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Abstract 1 

Toxicokinetic (TK) models refer to the process of contaminant bioaccumulation as a 2 

balance between rate of uptake from different sources (e.g. water or food), and rate of 3 

elimination via different processes such as excretion, growth and/or biotransformation. 4 

Biotransformation can considerably modify the fate of chemicals in an organism, 5 

especially their bioavailability, residence time, and toxicity. Invertebrate models 6 

generally neglect this process as they assume a low metabolic activity. However, some 7 

species such as Gammarus sp. amphipods are able to metabolize a vast range of 8 

organic compounds. Some recent TK models include biotransformation, but they prove 9 

limited for estimating related parameters by giving negative values and/or large 10 

uncertainties for biotransformation rate(s). Here we propose a generic TK model 11 

accounting for biotransformation using a Bayesian framework for simultaneously 12 

estimating the parameters. We illustrated the added value of our method by fitting this 13 

generic TK model to 22 published datasets of several benthic invertebrate species 14 

exposed to different chemicals. All parameters are estimated simultaneously for all 15 

datasets and showed narrow estimates. Furthermore, the median model predictions 16 

and their 95% credibility intervals showed that the model confidently fitted the data. In 17 

most cases the uncertainties around biotransformation rate(s) were reduced in 18 

comparison to the original studies. From a methodology standpoint, this paper reflects 19 
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that Bayesian inference has real added value for simultaneously estimating all TK 1 

parameters for parent chemicals and their metabolite(s) based on all available data, 2 

while accounting for different types of data and the correlation between parameters. 3 

Bayesian inference was able to overcome the limits of previous methods, since no 4 

parameters were fixed and no irrelevant negative values were obtained. Moreover, the 5 

95% credibility intervals around model predictions, which are core uncertainties for 6 

Environmental Risk Assessment, were easily acquired. 7 

 8 

Keywords: Invertebrate – Biotransformation – Bayesian inference – Toxicokinetic 9 

model – Bioaccumulation 10 

 11 

Highlights: 12 

- A Bayesian framework was developed for a TK model considering biotransformation 13 

- It was applied to Chironomus, Gammarus, Hyalella, Nereis and Lumbriculus genus 14 

- It was applied to various chemicals (PAHs, drugs and plant protection products) 15 

- In ERA, quantification of uncertainties around model predictions are crucial 16 

- For metabolites, uncertainties around parameters were reduced  17 
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1. Introduction 1 

Biotransformation of chemicals can significantly modify the  fate of chemicals in 2 

an organism, especially their bioavailability, toxicity, and residence time in the 3 

environment (e.g. water, sediment) and/or in an organism (Livingstone 1998). A 4 

chemical compound has to enter the organism to have effect, so biotransformation 5 

means that it accumulates less target chemical (parent compound) compared to 6 

untransformed chemical. Firm knowledge of the major quantitative and qualitative 7 

resemblances and dissimilarities in biotransformation pathways between species is a 8 

critically-needed foundation for designing toxicity tests, developing biomarkers, 9 

modeling chemical fate in ecosystems, and understanding the selective part of 10 

biotransformation in animal ecology and evolution (Livingstone 1994).  11 

Directive 2008/105/EC, the Environmental Quality Standards Directive, defines 12 

the good chemical status to be achieved by all Member States from Europe and, 13 

together with Water Framework Directive 2000/60/EC, lays down the legal basis for 14 

monitoring of priority substances in sediment and biota. For several substances of the 15 

listed priority substances and certain other pollutants included in the Directive, the 16 

establishment of Community level Environmental Quality Standards (EQS) is limited to 17 

parent compound concentrations in biota, and fails to consider metabolites and their 18 

potential toxic effects on the organism.  19 

Substantial progress has been made in measuring metabolites and estimating 20 

biotransformation rates for organic chemicals in fish (Arnot et al. 2008a, Arnot et al. 21 

2008b, Nichols et al. 2007) and, to a lesser extent, in other aquatic organisms (Katagi, 22 

2010). Biotransformation by aquatic invertebrates has often been supposed to be 23 

limited compared to fish (Morrison et al. 1996), as invertebrates are thought to have 24 

low metabolic activity. Nonetheless, researches conducted during the past decade 25 

have shown that several invertebrate species are able to metabolize various chemicals 26 

(Ashauer et al. 2012, Fu et al. 2018, Jeon et al. 2013, Miller et al. 2017, Rösch et al. 27 

2016). For example, metabolites were quantitatively measured in Daphnia magna and 28 

Gammarus fossarum exposed to drugs and plant protection products (Jeon et al. 29 

2013). 30 

In Environmental Risk Assessment (ERA), models based on toxicokinetic (TK) 31 

are commonly used to predict contaminant concentrations in organisms from those to 32 

which they are exposed in their environment (EPA 2006). For aquatic invertebrates, 33 

compartmental models are often used, where the organism is considered as a single 34 

compartment. In TK models, biotransformation could be considered as part of total 35 

elimination (MacKay and Fraser 2000): the biotransformation rate points out how much 36 

biotransformation contributes to the reduction of parent compound bioaccumulation. 37 

Van der Linde et al. (2001) contended that including the biotransformation term in TK 38 

models could correct the overestimation of internal concentrations, even in the 39 

absence of experimental data for metabolites. They proposed a “difference method” to 40 

estimate biotransformation rate by considering it as the difference between the global 41 

elimination rate and the sum of the rates for other dissipation processes (growth 42 

dilution, excretion). Arnot et al. (2008b) further developed a similar approach for 43 

nonionic organic chemicals, where biotransformation rate constants were calculated 44 

as the difference between a measured bioconcentration factor or elimination rate 45 

constant, and a model-derived bioconcentration factor or elimination rate constant 46 

estimated assuming no biotransformation. Chen and Kuo (2018) also estimated 47 

biotransformation rates from whole-body biotransformation half-lives, which were 48 
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estimated on the basis of free dissolved chemical fraction. However, these approaches 1 

present drawbacks, chiefly that they lead to large uncertainties around 2 

biotransformation rates and in some cases have even yielded negative values. 3 

Estimating biotransformation rates in invertebrate species by fitting a TK model 4 

to experimental data gained further appeal with a study by Ashauer et al. (2012), who 5 

used bioaccumulation kinetics of 11 xenobiotics and their metabolites in Gammarus 6 

pulex. They constrained the parameters to positive values and estimated them by 7 

least-squares minimization without weighting data. Apart from two compounds where 8 

the uptake rate from water needed to be kept fixed, all parameters were estimated 9 

simultaneously. Also, the elimination rate of the parent compound reached its lower 10 

boundary zero for five chemicals, large confidence intervals were obtained for the 11 

uptake and elimination rates of three compounds, and uncertainties around mean 12 

predictions were missing. More reliable risk assessment hinges on properly estimating 13 

parameters with their uncertainties and considering their between-parameters 14 

correlation. Finally, Kuo and Chen (2016) proposed a generic theoretical framework 15 

allowing to estimate biotransformation rates from kinetic observations of the parent 16 

contaminant and its metabolites. Their framework was applied to two polychaetes 17 

(Nereis diversicolor and Tubifex tubifex) and the oligochaete Lumbriculus variegatus 18 

using data for two chemicals, i.e. pyrene and 2,4,6-trinitrotoluene, and parameters 19 

were estimated by least-squares minimization of errors. The parent-compound 20 

parameters were either fixed to the values reported in the original studies, or estimated 21 

with the best fit obtained, and then fixed to estimate only two parameters, i.e. 22 

metabolite biotransformation rate and metabolite elimination rate. Their method could 23 

be readily incorporated into standard experimental protocols. However, as all 24 

illustrations in their research dedicated to worm species, further validations across 25 

diverse biological species would be suitable, especially for the main species studied in 26 

bioaccumulation studies (fish and invertebrates). Furthermore, they only considered 27 

the simplest case of constant exposure level and they applied the model only to the 28 

uptake phase, neglecting the elimination phase. A step forward would be to revisit the 29 

existing biotransformation literature with their approach on well-studied organic 30 

contaminants such as polycyclic aromatic hydrocarbons (PAHs) and on chemicals of 31 

growing environmental concern. 32 

As biotransformation depends on biological pathways of the organism and the 33 

mode of action of the chemical, TK models must adapt to the specie and to the 34 

chemical considered to include the biotransformation process. Thus, this study 35 

introduces a unified Bayesian inference framework to estimate parameters of TK 36 

models accounting for biotransformation processes. This approach is based on 37 

simultaneously estimating all kinetic parameters from accumulation and depuration 38 

data for the parent compound and its metabolite(s). In total, 22 experimental datasets 39 

from the literature encompassing six invertebrate aquatic species commonly used in 40 

ERA (i.e. Gammarus pulex, Gammarus setosus, Chironomus tentans, Hyalella azteca 41 

Nereis diversicolor, and Lumbriculus variegatus) exposed to 17 chemicals from water 42 

and/or diet. TK models were fitted on each couple chemical-species. We recommend 43 

the Bayesian approach because it allows to estimate TK parameters without 44 

constraining or fixing the values, while accounting for the correlations between 45 

parameters. This approach also provides an accurate assessment of the uncertainty 46 

around parameters estimates and model predictions.  47 
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2. Material and methods 1 

2.1. A generic TK model accounting for biotransformation 2 

A generic first-order TK model can be written as follows (Eqs. (1) and (2), Ratier 3 

et al. (2019)): 4 

 5 

{
 
 

 
 𝑑𝐶(𝑡)

𝑑𝑡
=∑(𝑘𝑖 × 𝐶𝑖(𝑡)) −∑(𝑘𝑗 × 𝐶(𝑡))

𝑝

𝑗=1

𝑛

𝑖=1

for 0 ≤ 𝑡 ≤ 𝑡𝑐                   (1)

𝑑𝐶(𝑡)

𝑑𝑡
= −∑(𝑘𝑗 × 𝐶(𝑡))

𝑝

𝑗=1

 for 𝑡 > 𝑡𝑐                                                          (2)

     

 6 

where C(t) is contaminant concentration at time t (days) in the whole organism (ng gorg
-7 

1 or nmol kgorg
-1 where mass is expressed in wet weight (ww)), ki is uptake rate from 8 

the contamination source i (day-1), Ci(t) is contaminant concentration (like C(t), i.e. in 9 

ng ml-1 if C(t) in ng g-1) in the contamination source i at time t (day), n is number of 10 

exposure sources, kj is the rate for the elimination process j (day-1), p is number of 11 
elimination routes and the parameter tc corresponds to the duration of the accumulation 12 

phase (days). In classical bioaccumulation experiments, this accumulation phase (Eq. 13 

(1)) is generally followed by a depuration phase where organisms are placed in clean 14 

(contaminant-free) medium. Eq. (2) thus corresponds to this depuration phase, in 15 

which only elimination processes take place.  16 

Biotransformation is included as an elimination route (kj) for the parent 17 

compound, and the specific biotransformation rate is noted km. Thus, Eq. (1) and (2) 18 

could be rewritten for the parent compound as follows (Eqs. (3) and (4)), by 19 

distinguishing biotransformation from other elimination processes: 20 

 21 

{
 
 

 
 𝑑𝐶(𝑡)

𝑑𝑡
=∑(𝑘𝑖 × 𝐶𝑖(𝑡)) −∑(𝑘𝑑 × 𝐶(𝑡)) −∑(𝑘𝑚,𝑥 × 𝐶(𝑡))

𝑧

𝑥=1

𝑞

𝑑=1

𝑛

𝑖=1

    for 0 ≤ 𝑡 ≤ 𝑡𝑐   (3)

𝑑𝐶(𝑡)

𝑑𝑡
= −∑(𝑘𝑑 × 𝐶(𝑡))

𝑞

𝑑=1

−∑(𝑘𝑚,𝑥 × 𝐶(𝑡))

𝑧

𝑥=1

     for 𝑡 > 𝑡𝑐                                          (4)

  

 22 

where kd is the rate associated to elimination process d other than biotransformation, q 23 

is the number of elimination process other than biotransformation, km,x is the 24 

biotransformation rate of a metabolite x (day-1) and z is number of metabolites. 25 

These equations depicting the bioaccumulation and depuration of the parent 26 

compound should then be coupled with the equation concerning the corresponding 27 

metabolite(s) (Eq. (5): 28 

 29 

𝑑𝐶𝑚𝑒𝑡,𝑥(𝑡)

𝑑𝑡
=∑(𝑘𝑚,𝑥 × 𝐶(𝑡)) −∑(𝑘𝑒𝑚𝑒𝑡,𝑥 × 𝐶𝑚𝑒𝑡,𝑥(𝑡))

𝑧

𝑥=1

𝑧

𝑥=1

        (5) 

 

 

where Cmet,x (t) is the concentration of metabolite x at time t (days) in the whole organism 30 

(ng g-1 or nmol kg-1 ww) and kemet,x is elimination rate of metabolite x (day-1). 31 
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The model is adapted to the contamination-source data, i.e. water or sediment. 1 

We supposed that (i) metabolites come exclusively from the parent compound, (ii) they 2 

are not reuptaken, (iii) they are eliminable and (iv) the concentration of parent 3 

compound is constant over time in media. Analytical solutions are provided for the 4 

parent compound and for its metabolites for both the uptake and elimination phases 5 

(Annex S1). 6 

 7 

2.2. Datasets from the literature and associated inference methods 8 

 In literature, we found seven studies reporting biotransformation kinetics in 9 

aquatic invertebrates of 22 parent compounds, including PAHs, drugs and plant 10 

protection products (Giessing et al. 2003, Schuler et al. 2003, Mäenpää et al. 2009, 11 

Ashauer et al. 2012, Carrasco-Navarro et al. 2015, Miller et al. 2017, Fu et al. 2018). 12 

In each case, the generic model (Eqs (3-4) and (5-6) was adapted to these 13 

biotransformation TK data. For all the datasets, only one exposure route was 14 

considered, i.e. by sediment or by water according to the study (Table 1). A single 15 

metabolite was often followed (Giessing et al. 2003, Schuler et al. 2003, Mäenpää et 16 

al. 2009, Ashauer et al. 2012, Carrasco-Navarro et al. 2015, Miller et al. 2017), but two 17 

or three metabolites were followed during the tests in a few studies (Ashauer et al. 18 

2012, Miller et al. 2017, Fu et al. 2018) (Table 1). Only experimental data were reported 19 

in one study (Giessing et al. 2003) whereas the others estimated parameters of the TK 20 

model for parent compounds, and, less often, for the metabolite (Ashauer et al. 2012, 21 

Carrasco-Navarro et al. 2015, Fu et al. 2018). 22 

Briefly, Miller et al. (2017) exposed  for two days Gammarus pulex to propranolol 23 

and diazepam spiked water. The uptake rate constant (kw) and elimination rate 24 

constant (ke) were obtained using a curve fitting algorithm, using either the 25 

simultaneous or sequential modelling methods. 26 
For 24 hours, Ashauer et al. (2012) exposed Gammarus pulex to water spiked 27 

with 2,4-dichloroaniline, 2,4-dichlorophenol, 2,4,5-trichlorophenol, 4-nitrobenzyl-28 

chloride, aldicarb, carbaryl, carbofuran, chlorpyrifos, malathion, pentachlorophenol 29 

and seanine. They constrained the parameters to positive values. They were obtained 30 

without weighting of data by least-squares minimization (Levenberg−Marquardt 31 

algorithm). Asymptotic standard errors of parameters were obtained from the 32 

covariance matrix and by calculation of confidence intervals. Except for 4-nitro-benzyl-33 

chloride and carbaryl where the uptake rate from water (kw) needed to be kept fixed at 34 

the value from a previous study (Ashauer et al. 2010) in order to reach a good fit, all 35 

parameters, for a given compound, were estimated simultaneously. 36 

Carrasco-Navarro et al. (2015) exposed for four days Gammarus setosus to 37 

pyrene spiked water. In order to estimate the initial values of the parameters before 38 

running the inference process, they selected a model to fit the data into the Sigma Plot 39 

library. Then, a TK model was used to fit experimental data of total body burden, the 40 

parent pyrene concentrations, and the sum of all metabolites. The TK parameters were 41 

estimated by a least-squares fit. 42 

Schuler et al. (2003) exposed  Lumbriculus variegatus and Chironomus tentans 43 

to benzo(a)pyrene spiked sediment for 10 and 3 days, respectively. TK parameters 44 

were estimated by a two-step procedure: first, assuming that elimination can be 45 

neglected during the initial segment of the uptake phase, uptake rate from sediment 46 

(ks) was obtained from the uptake phase. Second, an iterative least-squares method 47 

was used to estimate the other parameters when the models were fitted to data. 48 
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Mäenpää et al. (2009) exposed  Lumbriculus variegatus to pyrene spiked water 1 

for 15 days. Their experiment was limited to the uptake phase. The TK model was fitted 2 

to the pyrene concentration in the test organisms, where only parent compound 3 

parameters were estimated by nonlinear regression. Relative parameters to metabolite 4 

were not estimated since only the experimental metabolite concentrations in organisms 5 

were given. 6 

Giessing et al. (2003) exposed Nereis diversicolor to pyrene-spiked sediment 7 

for 9 days. Only the experimental concentrations of pyrene and its metabolite in 8 

organisms were reported. Parameters were not estimated. 9 

Fu et al. (2018) exposed  for 24 hours Hyalella azteca and Gammarus pulex to 10 

water spiked with azoxystrobin and prochloraz. They made a distinction among the 11 

parent compounds, the sum of all measured primary metabolites which come directly 12 

from the parent compound, and of the total of all secondary metabolites. To estimate 13 

the parameters, they contrast two approaches: stepwise fitting (by fixing the uptake 14 

rate to estimate the other parameters, where a greater significance was attributed to 15 

the uptake rate from water, kw) and simultaneously (constrained to positive values). 16 

Comparable results were achieved for both approaches. 17 

In summary, we selected these 22 datasets to consider several invertebrates 18 

species (polychaetes, oligochaetes, diptera and amphipods) encompassing different 19 

ways of life (epibenthic and endobenthic), exposed via spiked water or sediment to 20 

various chemicals (17 compounds including two PAHs, two drugs, 10 plant protection 21 

products and three precursors in their synthesis) with different properties (low to high 22 

hydrophobicity, logKow between 1.13 and 6.13), with variable numbers of metabolites, 23 

and contrasting approaches to estimate the parameters.  24 
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Table 1. Summary of the chosen literature data where biotransformation kinetics in 1 

invertebrates are reported. 2 
 

Species Reference Chemicals 
Exposure 

route 
TK parameters 

availability 

1
 m

e
ta

b
o

li
te

 

G
a
m

m
a
ru

s
 s

p
. 

Miller et al., 
2017 

Propranolol water 
Incomplete (km 
and kemet were 

missing) 

Fu et al., 
2018* 

Azoxystrobin 
Prochloraz 

water All 

Ashauer et al., 
2012 

Aldicarb 
Carbaryl 

Carbofuran 
Malathion 

Pentachlorophenol 

water All 

Carrasco-
Navarro et al., 

2015 
Pyrene water All 

C
h
ir
o

n
o
m

u
s
 

te
n
ta

n
s
 

Schuler et al., 
2003 

Benzo(a)pyrene sediment 
Incomplete 

(kemet is 
missing) 

L
u
m

b
ri

c
u
lu

s
 

v
a
ri
e
g
a
tu

s
 Schuler et al., 

2003 
Benzo(a)pyrene sediment 

Incomplete 
(kemet is 
missing) 

Mäenpää et 
al., 2009 

Pyrene water 
Incomplete (km 
and kemet are 

missing) 

N
e
re

is
 

d
iv

e
rs

ic
o
lo

r 

Giessing et al., 
2003 

Pyrene sediment None 

H
y
a
le

lla
 

a
z
te

c
a

 

Fu et al., 
2018* 

Azoxystrobin 
Prochloraz 

water All 

2
 m

e
ta

b
o

li
te

s
 

G
a
m

m
a
ru

s
 

p
u
le

x
 

Ashauer et al., 
2012 

Chlorpyrifos 
2,4-dichloroaniline 
2,4-dichlorophenol 

2,4,5-trichlorophenol 

water All 

3
 m

e
ta

b
o

li
te

s
 

G
a
m

m
a
ru

s
 p

u
le

x
 

Ashauer et al., 
2012 

Seanine 
4-nitrobenzyl-chloride 

water 

All 
(kw fixed for 4-

nitrobenzyl-
chloride) 

Miller et al., 
2017 

Diazepam water 
Incomplete (km 
was missing) 

*: The second metabolite originated from first metabolites were not considered.   3 
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2.3. Bayesian inference framework 1 

2.3.1. The TK model(s) 2 

Considering only one exposure pathway (water or sediment depending on the 3 

data) and in accordance with the number of metabolites, Eqs. (3) and (5) can thus be 4 

adapted for a parent compound and its metabolites (Eq. (6) for the uptake phase and 5 

Eq. (7) for the elimination phase), for each species/chemical couple applied separately: 6 

 7 

{
 
 
 

 
 
 
dC(t)

dt
= kw × Cw - (ke+ km,1+…+ km,z) × C(t)

dCmet,1(t)

dt
= km,1 × C(t) - kemet,1 × Cmet,1(t)      

.                                                                       

.                                                                       

.                                                                       
dCmet,z(t)

dt
= km,z × C(t) - kemet,z × Cmet,z(t)      

   𝑓𝑜𝑟 0 ≤ 𝑡 ≤  𝑡𝑐       (6) 8 

{
 
 
 

 
 
 

dC(t)

dt
=  - (ke+ km,1+…+ km,z) × C(t)

dCmet,1(t)

dt
= km,1 × C(t) - kemet,1 × Cmet,1(t)

.                                                            

.                                                            

.                                                            
dCmet,z(t)

dt
= km,z × C(t) - kemet,z × Cmet,z(t)

                   𝑓𝑜𝑟 𝑡 >  𝑡𝑐         (7) 9 

 10 

where Cw (or Cs) is parent-compound concentration in water (or sediment) (µmol L-1, 11 

nmol L-1, µg mL-1, µg L-1 or ng gsed
-1), kw (or ks) is the uptake rate from water (or from 12 

sediment) of the parent compound (day-1), km,x is biotransformation rate of the parent 13 

compound to the metabolite, Cmet,x (for x = 1...z) is concentration of the metabolite x  and 14 

kemet,x is elimination rate of metabolite x. In the datasets used, we have data for one, 15 

two or three metabolites (z = 1, 2 or 3). 16 

2.3.2 Stochasticity 17 

For the contaminant concentration accumulating in the organism (parent or 18 

metabolite), we supposed a Gaussian distribution (Eq. (8) or (9)): 19 

 20 

𝐶𝑜𝑏𝑠(𝑡) ∼ 𝑁(𝐶(𝑡), 𝜎)                                      (8) 21 

𝐶𝑜𝑏𝑠,met,x(𝑡) ∼ 𝑁(𝐶met,𝑥(𝑡), 𝜎met,𝑥)            (9) 22 

 23 

where 𝑁 stands for normal distribution, Cobs(t) corresponds to the chemical 24 

concentration in the organism at time t measured during the experiments, Cobs,met,x(t) is 25 

concentration of metabolite x in the organism at time t measured during the 26 

experiments, C(t) is concentration of contaminant in the organism at time t predicted 27 

by the model (Eqs. (6) and (7)), Cmet,x(t) is concentration of metabolite x in the organism 28 

at time t predicted by the model (Eqs. (6) and (7)), σ is the standard deviation of the 29 

concentration contaminant in the organism, and σmet,x is the standard deviation of the 30 

concentration of metabolite x in the organism. 31 

In Figure S1, the generic directed acyclic graph (DAG) for an organism exposed to a 32 

parent compound and its metabolite(s) is given. 33 
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2.3.3. Definition of priors 1 

The prior distributions of the parameters are summarized in Table S1. They 2 

were defined as non-informative uniform decimal logarithm (−5, 2) distributions, except 3 

where previous studies had already estimated a parameter or reported available data: 4 

in this case, we can assume a normal prior distribution with the estimated mean value 5 

and the precision with a standard deviation (e.g. in the study of Ashauer et al., (2012)), 6 

in order to account for the possible differences in experimental conditions, at least twice 7 

the value estimated. For more details, when no previous data were available (other 8 

than the original study), a uniform distribution was assumed because general prior 9 

information was available: parameters could not be negative (for a biological meaning) 10 

and it is often noticed that TK parameters are ranging between 0.00001 and 100. Thus, 11 

a uniform decimal logarithm (−5, 2) distribution was defined for most datasets. 12 

However, for some datasets, this distribution was not sufficient (i.e. when parameter 13 

estimated was closed to the limit, i.e. 0.00001 or 100). In this particular case, the prior 14 

distribution was enlarged until the estimated parameter was not too closed to the limit 15 

(Table S1). This was the case for malathion, 2,4,5-trichloro-phenol and 2,4-dichloro-16 

phenol datasets (for ke), chlorpyrifos, 2,4,5-trichloro-phenol and 2,4-dichloro-phenol 17 

(for kw) and pyrene for G. setosus and Nereis diversicolor (all parameters). 18 

Priors were defined on the decimal logarithm scale in order to give the same probability 19 

to low or high values. As a non-informative (0.001, 0.001) Gamma prior on the 20 

precision is usually used for variance parameters (Lambert et al. 2005, Richards and 21 

Chaloupka 2009), we also assumed that prior distribution. 22 

2.3.4. MCMC simulations  23 

JAGS and R software were used to perform inference computation (Plummer 24 

2019, R Core Team 2020). Bayesian inference via Markov Chain Monte Carlo (MCMC) 25 

sampling was used to fit the models to data. For each dataset, in order to set the 26 

required thinning and number of iterations to reach an accurate estimation of each 27 

parameter, we ran a short sampling phase (a burn-in phase of 20,000 iterations, then 28 

5,000 iterations) for three chains using the Raftery and Lewis (1992) method (Table 29 

S1). Furthermore, we used visual inspection as well as the Gelman criterion (Gelman, 30 

1995) or Geweke criteria (Geweke 1989) to monitor the convergence of the three 31 

chains. The R codes are available in supporting information (Annex S2). At the end, 32 

we kept between 500 and the 14,285 last iterations for each chain according to the 33 

data, meaning that the joint posterior distribution ranged between 1,500 to 42,857 sets 34 

of parameters, all simultaneously estimated and thus taking into account between-35 

parameter correlation.  36 

2.3.5. Parameter posterior distributions and model predictions 37 

From the joint posterior distribution, we deduced the marginal posterior distribution 38 

for each parameter, which can be summarized by the mean (or the median) and by the 39 

95% credibility interval (quantiles of the distributions, in brackets). The accuracy of 40 

parameter estimation can be visualized by comparing prior and posterior distributions: 41 

the data bring enough information to precisely estimate parameters when a narrower 42 

posterior distribution is obtained than prior distribution. To check the relevance of 43 

model predictions, we plotted each dataset as the observed data superimposed over 44 

the mean model prediction (using the mean value obtained for each parameter) and 45 

the 95% credibility interval (CI). To obtain the 95% CI, we ran a model simulation using 46 

the stochastic part (Eq. 8 and 9) with all the joint posterior distribution and then 47 
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calculated the quantiles at 2.5% and 97.5% for each time step. Posterior Predictive 1 

Checks (PPC) were also graphed in order to illustrate the goodness-of-fit. The PPC 2 

plotted the observed data against the corresponding predicted value from the fitted 3 

model as a 95%-credible interval. If the fit is correct, then 95% of the observed values 4 

are expected to fall inside credible intervals. Each dot corresponds to one observation 5 

from the dataset, and the corresponding observed value can be read on the x-axis, 6 

while the y-axis provides the value predicted by the fitted model as well as the 95% 7 

credible interval. All these criteria came from the EFSA recommendations on TKTD 8 

models (Ockleford et al., 2018).  9 

 10 

A guidance is provided in supporting information (Annex S3) that gives the steps 11 

for applying this framework to an experimental dataset.  12 
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3. Results 1 

3.1. Parameter estimates and model predictions 2 

The inference process converged without constraining or fixing any parameter 3 

for all datasets. For each parameter, narrow posterior distributions were obtained, 4 

meaning that data provided enough information to accurately estimate parameters 5 

(Fig. S2). The mean value and 95% CI (in bracket) for each parameter and each 6 

species-contaminant pair are reported in Table S1. 7 

 The between-species differences in metabolic capacity were reported by the 8 

original studies. In the benzo(a)pyrene spiked sediment experiments (Schuler et al., 9 

2003), chironomids had a better biotransformation capacity than L. variegatus 10 

(km,1 = 1.66 and km,2 = 0.038 d-1, respectively), as the authors had already denoted. In 11 

the work of Fu et al. (2018), comparable biotransformation rates were obtained for 12 

gammarid and hyalellid species exposed to prochloraz and azoxystrobin. Furthermore, 13 

for pyrene, km,1 was higher in G. setosus and L. variegatus than N. diversicolor 14 

(km,1 = 1.04, 1.54 and 0.0500 d-1, respectively), possibly due to the exposure route 15 

(sediment exposure for N. diversicolor) accordingly to the authors. 16 

The highest km values were obtained for organochlorine chemicals such as in 17 

G. pulex exposed to 2,4-dichlorophenol (km,1 = 39.5 [13.0-93.5] d-1), 2,4,5-18 

trichlorophenol (km,1 = 38.2 [3.11-93.8] d-1) and 4-nitrobenzyl-chloride (km,1 = 42.3 [30.8-19 

58.5] and km,2 = 43.9 [24.6-76.5] d-1). The lowest values were obtained for PAHs, such 20 

as L. variegatus exposed to benzo(a)pyrene (km,1 = 0.0380 [0.0270-0.0480] d-1) and 21 

N. diversicolor exposed to pyrene (km,1 = 0.0500 [0.0310-0.0730] d-1). 22 

Model predictions generally showed good fit with experimental data for the parent 23 

compound but also for its metabolite(s) (Fig. 1 and S3), whatever the number of 24 

metabolites (from one to three, Fig. 1-a and 1-e), and even when only accumulation 25 

data were available, as for L. variegatus and N. diversicolor exposed to pyrene 26 

(Giessing et al. 2003, Mäenpää et al. 2009, Fig. 1-b and -c). However, model 27 

predictions showed an unsatisfying fit in the elimination phase of the parent compound 28 

for about half of the chemicals studied (propranolol, azoxystrobin (Fig. 1-d), 29 

chlorpyrifos, carbaryl, 2,4-dichlorophenol, malathion, pentachlorophenol, 4-30 

nitrobenzyl-chloride (Fig. 1-e), 2,4,5-trichlorophenol and seanine) and consequently 31 

underestimated the elimination rate. This result was also clearly visible on the 32 

respective PPCs (Fig. S4).33 
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Figure 1. Examples of observed data (dots) and model predictions (plain line and gray area) for each parent compound and its 
metabolite(s) (Eqs. 6 to 9) plotted against time (days): (a) C. tentans exposed to benzo(a)pyrene (data from Schuler et al., 2003), (b) 
L. variegatus exposed to benzo(a)pyrene (data from Schuler et al., 2003), (c) N. diversicolor exposed to Pyrene (data from Giessing 
et al., 2003), (d) H. azteca exposed to Azoxystrobin (data from Fu et al., 2018) and (e) G. pulex exposed to 4-nitrobenzyl-chloride 
(data from Ashauer et al., 2012). The uptake and depuration phases are separated with the dashed vertical line.  
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 The 95% CI were added to the fits of predictions: the credibility band is relatively 1 

narrow, reflecting a relatively low variability, even if there were some cases where 2 

uncertainties around model predictions were wider (chlorpyrifos, malathion, 2,4,5-3 

trichlorophenol, propranolol, diazepam and pyrene). 4 

 5 

3.2. Comparison of parameter values and uncertainties between original 6 

estimations and those obtained by Bayesian inference 7 

When possible, a comparison was made between parameters values and their 8 

uncertainties obtained with our Bayesian inference method and the values and 9 

uncertainties given the in original publications. In particular, two studies (Ashauer et al. 10 

2012, Fu et al. 2018) out of the seven chosen (i.e. 15 of the 22 datasets) had reported 11 

the mean estimated values for each parameter and their corresponding 95% 12 

confidence intervals. Here we selected those with the most relevant results (Fig. 2). 13 

 14 
 15 

 16 
Figure 2. Log-scaled parameters (d-1) estimated by Bayesian inference (black) and by 17 

the original method (grey) for (a) G. pulex exposed to 4-nitrobenzyl-chloride (Ashauer 18 

et al., 2012), and (b) H. Azteca exposed to azoxystrobin (Fu et al., 2018). Dots 19 

represent mean values, stars represent fixed mean values of parameter and error bars 20 

report 95% credibility intervals (Bayesian inference) or confidence intervals (original 21 

studies). 22 
 23 
When the uptake rates were fixed (carbaryl and 4-nitro-benzylchloride, Ashauer et 24 

al., 2012, Fig. 2-a), the uncertainty of the parameters correlated to those that had been 25 

fixed (kw) was necessarily underestimated in the original studies, which is why CI 26 

around correlated parameters were wider with the Bayesian inference method. Indeed, 27 

for the carbaryl dataset (data not shown), kw and ke are highly correlated (r2 = 0.87) 28 

and the uncertainties for ke were larger than in the original study. In the case of 4-nitro-29 

benzylchloride (Fig 2-a), kw and km,2 are highly correlated (r2 = 0.81) and the 30 

uncertainties for km,2 were larger than in the original study.  31 

Otherwise, the mean km values were similar between our Bayesian inference and 32 

the original methods in 19 out of 27 cases. For the 2,4,5-trichlorophenol, prochloraz 33 
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and azoxystrobin (Fig. 2-b) datasets, the range of km values was outside the confidence 1 

interval of the original study. In addition, estimated values of parent-compound 2 

parameters were sometimes outside of the confidence interval obtained in the original 3 

study (chlorpyrifos, malathion, diazepam, prochloraz and azoxystrobin). As illustrated 4 

in Figure 2-b for H. azteca exposed to azoxystrobin, the mean estimated km was 0.47 5 

[0.37-0.60] d-1 with the Bayesian inference method against 1.8 [1.4-2.1] d-1 with the 6 

original method. The two uncertainty intervals did not overlap (Fig. 2b). Moreover, the 7 

mean estimated elimination rate was 2.88 [1.57-4.66] d-1 in Bayesian inference against 8 

0.13 [0.0001-0.8] d-1 with the original method. As observed for km, the two ke 9 

uncertainty intervals did not overlap (Fig. 2b).   10 
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4. Discussion 1 

4.1. Computational performance 2 

Here we propose using a Bayesian inference method to estimate the parameters of 3 

a generic TK model accounting for biotransformation. In previous work, we set out the 4 

various advantages of using Bayesian inference for modeling TK in freshwater benthic 5 

invertebrates (Ratier et al., 2019). In this paper, this approach was tested on data 6 

available for different species exposed to different contaminants, with either only 7 

bioaccumulation data, either bioaccumulation and depuration data, and with one or 8 

more metabolites. 9 

There are three main limitations to estimating the parameters accounting for 10 

biotransformation in previous studies: (i) the need in some instances to fix one or more 11 

parameter values in order to estimate the others, (ii) outputs providing sometimes 12 

negative values for some parameters (e.g. km, Arnot et al., 2008a, 2008b) and (iii) 13 

missing uncertainties around mean model predictions. Bayesian inference overcomes 14 

these limits as we did not fix any parameters, we did not obtain negative values for km, 15 

and we were able to provide the 95% credibility intervals around model predictions in 16 

addition to correlations between parameters. 17 

Uncertainties within environmental risk assessments need to be properly 18 

characterized in order to use risk estimates as a sound basis for informing risk 19 

management actions. In our modeling framework, we added the 95% credibility bands 20 

around model predictions. However, we did find large uncertainties around model 21 

predictions for some chemicals. Having larger uncertainties around parameters does 22 

not mean that the Bayesian inference process is less efficient than the one used in the 23 

original study. These large uncertainties could mainly be explained by incomplete 24 

experimental data. For example, it is possible that not all the metabolites were 25 

chemically analyzed and quantified. Furthermore, as suggested by Ashauer et al. 26 

(2012), the biotransformation pathways could be misunderstood: indeed, the model is 27 

not currently designed to consider metabolites derived from the products of parent-28 

compounds biotransformation (phase II metabolites). This biotransformation pathway 29 

can be reasonably expected to decrease uncertainties as the process would be better 30 

described than when we hypothesized that all metabolites originated from the parent 31 

compound (larger uncertainties). It is therefore crucial to gain a better understanding 32 

of the biotransformation cascade mechanisms. Furthermore, analytical results may be 33 

more uncertain for metabolites than for parent compounds, due to the lack of 34 

standards; in which case the model fit would be accordingly less accurate. Another 35 

limitation with this kind of bioaccumulation tests is that they require a lot of 36 

measurements, and are time consuming and expensive. 37 

 38 

4.2. Applications  39 

 TK models are used in ERA as the first step to evaluating the toxicity of a 40 

contaminant. They are developed to provide a theoretical framework for understanding 41 

exposure-uptake relationships and accumulation in organisms, testing hypotheses, 42 

and making predictions (e.g. predictions of the chemical concentration in organisms 43 

according to environmental concentration or vice versa). ERA of organic contaminants, 44 

and the ensuing regulatory guidelines for chemicals management and control have 45 
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mostly been restrained to the bioaccumulation potential of the parent compounds (Kuo 1 

and Chen, 2016). However, there is legitimate concern over the failure to regulate for 2 

metabolites, which might have more effects than the parent compounds on organisms. 3 

Some benthic organisms are able to metabolize and excrete benzo(a)pyrene 4 

(BaP) accumulated in their body (Schuler et al., 2003). However, some intermediates 5 

of BaP metabolism are highly toxic and highly mutagenic and/or carcinogenic (U.S. 6 

EPA., 2017). In France, the EQSbiota defined for invertebrates exposed to PAHs is 7 

5.00 ng g-1 ww (Directive 2008/105/EC). This value refers to BaP, which is deemed 8 

representing all PAHs.  9 

Here we illustrate how to use TK models to retro-predict chemical 10 

concentrations in the sediment leading to the EQSbiota. For this purpose, we first used 11 

experimental data from a published TK study on Chironomus tentans exposed to BaP 12 

spiked sediment (Schuler et al. 2003) to estimate the distributions of the model 13 

parameters and thus go on to predict the concentration in sediment that would lead to 14 

a concentration in biota below the corresponding EQSbiota for both BaP and its 15 

metabolites. We also spread the uncertainties around the median predictions. The 16 

results are reported on Figure 3. The capacity of the chironomids to metabolize BaP is 17 

such that the metabolites alone achieve almost double the EQSbiota concentration 18 

defined for the parent compound (Fig. 3-a). For the in-organism concentration of 19 

metabolites to meet EQSbiota, the in-sediment concentration of BaP has to be two times 20 

lower (11.3 ng g-1 dw, Fig. 3-b) than the predicted in-organism concentration for BaP 21 

only (23.5 ng g-1 dw, Fig. 3-a). We also extended the exposure time (from 3 to 10 days) 22 

in order to reach the steady state for metabolite concentration in chironomids (Fig. 3-23 

b). 24 

 25 

 26 

Figure 3. Predictions for C. tentans exposed to BaP spiked sediment (a) at 23.5 ng    g-

1 dw for 3 days and (b) at 11.3 ng g-1 dw for 10 days. The EQSbiota for BaP (5.00 ng g-

1 ww) is represented by the red dashed horizontal line.  

 

These findings raised the issue of how the regulations account for metabolites, when 27 

metabolite concentrations in the organism could exceed the EQSbiota defined for the 28 

parent compound.  29 
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5. Conclusions 1 

Here we proposed a unified inference framework to estimate kinetic parameters 2 

of a generic TK model, including biotransformation rates. A Bayesian framework was 3 

used to simultaneously estimated all parameters. This approach results in a 4 

quantification of the uncertainties around model predictions that play a key role in 5 

environmental risk assessment. A total of 22 aquatic invertebrate species-chemicals 6 

pairs were tested. The data encompassed different ranges of contaminants including 7 

pesticides, drugs and PAHs as well as various biological and ecological traits. Our 8 

framework also considers one to several metabolites. We successfully estimated the 9 

elimination parameters distinguishing excretion from biotransformation by applying the 10 

framework to several invertebrate species and chemicals. This approach is 11 

transferable to any species-chemicals pair, and it provides an accurate estimate of 12 

elimination rates by distinguishing the classical elimination rate from the 13 

biotransformation rate(s). The major added value of the Bayesian approach is to 14 

estimate simultaneously model parameter from different kinds of data. The predictions 15 

and their uncertainties around concentrations by the joint a posteriori distribution will 16 

also improve ERA, as illustrated in this study. 17 

 18 

6. Outlook 19 

We anticipate that Bayesian analysis can be used to simultaneously estimate 20 

parameters considering several exposure routes such as sediment and water. The 21 

model might be improved by integrating pulse exposures and secondary metabolite 22 

kinetics. Under laboratory conditions (e.g. OECD tests), and in most of the datasets 23 

available in the literature, the exposure concentration is usually held constant over 24 

time. However, the assumption of constant exposure concentration actually adds 25 

another layer of uncertainty, as under real environmental conditions the concentration 26 

of the parent compound may vary over time. 27 

A better understanding of biotransformation in invertebrates, especially for new 28 

chemicals for which few data are available, is a necessary step towards better risk 29 

assessment of chemicals, especially their biological effects in invertebrates and at 30 

higher trophic levels. km could thus be integrated into aquatic food web models or used 31 

to complete databases in other modeling frameworks, such as QSAR modeling (Arnot 32 

et al., 2008b). The biotransformation rate could also be integrated in 33 

toxicokinetic/toxicodynamic frameworks, such as DEBtox or GUTS models (Ockleford 34 

et al., 2018). In parallel, biological investigations such as research to develop 35 

biomarkers, could provide further valuable foundations for understanding and modeling 36 

biotransformation capacity in invertebrates. 37 
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