some formula ¢. The set X is said
to be locally SIM-consistent iff each ¢ € sub(¢) satisfies the following conditions:

(L1) if ¢ = —p, then ¢ € X iff ¢ & X;
(L2) if ¢ = ¢1 A2, then {p1, 02} C X iff ¢ € X
(L3) if ¢ =[A]p and ¢ € X, then ¢ € X.



Let G be a SIM-consistent global information. Given two locally SIM-consistent
sets X and Y and a parameter expression A occurring in ¢, we write X ~g a Y
to denote that, for every [Blyp € X, if B Ty A, then ¢ € Y and, for every
Bly € Y,if BCy A, then ¢ € X.

Observe that ~g A depends on G by the map f. The relation ~g 4 is the
abstract counterpart of a maximal relation R, () in SIM-models. More precisely,
let M = (W,(Rp)pcpar,m) be a SIM-model, let (w,w') € Ry,(a) for some A
occurring in ¢, and let G be a SIM-consistent global information for ¢ built from
M as done in Sect. 4. Then

{¢ € sub(¢) | M, w |= ¥} ~g,a {¢ € sub(¢) | M, v’ |= 4}

We are now ready to define symbolic states. Each such state contains infor-
mation on the relation between the associated node and its (unique) predecessor,
the formulae the respective object satisfies, and how it is related to (instances
of) object nominals. The latter information is crucial since these edges will be
omitted when abstracting/unravelling models to Hintikka trees (if they were not
omitted, unravelling would either not yield trees or instances of object nominals
would not be unique).

A symbolic state for ¢ is either L or a triple ¢ = (A, X, T) such that A € P(¢),
X € P(sub(¢)), and T C P(¢) x NOM(9).

In ¢ = (A, X,T), A refers to the relation R,,(5) which relates ¢’s (unique)
predecessor to ¢, X is the set of formulae satisfied in ¢, and T is a table such that,
for every (B,x) € T, (g, w) € Rp(a) for m(x) = {w}. We often use (A,, Xy, Tg).
The “dummy” value L is used for those nodes in a tree not representing objects,
and we call a symbolic state ¢ dummy if ¢ =L. Similarly, a symbolic state
(A, X,T) is a named state if X N NOM(¢) is non-empty. We will also write
Y€ q=(A,X,T) [resp. (A,x) € g] instead of ¥ € X [resp. (A,x) € T).

Let G be a (SIM-consistent) global information. A symbolic state g = (A, X, T
is said to be locally SIM-consistent with respect to G iff ¢ is dummy or if it sat-
isfies the following conditions:

(SC1) X is locally SIM-consistent;
(SC2) for every x € NOM(¢), x € ¢ implies X = NOM(x) and T = {(B,y) |

<X7Y7B> € RN};
(SC3) for every (A,x) € T, X ~g,a NOM(x);
(SC4) for all (A1,x1),...,{A,,x,) € T withn > 1, if x; = ... = x,, then, for

every A € P(¢) with ATy AjU...UA,, we have (A,x;) € T}
(SC5) for every B € P(¢) such that B = (, for every x € NOM(¢), (B,x) € T}
(SC6) UF C X and EFNX =0.

We use SYMB(¢) to denote the set of symbolic states of ¢, and SYMBg(¢)
to denote the set of symbolic states of ¢ that are locally SIM-consistent with
respect to a (SIM-consistent) global information G.

(SC3) ensures that the “omitted” edges to instances of nominals are seman-
tically possible. In order to establish the EXPTIME upper bound for SIM, we
need also the result below.



Lemma 7. Deciding whether a symbolic state is locally SIM-consistent with re-
spect to a (SIM-consistent) global information can be done in time 20(1¢D),

6 Hintikka Trees

We are now ready to introduce Hintikka trees for SIM with respect to a given
global information G. As usual, such trees are abstractions of SIM-models that
allow a further treatment with Biichi automata on infinite trees. A nice ex-
ample of existing such abstractions are those for the p-calculus (see e.g., the
well-founded pre-models in [SE89]). We will show that each SIM-model can be
unravelled into a Hintikka tree, and thus prove a tree model property for SIM
(such properties are known to be helpful for the decidability of modal logics
[Grda99]). This section is the core of the paper since it combines the preliminary
results from the previous sections with the ideas underlying the introduction of
Hintikka trees.

For ¢ a SIM-formula, a Hintikka-tree for ¢ is labelled with symbolic states,
has a dummy root node, and, at its first level, we find a node satisfying ¢ as
well as nodes for all nominals occurring in ¢. Since a negated box formulae can
be either witnessed by an “anonymous” successor node in the tree or by a node
labelled with named states representing an instance of a nominal, (H7) is split
into two conditions, one for each case.

We recall that, given K > 1 and a finite alphabet Y, an infinite X, K-tree T
is a mapping 7 : {1,...,K}* —» X.

Let ¢ be a SIM-formula with K = |@|, PNOM(¢) the set of parameter nom-
inals occurring in ¢ with | = card(PNOM(¢)) > 1, and PVAR(¢) the set of
parameter variables occurring in ¢ with n = card(PVAR(¢)) > 1.

Definition 8. A SYMB(9), K-tree T is a Hintikka tree for ¢ iff there exists a
SIM-consistent global information G = (f,UF, EF, EQ, NOM,Rx) € GCONS(¢)
for ¢ such that

(H1) 7 (e) is dummy;

(H2) thereis i € {1,...,K} such that ¢ € T(3);

(H3) for every x € NOM(9), there is a unique i € {1, ..., K} such that x € T(¢)
(this 4 is then written iy);

and each s € {1,..., K} satisfies the following conditions:

(H4) T (s) is locally SIM-consistent with respect to G;
(H5) if 7(s) is dummy, then 7(s-1),...,7 (s K) are also dummy;
(H6) if s is of length at least 2, then 7 (s) is not a named symbolic state;
(HT7) if T(s) = (A, X,T) is not dummy and [B]) € sub(¢) \ X, then
1. either there is 7 € {1,..., K} with T(s-4i) = (B, X', T"), T(s - %) is not
dummy, and ¢ € X’ or

2. there is x € NOM(¢) such that (B,x) € T and ¢ &€ T (ix);
(H8) foreveryi € {1,...,K},ifboth 7(s) = (A, X,T) and T (s-1) = (B, X', 1")

are not dummy, then X ~gp X'.



Such a Hintikka tree is said to respect G.
All the preliminary work done so far yields Lemma 9 below.

Lemma 9. For every SIM-formula ¢, (I) ¢ is SIM-satisfiable iff (II) ¢ has a
Hintikka tree.

Proof. (II) — (I). Let T be a Hintikka tree respecting the SIM-consistent global
information G.

The construction of M. We construct a SIM-model M = (W, (Rp)pcpar, m)
of ¢ as follows:

- WE {se{l,...,K}*" : T(s) is not dummy};
PAR =N,

for every i € N, m(E;) & {27 — 1 +4};

for every i € {1,...,n},

def

m(C;) = {2" =147 |j€{1,....1}, bit;(f(j)) =0} U
{ke{o,...,2" =1} | bit:(k) = 0}

(the other parameter variables are interpreted as the empty set);

— for every s € W, for every p € PRP, s € m(p) iff p € T(s);

— for every A € P(¢), let Ra be the binary relation on W x W defined as the
reflexive and symmetric closure of the union of the following three sets

1. Rx(A) ;
2. RAA)={(s,s-i)e W?|se{l,...,K}*, ie{l,...,K},
T(s-i)=(A,X,T)};
3. RI(A) = {(s,ix) eW?|se{l,...,K}T, (A,x) € T(s)};
— for every i € N\ {0,...,2" =1 +1}, Rqpy =W ox W;
for every i € {0,...,2" — 1 +1}, Rgiy = U{Ra | A € P(¢), i € m(A)};
for every P C N such that card(P) > 2, Rp o Nicp Ryiys
— for every x € NOM(¢), m(x) = {ix} (object nominals not occurring in ¢ are
interpreted as arbitrary singletons).

Basic properties of M. By construction, each relation Ry is reflexive and sym-
metric. The same holds for each relation R p since symmetry and reflexivity are
properties preserved by taking arbitrary intersection.

It is not difficult to check that M is a SIM-model, that M respects G, and
that, moreover, the following properties are satisfied:

1. for every k € {0,...,2" — 1}, m(Ax,) = {k};

2. for every k' € {1,...,1}, m(Afpy ) = {2" =14+ EK'};
3. if (s,5'") € Rmm(a) and [A] € T(s), then ¢ € T(s').



A nice consequence of the points (1) and (2) is that reasoning about the normal
form of A can be reduced to reasoning on the elements in m(A). By way of
example, we show the Property (3).

Assume (s,s') € Rpy(a) and [AJY € T (s).

Case 1: A =; 0.

Hence m(A) = (. If [A]y € T (s), then (SC6) implies [A]y) € UF. Since s’

is not dummy and 7 (s') is also locally SIM-consistent with respect to G, we

obtain [A]y € T(s'). By (L3), we thus get ¢ € T(s').

Case 2: m(A) = {ir,...,ix} #0.

Then (s,5') € Rp(a) iff for every i € {i1,...,i}, (s,5") € Ry

Case 2.0: If s = s’ then (L3) implies ¢ € T(s') = T (s).

Case 2.1: s # s’ and both T (s) and T (s') are named symbolic states.
Let s = iy and s’ = iy for some x,y € NOM(¢). Since (s,s’) € Ry;y for
every i € {i1,...,9}, we have that, for every i € {i1,...,i}, there is
A; € P(¢), such that i € m(A;) and (x,y, A;) € Rn. Thus (G8) together
with ATy A;, U...UA,;, implies that (x,y,A) € Rx, and (G7) implies
P eT(s).

Case 2.2: s # s’ and neither T(s) = (A;, X, T5) nor T(s') = (Agr, Xor, Ts/)
are named symbolic states.
W.lo.g., let s’ =s-i for some i € {1,..., K}. Then (s,s’) € Ra_, and,
for every i € {0,...,2" — 1 +1}, (s,5') € Ry iff i € m(Ay).
Since (s,5') € Ryn(a), we have A Ty Ay, (H8) implies that X, ~ga,,
X, and thus ¢ € T(s').

Case 2.3: s # 5, T(s) = (As, X;,Ts) is not a named symbolic state, and
T(s") = (As, X, Ty) is a named symbolic state.
Let iy = s’ for some x € NOM(¢). For every i € {i1,...,ir}, (s,8') €
Ryiy implies that, for every i € {i1,...,ix}, there is A; € P(¢) such that
i € m(A;) and (A;,x) € Ts. (SC4) and ATy A;, U...UA;, imply that
(A,x) € Ts. Finally, (H4) and (SC3) imply that X; ~g,a X, and thus
Y eT(s).

Case 2.4: s # s and T(s) is a named symbolic state and T (s') is not a
named symbolic state.
Due to the symmetry of ~¢ a, this case is similar to Case 2.3.

The induction. Since T is a Hintikka tree, there is ¢ € {1,..., K} such that
¢ € T(i). In order to show that M,i = ¢ (and therefore M is a model for
@), we prove by induction on the formula structure that, for every ¢ € sub(¢),
for every s € W, we have ¢ € T(s) iff M, s |= ¢. The base case (with object
nominals and propositional variables) and the induction steps for conjunction
and negation are by an easy verification. Let us treat in detail the remaining
case. Let [A]y) be a subformula of ¢ and assume that [A]y) € T(s). As we have
seen above, this implies that, for every (s,s’) € Rp,(a), we have ¢ € T(s'). By
the induction hypothesis, we have M, s’ = 1. So, M, s |= [A].

Now let [A]y be a subformula of ¢ and assume that M, s |= [A]y and that
[AlY € T (s). Due to (H7),



— either ¢ & T(s- 1) for some 7 € {1,...,K} and T(s- ) is not dummy
— or for some x € NOM(¢), ¥ € T (ix) and (A, x) is a pair of the table of 7 (s).

By the induction hypothesis, either M, s-i [ 1 or M, ix = 1. However, (s, s') €
Rm(a) since (s,s’) € Ra by construction. Consequently, M,s = [A]y) which
leads to a contradiction.

(I) = (II) Let M = (W, (Rp)pPcpar, m) be a SIM-model and wy € W such
that M,wy = ¢. Let Gy = (f,UF,EF, EQ, NOM,Ryn) be a SIM-consistent
global information for ¢ built from M as described in Sect. 4. We define a
Hintikka tree T for ¢ respecting Gg. In the construction of 7, we use an auxiliary
mapping 7 : {1,..., K}* - W U{L} which is defined inductively together with
T as follows.

We first need some notation. Let a be the number of equivalence classes
of EQ, and let h : NOM(¢) — {1,...,a} be a mapping that associates each
nominal x € NOM(¢) with the unique element w; € W with m(x) = {wp(x)}-
Let [A1]¢1, ..., [Ag]Yp be all box formulae in sub(¢). For every w € W, we write
X, to denote {9 € sub(¢) | M,w =9} and T,, to denote

{(A,x) € P(¢) x NOM(9) | (w, wh(x)) € Rm(a)}-

As usual, T is obtained unravelling M, but taking special care with objects

Wi, ..., Wy We define 7 and T as follows.
— 7(e) =L and T(e) L.
— If wo = w; for some j € {1,...,a}, then, for every i € {1,...,a}, 7(i) = w;

and T (i) & (A, Xy,,T,) for some arbitrary A € P(¢) and, for every i €
{a+1,...,K}, 7(i) =1L and T (i) = L.

— Otherwise (wg # w; for every i € {1,...,a}), for every i € {1,...,a + 1},
(1) = w;_y and T (i) = (A, Xu,_,, Tw,_,) for some arbitrary A € P(¢), and
for every i € {a+2,...,K}, 7(i) =1L and T (i) = L.

— For every s € {1,...,K}™,

o foreveryie {f+1,...,K}, 7(s-i) =1 and T(s-i) =1;
e if 7(s) =L then, for every i € {1,...,8}, 7(s-i) £L and T(s-i) =1;
e otherwise, if [A;|y; & T(s) for some i € {1,...,5}, then
* either for some j € {1,...,a}, (7(s),w;) € Ry(a,) and M, w; I~ ;;
in that case 7(s-4) =1 and T (s-i) = 1;
* or there is w’ € W\ {wy,...,wa} such that (7(s),w’) € Ry(a,) and
M, w' - ihy; in that case 7(s-7) = w’ and T (s 1) = (Ay, Xur, Tur).
If [A]h; € T (s) for some i € {1,..., B}, then 7(s-i) =1 and T (s-1) = L.

We can easily check that 7 is a Hintikka tree for ¢ respecting Gy.

7 Tree Automata for Relative Formulae

In the second part of the proof of Lemma 9, a SIM-model M is unravelled in
an almost standard way to a Hintikka tree. Thus we have proved a tree model



property for SIM—which could also be called a forest model property. In this
section, we will exploit this forest model property and describe a decision pro-
cedure based on automata on infinite trees, so-called Bichi tree automata. For a
given SIM-formula ¢, we construct a Biichi tree automaton A4 that accepts ex-
actly all Hintikka trees for ¢. At first glance, the construction may look intricate
but it simply mimicks the local conditions of the Hintikka trees.

We recall that a Biichi tree automaton A = (X,Q,4,1,F) for X, K-trees is
an operational model where @) is a non-empty, finite set of states, X' is a finite
alphabet, § C @ x X x Q¥ is a transition relation, I and F are non-empty
subsets of @, the set of initial states and the set of terminal states, respectively.
A run r on a X, K-tree T is a @, K-tree such that, for every s € {1,..., K}*,
(r(s), T(s),r(s-1),...,7(s- K)) € 6. A run r on T is accepting iff for every
path in 7T there is a state in F' that occurs infinitely often. Deciding whether
a Biichi tree automaton for X, K-trees has an accepting run can be done in
polynomial-time [VW86] (see also [Rab70,EJ88]). For SIM, we only need to
consider a restricted class of tree automata, namely those automata in which all
the states are terminal, often referred to as safety automata.

7.1 The Construction

Before giving the formal definition of Ay, we give an intuitive description of it
and the conditions it imposes on the trees it accepts:

— Each state consists of a symbolic state and a global information G, and A4
ensures that the global information part of all states involved in an accepting
run coincide.

— ¢ and each object nominal in ¢ is found in the label of one of the nodes at
the first level of the input tree. Moreover, object nominals are found in the
label of the same node if they belong to the same equivalence class according
to the EQ component of G.

— Nodes at level > 2 do not have object nominals in their labels.

— If a node is labelled with L, then so are all its descendants.

— Successors of a node s satisfy conditions imposed by the box formulae in s’s
label.

— Diamond formulae in a node s’s label (i.e., box formulae not in s’s label)
are either witnessed by one of s’s successors or by a node on the first level
representing an object nominal.

For those familiar with tree automata, it can be easily seen that the above
conditions are all local and can thus be “encoded” in the transition function
of a tree automaton. Let us now give the formal definition for A4 when ¢ is
a SIM-formula satisfying the hypotheses at the beginning of Sect. 6. Ay is the
Biichi tree automaton (¥, Q, 4, I, Q) defined as follows.

1. ¥ = SYMB(¢).
2. Q¥ {1} U{(g,G) | ¢ € SYMB¢(¢), G € GCONS()}.



3. T = {u);
4. {¢,a,q},...,q%) € ¢ iff either
(first) ¢ = ¢, a =1, and there is G = (f,UF,EF,EQ,NOM,Ryn) €
GCONS(¢) such that, for every i € {1,...,K}, ¢} = {(¢;, G) for some
¢; € SYMBg(9),
(H2') thereis i € {1,..., K}, such that ¢ € ¢;, and
(H3") for every x € NOM(9), there is a unique i € {1,...,K}, such
that x € ¢;, or
(H5') ¢ = (L,G) for some G € GCONS(¢), a =L and, for every i €
{1,...,K}, qi =¢'; or

(witnesses) ¢ = (g, G) for some non-dummy ¢ € SYMBg(¢), G € GCONS(¢),

a = q and, for every i € {1,...,K}, ¢} = (gi, G) and the following con-
ditions are satisfied:
(H6') for every i € {1,..., K}, ¢; is not a named symbolic state;
(H7") if [B]y € sub(¢) \ ¢, then
(a) either there is 7 € {1,..., K} such that ¢; = (B, X’,T") is not
dummy and ¥ € q;;
(b) or there is x € NOM(¢) such that (B,x) € T, and ¢ ¢ NOM (x)
(where NOM is the fifth component of G);
(H8') for every i € {1,..., K}, if g; is not dummy, then Xy ~g,a,, Xq;-

The conditions (Hi') are the obvious counterparts of the conditions (Hz).
It is worth noting that although Hintikka trees for ¢ require the satisfaction
of conditions between trees of the forest, this can be handled by a Biichi tree
automaton. Indeed, the symbolic links are encoded locally by the table and by
the global information G, which is ensured to coincide on all nodes in a tree
accepted by the automaton.

Lemma 10. A SYMB(9), K-tree T is a Hintikka tree for ¢ iff Ay has an ac-
cepting run on T.

Proof. Let T be a Hintikka tree for ¢ respecting the SIM-consistent global in-
formation G and r : {1,...,K}* — @ be the Q, K-tree such that r(¢) = ¢ and,
for every s € {1,...,K}™, r(s) = (T(s),G). One can check easily that 7 is an
accepting run for 7.

For the converse, let 7 be an infinite tree accepted by Ay, and let r :
{1,...,K}* — @ be an accepting run of Ay on 7. Then r(i) = (go, Go) with
¢ € qo for some 7 € {1,...,K} and, for every s € {1,..., K}, if r(s) = (¢, G),
then G = Gy and ¢ = T (s). By construction, 7 is a Hintikka tree for ¢ respecting
the SIM-consistent global information Gy.

We are now in the position to establish the main result of the paper.
Theorem 11. The satisfiability problem for the logic SIM is EXPTIME-complete.

Proof. The lower bound is by an easy verification from the results in [CT.94] and
[Hem96, Theorem 5.1]. Let us establish the EXPTIME upper bound. Lemma 9



together with Lemma 10 implies that every SIM-formula ¢ is SIM-satisfiable
iff Ay accepts at least one tree. Since card(SYMB(¢)) < |¢| x 2191+191* and
card(GCONS(¢)) is in 20U81°) Ay has 200¢1°) states. Moreover, card(d) is in
2001¢1") and checking whether (g, a,q1,...,qKx) € § can be done in time 20(I¢1)
(using Lemmas 5 and 7). Consequently, computing Ay requires time in 20041,
Since the emptiness problem for Biichi tree automata of the form A4 can be
checked in time O(]5]?), SIM-satisfiability can be checked in time 20U¢"),

7.2 Other constraints on nominals

The parameter nominals in SIM are strong in the sense that two distinct pa-
rameter nominals are interpreted by different parameters. This is a constraint
introduced in [Kon97,Kon98]. Alternatively, it is possible to relax this condition
by allowing that two different parameter nominals can be interpreted identi-
cally while preserving the EXPTIME-completeness of SIM-satisfiability. Indeed,
it is sufficient to add, in a global information G, an equivalence relation for the
parameter nominals and to slightly modify the definition of the normal forms
Nx,y(A) (see Sect. 3). Two parameter nominals in the same equivalence class
are then interpreted identically. Additionally, constraints of the form “M distinct
object [resp. parameter] nominals, M > 2, cannot be interpreted by the same
objects [resp. parameters]” can also be handled by the present framework by
requiring, in the equivalence relations for nominals, that each equivalence class
has less than M elements.

7.3 A standard version of SIM

Let SIM®* be the multi-modal logic with a universal modality [U], modal con-
nectives of the form [c; N --- N ¢y], where N is interpreted as intersection on
binary relations, each ¢; is interpreted as a reflexive and symmetric relation,
and the logic contains propositional variables and nominals. The logic SIMS can
be viewed as the standard (and simplified) version of SIM; more details about
the relationsip between SIM and SIMS! can be found in [Dem99a,DG00]. More
importantly, by slightly adapting the EXpPTIME-completeness proof for SIM one
can show the following result.

Corollary 12. The satisfiability problem for the logic SIM®® is EXPTIME-complete.

However, it is open whether replacing symmetry by transitivity in SIMst
preserves decidability (see also Sect. 7.4 below).

7.4 Extensions for FORIN and IND?

At a first glance, it seems as if the decision procedure for SIM could be easily
adapted to IND and FORIN since transitivity can be handled for the following
aspects:



— the constraints on Ry (by imposing the appropriate frame condition);

— the definition of ~¢ 4 (by updating the propagation rules for the [A]-formulae);

— the definition of the family (Rp)pcpar in the proof of Lemma 9((II) — (I))
(by considering the appropriate closure operation on relations).

However, such an adaptation does not allow us to prove the point (3) in the
proof of Lemma 9((II) — (I)). More precisely, Case (2) is problematic.

By way of example, consider the logic FORIN. Suppose that we have updated
the conditions for Ry and ~¢, 4 adequately. In the proof of Lemma 9((II) — (I)),
assume that Ry was defined as the reflexive and transitive closure of S(A) =
Rn(A) URA UR),. Let us consider the subcases 2.3 (T (s) is not and T(s') is a
named symbolic state). Then (s, s’) € R,,(a) entails, for every i € {iy,...,ix},
(s,8") € Ryiy, which implies the existence of the following paths:

i i S(Al
i S(AT) g s(Ay) (Ad,) i )
§ =8y Sy > ... > Spy 41 =S
Qs i Aij_
_ o S sy S
8—81 82 7 ... ? Snij+l_8
i i i
o S(AT) sk SAny) o
=8 > So > e > Spy 41 =8

where, for every j € {1,...,k}, n;; > 0 and for every j' € {0,...,n;,}, i; €
m(A;’}). Because of the presence of named symbolic states (and therefore object
nominals in the language) and the transitive closure involved, the above paths
are of unbounded length and they may be different. By contrast, for SIM, only
paths of length one need to be handled simultaneously, which can be done locally.
If [A]y) € T(s), we need to ensure 1 € T (s"), which would involve a path of the
form

S(B1) 5 S(Bz2) S(Bn)

s=s] Spp1 =8

where, for every j € {1,...,k} and j' € {0,...,n}, i; € m(B;). Obviously, this
is not possible using a simple “local” propagation.

By contrast, in the absence of object nominals in the language, in the remain-
ing subcase 2.2 (without named symbolic states), the existence of such a path
o is guaranteed. Indeed, if (s,s’) € Ry (a), then there is unique path o of min-
imal length of the above form satisfying the required condition. Consequently,
by slightly adapting the developments for SIM, we can show:

Theorem 13. The satisfiability problem for the logics FORIN and IND without
object nominals is EXPTIME-complete.



8 Conclusion

On the basis of existing automata-theoretic techniques for logical problems,
we have shown that the logic SIM introduced in [Kon98] has an EXPTIME-
complete satisfiability problem, improving significantly the best known upper
bound from [DK98]. The proof is by a reduction to the emptiness problem for
Biichi automata on infinite trees. The most original parts of this reduction rely
on the normalisation of parameter expressions for nominals, on the introduc-
tion of global information for models (extending what is done in [SV01] for
nominals and the universal modality), and on our treatment of intersection for
relations. The proof for SIM can be successfully adapted to the logics IND and
FORIND [Kon98, Sect. 8] with minor changes only in the case we discard object
nominals from the language. By contrast, the decidability status of full IND and
full FORIN remains a challenging open question. This highlights the technical
difficulty encountered to establish the EXPTIME upper bound for SIM satisfia-
bility.

These new results obtained with automata-theoretic techniques show that
such techniques are also powerful for information logics. Indeed, the automata
framework can cope uniformely with object and parameter nominals, with Boolean
parameter expressions, with the universal modality and with local conditions
such as reflexivity and symmetry. For transitivity, the adaptation of the method
is still unkown. In this paper, we have actually used a small fragment of the
automata machinery, namely the Biichi tree automata in which all the states
are terminal, leaving some room for further extensions with richer operational
models such as the tree automata with parity acceptance conditions [Var98].
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