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Abstract. Since the pioneering work dfandwehr et al.  Value (GEV) distribution whenever re-normalized maxima
(1979, Hosking et al.(1985 and their collaborators, the of a random sample converges to a non-degenerate random
Probability Weighted Moments (PWM) method has beenvariable (e.gColes 2001). From a statistical point of view,
very popular, simple and efficient to estimate the parametershis means that the cumulative probability distribution func-
of the Generalized Extreme Value (GEV) distribution when tion of maxima from IID samples is very likely to be cor-
modeling the distribution of maxima (e.g., annual maximarectly fitted by the following GEV distribution

of precipitations) in the Identically and Independently Dis- -1y

tributed (1ID) context. When the 11D assumption is not satis- G (x; u, o, y) = eXp(_Hl +y s } ) (1)

fied, a flexible alternative, the Maximum Likelihood Estima- o

tion (MLE) approach offers an elegant way to handle non-wheres >0, y£0 andu € R are called the GEV scale, shape
stationarities by letting the GEV parameters to be time de-and location parameters, respectively, and with the constraint
pendent. Despite its qualities, the MLE applied to the GEV 14y 2=£ 0. If y—0, then Eq. {) corresponds to the Gum-

o

distribution does not always provide accurate return levelpe| case and is equal to ekp expl—=£}) with x € R.

o

estimates, especially for small sample sizes or heavy tails. To estimate the three parameters of a GEV distribution,
These drawbacks are particularly true in some non-stationar¢eyeral methods have been developed, studied and com-
situations. To reduce these negative effects, we propose tBared during the last twenty years. In 19Treenwood
extend the PWM method to a more general framework thatgt g|. (1979 andLandwehr et al(1979 introduced the so-
enables us to model temporal covariates and provide acCu:g|led Probability Weighted Moments (PWM). This method-
rate GEV-based return levels. Theoretical properties of oulpf-moments approach (see Appendix A) has been very pop-
estimators are discussed. Small and moderate sample sizgy in hydrology Hosking et al. 1985 and climatology be-
simulations in a non-stationary context are analyzed and twgayse of its conceptual simplicity, its easy implementation
brief applications to annual maxima of G@nd seasonal and its good performance for most distributions encountered
maxima of cumulated daily precipitations are presented. i geosciences. In 1985, Smith studied and implemented
the Maximum Likelihood (ML) method for the GEV den-
sity (see Appendix C). According tdosking et al.(1985,

the PWM approach is superior to the MLE for small GEV
distributed samples.Coles and Dixon(1999 argued that
Extreme value theory provides a solid mathematical foun-th€ PWM method assumes a priori on the shape parameter
dation (e.gEmbrechts et al1997 Beirlant et al, 2004 de w_hlc_h is equwa_lent to assume a f!nlte mean for the studied
Haan and Ferreir2008 for studying maxima in fields like distribution. To integrate this con<_j|t|on in the ML appro_ach,
hydrology or climatology (e.cKatz et al, 2002. In the Iden- ~ these authors proposed a penalized MLE scheme with the
tically and Independently Distributed (IID) setup, this theory constrainty <1. If this condition is satisfied, then the ML

states that maxima should follow the Generalized Extreme®PProach is as competitive as the PWM one, even for small
samples. Still, the debate over the advantages and draw-

] backs of both estimation methods is not closed. For example,
Correspondence tcP. Ribereau the classical and penalized ML approaches impose a restric-
BY (pribere@math.univ-montp2.r) tion on the lower values of, i.e. we need >—0.5 to have
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Table 1. Bias of the estimated return levels obtained by the GPWM ized Probability Weigh.ted Monfle.nts (GPWM) for the GEV.
and ML method (for a return periag=10xn). It broadens the domain of validity of the PWM approach,
allowing heavier tails to be fitted. Despite this advantage,
the ML method has kept a strong advantage over a PWM

y Method n=15 n=25 n=50 n=100 . N f

approach: its inherent flexibility in a non-stationary context.
1 3 1484 2484 5024 1002.4 When studying climatological and hydrological data, it is not
1 GPWM -989 -163.8 29.4 14.3 always possible to assume that the distribution of the max-

ima remains unchanged in time. For example, trends can

1 ML 190.6 4025 6289 1814 be present in extreme values of different hydroclimatolog-
0.6 zf 8.6 44.0 71.6 1074 ical series (e.g.Kharin et al, 2007 IPCC Report 2007).

The MLE can easily integrate temporal covariates within the

0.6 GPWM -186 —-224 -38 1.0
GEV parameters (e.gkatz et al, 2002 Coles 200%, EI Ad-
06 ML 425 1225 772 368 louni et al, 2007) and conceptually, the MLE procedure re-
0.4 * 6.7 20.2 315 41.1 mains the same if the GEV parameters vary in time Eee
Adlouni and Ouardg2008 for a comparison study of dif-
0.4 GPWM -133  -80 -26 07 ferent methods for non-stationary GEV models). In prac-
0.4 ML 191 31.1 11.2 7.8 tice, numerical problems quickly arise and estimated ML re-
0.2 2t 55 10.0 16.3 18.9 tgrn levels can be misleading in some non-stationary s_itua—
tions (see Tabled and?2), especially for strong heavy tails
02 GPWM -29  -29 -13 -081 (y>0.4). With these limitations in mind, our aim is to pro-
0.2 ML 11.4 7.6 2.3 15 pose and to study a novel GPWM procedure that can handle
temporal covariates. Our main motivation is to keep the in-
0 @ 5.0 55 102 109 tereZting GPWM properties identified in the 11D casF:a while
0 GPWM -16 -1.0 -0.67 -0.46 adding the needed flexibility to handle non-stationarities that
0 ML 37 10  0.28 0.15 are often present in real case studies. This will provide a
valuable alternative to the MLE for non-stationary GEV dis-
—-0.2 Z;k 3.1 3.3 7.5 7.7 tributed data.
-02 GPWM -04 -037 -033 -024 Before closing this introduction, we would like to empha-
02 ML 0.05 001 —0.09 —0.07 size that, beyond the three aforementioned estimation meth-
ods (MLE, PWM and GPWM), there exists other variants
—04 % 2.1 2.2 6.2 6.3 and extensions. For exampldpsking (1990 proposed and
-04 GPWM -0.26 -0.10 -0.14 -0.09 studied the L-momentZhang(2007) recently derived a new
04 ML 009 -014 -014 —0.07 a_md interesting method-of-momen_ts, and _Baye&an estima-
tion has also generated a lot of interest in extreme value
—0.6 zf 3.1 3.3 5.6 5.6 analysis (e.gLye et al, 1993 Coles 2001 Cooley et al.
_0.6 GPWM -0.15 001 —004 —0.03 2007. But we will neither compare nor discuss these al-
ternatives with respect to our proposed method for the fol-
-0.6 ML -0.11 -0.15 -0.09 -0.05

lowing reasons. The objective of this work is not to write
-1 zf 0.99 0.99 4.99 4.99 a review paper that compares all existing estimation meth-
ods. Instead our aim is to extend the applicability of a well-
known approach (PWM) by working with a larger class of
-1 ML 042 -0.05 -0.01 -0.00 estimators (GPWM) and by proposing an algorithm that en-
compasses temporal dependences. We focus on comparing
our approach with the classical MLE because the later may
be the most popular in statistical climatology and hydrology
for non-stationary time series analysis.

regularity of the ML based estimators. Although it is rare

to work with bounded upper tails, they can be encountered

in geophysics. For example, atmospheric scientists can be .
interested in relative humidity maxima, a bounded random? A GEV regression model

variable. One problem with the PWM method is the range of .

validity (y <1/2) to derive the asymptotic properties of the One of the most simples, most frequently used and most stud-
PWM estimators. This constraint may be too restrictive for i€d models in statistics is the classical regression

some applications in hydrology and climatology. Recently,

Diebolt et al.(2008 introduced the concept of the General- Y = X8 + ¢ 2)

-1 GPWM 0.15 0.08 0.03 0.00

Nonlin. Processes Geophys., 15, 108339 2008 www.nonlin-processes-geophys.net/15/1033/2008/
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whereY=(Y1, ..
of lengthn, X is anx p known matrix of explanatory vari-
ables and8 a vector of unknown parameters of length
that characterizes the relationship between observations and

1035

[ .
-, ¥,)" represents an observational vector Table 2. Standard deviation of the estimated return levels obtained
by the GPWM and ML method (for a return peripg10xn).

explanatory variables. For example, in a time series con- y Method n=15 n=25 n=>50 n=100
text where a cycle of lengtli can be present, a model like
Y;=po+p1co92ri/T)+e; corresponds to a matrix 1 GPWM 2381 374.5 11636 2304.0
1 ML 10616.4 28206.3 4670.08 2671.2
2
1 codF) P 06 GPWM 5476 304 69.8 83.7
1. _( Po

X=1: andg = <,31> - (3) 06 ML 8466  627.3 2680  108.4

1 cog %) 04 GPWM 120 11.7 20.1 23.1
A regression like Eq.2) can also model linear and even 0.4 ML 126.0 226.13  37.8 27.1
polynomial trend§ anq .con.sequently, it can handle various GPWM 6.2 5.0 70 6.9
types of non-stationarities in time. Classically, the veetor
in Eq. ) is assumed to be a zero-mean Gaussian vector, but 0.2 ML 11.5 38.9 9.1 6.7
this hypothesis is not reasonable whenever the observations o0 GPWM 2.2 2.4 29 25
can be considered as maxima. As already mentioned in the
Introduction, Extreme Value Theory tells us that a more ad- 0 ML 195 14.9 2:5 18
equate fit for maxima should be the GEV distribution de- -0.2 GPWM 1.51 14 14 11
fined by Eq. ). For this reason, we assume in this paper g,  qL 43 28 0.81 0.52
that the vectoe in Eq. (2) consists of IID random variables
from a GEV distribution defined by Eql) and with param- —04 GPWM 042 0.89 0.85 0.62
eters(0, o, y). Note thatu is set to zero here becauggin -0.4 ML 2.5 2.2 0.36 0.23
the vectorp usually plays the role of the location parame- 06 GPWM 033 0.64 0.56 0.41
ter. Overall, this is equivalent to state that the sequence of ' ' ' ' '
maximumy; represents a sequence of independent GEV dis- —-06 ML~ 0.70 0.34 0.18 011
tributed random variables with the same _scale paramster 1 GPWM 064 0.44 0.28 0.18
the same shape parametebut with a varying location pa-

-1 ML 0.48 0.23 0.10 0.08

rameteru; that depends on the covariaXei.e. u;=(X8);.

Classically, most estimation methods for estimafing a
regression model assume that the “noiséS zero-mean. In
our case, we have imposed thafollows a GEV distribution

with x=0. But this does not imply that the meanis null Step b: Apply the GPWM approach described in AppenBixo
estimate the GEV parameters of the “pseudo-residuals

because the GEV density is not always symmetric arqund
To be in accordance with the zero-mean constraint, we just
have to re-parametrize our model

p—1
/E\jZY,'—Z,Bjx,'j,foriz:l.,...,n. (6)
Y = XB* 4+ €* (4) j=1
where Step c: From the GEV estimates obtained from Step b, compute
the desired return levels.
1x11 - x1p-1 €1 — E(e1)
X=|: : . & = : (5) Although each of these three steps appears to be simple, they
©o : ’ : ’ deserve careful examinations. In order to apply Step b, the
L1 xnp—1 & — E(en) pseudo-residual&y, . .., g,) should be IID and GEV dis-

tributed. This is not true becaugg has to be estimated in

B* = (Bo+E(en), B1, -, Bp-1)',

Step a (it would be true if we kney;). This issue is less

relevant if the sample size gets larger. For example, if the

andE(e1) corresponds to the mean valuecgf

classical least squares regress$ianused for Step a, our es-

To estimate return levels, we propose to implement the fol-timation of 8; asymptotically becomes better and our 11D
lowing three-steps algorithm: GEV assumption for our residuals truer. More precisely, a

1*=(X'X)~1XY is obtained by minimizing the sum of the

Step a:Implement an existing regression method on B¢
squared errorgY — XB) (Y — XB) wheneveiX’'X is invertible.

find regression estimates that we c@l, oo Bp—1).

www.nonlin-processes-geophys.net/15/1033/2008/ Nonlin. Processes Geophys., 1503933308
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general resultAzais and Bardet2005, about least squares 3 Analysis of hon-stationary maxima
regression tells us that, under the assumptions _ .
lim n~?X’'X equals a positive definite matrix far-0 3.1 Simulations

n— oo

) ron—1 Simulations are performed for four sample sizes
nleoo Eiaf),(l (X (X)) "% >(i,i> =0 @ n=15,2550 and 100 and for nine shape parameters
. e 1 y=-1,-0.6,-04,-0.2,0,0.2,0.4,0.6 and 1. Without
the variance of ak; is finite (i.e.y <3) loss of generality, we can setto one. As covariates, we fix

the pseudo-residual§ can be asymptotically viewed as

independent random variables distributed according to a 1 codr/2 x 1)

GEV(fo, 0, y) distribution. This result is general because ., [ 1 €0s7/2x2) ands — (P — (2 (10)
it does not impose a specific type of distribution for thie : ; b= B)  \2)°

Eq. @) but only a finite variance condition. Still extreme val- 1 cosr/2 x n)

ues like maxima do not necessary obey the condiyi@r%,
it may be more appropriate to implement a robust/resistant For each combination of andy, 10 000 random samples
regression in Step a. are generated from a GE¥p+B1x coSw/2xi), 1, y) dis-
Such a remark was confirmed by our simulation study.tribution.
In Sect. 3 we take advantage of the Least Trimmed To estimate all parameters and return levels with our ap-
Squares (LTS) regressiorvdnables and Ripley2002 proach the same procedure is followed. Step a is imple-
p. 156-163). Basically, the influence of very high values mented by regressing with a LTS method. Then Step b is
that could mislead the estimation of tje’s is timmed by  applied. Finally, Step c is used to estimate the return Igvel
minimizing an error/cost function that is only based on the defined by Eq.9) for t=10xn.
core data. This LTS method usually gives accurate estima- To obtain the return level estimate from the ML approach,
tors even in the presence of large values but it needs a longe directly obtain estimation ¢, 81, ¥ ando by maximiz-
computation time. This is not an important issue for maximaing the log-likelihood function (see Append®. Abnormal
because of the rarity of the observations. Hence, for Step a\IL estimates have been eliminated by removing all samples
we advice to apply such a resistant/robust method for heavyhat provide ML estimates af greater than 2%
tail distributions. For both estimation methods, the bias between true and es-
Concerning Step c, the return levglfor the fixed time  timated return values is displayed in Taltlend the standard
periodt can be easily defined in the 11D case. More precisely, deviation in Table2. These tables clearly showed that, for
the returnz, corresponds to the-11/¢ quantile, i.e. itis the  this specific example, the MLE does not provide adequate
level that, in average, is crossed one time during the timesstimates whenever the sample size is small50) and the
periodz. For the GEMu, o, y) distribution, this means that shape parameter is large, especially in terms of standard de-
—y viation. In contrast, our GPWM regression method does a

o 1 ; .
G=p+—| -1+ (_ In <1 — _>) :| . (8) better job at handling small samples and laygéexcept for

4 [ ! y=1 where both methods fail), especially in terms of stan-
In a non-stationary context, no unique definition exists for dard deviation. Other simulations have been done, in partic-
z: because extreme values recorded during the time. 1n ular a comparison between the two methods in a linear de-
have a different distribution than the extremes occurring durPendence case. Since the conclusions are the same, we do
ing any translated time41C, ..., n+C for anyC£0. With ~ notinclude them.
respect to our regression model E4), the 11D return level

defined by Eq.%) can be adapted in the following way 3.2 Annual maxima of C@concentrations
. o 1\\7 We consider the annual concentrations of;GDAmsterdam
& =P+ =~ [_1+ <_ In (1 N ?)) } : ) in the Indian Ocean from 1981 to 2001. These observations

hi h d at timeo| level based are available on the website of RAMCEBtt://www.ipsl.
This means the trend at timeplus an [ID return leve| base jussieu.fr/services/Observations/frfRAMCES.htwhere an

on the re_5|dual of the regression. i extensive bibliography can be found on this subject, for ex-
To estimate beyond the range of observations, e.g. to com;

d ) ample inGros et al.(1999. Each of the 21 measures is
pute the centennial return level with only 50 years of data

. ‘assumed to follow a GEMSp+B1xYyear o, y) distribution.
one needs to extrapolate the trends in B).daptured by \\up the GPWM and ML approaches, we have estimated
(XB):= u;. As it is well know in statistics, it is very dan-

y, o, fo and 81 and also the return level for a period of

gerous to extrapolate a linear regression outside the samplf00 years. The results are listed in TaBleWe observe that
support. Hence, extra caution is required when interpreting

z; in real applications because it means that the trend will  2without this thresholding, the ML standard deviations would
remain the same until time have been even larger fors greater than 0.4.

Nonlin. Processes Geophys., 15, 108339 2008 www.nonlin-processes-geophys.net/15/1033/2008/
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the two methods lead to very similar results for all the param-

eters estimated. This corroborates our simulations analysis.

For light tailed random variables such as £€@ncentration  Taple 3. Annual maxima of C@ concentrations analysis with a
maxima, the GEV parameters estimates are fairly similar forGEV(8g+p1 xyear o, y).

values ofy near zero, see Table

3.3 Seasonal maximum of cumulated daily precipitations GPWM ML
y —0.1102 0.044

We treat here seasonal maxima of cumulated - 0.52 0.52

daily precipitations recorded in the Orgeval basin

(France) during 31 years. We suppose that each Po —2528.96 -—2528.94

of the 124 measures(Y; ;)i—1,..31,=1..4 follows a B1 1.44 1.44
GEV(Bo+B1x cos(% x j) +B2xi, o, y) distribution. The

indicc(ai corresporSdzs to) the year wrzile the indigecorre- a 44189 43953
sponds to the season. The paramg@teindicates the trend
of the series. Tabld provides the estimates of, o, Bo,

B1 and B2 and the 100-year return level obtained from the
GPWM and ML approaches.

In contrast to our previous example summarized by Ta-
ble 3, the MLE and GPWM procedures give very different
estimates of the 100-year return level estimates in Tédble
To better understand this difference, we re-estimate the GE
parameters but with only the first 20 years. Tabkumma-
rizes our findings. As observed in Tableand?2, the prop-

Table 4. Seasonal maxima of cumulated daily precipitations analy-
is with a GEW(Bo+pB1x cos(5 x j) +B2xi. o, y) distribution fit-
ed to 31 years of data.

. . GPWM ML

erties of a GPWM estimated shape parameter around 0-0.2

does not vary greatly when the sample size changes. This is Y 0.068 0.152

not the case for the ML approach Whgre the estimatgs of o 7.44 751

can double by changing the sample size, see Tabl€his

also impacts the estimates of the return levels. Po 16.42  17.60
B1 -3.49 -2.35

4 Conclusions B2 0.113  0.038

, , ¥ 86.35 97.51
In this paper, we propose an extension of the PWM method

which can be viewed as an alternative to the MLE method
that enable us to model temporal covariates and provide ac-
curate return levels. We illustrate our approach by a simula-
tion study and by applying our approach to two time series of
maxima. Compared to the ML method, the GPWM method

perf(_)rms b_etter an_d is computationally easy, but we CanNOk,pie 5. Seasonal maxima of cumulated daily precipitations analy-
obtain confidence intervals and, up to now, we can only haveis with a GEV(Bo+B1x COS(% x j) +B2xi, o, y) distribution but

a non-stationary location parameter, whereas with the MLEgn|y with the first 20 years of data.

method the three parameters of the GEV distribution can be

non-stationary. Concerning the estimation of return levels in GPWM ML

such non-stationary cases, we would like to conclude with a

word of caution. Extrapolating the trend beyond the range 14 0072 0271
of observations is always a delicate and sometimes danger- o 8.07 7.58

ous operation (since we assume that the trend will remain the
same in the future), especially when dealing with extremes.
Hence high return levels in a non-stationary context must be B1  —461 -1.59
interpreted with extreme care. B2 0.085 0.042

fo  18.18  17.82

7} 91.74 134.60

www.nonlin-processes-geophys.net/15/1033/2008/ Nonlin. Processes Geophys., 1503933308
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Appendix A Appendix B
Probability Weighted Moments (PWM) Generalized Probability Weighted Moments (GPWM)
The PWMs of a random variablé with distribution function  Introduced and studied yiebolt et al.(2008 for the GEV,
F are the quantities (se&&reenwood et gl1979 the Generalized Probability Weighted Moments (GPWM)
can be viewed as an extension of the PWMs. They are de-
Mprs =E[ 2V (F(2)Y A= F(2))'] fined as

Vy = foo xw(G(x)dG(x),

—00

wherep, r ands are real numbers. When the distributifn
equals to the GEV distribution defined by Ed),(a subclass
of PWM (p=1,r=0, 1, 2, ... ands=0) can be explicitly ob-
tained (sedlosking et al. 1985

whereG represents the GEV distribution defined by ED. (
andw(.) is any suitable continuous function. One advantage
of this definition is that it is easy to propose estimators,nf

1 - By rewriting the GPWMs as
My, 0= —— {M——[ —(V+1)VF(1—V)]}, (A1)
r+1 Y L
. . . » = G~ du,
for y <1 andy #£0. This provides a system of three equations " /o (e (u)du

with three unknown parametefg, o, . . . .
P ofB.0.7) the following estimator can be easily computed for any given

Mioo=pn—=(1-T-7) o()
v 1
(o2
2M110— Mroo = ST (L)@ ~ 1 4D Ton= [ EMwowds ®1)
0

3M120— Mio0 3" -1 1 . . -
Mo — M =1 where IF, = denotes the inverse of the classical empirical
1,10 1,00 distribution function of a IID GEV distributed sample. To
In the 1ID case, the PWMV1 , o can be estimated by the make the link between PWMs and GPWMs, one can choose

unbiased estimator (se@ndwehr et al.1979 o(u)=u". Thenv, corresponds to the classical PWM cap-
_ ¢ tured by Eqg. Al). But this choice imposes a strong re-
erg = Z(H J E) jn striction on the GEV shape parametex1/2. To handle
n—

heavier tails (i.e. largey), it is preferable to work with
ww)=u’(—logu)’. For such a type of functiorDiebolt
et al.(2008 showed that

~ 1<
Ml,r,O = r_l Zp;’nzj,m o ]"(b -y + ]_) o F<b+ ]_)
AL N

j=1 N N/ N/
—y+1 1
where(Z1,...,Z,) is an lID sample,Z1, < ... < Z,, y (at byt Y (a+ 1
the ordered sample ang;, a plotting position, i.e. a If b is chosen such that<b+1, theny, exists. In this
distribution-free estimate af (Z; ,). Hence, the PWM esti-  case, the asymptotic normality foy, , holds wheny <1-+b
mators(iz, &, ) of (u, o, ) are the solutions of the system (Diebolt et al, 200§ and confidence intervals can be pro-
Eg. (A2). In particular, we have vided for bounded, light and heavy tails. To simplify nota-
R R tions, v,, is now calledv, , whenw (u)=u’(— logu)®.
)’/‘[ZMLLO—MLO,Q] To estimate the three GEV parameters frgm, we need
rA— @ — 1) to solve a system of three equations. In practice, we fix three
pairs for(a, b): (1, 1), (1, 2) and(2, 1). This simple choice
To obtainy, the last equation ofA2) has been solved nu- provides an easy system to solve
merically. In the specific case wherel/2<y <1/2, y can

or by the asymptotically equivalent consistent estimator

;’I:Ml,o.o+g (1 — F(l—i/‘)) ando=
Y

be estimated by : ?3 _ 2u —9312]
37 -
2M -M log 2 2 4
— _7.85%+2.95542 with ¢ 3Ml 10 Ml 0.0 Iog . L o
A o= Sl VA A 74 o S )
Under the conditiony <0.5, Hosking et al.(1989 estab- re2-y) Yy ¥
lished the asymptotic normality of the vectde(u, o, y)', Compared to the PWM approach, the concept remains the

i.e., as the sample sizeincreases,/n(0—0) converges in  same (method-of-moments) but the system of equations
distribution to a trivariate zero-mean Gaussian vector whoseslightly differs (see EgA2) and provides a wider range of
covariance structure is given kiosking et al(1985. possible values foy .
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Appendix C de Haan, L. and Ferreira A.: Extreme Value Theory: An Introduc-
tion, Springer Series in Operations Research, 2006.
Maximum Likelihood Estimation (MLE) Diebolt, J., Guillou, A., Naveau, P., and Ribereau, P.: Improving

probability-weighted moment methods for the generalized ex-
Let (Y1, ..., ¥,) be a sequence of independent random vari- treme value distribution, REVSTAT — Statistical Journal, 6-1,
ables such tha; follows a GEM(XB),, o, y) distribution. 33-50, 2008.

Let @ be the vector of unknown parameters to be estimated™ Adlouni, S. and Ouarda, T. B. M. J.: Comparaison désitades

; _ DAl d’estimation des para@tres du modle GEV non-stationnaire,
ﬂgozu;u%i?iii_is(é’i\fe’nyl)))y. -In the case/#0, the log likeli Revue des Sciences de 'Eau, 21(1), 35-50, 2008.

El Adlouni, S., Ouarda, T. B. M. J., Zhang, X., Roy, R., and Bep
logL(8,0,y) = —nlogo B.: Generalized maximum likelihood estimators for the nonsta-
. tionary generalized extreme value model, Water Resour. Res., 43,
_<l I 1) y |og<1 +y Yi — (Xﬂ)i> WO03410, doi:10.1029/2005WR004545, 2007.
y = o Embrechts, P., Kippelberg, C., and Mikosch, T.: Modelling Ex-
" 1 tremal Events for Insurance and Finance, vol. 33, Applications
B Z(l Ly Y — (XB); )_7 (C1) of Mathematics, Springer-Verlag, Berlin, 1997.
= o Greenwood, J. A., Landwehr, J. M., Matalas, N. C., and Wallis,
J. R.: Probability-weighted moments: definition and relation to
provided 1y Y=XBi -0 for all i=1, ..., n. The Maximum parameters of several distributions expressable in inverse form,
g Water Resour. Res., 15, 1049-1054, 1979.

Likelihood estimategp, o, ) are obtained by maximizing Gros, V., Bonsang, B.. Martin, D., Novelli, P. C., and Kazan, V:

l . .
Eq. CD. In the 9ase/.>._7’ the usual prOpfértles of ‘?O”S'S' Short term carbon monoxide measurements at Amsterdam Is-
tency, asymptotic efficiency and asymptotic normality hold. land: estimations of biomass burning emissions rates, Chemo-
Since there is no explicit formula from the maximization, sphere, 1, 163-172, doi:10.1016/S1465-9972(99)00009-4, 1999.
we obtain the estimates by numerically optimizing EgfL), Hosking, J. R. M.: L-moments: analysis and estimation of distri-
e.g. by using a Newton Raphson algorithm. butions using linear combinations of order statistics, J. R. Stat.
Soc., 52, 105-124, 1990.
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