
HAL Id: hal-03193898
https://hal.science/hal-03193898

Submitted on 9 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ecole Temps Réel 2017 - Uniprocessor real-time
scheduling
Julien Forget

To cite this version:
Julien Forget. Ecole Temps Réel 2017 - Uniprocessor real-time scheduling. Doctoral. France. 2017.
�hal-03193898�

https://hal.science/hal-03193898
https://hal.archives-ouvertes.fr


École Temps Réel 2017
Uniprocessor real-time scheduling

Julien Forget
Univ. Lille, France

Email: julien.forget@univ-lille1.fr

Abstract—A real-time system is a computer system where it is
just as important to compute a correct value as it is to compute
this value at the right time. Such a system is usually modelled
as a set of tasks that must satisfy real-time constraints (periods
and deadlines mainly). Real-time scheduling consists in finding
a task execution order that satisfies all real-time constraints.

In this paper, we provide a brief overview of real-time schedul-
ing on uniprocessor systems. We present classic scheduling
policies and associated schedulability analyses. In addition, the
paper gives some background on the relation between the classic
real-time task model and dynamics of the modelled system. It
also emphasizes the role of data-dependencies, how they are
implemented and their impact on scheduling. [1], [2] have been
great sources of inspiration for this paper.

I. INTRODUCTION

A real-time system is a computer system subject to a set
of real-time constraints: not only does such a system need to
compute the correct values, it must do so in a timely manner.
For instance, let us consider the longitudinal flight control
system of an airplane, such as [3]. This system controls the
angle of the control surfaces of the plane based on the current
state of the plane and on the altitude required by the pilot.
An important real-constraint is that the time required for the
system to adjust the control surfaces in reaction to a pilot
order or to a gust of wind must respect a predefined delay,
in order to ensure the plane stability. Similar constraints can
be found in many other areas, such as for instance in assisted
driving systems in the automotive domain, in nuclear plant
surveillance systems, in video processing systems, ...

A real-time system is usually modelled as a set of tasks,
each with its own dedicated functionality and real-time con-
straints. Real-time scheduling consists in finding an execution
order for tasks, which satisfies all the task real-time con-
straints. This is a twofold problem. On one hand, we must
choose a scheduling policy capable of satisfying the real-
time constraints. General purpose scheduling policies (FIFO,
Round-Robin, etc) are not well-adapted to real-time systems,
since they usually focus on reducing the average response time
of processes. In a real-time system, what matters is that tasks
respect their real-time constraints in the worst-case. On the
other hand, real-time systems are usually critical, so developers
need a schedulability analysis, which ensures before execution
that, for a given scheduling policy, the resulting execution will
always respect the system real-time constraints.

In this paper, we focus on the scheduling of systems
executing on a single computation core. The paper first details
the classic way to model a real-time system (Section II). In
addition to providing usual definitions on task real-time char-
acteristics, it tries to relate these constraints to the dynamics of
the system, and also gives a brief overview on how real-time
tasks are usually implemented. Though the classic real-time
task model assumes independent tasks, tasks are actually often
related by data-dependencies. Section III discusses the mod-
eling and implementation of such dependencies. Scheduling
terminology and problem definition are provided in Section IV.
Main results on uniprocessor schedulability analysis are pro-
vided in Section V, for fixed-task priority scheduling, and in
Section VI, for fixed-job priority scheduling. Scheduling of
dependent tasks is presented in Section VII.

II. REAL-TIME TASKS

Real-time systems can be separated into two sub-classes:
event-driven systems and sampled systems. In an event-driven
system, the system waits for an input event to occur and
then computes its reaction. In a sampled system, the system
acquires its inputs at regular intervals of time and computes
its reaction for each sample of its inputs. While the event-
driven model is potentially more expressive, sampled sys-
tems are usually easier to analyze and their behaviour is
more predictable, especially concerning the real-time aspects.
Furthermore, in many event-driven systems, the time that
separates the occurrence of two events can be lower-bounded,
in which case the scheduling problem becomes quite similar
to that of sampled systems (see sporadic tasks below).

A. Real-time constraints

a) Period: A periodic task executes at regular intervals
of time, as defined by its period. The period of a task is chosen
as follows. On one hand, the period of a task must be below
some bound, related to the inertia and physical characteristics
of the device it controls. Above this value, the safety of the
device (e.g. the stability of the airplane) is not ensured. This
bound differs between the different physical devices of the
controlled system. For instance, the propulsion devices of
a space vehicle must be controlled very fast to ensure the
stability of the vehicle, while the position of its solar panels
can be controlled a little slower as a little energy loss has less
dramatic impact on the vehicle. On the other hand, the period



must be above some bound, below which the device will not be
able to apply the commands fast enough or may get damaged.
Of course, this lower bound also differs from one device to
another. The period is usually chosen as close to the upper
bound as possible, which spares unnecessary computations and
thus enables the use of less powerful hardware, reduces energy
consumption, and so on.

b) Deadline: The deadline of a task bounds the maxi-
mum time allowed between the task invocation and the task
completion. In many real-time systems, it is equal to the
task period, meaning that one invocation of a task must
complete before the next invocation of that task. In some
systems, the deadline can be lower than the period. While
this may, in rare cases, correspond to a constraint related
to the system dynamics, in most cases it is used as a way
to artificially influence the system schedule, because tasks
with shorter deadlines will usually be scheduled first (see
scheduling techniques for dependent tasks in Section VII for
instance). Systems where the deadline of a task can be higher
than its period are quite uncommon, though they have been
studied in the literature.

c) Offset: In some systems, offsets are associated to
tasks. Instead of releasing tasks simultaneously at system start-
up, tasks are released at the date specified by their offset. This
parameter is rarely related to the system dynamics but rather to
implementation concerns (again, see Section VII for instance).

d) WCET: Performing a schedulability analysis requires
the knowledge of the execution time of each task. Since the
exact execution time of a task can be very hard to predict,
an approximate worst-case execution time (WCET) is usually
considered. It is pessimistic, in the sense that actual execution
time might be lower, but safe, in the sense that the actual
execution time will definitely be lower. WCET is not a real-
time constraint per se, since we do not need to force a task
to execute for as long as its WCET. It is nonetheless essential
for system analysis.

e) Task model: We will use the following notations. A
real-time task is denoted τi(Ci, Ti, DiOi), where Ci is the
WCET of τi, Ti is its activation period, Di is its relative
deadline and Oi its offset. In this paper, we assume that
Di ≤ Ti and Oi ≥ 0, though more commonly it is assumed
that Di = Ti and Oi = 0.

We denote τi.k the kth (k ≥ 0) invocation, or job, of τi. For
periodic tasks, the job τi.k is released at time oi.k = Oi+kTi.
For sporadic tasks, we have oi.k ≥ Oi + kTi instead. In both
models, every job τi.k must be completed before its absolute
deadline di.k = oi.k +Di. In the following, we will focus on
periodic tasks. The hyperperiod of a task set, which we will
denote HP , is defined as the least common multiple of the
periods of the tasks.

Figure 1 illustrates task real-time parameters for a periodic
task τi(3, 6, 4, 0). Gray rectangles correspond to the execution
of τi, while hatched rectangles correspond to time intervals
during which the system is busy executing another task. τi.1
is preempted after it starts its execution to execute another task
(about preemption, see Section IV). τi.2 executes for less than

0 2 4 6 8 10 12 14 16

Fig. 1. Execution of a real-time task

the WCET (2 instead of 3). The jobs all respect the deadline
constraints.

B. Implementation

A real-time task is usually implemented using mechanisms
akin to threads, provided by the (Real-Time) Operating Sys-
tem. While the exact code is dependent on the target OS, the
global structure remains more or less the same. Algorithm 1
details the typical implementation of a periodic task in pseudo-
C code, while Algorithm 2 illustrates how to invoke such tasks.
Concerning Algorithm 1:

1) The task first goes through an initialization phase and
then waits for its initial release. In RTOS derived from
Linux (for instance RTAI [4] or the ptask API [5]),
tasks start executing as soon as they are created, just
like threads. Since creating all the tasks takes time, the
programmer needs to implement in this phase mecha-
nisms that synchronize the initial release of tasks (e.g. a
synchronization barrier). In other RTOS, such as FreeR-
TOS for instance [6], tasks start only when the scheduler
is explicitly invoked (start_scheduler in Algorithm 2),
so only tasks with offsets need to explicitly wait for the
initial release;

2) Once the initialization phase is complete, the task starts
executing periodically. It repeats indefinitely the same
behaviour: 1) execute the code corresponding to the
actual functionality of the task; 2) wait for the next task
activation (typically, wait for the next period).

Concerning Algorithm 2:
• The task creation primitive usually takes, at least, three

parameters: 1) a pointer to the task function that defines
the task functional behaviour (like periodic_task1); 2)
the arguments (often empty) to pass to that function (here,
to function periodic_task1); 3) the real-time parameters
of the task;

• In a RTOS where tasks start executing as soon as they are
created, we usually add an infinite idle loop (while(1);)
at the end of the main function, because the termination
of the main function causes the termination of the tasks.
In other systems, the execution of tasks starts when the
scheduler is explicitly invoked (start_scheduler).

Even though the task structure presented here is very
common, RTOS usually allow more complex task implemen-
tations, where for instance the code executed by the task
changes from one iteration to the next, where the period can
be modified dynamically, etc. For instance, a common rookie
mistake is to forget to wait for the next period at the end



of a task iteration. This is in no way verified by the OS or
by the compiler, even though this causes obvious problems at
execution. So, it is up to the programmer to ensure that the
program respects the task model that was used to perform the
schedulability analysis.

RTOS that follow the OSEK standard [7], including Tram-
poline [8], opt for a more rigid approach where the task set and
its real-time characteristics are defined statically in a dedicated
OIL file [9]. The task implementation model is predefined and
the user only provides the function corresponding to a single
iteration of the task (the task_functionality() function in
Algorithm 1), which is automatically repeated by the RTOS
at each task invocation. This model is less permissive, but it
prevents some design mistakes, such as those discussed earlier
for instance (immediate loops or main function finishing and
killing tasks).

Algorithm 1 Typical implementation of a periodic task

void* periodic_task1(void* args) {
//initialization
wait_for_release();

while (1) {
task_functionality();
wait_next_activation();

}
}

Algorithm 2 Typical program for invoking two tasks

int main() {
// initialize real-time parameters params1
create_task(periodic_task1,args1,params1);

// initialize real-time parameters params2
create_task(periodic_task2,args2,params2);

// either start_scheduler(); or while(1);

// This should never be reached
return 1;

}

III. DATA-DEPENDENCIES

The seminal work on real-time scheduling of periodic
tasks by Liu & Layland [10], and a very large portion of
the real-time scheduling literature, assume real-time systems
consisting of independent tasks, meaning that there is no a-
priory ordering constraint relating tasks. Obviously though,
tasks collaborate to compute the system outputs and as a result
are related by data-dependencies, meaning that some tasks
produce data used by some other tasks to perform their own
computations.

A. Communication semantics

There are mainly two possible semantics for data-
communications. With register-based communications, used

for instance in the automotive domain [11], when a task
executes it consumes the last value produced, not considering
when it was produced. With such communications, the relative
order between the task producing the data and the task con-
suming it remains unconstrained. On the contrary, with causal
communications, the task producing the data must complete
its execution before the task consuming it starts its execution.
Such communications yield more deterministic systems and
are thus preferred in critical systems, such as avionics systems
for instance [3].

Causal communications introduce additional real-time con-
straints, called precedence constraints: a precedence constraint
requires one task to execute before another. A dependent task
set is modelled as a directed acyclic task graph G = (S,E),
where S = ({τi(Ci, Di, Ti, Oi)}1≤i≤n) is a set of tasks, as
defined previously, and E ⊆ S×S . A precedence constraint, is
denoted τi → τj , with τi → τj ≡ (τi, τj) ∈ E. If Ti = Tj , we
say that τi → τj is a simple precedence constraints. Otherwise
we say that it is an extended precedence constraint.

B. Extended precedence constraints

In the general case, precedence constraints may relate tasks
with different periods. Such a system is illustrated in Figure 2,
which describes the tasks of the longitudinal flight control
system of an aircraft (this description is based on [12]). This
system controls the angle of the control surface (order) based
on: the current surface angle (angle), the current aircraft
vertical speed (vz), the current aircraft altitude (altitude) and
the altitude required by the pilot (required altitude). The
software architecture consists of six tasks that make up three
computation chains:

• A fast chain operating at 30 ms from EF to EL, which
controls the control surface according to a required angle;

• A multi-rate chain from vzF (period 30ms) to vzL (period
40 ms), then to EL (period 30 ms), which controls the
vertical speed;

• A multi-rate chain from hF (period 60 ms), to hHL
(period 60 ms), to vzL (period 40 ms), to EL (period
30 ms), which controls the trajectory the plane follows
to reach the altitude ordered by the pilot.

An extended precedence constraint τi → τj (where Ti 6= Tj)
only imposes precedence constraints on a subset of the jobs
of τi and τj . The system model must thus specify the set of
pairs (p, q) such that τi.p → τj.q .

In most real-time applications and design tools, such as
Simulink [13], AADL [14] or Prelude [15] for instance,
extended precedence constraints follow patterns repeated peri-
odically on the tasks hyperperiod. Some examples of extended
precedence constraints are illustrated in Figure 3 (see [16] for
more details on extended precedence constraints models). The
programmer can use the patterns of Figures 3(a), 3(b), to leave
flexibility for the execution of the slow task: the slow task
consumes values produced early, i.e. samples only the first
out of 3 successive jobs of the producer, and produces values
late, i.e. communicates with the last out of 3 successive jobs of



Altitude Hold
Law (hHL)

Altitude
Filter (hF )

Vz Control Law
(vzL)

Elevator Control
Law (EL)

Elevator
Filter (EF )

Vz Filter
(vzF )

observed
altitude
(o h)

required
altitude

(r h)

required
vertical speed

(r vz)

observed
angle

(o angle)

observed
vertical speed

(o vz)

required
angle

(r angle)
order

angle

vz

altitude
(h)

period = 60 ms period = 40 ms period = 30 ms

Fig. 2. Vertical speed control

τi τi τi τi τi τi

τj τj

(a) Sampling, at earliest

τi τi

τj τj τj τj τj τj

(b) Selection, at latest

τi τi τi τi τi τi

τj τj

(c) Array gathering

τi τi

τj τj τj τj τj τj

(d) Array scattering

Fig. 3. Extended precedence constraints

the consumer. The patterns of Figure 3(c) and Figure 3(d) cor-
respond to classic signal processing patterns, where repetitive
array computations are distributed between several repetitions
of the same task: on one hand the slow task scatters the content
of a big array between successive jobs of its consumer and on
the other hand it gathers array fragments from its producer to
construct a big array. These two patterns behave in a fashion
similar to the MPI_gather and MPI_scatter primitives of the
popular Message Passing Interface (MPI) API [17].

IV. REAL-TIME SCHEDULING: PROBLEM DEFINITION

As mentioned earlier, scheduling real-time systems requires
to:

1) Design a scheduling policy that will decide how to order
the execution of tasks;

2) Design a schedulability test that will ensure, before sys-
tem execution, that the execution order produced by the
scheduling policy will respect the real-time constraints.

A. Schedulability

The execution of a set of real-time tasks is controlled by a
scheduler that decides at each instant which task to execute on
the processor. For a given schedule (produced by the chosen
scheduler), we let e(τi.k) denote the start time of τi.k in the
schedule and s(τi.k) denote its completion time. The validity
of a schedule is established as follows:

Definition 1. A schedule is feasible if it respects the following
constraints:

∀τi.p, s(τi.p) ≥ oi.p (1)
∀τi.p, e(τi.p) ≤ di.p (2)

∀τi.p → τj.q, e(τi.p) ≤ s(τj.q) (3)

A scheduling policy is a set of rules that dictates how
the scheduler will choose which task to execute. A task set
is schedulable by a given scheduling policy if and only if
the schedule it produces is feasible. A schedulability analysis
checks whether a given task set is schedulable by a given
scheduling policy. This analysis is usually performed statically,
that is to say before system execution. Except for simplified
problems, schedulability analysis is NP-hard. Therefore, exist-
ing analyses are either exact and have exponential complexity,
or are pessimistic and have a polynomial or pseudo-polynomial
complexity. With a sufficient schedulability test, all task sets
considered schedulable by the test are actually schedulable.
With a necessary schedulability test, all task sets considered
unschedulable by the test are in fact unschedulable. An exact
test if both sufficient and necessary.

B. Scheduling policy classes

Scheduling policies can be separated in different classes
of policies. A scheduling policy is preemptive if it allows
interrupting a job during its execution and resuming it later
(e.g. to execute a higher priority task). Off-line scheduling
consists in computing a (cyclic) feasible schedule before
system execution. In that case, the scheduler becomes a simple
dispatcher that repeats indefinitely the off-line schedule during
execution. With on-line scheduling, the scheduler computes the
schedule as execution progresses, based on the chosen schedul-
ing policy. Most on-line scheduling policies are priority-based,
meaning that they only define how to assign priorities to tasks
and that the scheduler then always chooses to execute the
highest priority ready task.



A scheduling policy P is optimal within a certain class of
policies if the following holds: if a task set is schedulable
by some policy of this class, then it is schedulable by P .
For instance, we will see that the Deadline Monotonic policy
is optimal within the class of fixed-task priority policies, for
independent task sets without offsets. In this paper, we will
focus on on-line priority based preemptive policies.

C. Fixed-tasks vs fixed-job priority policies

With a fixed-task priority scheduling policy (FTP), the
priority of a task remains unchanged during the whole sys-
tem execution. It is the most widely used class of policies
for scheduling real-time systems and every RTOS provides
support for it. With a fixed-job priority scheduling policy
(FJP), the priority can differ between jobs of the same task,
but remains unchanged for a given job. Liu and Layland [10]
proposed the rate-monotonic (RM) fixed-task priority policy,
where tasks with a shorter period are affected a higher priority
and the earliest-deadline-first (EDF) fixed-job priority policy,
where jobs with a shorter absolute deadline are affected a
higher priority. RM is optimal within the class of fixed-task
priority policies for periodic task sets with Ti = Di and
Oi = 0. It can be extended to the deadline-monotonic policy
(DM) [18], to schedule optimally a set of tasks with Di ≤ Ti
and Oi = 0. For the case where Oi ≥ 0, an optimal algorithm
based on DM was defined by Audsley in [19]. EDF is optimal
in the class of fixed-job priority policies for scheduling a set
of periodic tasks with Di ≤ Ti and Oi ≥ 0.

RM tends to be favored instead of EDF by real-time devel-
opers, at least for uniprocessor systems. A detailed comparison
is available in [20], it can be summarized as follows:
• Implementation: With FTP, task priorities can be com-

puted before run-time (either by the programmer or
at start-up by the OS), while with FJP they must be
computed by the scheduler at run-time, each time a task
is released. Furthermore, RTOS always provide support
for fixed-task priority scheduling, while it is not always
the case for fixed-job priority scheduling;

• Run-time overhead: FJP requires to compute task priori-
ties at run-time, which introduces a run-time overhead
that does not exist with FTP. However, when context
switches are taken into account, FJP introduces less
overhead than FTP because the number of preemptions
that occur with FJP is usually much lower than with FTP;

• Task jitter: The task jitter is the variation between the
response times of different jobs of the task. FTP reduces
the jitter of high priority tasks but increases that of low
priority tasks, while FJP treats tasks more equally. As a
result, when the utilization factor of the processor is high
(i.e. when the processor has few idle times), the average
task jitter of the task set is lower with FJP than with FTP;

• Overloads: When the total execution time demand of
tasks exceeds the processor capacity, FTP causes less
deadline misses than FJP. The problem with FJP is that if
a task misses its deadline and carries on anyway, it causes
other tasks to miss their deadlines (domino effect);

• Processor utilization: FJP enables better processor uti-
lization (up to 100%) than FTP (around 70-80%), thus
allowing more complex computations to be performed.

V. SCHEDULABILITY WITH FIXED-TASK PRIORITY

A. Busy period

The concept of busy period plays a central role in the
schedulability analysis of FTP. A k-busy period is a time
interval where the processor is kept busy executing task of
priority higher than or equal to k. This is illustrated in Figure 4.
The step function corresponds to the cumulative demand for
execution on the processor, also called the Demand Function.
At time 0, three jobs are released so the Demand Function
steps for an amount equal to the sum of the three jobs WCET.
This starts the first 3− busy period of the system. This period
finishes when the Demand Function meets the Time Function
w = t (at time t, the processor has executed t units of work).
Such a meeting point is called an idle time: the processor
remains idle until the next job release.

The response-time of a job is the time interval from the job
release to the job completion. The worst-case response-time
of a task is the greatest response-time of its jobs. A task-set is
schedulable if and only the worst-case response-time of each
task is lower than its deadline. The following theorem enables
to relate response times to busy periods

Theorem 1 ([19], [21]). The worst-case response time of a
task of priority k is equal to the longest k−busy period.

So, to check system schedulability, we can compute the
longest k-busy period of each task τk and compare it to its
deadline. A busy period always ends on the condition that the
processor utilization ratio U =

∑n
i=1

Ci

Ti
≤ 1 (note that this

is also a trivial necessary schedulability condition for FTP).
In other words, if this condition is fulfilled, then there is at
least one idle time. Let n be the lowest priority of the system,
if U = 1 then the length of the longest n−busy period is
equal to the hyperperiod of the task set (HP ). Since HP is
the least common multiple of the periods of the task set, HP
is exponential with respect to the number of tasks of the task
set.

In [22], authors propose a pseudo-polynomial solution for
computing the length of the longest i−busy period Bi. It is
computed as the least fixed-point of the following equation
(where hp(i) denotes the tasks with higher priority than τi):

Bi,0 = Ci

Bi,k+1 = Ci +
∑

j∈hp(i)

dBi,k
Ti
eCj

B. Schedulability tests

Response-time analysis (RTA) based on the busy period,
as presented in the previous section, provides a feasibility
test that is actually independent of the scheduling policy.
Indeed, since it is a necessary and sufficient schedulability
condition, then any optimal scheduling policy can rely on



time

workload w=t

◦ idle point

◦

idle time

◦

3-busy period

τ1

τ2

τ3

Fig. 4. Time demand function

this condition. Unfortunately, RTA does not have polynomial
complexity. In this section we discuss some less complex
specific schedulability tests.

For RM, the following sufficient schedulability test was
proposed in [10]:

U = n(21/n − 1)

It is however quite pessimistic. It yields maximum processor
utilization ratios between 80% (for smaller values n) and 70%
(for greater values of n), while simulations show that the
average bound is around 88% [23]. Tighter utilization bound
tests have been proposed in [24], [25].

For DM, exact exponential schedulability tests have been
proposed in [26], [27].

Le us now consider systems with offsets. A critical instant
occurs when all the tasks are released simultaneously. It was
proved in [19] that the longest busy period is initiated by the
critical instant. For systems without offsets, this means at date
0. For systems with offsets however, the critical instant may
not exist, which means that we need to study all the busy
periods up to max(Oi) + 2HP [18], [28].

C. Shared resources

Using mutual exclusion mechanisms to handle shared re-
sources in real-time application scheduled with FTP, via either

mutexes or semaphores, introduces two well-known sources of
bugs: priority inversion and scheduling anomalies.

A scheduling anomaly occurs when the system is deemed
schedulable by a schedulability test, but the schedule produced
at execution is infeasible, due to a task executing for less than
its WCET. This is illustrated in Figure 5. We consider a task set
without offsets S = {τ1(2, 8, 6), τ2(6, 16, 15), τ3(6, 16, 16)}
where tasks sharing a resource using mutexes are depicted in
gray. When C2 = 6, the schedule is feasible, while it is not
when C2 = 5 (τ1 misses its deadline). This phenomenon is
quite counter-intuitive, since here reducing an execution time
produces a worse case. This implies that we cannot rely on
a simple simulation to test the feasibility of a task set with
shared resources.

A priority inversion occurs when a task is delayed by a
lower priority task, even though it does not share a resource
with it. This is illustrated in Figure 6. We consider a task set
with offsets, where mutual exclusion sections are depicted in
gray. In this example, τ2 is running while the highest priority
task τ1 is waiting for τ3 to complete its critical section, which
causes τ1 to miss its deadline.

An intuitive solution to prevent priority inversion is the
Priority Inheritance Protocol (PIP) [29]: when a task gains
control of a shared resource, it inherits the priority of the
highest priority task that shares this resource, until completion
of its critical section. This completely prevents priority inver-



0 2 4 6 8 10 12 14 16

τ1

τ2

τ3

(a) Simulation is feasible

0 2 4 6 8 10 12 14 16

τ1

τ2

τ3

(b) Execution is infeasible

Fig. 5. Scheduling anomaly

0 2 4 6 8 10 12 14

τ1

τ2

τ3

Fig. 6. Priority inversion

sions, however the number of times a task can be blocked
when trying to enter its critical section can be quite high.
Authors of [29] instead proposed the Priority Ceiling Protocol
(IPCP, here we consider the “immediate” variation of the
protocol), which reduces blocking times. Each resource has
a priority ceiling equal to the highest priority amongst task
using it. When a task executes, its priority becomes the
maximum of the priority ceilings of the resources it uses. As a
consequence, a task can only be blocked once, at the beginning
of its execution. Indeed, to start executing all the resources
it requires must be free, otherwise it is blocked (by higher
priority tasks). IPCP is readily available in many real-time
executives (e.g. Real-Time POSIX, OSEK/VDX, Real-Time
Java).

VI. SCHEDULABILITY WITH FIXED-JOB PRIORITY

A. Schedulability tests

When Di = Ti and Oi = 0, schedulability with EDF is a
very simple problem: it was proved in [10] that U ≤ 1 is an
exact schedulability condition.

When Di ≤ Ti and Oi = 0, the problem becomes much
more difficult. Unfortunately, the worst-case response time
does not occur at a critical instant, which makes response-
time analysis for EDF quite difficult. Instead, schedulability
tests for EDF rely on the concept of processor demand [30].
The processor demand h(t), which represents the amount of

work that must be completed before time t, can be computed
as follows:

h(t) =

n∑
i=1

b t+ Ti −Di

Ti
cCi

As the load must never exceed the available processing time,
schedulability can be stated as:

∀t, h(t) ≤ t

Schedulability analysis checks this condition on a limited
number of values of t, by noting that: 1) h(t) only increases
at job deadlines; 2) there exists an upper bound L on the values
of t that must be checked. Two formulas have been provided
to compute L. The first bound La is computed as follows:

La = max{D1, . . . , Dn,

∑n
i=1(Ti −Di)Ci/Ti

1− U
}

The second bound Lb is the least fixed-point of the follow-
ing recurrence:

w0 =
n∑
i=1

Ci

wj+1 =

n∑
i=1

dw
j

Ti
eCi

Schedulability can then be tested by verifying that h(t) ≤ t
for each deadline in L = min(La, Lb).

When Di ≤ Ti and Oi ≥ 0, a schedulability test was
proposed in [31].

B. Shared resources

Several solutions have been proposed to support shared
resources with FJP. An adapted version of PCP was described
in [32], however it has high run-time overhead. A better
version, which retains the properties of PCP, is available
in [33].



VII. SCHEDULABILITY OF DEPENDENT TASK SETS

A. Precedence encoding
An elegant solution for scheduling dependent tasks was

presented in [34]. Authors proposed to encode precedence
constraints in task real-time constraints. Let preds(τi) denote
the set of all predecessors of τi and succs(τi) the set of its
successors. For simple precedence constraints, the encoding
consists in adjusting the release date and deadline of every
task as follows:

O∗i = max(Oi, max
τj∈preds(τi)

(O∗j )) (4)

d∗i = min(di, min
τj∈succs(τi)

(d∗j − Cj)) (5)

The intuition is that a task must finish early enough for its
successors to have sufficient time to complete before their own
deadline. For each precedence constraint τi → τj , Equation 4
ensures that τi is released before τj . Assuming that priorities
are assigned based on deadlines (e.g. with EDF or DM),
Equation 5 ensures that τi will have a higher priority than
τj . As a consequence, τi will be scheduled before τj .

Theorem 2 ([34], [35]). Let S = {τi(Ci, Ti, Di, Oi)} be a
dependent task set with simple precedence constraints. Let
S∗ = {τ ′i(O∗i , Ci, D∗i , Ti)} be a set of independent tasks such
that O∗i and D∗i are given by the previous formulas:

S is feasible if and only if S∗ is feasible.

The consequence of this theorem is that we obtain a schedu-
lability for dependent tasks with simple precedence constraints
that works as follows ([34], [35], [16]):

1) Perform the precedence encoding;
2) Apply a schedulability test for an optimal scheduling

policy for independent tasks (DM, Audsley’s policy, or
EDF) on the modified task set.

B. Extended precedence constraints

For extended precedence constraints, the encoding tech-
nique requires to assign different deadlines and offsets for
different jobs of the same task. Let us for instance consider the
tasks set S1 = {τi, τj}, with (Oi = 0, Ci = 2, Di = Ti, Ti =
4), (Oj = 0, Cj = 4, Dj = 6, Tj = 8). The precedence pattern
for τi → τj is defined informally as follows:

τi τi τi τi

τj τj

If we set the same adjusted relative deadline for all jobs of τi,
that is D∗i.n = 2 for n ∈ N, then τj.0 will miss its deadline
(date 6). However, if we set D∗i.n = 2 for n ∈ 2N and
D∗i.n = 4 for n ∈ 2N + 1, S∗ is schedulable with EDF (we
obtain the schedule depicted above). Let preds(τj.q) denote the
predecessors of jobτj.q and succs(τi.p) denote its successors.
The encoding rule becomes:

o∗j.q = max(oj.q, max
τi.p∈preds(τj.q)

(o∗i.p)) (6)

d∗i.p = min(di.p, min
τj.q∈succs(τi.p)

(d∗j.q − Cj)) (7)

For schedulability analysis, extended precedence constraints
usually follow patterns repeated on the tasks hyperperiod. So,
for FTP, for each task we can basically take the maximum
adjusted release date of its jobs over one hyperperiod and the
minimum adjusted deadline [35]. For FJP, we can unfold the
extended precedence graph on the hyperperiod of the tasks
(as suggested in [36]) and apply the encoding on the unfolded
graph, which only contains simple precedence constraints [16].

C. Note on synchronizations

When dealing with precedence constraints, one could expect
problems similar to those encountered with shared resources.
This is however not the case. First, concerning scheduling
anomalies, let us consider our previous example of Figure 5.
Figure 7 considers two different extended precedence con-
straints and shows that the anomaly does not occur anymore:
the inversion between jobs of τ1 and τ3 does not happen
when the execution time of τ2.0 is reduced. This is because
the relative order of τ1 and τ3 remains unchanged due to the
precedence constraint, no matter what the execution time of
τ2 may be.

Concerning priority inversion, let us consider our previous
example of Figure 6. Figure 8 shows that the inversion does
not occur anymore. Assume we have a precedence constraint
τ3.0 → τ1.0. Due to the precedence encoding, the deadline of
τ3 is reduced, this prevents τ2 from preempting it, which was
the cause of the priority inversion previously. The inversion
is avoided because, in a way, precedence encoding mimics
Priority Inheritance: the predecessor task (τ3) “inherits” the
deadline of the successor task (τ1).

VIII. CONCLUSION

This paper presented a quick overview of real-time unipro-
cessor scheduling. It does not aim at providing an exhaustive
list of existing results on this topic, but instead focuses on
the main ones. Furthermore, it tries to take the perspective of
the programmer, instead of only considering purely theoretical
aspects. For starters, it provides some insights on where real-
time constraints come from during the design process. Then,
it gives an overview of how to implement a multi-task real-
time system. Finally, it focuses on the scheduling of dependent
tasks, that is to say systems where data-communications play
a non-negligible role.

REFERENCES

[1] E. Grolleau, “Tutorial on real-time scheduling,” Ecole d’été temps réel,
ETR’07, 2007.

[2] A. Burns and A. Wellings, Real-Time Systems and Programming Lan-
guages: Ada, Real-Time Java and C/Real-Time POSIX. Addison-Wesley
Educational Publishers Inc, 2009.

[3] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The
ROSACE case study: From simulink specification to multi/many-core
execution,” in 20th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2014.

[4] “Rtai website.” [Online]. Available: http://www.rtai.org
[5] ptask, “Periodic real-time task interface to pthreads,” 2013. [Online].

Available: https://github.com/glipari/ptask
[6] “FreeRTOS website.” [Online]. Available: http://www.freertos.org
[7] OSEK, “Osek/vdx operating system – version 2.2.3,” 2005. [Online].

Available: http://portal.osek-vdx.org/files/pdf/specs/os223.pdf



0 2 4 6 8 10 12 14 16

τ1

τ2

τ3

(a) τ1.0 → τ3.0

0 2 4 6 8 10 12 14 16

τ1

τ2

τ3

(b) τ1.1 → τ3.0

Fig. 7. No scheduling anomaly with precedence constraints

0 2 4 6 8 10 12 14

τ1

τ2

τ3

Fig. 8. No priority inversion with precedence encoding

[8] “Trampoline website.” [Online]. Available: http://trampoline.rts-
software.org

[9] OSEK, “Osek/vdx system generation – oil : Osek implementation
language – version 2.5,” 2004. [Online]. Available: http://portal.osek-
vdx.org/files/pdf/specs/oil25.pdf

[10] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, 1973.

[11] “AUTOSAR website.” [Online]. Available: http://www.autosar.org
[12] R. Wyss, F. Boniol, J. Forget, and C. Pagetti, “Calcul de propriétés temps

réel de bout-en-bout dans un programme synchrone multi-périodique,”
Revue des Sciences et Technologies de l’Information - Série TSI :
Technique et Science Informatiques, vol. 34, no. 5, pp. pp. 601–626,
Sep. 2015.

[13] The Mathworks, Simulink: User’s Guide, The Mathworks, 2016.
[14] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture analysis &

design language (AADL): an introduction,” Carnegie Mellon University,
Tech. Rep., 2006.

[15] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens, “Multi-
task implementation of multi-periodic synchronous programs,” Discrete
Event Dynamic Systems, vol. 21, no. 3, pp. 307–338, 2011.

[16] J. Forget, E. Grolleau, C. Pagetti, and P. Richard, “Dynamic Priority
Scheduling of Periodic Tasks with Extended Precedences,” in IEEE
16th Conference on Emerging Technologies Factory Automation (ETFA),
Toulouse, France, Sep. 2011.

[17] W. Gropp, E. Lusk, and A. Skjellum, Using MPI, 2nd Edition. The
MIT Press, 1999.

[18] J. Y. T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance Evaluation, vol. 2,
no. 4, 1982.

[19] N. C. Audsley, “Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times,” Dept. Computer Science,
University of York, Tech. Rep. YCS 164, Dec. 1991.

[20] G. C. Buttazzo, “Rate Monotonic vs. EDF: Judgement Day,” Real-Time
Systems, vol. 29, no. 1, 2005.

[21] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
“Applying new scheduling theory to static priority pre-emptive schedul-
ing,” Software Engineering Journal, vol. 8, pp. 284–292, 1993.

[22] M. Joseph and P. Pandya, “Finding response times in real-time system,”
The Computer Journal, vol. 29(5), pp. 390–395, 1986.

[23] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: Exact characterization and average case behavior,” in Real
Time Systems Symposium, 1989., Proceedings. IEEE, 1989, pp. 166–
171.

[24] E. Bini, G. C. Buttazzo, and G. M. Buttazzo, “Rate monotonic analysis:
the hyperbolic bound,” IEEE Transactions on Computers, vol. 52, no. 7,
pp. 933–942, 2003.

[25] E. Bini and G. C. Buttazzo, “Schedulability analysis of periodic fixed
priority systems,” IEEE Transactions on Computers, vol. 53, no. 11, pp.
1462–1473, 2004.

[26] J. P. Lehoczky, L. Sha, J. Strosnider, and H. Tokuda, “Fixed priority
scheduling theory for hard real-time systems,” in Foundations of Real-
Time Computing: Scheduling and Resource Management. Springer,
1991, pp. 1–30.

[27] Y. Manabe and S. Aoyagi, “A feasibility decision algorithm for rate
monotonic and deadline monotonic scheduling,” Real-Time Systems,
vol. 14, no. 2, pp. 171–181, 1998.

[28] A. Choquet-Geniet and E. Grolleau, “Minimal schedulability interval for
real-time systems of periodic tasks with offsets,” Theoretical computer
science, vol. 310, no. 1-3, pp. 117–134, 2004.

[29] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Transactions on
computers, vol. 39, no. 9, pp. 1175–1185, 1990.

[30] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor,” Real-time systems, vol. 2, no. 4, pp. 301–324,
1990.

[31] M. Spuri, “Analysis of deadline scheduled real-time systems,” Ph.D.
dissertation, Inria, 1996.

[32] M.-I. Chen and K.-J. Lin, “Dynamic priority ceilings: A concurrency
control protocol for real-time systems,” Real-Time Systems, vol. 2, no. 4,
pp. 325–346, 1990.

[33] T. P. Baker, “Stack-based scheduling of realtime processes,” Real-Time
Systems, vol. 3, no. 1, pp. 67–99, 1991.

[34] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of real-
time tasks under precedence constraints,” Real-Time Systems, vol. 2,
1990.

[35] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Scheduling
Dependent Periodic Tasks Without Synchronization Mechanisms,” in
16th IEEE Real-Time and Embedded Technology and Applications
Symposium, Stockholm, Sweden, Apr. 2010.

[36] P. Richard, F. Cottet, and C. Kaiser, “Validation temporelle d’un logiciel
temps réel : application à un laminoir industriel,” Journal Européen des
Systèmes Automatisés, vol. 35, no. 9, 2001.


