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In this paper we study the locus of singular tuples of a complex valued multisymmetric tensor. The main problem that we focus on is: given the set of singular tuples of some general tensor, which are all the tensors that admit those same singular tuples. Assume that the triangular inequality holds, that is exactly the condition such that the dual variety to the Segre-Veronese variety is an hypersurface, or equivalently, the hyperdeterminant exists. We show in such case that, when at least one component has degree odd, this tensor is projectively unique. On the other hand, if all the degrees are even, the ber is an 1-dimensional space.

Introduction

Let V 1 , . . . , V k be vector spaces over C of dimension m 1 + 1, . . . , m k + 1, and let q l be a quadratic form on V l that, after a choice of basis for V l , is given in coordinates by q l = x 2 0 + • • •+x 2 m l that denes the distance function in V l . Given a tensor t ∈ Sym

d 1 V 1 ⊗• • •⊗Sym d k V k ,
we say that a rank-one tensor v = v 1 ⊗ • • • ⊗ v k is a singular tuple of t if we have that for each attening t :

Sym d 1 V 1 ⊗• • •⊗Sym d l -1 V l ⊗• • •⊗Sym d k V k → V l , t(v d 1 1 ⊗• • •⊗v d l -1 l ⊗• • •⊗v d k k ) = λv l .
In the particular case that k = 1 we call v an eigentensor of t, and it satises t(v d-1 ) = λv.

The notion of eigentensor has been introduced in 2005 by Qi for symmetric tensors [START_REF] Chang | A survey on the spectral theory of nonnegative tensors[END_REF], [START_REF] Qi | Eigenvalues and invariants of tensors[END_REF] and it was generalized by Lim [START_REF] Lim | Singular values and eigenvalues of tensors: a variational approach[END_REF] for tensors as singular tuples in the same year. Moreover, singular tuples extend the notion of eigenvector of a matrix to a tensor of any order. The rst interesting result on singular tuples is proven in [START_REF] Lim | Singular values and eigenvalues of tensors: a variational approach[END_REF], the singular tuples of a given tensor t are the critical points of the distance function between t and the Segre-Veronese variety of rank-1 tensors. This opens a new perspective to tensor optmization, and a possible direction to obtain a general notion of the Eckart-Young Theorem. Indeed, this theme has been studied in many works, we suggest [START_REF] Abo | Eigenschemes and the Jordan canonical form[END_REF], [START_REF] Boralevi | Orthogonal and unitary tensor decomposition from an algebraic perspective[END_REF], [START_REF] Cartwright | The number of eigenvalues of a tensor[END_REF], [START_REF] Draisma | The Euclidean Distance Degree of an Algebraic Variety[END_REF], [START_REF] Draisma | Best rank-k approximations for tensors: generalizing Eckart-Young[END_REF], [START_REF] Oeding | Eigenvectors of tensors and algorithms for Waring decomposition[END_REF], [START_REF] Ottaviani | A Geometric Perspective on the Singular Value Decomposition[END_REF], [START_REF] Ottaviani | Asymptotics of degrees and ED degrees of Segre products[END_REF], [START_REF] Sodomaco | On the product of the singular values of a binary tensor[END_REF], [START_REF] Vannieuwenhoven | On Generic Nonexistence of the SchmidtEckartYoung Decomposition for Complex Tensors[END_REF] for a clearer picture of the topic.

A natural question to be posed is, given the singular tuples of a tensor t, which are all the tensors that admit such conguration of singular tuples? The answer for the matrix case is described by the singular value decomposition, where changing the singular values in the decomposition gives all the matrices with same singular tuples, this is described in Example 2.3. The problem for symmetric tensors was rst studied on [START_REF] Abo | Eigencongurations of tensors[END_REF] for the particular case of Sym d C 3 and d odd, later in [START_REF] Beorchia | Eigenschemes of ternary tensors[END_REF] the result obtained has been revisited for general d, and Beorchia, Galuppi and Venturello stated the theorem that we show next. We denote by ed X the ED-degree of the Veronese variety X. Let Σ n be the n-symmetric group of permutations, we denote by PV (n) = (PV ) n /Σ n the symmetric cartesian product such that the points are unordered, let Eig(f ) ⊂ PV (ed X ) be the set of eigentensors of a general polynomial f and q = x 2 0 + • • • + x 2 m the distance function in a basis of the vector space V .

Theorem (Beorchia-Galuppi-Venturello [START_REF] Beorchia | Eigenschemes of ternary tensors[END_REF]) Let V be a 3-dimensional vector space, let

τ : P Sym d V PV (ed X ) , f → Eig(f )
be the map that associates a general polynomial f to the set of its eigentensors. Then, if f ∈ P(Sym d V ) is a general polynomial, we obtain that

τ -1 (τ (f )) =    [f ], if d is odd; {[f + cq d 2 ]|c ∈ C}, if d is even.
Moreover, the image of τ has dimension

dim(Im(τ )) =    d+2 2 -1, if d is odd; d+2 2 -2, if d is even.
The approach utilised in the proof of this result was dicult to generalize to polynomials in more than three variables, so we opted for a dierent technique. We notice that we can decompose the map τ = ψ • ϕ into two parts, the rst map that we use is the projectivization of the linear map ϕ :

Sym d V → H 0 (Q(d -1)
), where Q is the quotient bundle and a global section s f associated to a polynomial f is dened by ϕ(f

) = s f = ∇f (x) x
; we allow an abuse of notation for simplicity and we denote the projectivization P(ϕ) also by ϕ. The second map ψ : P(H 0 (Q(d -1))) PV (ed X ) takes the zero locus of the section s f that is exactly the zero dimensional eigenscheme Eig(f ). With this approach we were able to generalize this result to polynomials in any number of variables. Theorem 1.1 Let V be a vector space of dimension m + 1. Let d ≥ 3 be an integer, and f ∈ P(Sym d V ) be a general polynomial. Let

τ : P Sym d V PV (ed X ) , f → Eig(f )
be the map that associates f to its eigentensors locus Eig(f ). Then

τ -1 (τ (f )) =    [f ], if d is odd; {[f + cq d 2 ]|c ∈ C}, if d is even.
Moreover, the image of the map τ has dimension

dim(Im(τ )) =    d+m d -1, if d is odd; d+m d -2, if d is even.
The next natural step is to understand what happens in the case of multisymmetric tensors. Altough several new technical lemmas are required, the approach to generalize this result is similar to the symmetric tensor case. Let X ⊂ P Sym

d 1 V 1 ⊗ • • • ⊗ Sym d k V k be
the Segre-Veronese variety, π i : X → PV i be the projection on the i-th coordinate and τ :

P Sym d 1 V 1 ⊗ • • • ⊗ Sym d k V k (PV 1 × • • • × PV k ) (ed X
) be the map that associates a multisymmetric tensor T to the its eigenscheme Eig(T ), i.e. the locus of its singular tuples. We construct the bundle

E = π * i Q i (d 1 , . . . , d i-1 , d i -1, d i+1 , . . . , d k )
and use the fact that the zero locus of a global section s T ∈ H 0 (E) associated to a multisymmetric tensor T is the singular tuple locus of T , as described in more details in both [START_REF] Draisma | Best rank-k approximations for tensors: generalizing Eckart-Young[END_REF] and [START_REF] Friedland | The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors[END_REF], to split the map τ = ψ • ϕ as in the symmetric tensor case, where here we consider the projectivization of ϕ :

Sym d 1 V 1 ⊗ • • • ⊗ Sym d k V k → H 0 (E) and ψ : P(H 0 (E)) → (PV 1 × • • • × PV k ) (ed X ) . Theorem 1.2 Let V 1 , . . . , V k be vector spaces of dimension m 1 + 1, . . . , m k + 1. Let d 1 , . . . , d k be positive integers, and T ∈ P Sym d 1 V 1 ⊗ • • • ⊗ Sym d k V k be a general tensor. Let τ : P Sym d 1 V 1 ⊗ • • • ⊗ Sym d k V k (PV 1 × • • • × PV k ) (ed X ) , T → Eig(T ),
be the map that associates a tensor T to its singular tuples locus Eig(T ). If k ≥ 3 and suppose that m l ≤ j =l m j whenever d l = 1, and for k = 2 we include the hypothesis that

(d 1 , d 2 ) = (1, 1), then τ -1 (τ (T )) =    [T ], if d i is odd for some i; {[T + cq d 1 2 1 ⊗ • • • ⊗ q d k 2 k ]|c ∈ C}, if d l is even for all l.
Moreover, the image of the map τ has dimension

dim(Im(τ )) =    k l=1 d l +m l d -1, if d i is odd for some i; k l=1 d l +m l d -2, if d l is even for all l.
The hypothesis of the triangular inequality m l ≤ i =l m i , that also appears in the description of the codimension of the critical space in [START_REF] Draisma | Best rank-k approximations for tensors: generalizing Eckart-Young[END_REF], could seem unnatural at rst glance, but this condition can be understood in terms of the dual variety of the Segre-Veronese variety, as described in the next theorem.

Theorem (Gelfand-Kapranov-Zelevinsky, Corollary 5.11, [START_REF] Israel | Discriminants, Resultants, and Multidimensional Determinants[END_REF]) Suppose X l for l = 1, . . . , k is the projective space P m l in the Veronese embedding into P(Sym d l V l ). Then the dual variety

(X 1 × • • • × X k )
∨ is an hypersurface if and only if m l ≤ i =l m i hold for all l such that d l = 1.

The case when we have that d l = 1 and the equality on the triangular inequality m l ≤ i =l m i holds is called boundary format case.

The article is divided into three parts. Section two is a preliminaries section, where we introduce with more details the singular tuples and we give the cohomological tools that are necessary for our results. In the third section we work on the symmetric tensor case and prove Theorem 1.1. In the nal section we analyse the multisymmetric tensor case and prove Theorem 1.2.
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2 Preliminaries

Eigentensors and singular tuples

We suggest both [START_REF] Landsberg | [END_REF] and [START_REF] Qi | Tensor Analysis: Spectral Theory and Special Tensors[END_REF] as references for a deeper understanding of the notions presented in this section.

Denition 2.1 Suppose f ∈ Sym d V is a symmetric tensor, i.e., an homogenous polynomial

and q = x 2 0 + • • • + x 2
m is a quadratic form on V in coordinates for a choice of basis of V , the eigenvectors of f are dened in [START_REF] Qi | Eigenvalues and invariants of tensors[END_REF] as the vectors x ∈ V such that f (x d-1 ) = λx, for λ ∈ C. In other words, we can dene the eigentensors of f as the xed points of ∇f = ∂f ∂x 0 (x), . . . , ∂f ∂xm (x) , the gradient vector, i.e. the solutions of the equation ∇f (x) = λx.

In conclusion, the equations of the locus of eigentensors Eig(f ) is determined by the 2 × 2-

minors of the matrix ∂f ∂x 0 . . . ∂f ∂xm x 0 . . . x m . Denition 2.2 Let T ∈ Sym d 1 V 1 ⊗ • • • ⊗ Sym d k V k be a tensor and q i = x 2 0 + • • • + x 2 m i a
quadratic form on V i for a choice of basis for each V i . We can dene the singular tuples of T as the tuple (v 1 , . . . , v n ), such that each attening

T i : Sym d 1 V 1 ⊗ • • • ⊗ Sym d i -1 V i ⊗ • • • ⊗ Sym d k V k → V i satises T i (v d 1 1 ⊗ • • • ⊗ v d i -1 i ⊗ • • • ⊗ v d k k ) = λv i .
We dene the zero dimensional scheme Eig(T ) to be the locus of singular tuples of T . Example 2.3 The relation between a given set of singular tuples and the matrices that have such singular tuple locus conguration is described by the Singular Value Decomposition, since the singular tuples of a matrix are given by the rst columns of the orthogonal matrices on the decomposition. We briey describe it next. Let A ∈ Hom(Y, W ), where Y, W are vector spaces of dimensions dim Y = n, dim W = m, we recall that the singular value decomposition tells us that A = U diag(σ 1 , . . . , σ min{m,n} )V t . If we let u i and v i be the columns of U and V , as described by Ottaviani and Paoletti in [START_REF] Ottaviani | A Geometric Perspective on the Singular Value Decomposition[END_REF], we have that for 1 ≤ i ≤ m = min{m, n}, Av i = u i and A t u i = v i , in other words, the pairs

(u i , v i ) are the singular pairs of A. Let τ : Hom(Y, W ) → (Y × W ) (m) , A → Eig(A)
, where Eig(A) is the set consisting of the singular tuples of A. Therefore, given a singular tuple locus

Z = {(u i , v i )} m i=1
, and orthogonal matrices U, V such that the rst m columns are u i and v i we have that

τ -1 (Z) = {B ∈ Hom(Y, W )|B = U diag(σ 1 , . . . , σ m )V t , σ i ∈ C}. Let V 1 , . . . , V k be vector spaces of respective dimension m 1 + 1, . . . , m k + 1, and let T ∈ Sym d 1 V 1 ⊗ • • • ⊗ Sym d k V k . Denition 2.4 Let X = PV 1 × • • • × PV k be the Segre-Veronese variety of rank 1 tensors embedded with O(d 1 , . . . , d k ) in P(Sym d 1 V 1 ⊗ • • • ⊗ Sym d k V k ).
Let π l : PX → PV l be the projection on the l-th component, and let Q l be the quotient bundle, whose bers over a point

v l ∈ V l are V l / v l . Let E l = π * l Q l ⊗ O(d 1 , . . . , d l -1, . . . , d l ), we can construct the vector bundle E = k l=1 E l .
A tensor T ∈ P(Sym

d 1 V 1 ⊗ • • • ⊗ Sym d k V k ) leads to a global section of E l which over a point v = (v 1 , . . . , v k ) is the map sending v to the natural pairing of f with (v d 1 1 ) • • • (v d l -1 l ) • • • (v d k k ) modulo v l , that is a vector in V l / v l .
The reason to consider this particular bundle is that in [START_REF] Draisma | Best rank-k approximations for tensors: generalizing Eckart-Young[END_REF] and [START_REF] Friedland | The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors[END_REF] it is proven that if we consider the section s T associated to a multisymmetric tensor T , then the zero locus Z(s T ) is equal to the locus of singular tuples of T , that is Z(s T ) = Eig(T ). In particular Friedland and Ottaviani [START_REF] Friedland | The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors[END_REF] used this fact to compute the number of singular tuples of a general tensor as the top Chern class of the bundle E in Theorem 2.6.

Denition 2.5

The ED-degree of a subvariety X ⊂ P(Sym

d 1 V 1 ⊗ • • • ⊗ Sym d k V k ) is dened
as the number of critical points of the function d T : X → R, where d T is the distance function between a general tensor T ∈ P(Sym

d 1 V 1 ⊗ • • • ⊗ Sym d k V k ) and X.
We consider the natural extension of this function to the complex numbers for our porposes.

The ED-degree has been studied in [START_REF] Draisma | The Euclidean Distance Degree of an Algebraic Variety[END_REF], and we suggest it as a reference for a better comprehension. In particular, if we consider the variety X to be the Segre-Veronese variety, we have that the ED-degree counts the number of singular tuples of a general tensor. We are going to denote the ED-degree of the Segre-Veronese variety by ed X . This particular ED-degree has been studied before in [START_REF] Friedland | The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors[END_REF], where the next theorem is presented.

Theorem 2.6 ([9], Theorem 15) Let V 1 , . . . , V k be vector spaces of dimension m 1 +1, . . . , m k + 1.
The number of singular tuples of a general tensor T ∈ P(Sym

d 1 V 1 ⊗ • • • ⊗ Sym d k V k ), is equal to the coecient of t m 1 1 • • • t m k k in the polynomial k l=1 tl m l +1 -t m l +1 l tl -t l where tl = ( k i d i t i ) -t l .
Example 2.7 Assume that d i = m i = 1, for all i = 1, . . . , k, in this setting we can compute using the previous formula that the ED-degree of the Segre variety X is k!.

Example 2.8 Furthermore, the number of singular tuples stabilises at the boundary format case, that is, suppose that d k = 1 and N = k-1 i=1 m i ≤ m k , then the number of singular tuples of a general tensor is constant as m k increases.

Consider the map

τ : P Sym d 1 V 1 ⊗ • • • ⊗ Sym d k V k P(V 1 ) × • • • × P(V k ) (ed X )
that for a general tensor T ∈ Sym

d 1 V 1 ⊗ • • • ⊗ Sym d k V k it
associates its singular tuples locus Eig(T ). Studying this map is dicult in general, but decomposing it through the bundle E is advantageous. We decompose τ in the following manner

P Sym d 1 V 1 ⊗ • • • ⊗ Sym d k V k P(V 1 ) × • • • × P(V k ) (ed X ) P(H 0 (E)) ϕ τ ψ
In this diagram the map ϕ associates a tensor T to the global section s T described before in the denition 2.4. The map ψ sends a global section s ∈ H 0 (E) to its zero locus Z(s), in particular the codomain is well dened for a section s T when the singular tuples of T consists of exactly ed X points.

Example 2.9 Notice that for k = 1 we obtain the symmetric tensor case, in such case E is simply equal to Q(d -1) and the map ϕ can be described as

ϕ : Sym d V → H 0 (Q(d -1)), f → s f = ∇f (x) x
The other interesting case is when d l = 1 for all l = 1, . . . , k. In such case, X is the Segre variety and the map ϕ can be described by means of the attenings of the tensor T , that is

ϕ : V 1 ⊗ • • • ⊗ V k → k l=1 Hom(V * 1 ⊗ • • • ⊗ V * l ⊗ • • • ⊗ V * k , V l ), T → (T 1 , . . . , T k );
In our notation T l represents the l-attening of T, namely

T l : V 1 ⊗ • • • ⊗ Vl ⊗ • • • ⊗ V k → V * l .
In the general case X is the Segre-Veronese variety; this is the case of multisymmetric tensors. The map ϕ in this case is a combination of the previous two, that is, in each l-th component the maps acts as the contraction in the l-th coordinate and the evaluation in the others.

Cohomological ingredients

We recall the next classical concepts and results that will be utilised in the course of this article, we suggest [START_REF] Weyman | Cohomology of Vector Bundles and Syzygies[END_REF] for more details.

Theorem (Künneth's formula) Let B i be vector bundles on PV i , i = 1, . . . , k and q a nonnegative integer, then

H q k i=1 π * i B i ∼ = q 1 +•••+q k =q i H q i (B i ).
where the sum goes over all tuples of non-negative integers summing q.

Let G be a semisimple simply connected group, let P ⊂ G be a parabolic subgroup. Let Φ + be the set of positive roots of G. Let δ = λ i be the sum of all the fundamental weights and let λ be a weight. Let E λ be the homogeneous bundle arising from the irreducible representation of P with highest weight λ and ( , ) be the Killing form.

Denition 2.10 The weight λ is called singular if there exists a root α ∈ Φ + such that (λ, α) = 0. Otherwise, if (λ, α) = 0 for all the roots α ∈ Φ + , we say that λ is regular of index p if there exists exactly p roots α 1 , . . . , α p ∈ Φ + such that (λ, α) < 0.

Theorem (Bott) If δ + λ is singular, then H i (G/P, E λ ) = 0 for all i. If δ + λ is regular of index p, then H i (G/P, E λ ) = 0 for i = p.
3 Symmetric Tensors Lemma 3.1 Let V be a vector space of dimension m + 1,

q = x 2 0 + • • • + x 2
m a quadratic form on V , and d a positive integer. If d is odd, the map ϕ :

Sym d V → H 0 (Q(d -1)) is injective. If d is even, ϕ has a 1-dimensional kernel, namely, ker ϕ = q d/2 .
Proof. We recall that Sym d V splits as SO(V )-modules as

Sym d V = H d ⊕ H d-2 ⊕ • • • ⊕    H 1 if d is odd H 0 if d is even, where H d-2j = {f q j |f is an harmonic polynomial of degree d -2j} is an irreducible SO(V )- module.
Therefore we can restrict ϕ to each H j , in such way we have ϕ :

H j → W j ⊂ H 0 (Q(d -1)),
where W j = Im(ϕ)| H j . This map is either an isomorphism or zero by Schur's lemma. Let j be such that d -2j ≥ 1, then we have that for g = (x 0 + ix 1 ) d-2j q j ∈ H d-2j it is mapped by ϕ to s g = ∂g ∂x 0 . . . ∂g ∂xm x 0 . . . x m that has not rank 1 everywhere. Indeed

∂g ∂x 0 x 1 - ∂g ∂x 1 x 0 = (d -2j)(x 0 + ix 1 ) d-2j-1 x 1 -ix 0 ≡ 0.
On the other hand, H 0 = {λq

d 2 |λ ∈ C}.
In such case we have for an element of H 0 that

∂λq d 2 ∂x i x j - ∂λq d 2 ∂x j x i = λ(2x i x j q d 2 -1 -2x i x j q d 2 -1 ) = 0, ∀ i, j ∈ {0, . . . , m}.
We conclude that if d is odd, the map ϕ is an isomorphism in each irreducible representation; if d is even, it is an isomorphism in each of them, with the exception of H 0 , as we wished.

Lemma 3.2 Let Z be the zero locus of a section in Q(d -1), and assume that d ≥ 3. Then the natural map from the Koszul complex

H 0 (End Q) → H 0 (I Z ⊗ Q(d -1)
) is an isomorphism of 1-dimensional spaces.

Proof. Indeed, consider the Koszul complex

0 ϕm --→ m Q * (m(1 -d)) ϕ m-1 ---→ . . . ϕ 2 -→ 2 Q * (2(1 -d)) → Q * (1 -d) → I Z → 0, tensoring it by Q(d -1) we obtain the exact sequence 0 → m Q * ⊗ Q((m -1)(1 -d)) → • • • → 2 Q * ⊗ Q(1 -d) → End(Q) → I Z ⊗ Q(d -1) → 0.
Let F r to be dened as the quotient F r = r Q * (r(1 -d))/ Im ϕ r . Thus we obtain short exact sequences

0 → F 2 → Q * (1 -d) → I Z → 0 0 → F r+1 → r Q * (r -rd) → F r → 0, for r = 2, . . . , m.
Tensoring the second short exact sequence by Q(d -1) we obtain the long exact sequence of cohomologies

• • • → H r ( r Q * ⊗ Q((r -1)(1 -d))) → H r-2 (F r ⊗ Q(d -1)) → H r-1 (F r+1 ⊗ Q(d + 1)) → → H r-1 ( Q * ⊗ Q((r -1)(1 -d))) → H r-1 (F r ⊗ Q(d -1)) → H r (F r+1 ⊗ Q(d + 1)) → . . . We have that r Q * ⊗ Q((r -1)(1 -d)) = m-r Q ⊗ Q((r -1)(1 -d) -1), so if we have that r ≥ 2, we obtain that H r-2 ( m-r Q ⊗ Q((r -1)(1 -d) -1)) = 0. Also, if d ≥ 3, H r-1 ( m-r Q ⊗ Q((r -1)(1 -d) -1)) = 0.
This means that

H 0 (F 2 ⊗ Q(d -1)) ∼ = H 1 (F 3 ⊗ Q(d -1)) ∼ = . . . ∼ = H m-1 (F m+1 ⊗ Q(d -1)) = 0 H 1 (F 2 ⊗ Q(d -1)) ⊂ H 2 (F 3 ⊗ Q(d -1)) ⊂ • • • ⊂ H m (F m+1 ⊗ Q(d -1)) = 0
Applying the long exact sequence of cohomologies to

0 → F 2 ⊗ Q(d -1) → End(Q) → I Z ⊗ Q(d -1) → 0
gives the desired result.

We would like to add a remark that, altough already utilised, the vanishing of the coho- Then s f = αs g for some α ∈ C * .

mology H q ( r Q * ⊗ Q(t)) is
Proof. The hypothesis that Z(s f ) = Z(s g ) implies that s f ∈ H 0 (I Z(sg) ⊗ Q(d -1)). Since this space is one-dimensional we have that s f = αs g .

We conclude this section observing that since τ = ψ • ϕ, then the Theorem 1.1 is obtained just as the combinination of the Lemma 3.1 with the Corollary 3.3.

Multisymmetric Tensors

Now that the pre-image of the map τ is completely analysed for symmetric tensors, we can go through to the next step, that is, we consider the Segre-Veronese variety Sym

d 1 V 1 ⊗ • • • ⊗ Sym d k V k and we anylise the map τ : P Sym d 1 V 1 ⊗• • •⊗Sym d k V k → P(V 1 )ו • •×P(V k ) (ed X )
that associates a tensor T to its singular tuples Eig(T ). We begin the multisymmetric case with the generalization of the Lemma 3.1 to Segre-Veronese varieties. Theorem 4.1 Let V 1 , . . . , V k be vector spaces of dimension m 1 + 1, . . . , m k + 1, and we recall

that q i = x 2 0 + • • • + x 2
m i is the quadratic form on V i that denes the distance function for i = 1 . . . , k. We consider the map

ϕ : Sym d 1 V 1 ⊗ • • • ⊗ Sym d k V k → H 0 (E),
where E is dened in the Denition 2.4. Then ϕ is injective if at least one d i is odd. In the case that all the d i are even, we have that the kernel of ϕ is one dimensional and it is given by

ker ϕ = q d 1 2 1 ⊗ • • • ⊗ q d k 2 k
Proof. Since we have that

Sym d l V l ∼ = H d l ⊕ H d l -2 ⊕ • • • ⊕    H 1 if d l is odd H 0 if d l is even, and that each H d j -2t j is an irreducible SO(V l )-representation, then also H d 1 -2t 1 ⊗• • •⊗H d k -2t k is an irreducible SO(V 1 ) × • • • × SO(V k )
-representation, we need to show that ϕ is non zero when d j -2t j > 0 for at least one j, and that it is zero when we have d j -2t j = 0 for all j.

Indeed, in the rst case we consider the element

g = g 1 ⊗ • • • ⊗ g k , g j = (x 0 + ix 1 ) k-2j q t j , then ϕ(g) = s g = (s g 1 ⊗ 1) ⊕ • • • ⊕ (1 ⊗ s g k ),
where s g j ⊗ 1 ∈ E j is non zero as seen before in the symmetric tensor case. Therefore by Schur's lemma we have that in this restriction the map is an isomorphism, thus if d j -2t j > 0 for some j, s g does not belong to the kernel of ϕ.

On the other hand, if all d j -2t j = 0, then g j = cq d j 2 , where c ∈ C, then s g j = 0, therefore summing all together we obtain that s g = 0, so by Schur's Lemma the restriction of ϕ on this subrepresentations is the zero map, as wished.

With this result we understand the rst map ϕ in the decomposition τ = ψ • ϕ. Now we can aim to understand better the map ψ, we will show that, under the hypothesis of Theorem 1.2, when two section s, t have the same image under the map ψ, where s, t are sections coming from tensors S, T ∈ Sym

d 1 V 1 ⊗ • • • ⊗ Sym d k V k , then s = λt.
The rst step to achieve this goal is to prove a similar result to Lemma 3.2 for the case of multisymmetric tensors, in order to do that we prove a series of technical lemmas.

Lemma 4.2 Let

E * = k l=1 Q * l (-d 1 , . . . , -d l + 1, . . . , -d k ), then, for j = 1, . . . , k, then r E * ⊗ Q j (d 1 , . . . , d j -1, . . . , d k ) = = r 1 +•••+r k =r k l=1,l =j Ω r l P m l (2r l -d l (r -1)) ⊗ m j -r j Q j ⊗ Q j (-d j (r -1) + r j -2).
Proof. We have that

E * = Q * l (-d 1 , . . . , -d l + 1, . . . , -d k ), thus, r E * = r 1 +•••+r k =r k l=1 r l Q * l -r l d 1 , . . . , -r l (d l -1), . . . , -r l d k ) ,
by separating the terms we obtain that r

E * = r 1 +•••+r k =r k l=1 r l Q * l (-rd l + r l ).
We now tensor it by Q j (d 1 , . . . , d j -1, . . . , d k ), so we have that r E * ⊗Q j (d 1 , . . . , d j -1, . . . , d k )

is equal to

r 1 +•••+r k =r k l=1,l =j r l Q * l (-rd l + r l + d l ) ⊗ r j Q * j ⊗ Q j (-rd j + r j + d j -1)
.

We now use the facts that Ω r l (r l ) = r l (Ω 1 (1)), Ω 1 (1) = Q * , and r j Q * j = m j -r j Q j (-1),

to obtain that r E * ⊗ Q j (d 1 , . . . , d j -1, . . . , d k ) is equal to r 1 +•••+r k =r k l=1,l =j Ω r l P m l (2r l -d l (r -1)) ⊗ m j -r j Q j ⊗ Q j (-d j (r -1) + r j -2). Lemma 4.3 (Bott's Theorem) The cohomology H q ( m j -r j Q j ⊗ Q j (t)
) is non vanishing for the following cases

H q m j -r j Q j ⊗ Q j (t) = 0, if                      q = 0, t ≥ 0, q = r j -1, t = -r j , 1 ≤ r j ≤ m j , q = r j , t = -r j -1, 0 ≤ r j ≤ m j -1, q = m j -1, t = -m j -1, 0 ≤ r j ≤ m j -1, q = m j , t ≤ -m j -2.
(

) 1 
Proof. The associated weight will be calculated in three cases depending on the r j ; the cases are r j = 0, 1 ≤ r j ≤ m j -1 and r j = m j .

For the case 1 ≤ r j ≤ m j -1, we have that m j -r j Q j ⊗ Q j (t) is not irreducible, therefore we have that the associated weight λ is given by two parts

λ = λ (1) ⊕ λ (2) .
where λ (1) = λ r j +1 + λ m j + tλ 1 and λ (2) = λ r j + tλ 1 .

For λ (1) we have that

(λ (1) + δ, α 1 + • • • + α s ) =          s + t if s ≤ r j , s + t + 1 if r j + 1 ≤ s ≤ m j -1, s + t + 2 if s = m j .
This implies the following cases:

1. t ≥ 0, then index 0.

2. -1 ≥ t ≥ -r j , then it is singular (s = -t gives the vanishing).

3. If t = -r j -1, then index r j .

4. If -r j -2 ≥ t ≥ -m j , then it is singular (s = -t -1 gives the vanishing).

5. if t = -m j -1, then index m j -1.

6. if t = -m j -2, it is singular (s = m j ). 7. if t ≤ -m j -3, then index m j .
For λ (2) we have that

(λ (2) + δ, α 1 + • • • + α s ) =    s + t if s ≤ r j -1, s + t + 1 if s ≥ r j .
That implies the following cases:

1. If t ≥ 0, index 0.

2. If -1 ≥ t ≥ -(r j -1), singular for s = -t.

3. If t = -r j , index r j -1.

4. If -r j -1 ≥ t ≥ -m j -1, singular for s = -t -1. 5. If t ≤ -m j -2, index m j .
For r j = m j we have Q j (t), therefore the associated weight λ is λ = λ m j + tλ 1 , thus we have

(λ + δ, α 1 + • • • + α s ) =    s + t if s ≤ m j -1, s + t + 1 if s = m j .
This implies the following cases 1. If t ≥ 0, we have index 0.

2. If -1 ≥ t ≥ -m j + 1, then it is singular for s = -t.

3. If t = -m j , then index m j -1.

4. If t = -m j -1, then it is singular for s = m j .

5. If t ≤ -m j -2, then index m j .

The nal case is when r j = 0, then we have Q j (t + 1) and the associated weight λ is λ m j + (t + 1)λ 1 , therefore

(λ + δ, α 1 + • • • + α s ) =    s + t + 1 if s ≤ m j -1, s + t + 2 if s = m j .
This implies the following cases 1. If t ≥ -1, we have index 0.

2. If -2 ≥ t ≥ -m j , then it is singular for s = -t -1. 3. If t = -m j -1, then index m j -1. 4. If t = -m j -2, then it is singular for s = m j . 5. If t ≤ -m j -3, then index m j . Lemma 4.4 (Bott's Theorem) H q Ω r l (t) = 0 if          q = 0, t > r l q = r l , t = 0 q = n, t < r l -n (2) 
Lemma 4.5 Let m l = dim PV l and k ≥ 3. Suppose that m l ≤ i =l m i holds for every l such that d l = 1. Let r ≥ 2 be an integer, q 1 , . . . , q k be non negative integers such that q l ≤ r -1, and let r 1 , . . . , r k be non negative integers such that r l = r, then k l=1,l =j

H q l (Ω r l P m l (2r l -d l (r -1))) H q j m j -r j Q j ⊗ Q j (-d j (r -1) + r j -2) = 0,
for every j ∈ {1, . . . , k}. Furthermore, if k = 2 and we add the hypothesis that (d 1 , d 2 ) = (1, 1) the result still holds.

Proof. Suppose that the cohomology of the tensor product is non vanishing. We x that the index j will associated to the unique case coming from the cohomology table [START_REF] Abo | Eigenschemes and the Jordan canonical form[END_REF], if not said otherwise.

Not all the cases can come from the third, fourth or fth line of (1) and from the second and third lines of [START_REF] Abo | Eigencongurations of tensors[END_REF]. Suppose that one case comes from either the third, fourth or fth lines of [START_REF] Abo | Eigenschemes and the Jordan canonical form[END_REF], and all the remaining cases come from the second and third line [START_REF] Abo | Eigencongurations of tensors[END_REF], this means that q l ≥ r l , and we have that r > q = q l ≥ r l = r.

So at least one cohomology case must come from the other lines in [START_REF] Abo | Eigenschemes and the Jordan canonical form[END_REF] or [START_REF] Abo | Eigencongurations of tensors[END_REF].

No case can come from the rst line of [START_REF] Abo | Eigenschemes and the Jordan canonical form[END_REF]. Suppose that we have that the only case of (1) comes from the rst line, this means that -d j (r -1) + r j -2 ≥ 0, so we obtain that

r j ≥ (r -1)d j + 2 > d j (r -1) + 1 ≥ (r -1) + 1 = r, that is r j > r, a contradiction.
No case can come from the st line of [START_REF] Abo | Eigencongurations of tensors[END_REF]. Suppose that we have one case coming from the rst line of (2) for a xed l, we have that r l > d l (r -1), then the only possiblity is that r l = r and all other r i = 0, for i = l and d l = 1. In such case, for i = l we have that the other cohomologies can not be on the rst line, otherwise it would be 0. Let j be the only case coming from (1), then for i = l, j we have that it can not be on the second line of (2), because 0 = r i = q i = -d i (r -1) and r -1, d i > 0. For j we have that the second line of (1) does not apply since q j = r j -1 = -1 and the third line of (1) implies 0 = q j = r j and -d j (r -1) -2 = -1, then d j (r -1) = -1, that is a contradiction since both terms on the left side are non negative. So in those cases we have the vanishing of the cohomology, therefore we have that one case is either on the fourth or fth line of [START_REF] Abo | Eigenschemes and the Jordan canonical form[END_REF] and all the remaining cases are on the third line of [START_REF] Abo | Eigencongurations of tensors[END_REF]. If one case is on the fth line of [START_REF] Abo | Eigenschemes and the Jordan canonical form[END_REF] and all the others on the third line of (2), we have that q i = m i and q j = m j for i = l. This means

m l ≥ r l = r > i =l q i = i =l m i ,
this implies that m l > i =l m i , that is a contradiction since d l = 1. The case coming from [START_REF] Abo | Eigenschemes and the Jordan canonical form[END_REF] can not be on the fourth line of [START_REF] Abo | Eigenschemes and the Jordan canonical form[END_REF], and all the others coming from the third line of [START_REF] Abo | Eigencongurations of tensors[END_REF] either, because in such case we have that -d j (r -1)-2 = -m j -1, that is, m j -1 = d j (r -1), but since r > i =l q i = i =l,j (m i ) + m j -1 ≥ m j , we have that r > m j , and the equality can not be satised since d j ≥ 1. In the case k = 2, notice that r ≥ m j and since d l = 1, we must have d j ≥ 2. Again the wished equality m j -1 = d j (r -1) can not hold. This implies that no cohomology can come from the rst line of [START_REF] Abo | Eigencongurations of tensors[END_REF].

No case can come from the second line of [START_REF] Abo | Eigenschemes and the Jordan canonical form[END_REF]. The last remaining possibility is to have the only case of (1) coming from the second line. In such case we notice that we have q j = r j -1 and no case on (2) comes from the rst line, thus q l ≥ r l for l = j. This, together with the fact that k i=1 q l < r, implies that q l = r l for l = j. We have that -2(r j -1) = -d j (r -1), therefore r j = r and d j = 2, or r j < r and d j = 1.

In the rst case we have that r j = r implies that r i = 0 for every i = j. This means that we have Ω r i (2r i -d i (r -1)) = O P m i (-d i (r -1)). Since -d i (r -1) < 0, we have that the cohomology H q i (O P m i (-d i (r -1))) does not vanish just for q i = m i , but since m i > 0, we have that q = i =j q i + q j = i =j q i + r -1 ≥ r, therefore our cases of interest have vanishing cohomology.

The second possibility for this cohomology to be non vanishing is that we have r j < r and d j = 1. Suppose that one of these non vanishing cohomologies comes from the second line of (2) for some l. From the conditions on (1) and (2) respectively, we have that 2(r j -1) = r -1 and 2r l -d l (r -1) = 0, since d l ≥ 1 this implies that

r j = r 2 + 1 2 , r l ≥ r 2 - 1 2 
,
therefore r j + r l ≥ r. Since k is at least 3, we have another case i, that comes either from the second or third line of (2), and we must have r i = 0. If it is on the second line we have that 2r i -d i (r -1) = 0, thus d i (r -1) = 0, that is a contradiction. It can not be on the third line either, since r i = m i = 0 is also a contradiction. Otherwise, in case k = 2, we assume, without loss of generality, that j = 1 and l = 2, then d 1 = 1 and d 2 ≥ 2, thus r 2 ≥ r -1, so we obtain

r 1 + r 2 ≥ r 2 + 1 2 + r -1 ≥ r + 1 2 > r,
that is a contradiction. Therefore, no case can come from the second line on [START_REF] Abo | Eigencongurations of tensors[END_REF].

This means that we have that all the other cases must come from the third line of (2), that is q l = m l = r l for l = j. We notice that r j > r 2 implies that r j > l =j r l , thus

m j ≥ r j > l =j r l = l =j m l ,
this is a contradiction since d j = 1.

Corollary 4.6 On the hypothesis of Lemma 4.5 we have that

H q (( r E * ) ⊗ E) = 0.
Theorem 4.7 On the hypotesis of Lemma 4.5, the induced homomorphism

E * ⊗ E → I Z ⊗ E
induces an isomorphism at the level of global sections, where Z is the zero locus of a section s ∈ E.

Proof. We have the following Koszul complex

0 = N +1 E * ϕ N --→ N E * ϕ N -1 ---→ . . . ϕ 2 -→ 2 E * → E * → I Z → 0.
Let F r to be dened as the quotient F r = r E * / Im ϕ r . Thus we obtain short exact sequences

0 → F 2 → E * → I Z → 0 0 → F r+1 → r E * → F r → 0, for r = 2, . . . , N .
Tensoring the second short exact sequence by E, we obtain the long exact sequence of cohomologies

• • • → H r-2 ( r E * ⊗ E) → H r-2 (F r ⊗ E) → H r-1 (F r+1 ⊗ E) → → H r-1 ( r E * ⊗ E) → H r-1 (F r ⊗ E) → H r (F r+1 ⊗) → . . .
By the previous lemma we have that both terms on the left are zero, therefore we have that

H r-2 (F r ⊗ E) ∼ = H r-1 (F r+1 ⊗ E), H r-1 (F r ⊗ E) ⊂ H r (F r+1 ⊗ E).
This implies that

H 0 (F 2 ⊗ E) ∼ = . . . ∼ = H N -1 (F N +1 ⊗ E) = 0 H 1 (F 2 ⊗ E) ⊂ • • • ⊂ H N (F N +1 ⊗ E) = 0.
If we consider now the long exact sequence of cohomologies from 0

→ F 2 ⊗ E → E * ⊗ E → I Z ⊗ E → 0, we obtain H 0 (F 2 ⊗ E) → H 0 (E * ⊗ E) → H 0 (I Z ⊗ E) → H 1 (F 2 ⊗ E),
since the end terms are zero, obtain the desired isomorphism.

To make a comparison with the symmetric case, our next objective is to prove the extension of Corollary 3.3 to the multisymmetric case. That is, we will show if two sections s, t, that arise from the respective tensors S, T ∈ Sym

d 1 V 1 ⊗ • • • ⊗ Sym d k V k ,
have the same image under ψ, that is, we have the equality of the zero locus Z(s) = Z(t), then s = λt.

Lemma 4.8 Let

E i = π * i Q i (d 1 , . . . , d i -1, . . . , d k ). If dim PV j ≥ 2 for all j, then H 0 (Hom(E, E j )) = H 0 (Hom(E j , E j )) = C.
Moreover, if we assume that i = j, then H 0 (Hom(E i , E j )) = 0.

Proof. For the second equality we have that

Hom(E i , E j ) = π * i Q ∨ i ⊗ π * j Q j (0, . . . , 0, 1, 0, . . . , 0, -1, 0, . . . , 0) = O PV 1 ⊗ • • • ⊗ π * i Q ∨ i (1) ⊗ • • • ⊗ π * j Q j (-1) ⊗ • • • ⊗ O PV k .
We notice that, for all i, we have that H 0 (Q

∨ i (1)) = H 0 (Ω 1 (2)) = 0. Meanwhile, if dim PV j ≥ 2, then H 0 (Q j (- 1 
)) = 0, thus by the Künneth's formula we have that H 0 (Hom(E i , E j )) = 0.

On the other hand,

Hom(E j , E j ) = O PV 1 ⊗ • • • ⊗ π * j (Q * j ⊗ Q j ) ⊗ • • • ⊗ O PV k = Hom(Q j , Q j ),
since the bundle Q j is simple we obtain the desired result.

Lemma 4.9 Let ρ ∈ End(H 0 (E)) be a endomorphism of H 0 (E), suppose that f, g ∈

Sym d 1 V 1 ⊗ • • • ⊗ Sym d k V k are tensors such that ρ(s f ) = ρ(s g ), then s f = λs g for λ ∈ C.
Proof. Let I 1 be the set of indices such that dim PV i = 1 and I 2 be the set of indices such that dim PV i ≥ 2. By the previous lemma, we have that H 0 (Hom(E i , E j )) = 0, whenever j ∈ I 2 , that is, no map can act there besides its own endomorphism. Now we consider a section s f coming from a tensor f ∈ Sym

d 1 V 1 ⊗ • • • ⊗ Sym d k V k .
We recall that the map ϕ associates f to the diagonal map of its attenings in each coordinate l, that is, f :

Sym d 1 V 1 ⊗ Sym d l -1 V l ⊗ • • • ⊗ Sym d k V k → V l .
This means that ϕ(f ) = s f can be interpreted as the diagonal element s f = (f, . . . , f ), where f in the l entry of this vector means the section of E l corresponding to f . Suppose that the rst l indices are in I 1 and the others in I 2 . Applying ρ to ϕ(f ) we obtain that ρ(ϕ(f )) = (M 1 (f ), . . . , M l (f ), λ l+1 f, . . . , λ k f ) = (g, . . . , g) = s g ,

where g ∈ Sym d 1 V 1 ⊗ • • • ⊗ Sym d k V k
is a tensor, thus from the previous lemma we have that all the maps λ i must be multiplication by scalars, this means that λf = g, for some λ ∈ C. It remains the case when I 2 = ∅. In such case we notice that

Hom(E i , E j ) = (0, . . . , 0, Q * i (1), 0, . . . , 0, Q j (-1), 0, . . . , 0); since the dimension of each PV i is 1, we have Q j (-1) = O P 1 , moreover Q * i (1) = Ω 1 P 1 (2) = O P 1 . We recall that both of those bundles are 1-dimensional at the level of global sections, that is, dim H 0 (O P 1 ) = 1, therefore dim H 0 (Hom(E i , E j )) = 1. This implies that if ρ(s g ) = s f , then s f = λs g is the only possible image.

Combining the previous results together, we obtain the next theorem. Theorem 4.10 Let S, T ∈ Sym

d 1 V 1 ⊗ • • • ⊗ Sym d k V k
be two general tensors. Assume that m l ≤ i =l m i holds for every l such that d l = 1, k ≥ 3, and that m j ≥ 1 for all j. Let s, t ∈ E be the sections coming from the tensors, S and T , and assume that Z(s) = Z(t), then s = λt, for λ ∈ C * .

Additionally, if k = 2 and we also consider the hypothesis that (d 1 , d 2 ) = (1, 1), then the result still holds. Notice that, if we tried to add more columns to the second line, we would have a box of index 1 and a box of index 2 in the rst row, that is forbidden by the Littlewood-Richardson rule since they come from the same column. Similarly, if we tried to add more rows, we would have the same problem. Therefore those are all the possible λ. Let Γ = Γ (d l -2,1,0,...,0) ⊕ Γ (d l -4,1,0,...,0) ⊕ • • • ⊕    Γ (1,1,0,...,0) if d l is odd Γ (0,1,0,...,0) if d l is even and

H d l -2 = H d l -2 ⊕ H d l -4 ⊕ • • • ⊕    H 1 if d l is odd H 2 if d l is even.
We obtain that Res SL(m l ) SO(m l ) (Γ (d l -2,1,0,...,0) ) = H d l -2 ⊕ Γ, moreover Res SL(m l )

SO(m l ) (Sym d l -1 V l ⊗ V l ) = H d l -2 ⊕ Γ ⊕ H d l ⊕ H d l -2 ⊕ • • • ⊕    H 1 if d l is odd H 0 if d l is even
. Now we can compute the H 0 (Q(d l -1)), from the Euler exact sequence we have that it is given by the dierence Sym d l -1 V l ⊗ V l -Sym d l -2 V l , that is,

H 0 (Q(d l -1)) =H d l -2 ⊕ Γ ⊕ H d l ⊕ H d l -2 ⊕ • • • ⊕    H 1 if d l is odd H 0 if d l is even -H d l -2 ⊕ H d l -4 ⊕ • • • ⊕    H 1 if d l is odd H 0 if d l is even, therefore we obtain that, H 0 (Q(d l -1)) = H d l ⊕ Γ,
where H d l is the subrepresentation of the sections coming from tensors by the Lemma 3.1.

  carefully done in the next section on Lemma 4.3. We decide in favour of postponing those computations because the full usefulness of such cohomologies appears in the multisymmetric case. Corollary 3.3 Let f, g ∈ Sym d V be two general polynomials such that Z(s f ) = Z(s g ), d ≥ 3.

Proof. The Theorem 4.7 says that the map H 0 (End(E)) → H 0 (I Z ⊗ E) dened by ρ → ρ(s g ) is an isomorphism. This means that if s, t are two tensors such that Z(s) = Z(t), then there exists a morphism ρ ∈ End E such that ρ(t) = s.

Furthermore, from the Lemma 4.9 we obtain that s = λt.

With all those results in mind, we can conclude with a note that combining together Theorem 4.1 with the Theorem 4.10 we obtain the Theorem 1.2. This nishes the proof of the main results.

A remark on sections coming from tensors

We make a brief remark that the Lemma 4.9 does not mean that all the morphisms in End(E) are multiplication by scalars, since the map ϕ is not surjective in general. Indeed, for each space V l , we can compute what is the image of ϕ l :

We have the Euler exact sequence

Moreover we have an isomorphism

In terms of Young diagrams, Sym d l -2 V l has the representation and Sym

)) in terms of irreducible SO(m l )-representations by restricting the product Sym d l -1 V l ⊗V as SL(m l )-representations to SO(m l )-representations. Indeed, we have that as SL(m l )-representations

To compute the restriction of Γ (d l -2,1,0,...,0) we now utilise the fact that

, m l = 2t or 2t + 1, and δ = (δ 1 ≥ δ 2 ≥ • • • ≥ 0), with δ i even for all i. For more details about the restriction and Littlewood-Richardson coecients we suggest [START_REF] Fulton | Representation Theory: A First Course[END_REF].

In our setting λ = (d l -2, 1, . . . , 0) is represented as the Young tableux given by with d l -1 boxes in the rst line and 1 box on the second.

If δ = (0), the only possible tableaux for λ is the tableaux of λ itself, that is, λ = (d l -2, 1, 0, . . . , 0).

If δ = 2h, for h ≥ 1 and d l -2h -2 ≥ 0, then there are two other possibilities for λ, indeed λ = (d l -2h, 0, . . . , 0) or λ = (d l -2h -2, 1, 0, . . . , 0), indeed this results in