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Abstract. Since the pioneering work ofLandwehr et al.
(1979), Hosking et al.(1985) and their collaborators, the
Probability Weighted Moments (PWM) method has been
very popular, simple and efficient to estimate the parameters
of the Generalized Extreme Value (GEV) distribution when
modeling the distribution of maxima (e.g., annual maxima
of precipitations) in the Identically and Independently Dis-
tributed (IID) context. When the IID assumption is not satis-
fied, a flexible alternative, the Maximum Likelihood Estima-
tion (MLE) approach offers an elegant way to handle non-
stationarities by letting the GEV parameters to be time de-
pendent. Despite its qualities, the MLE applied to the GEV
distribution does not always provide accurate return level
estimates, especially for small sample sizes or heavy tails.
These drawbacks are particularly true in some non-stationary
situations. To reduce these negative effects, we propose to
extend the PWM method to a more general framework that
enables us to model temporal covariates and provide accu-
rate GEV-based return levels. Theoretical properties of our
estimators are discussed. Small and moderate sample sizes
simulations in a non-stationary context are analyzed and two
brief applications to annual maxima of CO2 and seasonal
maxima of cumulated daily precipitations are presented.

1 Introduction

Extreme value theory provides a solid mathematical foun-
dation (e.g.Embrechts et al., 1997; Beirlant et al., 2004; de
Haan and Ferreira, 2006) for studying maxima in fields like
hydrology or climatology (e.g.Katz et al., 2002). In the Iden-
tically and Independently Distributed (IID) setup, this theory
states that maxima should follow the Generalized Extreme
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Value (GEV) distribution whenever re-normalized maxima
of a random sample converges to a non-degenerate random
variable (e.g.Coles, 2001). From a statistical point of view,
this means that the cumulative probability distribution func-
tion of maxima from IID samples is very likely to be cor-
rectly fitted by the following GEV distribution

G(x; µ, σ, γ ) = exp
(
−

{
1 + γ

x − µ

σ

}−1/γ )
(1)

whereσ>0,γ 6=0 andµ ∈ R are called the GEV scale, shape
and location parameters, respectively, and with the constraint
1+γ

x−µ
σ

>0. If γ→0, then Eq. (1) corresponds to the Gum-
bel case and is equal to exp

(
− exp{− x−µ

σ
}
)

with x ∈ R.
To estimate the three parameters of a GEV distribution,

several methods have been developed, studied and com-
pared during the last twenty years. In 1979,Greenwood
et al. (1979) andLandwehr et al.(1979) introduced the so-
called Probability Weighted Moments (PWM). This method-
of-moments approach (see Appendix A) has been very pop-
ular in hydrology (Hosking et al., 1985) and climatology be-
cause of its conceptual simplicity, its easy implementation
and its good performance for most distributions encountered
in geosciences. In 1985, Smith studied and implemented
the Maximum Likelihood (ML) method for the GEV den-
sity (see Appendix C). According toHosking et al.(1985),
the PWM approach is superior to the MLE for small GEV
distributed samples.Coles and Dixon(1999) argued that
the PWM method assumes a priori on the shape parameter
which is equivalent to assume a finite mean for the studied
distribution. To integrate this condition in the ML approach,
these authors proposed a penalized MLE scheme with the
constraintγ<1. If this condition is satisfied, then the ML
approach is as competitive as the PWM one, even for small
samples. Still, the debate over the advantages and draw-
backs of both estimation methods is not closed. For example,
the classical and penalized ML approaches impose a restric-
tion on the lower values ofγ , i.e. we needγ>−0.5 to have
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Table 1. Bias of the estimated return levels obtained by the GPWM
and ML method (for a return periodt=10×n).

γ Method n=15 n=25 n=50 n=100

1 z∗
t 148.4 248.4 502.4 1002.4

1 GPWM −98.9 −163.8 29.4 14.3

1 ML 190.6 402.5 628.9 181.4

0.6 z∗
t 8.6 44.0 71.6 107.4

0.6 GPWM −18.6 −22.4 −3.8 1.0

0.6 ML 42.5 122.5 77.2 36.8

0.4 z∗
t 6.7 20.2 31.5 41.1

0.4 GPWM −13.3 −8.0 −2.6 −0.7

0.4 ML 19.1 31.1 11.2 7.8

0.2 z∗
t 5.5 10.0 16.3 18.9

0.2 GPWM −2.9 −2.9 −1.3 −0.81

0.2 ML 11.4 7.6 2.3 1.5

0 z∗
t 5.0 5.5 10.2 10.9

0 GPWM −1.6 −1.0 −0.67 −0.46

0 ML 3.7 1.0 0.28 0.15

−0.2 z∗
t 3.1 3.3 7.5 7.7

−0.2 GPWM −0.4 −0.37 −0.33 −0.24

−0.2 ML 0.05 0.01 −0.09 −0.07

−0.4 z∗
t 2.1 2.2 6.2 6.3

−0.4 GPWM −0.26 −0.10 −0.14 −0.09

−0.4 ML −0.09 −0.14 −0.14 −0.07

−0.6 z∗
t 3.1 3.3 5.6 5.6

−0.6 GPWM −0.15 0.01 −0.04 −0.03

−0.6 ML −0.11 −0.15 −0.09 −0.05

−1 z∗
t 0.99 0.99 4.99 4.99

−1 GPWM 0.15 0.08 0.03 0.00

−1 ML 0.42 −0.05 −0.01 −0.00

regularity of the ML based estimators. Although it is rare
to work with bounded upper tails, they can be encountered
in geophysics. For example, atmospheric scientists can be
interested in relative humidity maxima, a bounded random
variable. One problem with the PWM method is the range of
validity (γ<1/2) to derive the asymptotic properties of the
PWM estimators. This constraint may be too restrictive for
some applications in hydrology and climatology. Recently,
Diebolt et al.(2008) introduced the concept of the General-

ized Probability Weighted Moments (GPWM) for the GEV.
It broadens the domain of validity of the PWM approach,
allowing heavier tails to be fitted. Despite this advantage,
the ML method has kept a strong advantage over a PWM
approach: its inherent flexibility in a non-stationary context.
When studying climatological and hydrological data, it is not
always possible to assume that the distribution of the max-
ima remains unchanged in time. For example, trends can
be present in extreme values of different hydroclimatolog-
ical series (e.g.,Kharin et al., 2007; IPCC Report, 2007).
The MLE can easily integrate temporal covariates within the
GEV parameters (e.g.,Katz et al., 2002; Coles, 2001; El Ad-
louni et al., 2007) and conceptually, the MLE procedure re-
mains the same if the GEV parameters vary in time (seeEl
Adlouni and Ouarda(2008) for a comparison study of dif-
ferent methods for non-stationary GEV models). In prac-
tice, numerical problems quickly arise and estimated ML re-
turn levels can be misleading in some non-stationary situa-
tions (see Tables1 and2), especially for strong heavy tails
(γ≥0.4). With these limitations in mind, our aim is to pro-
pose and to study a novel GPWM procedure that can handle
temporal covariates. Our main motivation is to keep the in-
teresting GPWM properties identified in the IID case while
adding the needed flexibility to handle non-stationarities that
are often present in real case studies. This will provide a
valuable alternative to the MLE for non-stationary GEV dis-
tributed data.

Before closing this introduction, we would like to empha-
size that, beyond the three aforementioned estimation meth-
ods (MLE, PWM and GPWM), there exists other variants
and extensions. For example,Hosking(1990) proposed and
studied the L-moments,Zhang(2007) recently derived a new
and interesting method-of-moments, and Bayesian estima-
tion has also generated a lot of interest in extreme value
analysis (e.g.Lye et al., 1993; Coles, 2001; Cooley et al.,
2007). But we will neither compare nor discuss these al-
ternatives with respect to our proposed method for the fol-
lowing reasons. The objective of this work is not to write
a review paper that compares all existing estimation meth-
ods. Instead our aim is to extend the applicability of a well-
known approach (PWM) by working with a larger class of
estimators (GPWM) and by proposing an algorithm that en-
compasses temporal dependences. We focus on comparing
our approach with the classical MLE because the later may
be the most popular in statistical climatology and hydrology
for non-stationary time series analysis.

2 A GEV regression model

One of the most simples, most frequently used and most stud-
ied models in statistics is the classical regression

Y = Xβ + ε (2)

Nonlin. Processes Geophys., 15, 1033–1039, 2008 www.nonlin-processes-geophys.net/15/1033/2008/
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whereY=(Y1, . . . , Yn)
t represents an observational vector

of lengthn, X is a n×p known matrix of explanatory vari-
ables andβ a vector of unknown parameters of lengthp

that characterizes the relationship between observations and
explanatory variables. For example, in a time series con-
text where a cycle of lengthT can be present, a model like
Yi=β0+β1 cos(2πi/T )+εi corresponds to a matrix

X =

1 cos(2π
T

)
...

...

1 cos(2πn
T

)

 andβ =

(
β0
β1

)
. (3)

A regression like Eq. (2) can also model linear and even
polynomial trends and consequently, it can handle various
types of non-stationarities in time. Classically, the vectorε

in Eq. (2) is assumed to be a zero-mean Gaussian vector, but
this hypothesis is not reasonable whenever the observations
can be considered as maxima. As already mentioned in the
Introduction, Extreme Value Theory tells us that a more ad-
equate fit for maxima should be the GEV distribution de-
fined by Eq. (1). For this reason, we assume in this paper
that the vectorε in Eq. (2) consists of IID random variables
from a GEV distribution defined by Eq. (1) and with param-
eters(0, σ, γ ). Note thatµ is set to zero here becauseβ0 in
the vectorβ usually plays the role of the location parame-
ter. Overall, this is equivalent to state that the sequence of
maximumYi represents a sequence of independent GEV dis-
tributed random variables with the same scale parameterσ ,
the same shape parameterγ but with a varying location pa-
rameterµi that depends on the covariateX, i.e.µi=(Xβ)i .

Classically, most estimation methods for estimatingβ in a
regression model assume that the “noise”ε is zero-mean. In
our case, we have imposed thatεi follows a GEV distribution
with µ=0. But this does not imply that the meanεi is null
because the GEV density is not always symmetric aroundµ.
To be in accordance with the zero-mean constraint, we just
have to re-parametrize our model

Y = Xβ∗
+ ε∗ (4)

where

X =

1 x11 · · · x1p−1
...

...
...

1 xn1 · · · xnp−1

 , ε∗
=

 ε1 − E(ε1)
...

εn − E(ε1)

 , (5)

β∗
=

(
β0 + E(ε1), β1, . . . , βp−1

)t
,

andE(ε1) corresponds to the mean value ofε1.
To estimate return levels, we propose to implement the fol-

lowing three-steps algorithm:

Step a: Implement an existing regression method on Eq. (4) to
find regression estimates that we call(β̂1, . . . , β̂p−1).

Table 2. Standard deviation of the estimated return levels obtained
by the GPWM and ML method (for a return periodt=10×n).

γ Method n=15 n=25 n=50 n=100

1 GPWM 238.1 374.5 1163.6 2304.0

1 ML 10 616.4 28 206.3 4670.08 2671.2

0.6 GPWM 54.76 30.4 69.8 83.7

0.6 ML 846.6 627.3 268.0 108.4

0.4 GPWM 12.0 11.7 20.1 23.1

0.4 ML 126.0 226.13 37.8 27.1

0.2 GPWM 6.2 5.0 7.0 6.9

0.2 ML 11.5 38.9 9.1 6.7

0 GPWM 2.2 2.4 2.9 2.5

0 ML 19.5 14.9 2.5 1.8

−0.2 GPWM 1.51 1.4 1.4 1.1

−0.2 ML 4.3 2.8 0.81 0.52

−0.4 GPWM 0.42 0.89 0.85 0.62

−0.4 ML 2.5 2.2 0.36 0.23

−0.6 GPWM 0.33 0.64 0.56 0.41

−0.6 ML 0.70 0.34 0.18 0.11

−1 GPWM 0.64 0.44 0.28 0.18

−1 ML 0.48 0.23 0.10 0.08

Step b: Apply the GPWM approach described in AppendixB to
estimate the GEV parameters of the “pseudo-residuals ”

ε̂i=Yi −

p−1∑
j=1

β̂jxij , for i=1, . . . , n. (6)

Step c: From the GEV estimates obtained from Step b, compute
the desired return levels.

Although each of these three steps appears to be simple, they
deserve careful examinations. In order to apply Step b, the
pseudo-residuals(̂ε1, . . . , ε̂n) should be IID and GEV dis-
tributed. This is not true becauseβj has to be estimated in
Step a (it would be true if we knewβj ). This issue is less
relevant if the sample sizen gets larger. For example, if the
classical least squares regression1 is used for Step a, our es-
timation of βj asymptotically becomes better and our IID
GEV assumption for our residuals truer. More precisely, a

1β̂∗
=(X′X)−1X′Y is obtained by minimizing the sum of the

squared errors(Y − Xβ)′(Y − Xβ) wheneverX′X is invertible.
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general result (Azais and Bardet, 2005), about least squares
regression tells us that, under the assumptions

lim
n→∞

n−aX′X equals a positive definite matrix fora>0

lim
n→∞

max
1≤i≤n

(
X

(
X′X

)−1 X′

)
(i,i)

= 0 (7)

the variance of allεi is finite (i.e.γ<1
2)

the pseudo-residualŝεi can be asymptotically viewed as
independent random variables distributed according to a
GEV(β0, σ, γ ) distribution. This result is general because
it does not impose a specific type of distribution for theε in
Eq. (2) but only a finite variance condition. Still extreme val-
ues like maxima do not necessary obey the conditionγ<1

2,
it may be more appropriate to implement a robust/resistant
regression in Step a.

Such a remark was confirmed by our simulation study.
In Sect. 3 we take advantage of the Least Trimmed
Squares (LTS) regression (Venables and Ripley, 2002,
p. 156–163). Basically, the influence of very high values
that could mislead the estimation of theβj ’s is trimmed by
minimizing an error/cost function that is only based on the
core data. This LTS method usually gives accurate estima-
tors even in the presence of large values but it needs a long
computation time. This is not an important issue for maxima
because of the rarity of the observations. Hence, for Step a,
we advice to apply such a resistant/robust method for heavy
tail distributions.

Concerning Step c, the return levelzt for the fixed time
periodt can be easily defined in the IID case. More precisely,
the returnzt corresponds to the 1−1/t quantile, i.e. it is the
level that, in average, is crossed one time during the time
periodt . For the GEV(µ, σ, γ ) distribution, this means that

zt = µ +
σ

γ

[
−1 +

(
− ln

(
1 −

1

t

))−γ
]

. (8)

In a non-stationary context, no unique definition exists for
zt because extreme values recorded during the time 1, . . . , n

have a different distribution than the extremes occurring dur-
ing any translated time 1+C, . . . , n+C for anyC 6=0. With
respect to our regression model Eq. (4), the IID return level
defined by Eq. (5) can be adapted in the following way

z∗
t = (Xβ)t +

σ

γ

[
−1 +

(
− ln

(
1 −

1

t

))−γ
]

. (9)

This means the trend at timet plus an IID return level based
on the residual of the regression.

To estimate beyond the range of observations, e.g. to com-
pute the centennial return level with only 50 years of data,
one needs to extrapolate the trends in Eq. (9) captured by
(Xβ)t= µt . As it is well know in statistics, it is very dan-
gerous to extrapolate a linear regression outside the sample
support. Hence, extra caution is required when interpreting
z∗
t in real applications because it means that the trend will

remain the same until timet .

3 Analysis of non-stationary maxima

3.1 Simulations

Simulations are performed for four sample sizes
n=15, 25, 50 and 100 and for nine shape parameters
γ=−1, −0.6, −0.4, −0.2, 0, 0.2, 0.4, 0.6 and 1. Without
loss of generality, we can setσ to one. As covariates, we fix

X =


1 cos(π/2 × 1)

1 cos(π/2 × 2)
...

...

1 cos(π/2 × n)

 andβ =

(
β0
β1

)
=

(
2
2

)
. (10)

For each combination ofn andγ , 10 000 random samples
are generated from a GEV(β0+β1× cos(π/2×i), 1, γ ) dis-
tribution.

To estimate all parameters and return levels with our ap-
proach the same procedure is followed. Step a is imple-
mented by regressing with a LTS method. Then Step b is
applied. Finally, Step c is used to estimate the return levelz∗

t

defined by Eq. (9) for t=10×n.
To obtain the return level estimate from the ML approach,

we directly obtain estimation ofβ0, β1, γ andσ by maximiz-
ing the log-likelihood function (see AppendixC). Abnormal
ML estimates have been eliminated by removing all samples
that provide ML estimates ofγ greater than 2.52.

For both estimation methods, the bias between true and es-
timated return values is displayed in Table1 and the standard
deviation in Table2. These tables clearly showed that, for
this specific example, the MLE does not provide adequate
estimates whenever the sample size is small (n<50) and the
shape parameter is large, especially in terms of standard de-
viation. In contrast, our GPWM regression method does a
better job at handling small samples and largeγ (except for
γ=1 where both methods fail), especially in terms of stan-
dard deviation. Other simulations have been done, in partic-
ular a comparison between the two methods in a linear de-
pendence case. Since the conclusions are the same, we do
not include them.

3.2 Annual maxima of CO2 concentrations

We consider the annual concentrations of CO2 at Amsterdam
in the Indian Ocean from 1981 to 2001. These observations
are available on the website of RAMCES (http://www.ipsl.
jussieu.fr/services/Observations/fr/RAMCES.htm) where an
extensive bibliography can be found on this subject, for ex-
ample inGros et al.(1999). Each of the 21 measures is
assumed to follow a GEV(β0+β1×year, σ, γ ) distribution.
With the GPWM and ML approaches, we have estimated
γ , σ , β0 and β1 and also the return level for a period of
200 years. The results are listed in Table3. We observe that

2Without this thresholding, the ML standard deviations would
have been even larger forγ ’s greater than 0.4.
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the two methods lead to very similar results for all the param-
eters estimated. This corroborates our simulations analysis.
For light tailed random variables such as CO2 concentration
maxima, the GEV parameters estimates are fairly similar for
values ofγ near zero, see Table1.

3.3 Seasonal maximum of cumulated daily precipitations

We treat here seasonal maxima of cumulated
daily precipitations recorded in the Orgeval basin
(France) during 31 years. We suppose that each
of the 124 measures(Yi,j )i=1,...,31;j=1,..,4 follows a
GEV

(
β0+β1× cos

(
π
2 ×j

)
+β2×i, σ, γ

)
distribution. The

indice i corresponds to the year while the indicej corre-
sponds to the season. The parameterβ2 indicates the trend
of the series. Table4 provides the estimates ofγ , σ , β0,
β1 andβ2 and the 100-year return level obtained from the
GPWM and ML approaches.

In contrast to our previous example summarized by Ta-
ble 3, the MLE and GPWM procedures give very different
estimates of the 100-year return level estimates in Table4.
To better understand this difference, we re-estimate the GEV
parameters but with only the first 20 years. Table5 summa-
rizes our findings. As observed in Tables1 and2, the prop-
erties of a GPWM estimated shape parameter around 0–0.2
does not vary greatly when the sample size changes. This is
not the case for the ML approach where the estimates ofγ

can double by changing the sample size, see Table5. This
also impacts the estimates of the return levels.

4 Conclusions

In this paper, we propose an extension of the PWM method
which can be viewed as an alternative to the MLE method
that enable us to model temporal covariates and provide ac-
curate return levels. We illustrate our approach by a simula-
tion study and by applying our approach to two time series of
maxima. Compared to the ML method, the GPWM method
performs better and is computationally easy, but we cannot
obtain confidence intervals and, up to now, we can only have
a non-stationary location parameter, whereas with the MLE
method the three parameters of the GEV distribution can be
non-stationary. Concerning the estimation of return levels in
such non-stationary cases, we would like to conclude with a
word of caution. Extrapolating the trend beyond the range
of observations is always a delicate and sometimes danger-
ous operation (since we assume that the trend will remain the
same in the future), especially when dealing with extremes.
Hence high return levels in a non-stationary context must be
interpreted with extreme care.

Table 3. Annual maxima of CO2 concentrations analysis with a
GEV(β0+β1×year, σ, γ ).

GPWM ML

γ −0.1102 0.044

σ 0.52 0.52

β0 −2528.96 −2528.94

β1 1.44 1.44

z∗
t 441.89 439.53

Table 4. Seasonal maxima of cumulated daily precipitations analy-
sis with a GEV

(
β0+β1× cos

(
π
2 ×j

)
+β2×i, σ, γ

)
distribution fit-

ted to 31 years of data.

GPWM ML

γ 0.068 0.152

σ 7.44 7.51

β0 16.42 17.60

β1 −3.49 −2.35

β2 0.113 0.038

z∗
t 86.35 97.51

Table 5. Seasonal maxima of cumulated daily precipitations analy-
sis with a GEV

(
β0+β1× cos

(
π
2 ×j

)
+β2×i, σ, γ

)
distribution but

only with the first 20 years of data.

GPWM ML

γ 0.072 0.271

σ 8.07 7.58

β0 18.18 17.82

β1 −4.61 −1.59

β2 0.085 0.042

z∗
t 91.74 134.60

www.nonlin-processes-geophys.net/15/1033/2008/ Nonlin. Processes Geophys., 15, 1033–1039, 2008
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Appendix A

Probability Weighted Moments (PWM)

The PWMs of a random variableZ with distribution function
F are the quantities (seeGreenwood et al., 1979)

Mp,r,s = E
[
Zp(F (Z))r(1 − F(Z))s

]
wherep, r ands are real numbers. When the distributionF

equals to the GEV distribution defined by Eq. (1), a subclass
of PWM (p=1, r=0, 1, 2, ... ands=0) can be explicitly ob-
tained (seeHosking et al., 1985)

M1,r,0 =
1

r + 1

{
µ −

σ

γ

[
1 − (r + 1)γ 0(1 − γ )

]}
, (A1)

for γ<1 andγ 6=0. This provides a system of three equations
with three unknown parameters(µ, σ, γ )

M1,0,0 = µ −
σ

γ

(
1 − 0(1 − γ )

)
2M1,1,0 − M1,0,0 =

σ

γ
0(1 − γ )(2γ

− 1)

3M1,2,0 − M1,0,0

2M1,1,0 − M1,0,0
=

3γ
− 1

2γ − 1

(A2)

In the IID case, the PWMM1,r,0 can be estimated by the
unbiased estimator (seeLandwehr et al., 1979)

M̂1,r,0 =
1

n

n∑
j=1

( r∏
`=1

j − `

n − `

)
Zj,n

or by the asymptotically equivalent consistent estimator

M̃1,r,0 =
1

n

n∑
j=1

pr
j,nZj,n,

where(Z1, . . . , Zn) is an IID sample,Z1,n ≤ ... ≤ Zn,n

the ordered sample andpj,n a plotting position, i.e. a
distribution-free estimate ofF(Zj,n). Hence, the PWM esti-
mators(µ̂, σ̂ , γ̂ ) of (µ, σ, γ ) are the solutions of the system
Eq. (A2). In particular, we have

µ̂=M̂1,0,0+
σ̂

γ̂

(
1 − 0(1−γ̂ )

)
andσ̂=

γ̂
[
2M̂1,1,0−M̂1,0,0

]
0(1−γ̂ )(2γ̂ − 1)

.

To obtainγ̂ , the last equation of (A2) has been solved nu-
merically. In the specific case where−1/2<γ<1/2, γ can
be estimated by :

γ̂ = −7.859c+2.9554c2 with c =
2M1,1,0 − M1,0,0

3M1,2,0 − M1,0,0
−

log 2

log 3
.

Under the conditionγ<0.5, Hosking et al.(1985) estab-
lished the asymptotic normality of the vectorθ=(µ, σ, γ )′,
i.e., as the sample sizen increases,

√
n(θ̂−θ) converges in

distribution to a trivariate zero-mean Gaussian vector whose
covariance structure is given inHosking et al.(1985).

Appendix B

Generalized Probability Weighted Moments (GPWM)

Introduced and studied byDiebolt et al.(2008) for the GEV,
the Generalized Probability Weighted Moments (GPWM)
can be viewed as an extension of the PWMs. They are de-
fined as

νω =

∫
∞

−∞

xω(G(x))dG(x),

whereG represents the GEV distribution defined by Eq. (1)
andω(.) is any suitable continuous function. One advantage
of this definition is that it is easy to propose estimators ofνω.
By rewriting the GPWMs as

νω =

∫ 1

0
G−1(u)ω(u)du,

the following estimator can be easily computed for any given
ω(.)

ν̂ω,n =

∫ 1

0
F−1

n (u)ω(u)du (B1)

where F−1
n denotes the inverse of the classical empirical

distribution function of a IID GEV distributed sample. To
make the link between PWMs and GPWMs, one can choose
ω(u)=ur . Thenνω corresponds to the classical PWM cap-
tured by Eq. (A1). But this choice imposes a strong re-
striction on the GEV shape parameterγ<1/2. To handle
heavier tails (i.e. largerγ ), it is preferable to work with
ω(u)=ua(− logu)b. For such a type of function,Diebolt
et al.(2008) showed that

νω =
σ

γ

0
(
b − γ + 1

)
(a + 1)b−γ+1

−

(σ

γ
− µ

) 0
(
b + 1

)
(a + 1)b+1

.

If b is chosen such thatγ<b+1, thenνω exists. In this
case, the asymptotic normality for̂νω,n holds whenγ<1

2+b

(Diebolt et al., 2008) and confidence intervals can be pro-
vided for bounded, light and heavy tails. To simplify nota-
tions,νω is now calledνa,b whenω(u)=ua(− logu)b.

To estimate the three GEV parameters fromνa,b, we need
to solve a system of three equations. In practice, we fix three
pairs for(a, b): (1, 1), (1, 2) and(2, 1). This simple choice
provides an easy system to solve

γ̂

1 − (3
2)γ̂

=
2[̂ν11 − ν̂12]

ν̂11 −
9
4 ν̂21

,

σ̂ = 23−γ̂ ν̂11 − ν̂12

0(2 − γ̂ )
and µ̂ =

σ̂

γ̂
−

σ̂

γ̂
2γ̂ 0(2−γ̂ )+4̂ν11.

Compared to the PWM approach, the concept remains the
same (method-of-moments) but the system of equations
slightly differs (see Eq.A2) and provides a wider range of
possible values forγ .
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Appendix C

Maximum Likelihood Estimation (MLE)

Let (Y1, ..., Yn) be a sequence of independent random vari-
ables such thatYi follows a GEV((Xβ)i, σ, γ ) distribution.
Let θ be the vector of unknown parameters to be estimated
(in our case,θ=(β, σ, γ )). In the caseγ 6=0, the log likeli-
hood function is given by :

logL(β, σ, γ ) = −n logσ

−

( 1

γ
+ 1

) n∑
i=1

log
(
1 + γ

Yi − (Xβ)i

σ

)
−

n∑
i=1

(
1 + γ

Yi − (Xβ)i

σ

)−
1
γ

(C1)

provided 1+γ
Yi−(Xβ)i

σ
>0 for all i=1, ..., n. The Maximum

Likelihood estimates(β̂, σ̂ , γ̂ ) are obtained by maximizing
Eq. (C1). In the caseγ>−

1
2, the usual properties of consis-

tency, asymptotic efficiency and asymptotic normality hold.
Since there is no explicit formula from the maximization,
we obtain the estimates by numerically optimizing Eq. (C1),
e.g. by using a Newton Raphson algorithm.
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