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Abstract Corruption often involves bribery, when a briber suborns a power-holder to gain

advantages usually at a cost of moral transgression. Despite its wide presence in human societies,

the neurocomputational basis of bribery remains elusive. Here, using model-based fMRI, we

investigated the neural substrates of how a power-holder decides to accept or reject a bribe.

Power-holders considered two types of moral cost brought by taking bribes: the cost of conniving

with a fraudulent briber, encoded in the anterior insula, and the harm brought to a third party,

represented in the right temporoparietal junction. These moral costs were integrated into a value

signal in the ventromedial prefrontal cortex. The dorsolateral prefrontal cortex was selectively

engaged to guide anti-corrupt behaviors when a third party would be harmed. Multivariate and

connectivity analyses further explored how these neural processes depend on individual

differences. These findings advance our understanding of the neurocomputational mechanisms

underlying corrupt behaviors.

Introduction
Corruption, commonly defined as ‘the abuse of entrusted power for private gains’ (Graycar and

Smith, 2011), is one of the most pervasive and complex social problems today. It distorts develop-

ment priorities, aggravates inequality in societies, and challenges organizations and governments

globally (Mauro, 1995). Due to its critical societal implications, corruption has been extensively

investigated during the past two decades in fields such as political science, sociology, economics,

and psychology. Using survey-based measures (Lambsdorff, 2006) and behavioral economic

experiments (Serra and Wantchekon, 2012), these studies significantly improved our understanding

of corruption at sociological and behavioral levels. However, the neural mechanisms underlying deci-

sion-making involving corrupt acts remain unexplored.

One of the most common forms of corruption is bribery, which costs between 1500 and 2000 bil-

lion US dollars each year (~2% of the global GDP) (Gaspar and Hagan, 2016). It usually occurs in an

interpersonal context in which at least two parties are involved, a briber and a power-holder. The

briber often pays the power-holder in some way, and, in return, the power-holder makes decisions

that profit the briber (Abbink, 2006; Köbis et al., 2016). Critically, favor exchanges can hardly be

considered as bribes unless they involve moral or legal transgression. That is, a bribe takes place

when the briber obtains a favorable treatment or an advantageous outcome by paying the power-

holder to circumvent a norm of impartiality or a moral rule (Köbis et al., 2016; Serra and
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Wantchekon, 2012). In addition, bribery often implies harming the interests of a third party, which

can be an explicit person or a societal organization (Barr and Serra, 2009; Köbis et al., 2016). For

instance, a public official who accepts a bribe regarding a procurement contract will harm competi-

tors whose project might bring greater benefits to society. Thus, one can distinguish two forms of

moral costs incurred by the power-holder who takes a bribe: conniving with a fraud committed by

the briber and harming an innocent third party. Indeed, previous behavioral studies have identified a

crucial role of moral cost of unethical behaviors in explaining why individuals often refrain from

behaving immorally. For example, people are reluctant to tell a self-serving lie or inflict physical

harm on an anonymous partner for their own benefit even when there is no material cost of doing so

(Crockett et al., 2017; Rosenbaum et al., 2014).

To understand the neural bases of the power-holder’s corrupt behavior, it is necessary to start by

asking how different moral costs are represented at the neural level while deciding whether to take

a bribe or not. Previous fMRI studies in the moral domain provide valuable insights to formulate

hypotheses regarding the neural underpinnings of moral costs in the context of bribery. On the one

hand, the ventral part of anterior insula (vAI) has been shown to be engaged when moral and social

norms are violated. For instance, a stronger vAI signal has been observed when people are deceived

by another person (Yin and Weber, 2016) or when deciding whether to lie to obtain additional

gains (Yin et al., 2017). A natural hypothesis is that the vAI is more engaged in representing the

expected ‘dirty’ personal gains from accepting bribes, which may elicit a negative affective signal

due to the moral cost of colluding with the briber who is violating the moral principle of honesty. On

the other hand, the temporoparietal junction (TPJ) has been found to contribute to balance personal

interests and other’s welfare (Hutcherson et al., 2015; Morishima et al., 2012; Obeso et al.,

2018). This region is also more active when one’s decision impacts a person who is in a disadvanta-

geous situation. For instance, a recent fMRI study found that multivoxel patterns of TPJ can discrimi-

nate generous from selfish choices during charitable decision-making (i.e., donating to help

someone else in desperate need) (Tusche et al., 2016). Another study showed that the posterior

part of TPJ encoded the levels of other’s need when individuals decided whether to help another

person (Hu et al., 2017). These findings suggested that the TPJ would be sensitive to the moral cost

of the bribe-induced financial losses incurred by a third party.

A key question is to understand how these moral costs are integrated with other decision compo-

nents into a neural value signal during bribery-related decision-making. Here, we developed and

tested a number of computational models that assume that a power-holder makes the decision to

accept (or reject) a bribe by computing the subjective value (SV) of each option via a utility function.

Under the framework of social preference theory (Fehr and Krajbich, 2014), this function takes into

account not only the trade-off between one’s own gain and the briber’s gain but also any moral

costs specifically brought by taking the bribe. Using a model-based fMRI approach

(O’Doherty et al., 2007), we searched for brain regions that were involved in computing such SV

signals when deciding whether to accept a bribe. Since the ventromedial prefrontal cortex (vmPFC)

is known to be the hub of value computation for both non-social (Bartra et al., 2013) and social

decisions (Ruff and Fehr, 2014), we predicted the recruitment of vmPFC in computing an integra-

tive decision value signal preceding the decision of whether to accept a bribe.

We also aimed to identify which brain region(s) guide the specific choices of taking a bribe or

not. A recent theory argues that the dorsolateral prefrontal cortex (dlPFC) is key to support the pur-

suit of moral goals in a context-dependent manner (Carlson and Crockett, 2018). Hence, the dlPFC

can be expected to flexibly align with specific bribery scenarios that concern different types of moral

costs and regulate specific choices. In particular, the dlPFC plays a critical role in causally modulating

self-serving dishonest behaviors (Maréchal et al., 2017; Zhu et al., 2014) and norm-enforcing deci-

sions (Buckholtz et al., 2015; Knoch et al., 2006). A recent fMRI study also identified selective

recruitment of the dlPFC in evaluating ill-gotten money obtained by harming others (vs. self)

(Crockett et al., 2017). More intriguingly, recent work has highlighted the modulatory role of dlPFC

on the value signal in vmPFC especially when the decision-making process requires individuals to

exert self-control to inhibit the impulse to choose immediate rewards (vs. long-term rewards;

Hare et al., 2009; Hare et al., 2014) or personal profits (vs. moral values; Baumgartner et al.,

2011; Dogan et al., 2016). Here, we tested whether the functional connectivity between vmPFC

and dlPFC would be enhanced during bribery-related decision-making. Based on the evidence

above, we hypothesized that we would observe a stronger vmPFC–dlPFC functional coupling during
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the decisions of whether to accept or reject a bribe (vs. offers in the Control condition) in which par-

ticipants as power-holders might need more self-control to overcome the lure of accepting bribes

that result in moral costs.

Our last question was to examine how individual differences in neural activities during bribery-

related decision-making explain variations across power-holders, in preferences for bribery, charac-

terized by moral costs due to bribe-taking. A growing body of literature links the dlPFC signal to

individual variations in the levels of self-serving dishonesty (Dogan et al., 2016; Yin and Weber,

2018) or harm aversion (Crockett et al., 2017), which are closely related with two types of moral

costs specific to corrupt acts measured in the current task. Hence, we performed an exploratory

analysis, again with a focus on the dlPFC given the evidence above, to probe whether such a rela-

tionship exists, in a bribery setting, by applying a multivariate approach. We performed an inter-sub-

ject representational similarity analysis (IS-RSA) to uncover the neural–behavioral relationship across

individuals (van Baar et al., 2019). Compared with the mass-univariate approach, IS-RSA allows us

to associate multidimensional behavioral measures with a geometric representation of information

based on multivoxel neural patterns across individuals, rather than simply linking a single behavioral

measure with averaged activities across voxels in a certain region (Kriegeskorte et al., 2008;

Popal et al., 2019). Here, with the help of IS-RSA, we were able to map differences in neural signals

during bribery-related decision-making (i.e., Bribe vs. Control) directly onto key model-based param-

eters that characterize different types of moral costs specifically involved during bribery-related deci-

sion-making.

To address these questions, we designed a novel paradigm that captured the essence of a brib-

ery situation while keeping it as simple as possible for the fMRI setting. Participants in the MRI scan-

ner played the role of a power-holder and decided whether a fictitious proposer would earn a given

amount of money or not (see Figure 1). The proposer was either alone or paired with a fictitious

third party (scenario: Solo vs. Dyad). Critically, the proposer could obtain more profit by either lying

or telling the truth (experimental condition: Bribe vs. Control; see below). To achieve this, the pro-

poser offered an amount of money from this larger profit to bribe the power-holder. The task for

the participants was to decide whether to accept or reject offers. Accepting the offer would profit

both the power-holder and the proposer, whereas rejection would earn nothing for either of them.

In the Dyad scenario, accepting the offer in the Bribe condition additionally harmed the interest of

an innocent third party. Here, bribery is operationally defined as accepting an offer from a proposer

who is fraudulently making a proposition that is more beneficial than that which should be honestly

reported. Thus, the proposer who commits fraud for a higher personal profit can be regarded as a

briber. Notably, this design allowed us to distinguish two types of moral costs that could be incurred

by participants, as power-holders, when accepting bribes, namely conniving with a fraud committed

by the briber and harming a third party. The former occurs in both scenarios, whereas the latter

occurs only in the Dyad scenario.

Results

Behavioral and modeling results
Power-holders accepted less offers during bribery-related decision-making
especially when it harmed a third party
We first investigated how participants’ choice behaviors varied depending on the scenario (Solo/

Dyad), and the proposer’s conduct (Bribe/Control), after controlling for the effect of the offer pro-

portion and that of the larger gain the proposer would earn in the reported option. Mixed-effect

logistic analyses showed that participants were less likely to accept an offer in the Dyad scenario

(main effect of the scenario: �2(1)=8.53, p=0.003) and in the Bribe condition (main effect of the pro-

poser’s conduct: �2(1)=25.3, p<0.001). More importantly, we observed a significant two-way interac-

tion with respect to whether the offer was accepted (�2(1)=4.73, p=0.030; see Figure 2A,

Figure 2—figure supplement 1). Simple-effect analyses further revealed that participants were

much less likely to accept bribes (vs. offers in the Control condition), in the Dyad scenario, where a

third party was involved (acceptance rate: 61.6 ± 22.6% vs. 82.8 ± 13.2%; odds ratio = 0.15,

b = �1.91 [–2.83, –1.25], SE = 0.41, p<0.001), in comparison to the Solo scenario (acceptance rate:
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67.0 ± 20.7% vs. 83.3 ± 14.8%; odds ratio = 0.13, b = �2.03 [–2.77, –1.08], SE = 0.39, p<0.001; see

Supplementary file 1a for details of the regression output).

Paralleling these findings, we found similar results with respect to the post-task subjective rating

on the degree of the moral inappropriateness and the fraud of the proposer’s behaviors (in the

online game), and on the degree of the moral conflict during decision-making and the moral inap-

propriateness of their own behaviors. A within-subject multivariate analysis of variance (MANOVA)

test showed a main effect of scenario (F(1, 38)=5.59, p=0.001) and the proposer’s conduct (F(1, 38)

=85.25, p=0.001) on these ratings. We also observed a significant two-way interaction effect (F(1,

38)=4.87, p=0.003; see Figure 2—figure supplement 1), which was mainly driven by higher ratings

Figure 1. Task and design. (A) Schematic illustration of the behavioral paradigm. Here, we show the bribe case in the Dyad scenario (i.e., the Dyad

Bribe condition [DB]). This condition consists of three roles: a proposer, a third party, and a power-holder (the real participant). Participants were

endowed with the power to decide whether the proposer would earn a higher profit by lying, which also caused financial losses to a third party in a

previous online study. The proposer hence bribes the power-holder, whose task was to decide whether to take the bribe. Notably, all proposers and

third parties were framed as participants in a previous online study (‘Game of Chance’), which was actually fictitious. (B) Illustration of all experimental

conditions. We manipulated two factors, that is, scenario (Solo or Dyad) and proposer’s conduct (Bribe or Control), which yielded four experimental

conditions. (C) Trial procedure in the DB condition. In this example, a proposer (E.L.) lied by reporting the non-selected payoff option, which

additionally harmed the interest of an innocent third party (A.K.), and bribed the power-holder with a certain amount of money from his/her potential

gain (i.e., 38 out of 96 CNY). The participant needed to decide whether to accept or reject the bribe within 8 s (s). Once the decision was made (i.e.,

accepting the bribe here), a yellow bar appeared on the corresponding option to highlight the choice for 0.5 s, which was followed by a jittered fixation

(i.e., 3–7 s with a mean of 5 s).
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in the Bribe (vs. Control) condition in the Dyad (F(1, 38)=124.43, p<0.001) in comparison to the Solo

scenario (F(1, 38)=50.05, p<0.001).

Figure 2. Results of behaviors and computational modeling. (A) Acceptance rate (%) as a function of context

(Solo/Dyad) and the proposer’s conduct (Control/Bribe). The significance was not marked because we did not

perform statistical tests directly on these two dependent variables. Individual acceptance rates in each

experimental condition are denoted by the black dots; the size of the dots represents the relevant sample size. (B)

Posterior mean of individual-level key parameters characterizing moral costs (q and w) based on the winning

model. Each black filled dot represents the group-level mean; each red dot represents the data of a single

participant; the density curve represents the distribution of the data across all participants. Error bars represent

the SEM; Significance: ***p<0.001.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Results of acceptance rate and subjective ratings.

Figure supplement 2. Results of parameter recovery analysis for each parameter in the winning model.

Figure supplement 3. Posterior predictive check of the winning model.

Figure supplement 4. Cross-validated posterior predictive check of the winning model.

Figure supplement 5. Results of reaction time (in ms).
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Power-holders took into account the moral costs during bribery-related
decision-making
Next, we performed a model-based analysis on choice to understand the computational mechanisms

underlying decisions of whether to take or refuse a bribe. To this end, we tested and compared a

total of seven models with different utility functions (see Materials and methods for details). Parame-

ters were estimated using the hierarchical Bayesian approach (HBA) via the ‘hBayesDM’ package.

R-hat values of all estimated parameters of all models were smaller than 1.1 (the maximum R-hat

value: 1.05), indicating adequate convergence of the Markov Chain Monte Carlo (MCMC) chains

(Gelman and Rubin, 1992).

Based on hierarchical Bayesian model comparison (see Supplementary file 1b), we identified

Model 5 (Equation 1) as the winning model, which was defined as below:

SVðpP;pT ;pPHÞ ¼
bPpP þðbPH � �qÞpPHþg pP� pPHj j if Soloscenario

bPpPþ!qpTþ bPH� �qð ÞpPHþg pP� pPHj j if Dyadscenario

�

(1)

where, in a given trial, SV denotes the subjective value, pP, pPH, pT represents the payoff (i.e., mone-

tary gain) for the proposer (P), the power-holder (PH; participants), and the third party (T) given differ-

ent choices (i.e., accept or reject the offer), q is an indicator reflecting whether the trial tool place in

the Bribe (q = 1) or the Control (q = 0) condition. bP and bPH are two independent free parameters

capturing the weights on the payoff of the proposer and the power-holder, respectively. q describes

the moral cost brought by conniving with a fraud committed by a proposer. w captures the moral

cost brought by harming the interest of a third party. We also incorporated g to account for the

absolute payoff inequity between the proposer and the power-holder denoted in the offer (parame-

ters range: �20 � bP, bPH, q, w, g <= 20). Parameter recovery analysis showed that these true esti-

mates (i.e., values we obtained from the actual choice data that we collected) positively correlated

with the recovered estimates (i.e., what we obtained from the simulated data generated with these

true parameters) for all parameters across individuals involved in the winning model (Pearson corre-

lation: rs > 0.71, ps <0.001; see Figure 2—figure supplement 2; see Materials and methods for

details), which suggests that our model is robustly identifiable. The posterior predictive check (PPC)

further revealed that the proportion of acceptance predicted by this model successfully recovered

the actual proportion of acceptance (all conditions: the within-sample PPC: rs > 0.90, ps <0.001; the

out-of-sample PPC: rs > 0.68, ps <0.001; see Figure 2—figure supplement 3, Figure 2—figure sup-

plement 4, and Materials and methods for details), which strengthened the results of the model

comparisons.

Further analyses of the individual-level posterior mean of these parameters revealed that partici-

pants weighed the payoffs for themselves positively (bPH: 16.02 ± 2.47, t(38) = 40.51, p<0.001,

Cohen’s d = 6.49) but did not do so for the proposer (bP: �0.88 ± 2.48, t(38) = �2.21, p=0.033,

Cohen’s d = �0.35). Moreover, participants decreased the weights of their own payoffs when they

were being bribed (q: 5.94 ± 4.28, t(38) = 8.67, p<0.001, Cohen’s d = 1.39) and apparently displayed

concern for the financial loss of the innocent third party (w: 0.97 ± 0.82, t(38) = 7.32, p<0.001,

Cohen’s d = 1.17; see Figure 2B; also see Supplementary file 1c for the bivariate correlation

between all parameters in the winning model). These findings suggest that participants considered

both forms of moral costs when deciding on whether to accept bribes. In addition, participants also

disliked the inequality in the absolute payoff between themselves and the proposer (g: �2.35 ± 2.23,

t(38) = �6.59, p<0.001, Cohen’s d = �1.06).

Power-holders responded more slowly when accepting a bribe
We also investigated how participants’ reaction time (RT) was modulated by the scenario and the

proposer’s conduct depending on the specific decisions (accept/reject), after controlling for the

effect of the offer proportion and that of the larger gain the proposer would earn in the reported

option. Before the analyses, we did a log-transformation on the RT due to its non-normal distribution

(i.e., Anderson–Darling normality test: A = 232.54, p<0.001). Mixed-effect linear regression on log-

transformed RT) showed that participants responded slower in the Dyad scenario (main effect of the

scenario: F(1, 5567)=15.52, p<0.001), in the Bribe condition (main effect of the proposer’s conduct:

F(1, 5570)=64.28, p<0.001), and when they rejected the offer (main effect of decision: F(1, 5582)

=50.08, p<0.001). Moreover, we detected a two-way interaction between the decision (accept/
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reject) and the proposer’s conduct (bribe/control; F(1, 5575)=20.79, p<0.001). Post-hoc analyses fur-

ther showed that participants responded more slowly when they accepted offers in the Dyad sce-

nario (vs. Solo; b = 0.07 (0.03, 0.11), SE = 0.02, t(4093) = 3.724, p<0.001, Cohen’s d = 0.12) or when

the proposer was bribing them (vs. Control; b = 0.20 (0.16, 0.24), SE = 0.02, t(4095) = 9.990,

p<0.001, Cohen’s d = 0.31). Neither of these main effects was identified for rejection decisions

(Dyad vs. Solo: b = 0.02 (�0.06, 0.10), SE = 0.04, t(1435) = 0.561, p=0.575, Cohen’s d = 0.03; Bribe

vs. Control: b = �0.01 (-0.08, 0.06), SE = 0.04, t(1439) = �0.269, p=0.788, Cohen’s d = �0.01; see

Figure 2—figure supplement 5 and Supplementary file 1d for the descriptive summary of the

original RT; see Supplementary file 1e for details of the regression output.

Neuroimaging results
vAI represents the effect of the moral cost of conniving with fraud on
expected personal profits
We implemented the general linear model (GLM) analyses to test specific hypotheses concerning dif-

ferent research questions (see Materials and methods for details of GLM analyses). Notably, all a-pri-

ori hypotheses and planned analyses were not pre-registered. We first examined brain regions

encoding the moral cost of conniving with a briber on the expected gains for both the proposer and

the participant due to bribe-taking (as parametric modulators, PM; GLM1a), with a focus on vAI.

Consistent with our hypothesis, we observed stronger engagement of the left vAI in the Bribe (vs.

Control) condition regardless of scenarios (peak MNI coordinates: �40/10/�6, t(114) = 3.81, p(SVC-

FWE)=0.025) when investigating brain regions encoding the expected personal profits (i.e., the prof-

its earned by participants had they accepted the offer). To examine the lateralization of this effect,

we lowered the statistical threshold and found that the right vAI delineated similar neural responses

(peak MNI coordinates: 36/12/–14, t(114) = 3.27, p(SVC-FWE)=0.090; see Figure 3A). We also found

that the right vAI displayed an increased sensitivity to the expected personal gains in the Dyad (vs.

Solo) scenario (peak MNI: 36/14/–14; t(114) = 3.86, p(SVC-FWE)=0.022), whereas the left vAI

showed a similar trend that did not reach statistical significance (peak MNI: �36/10/�16; t(114) =

3.09, p(SVC-FWE)=0.146; see Supplementary file 1f for results of other contrasts under a lenient

threshold). In addition, we also observed a stronger activity in the dorsal part of anterior cingulate

cortex (dACC) during bribery-related decision-making (i.e., event contrast: Bribe vs. Control in

GLM1c; same below) across scenarios, under a whole-brain threshold (see Figure 3—figure supple-

ment 1). No region was observed in other contrasts (see Supplementary file 1f for other regions

activated under a lenient threshold).

TPJ encodes the expected losses for the third party and distinguishes
bribery-related decision-making in the two scenarios
We then examined whether TPJ was involved in encoding the expected losses incurred by the inno-

cent third party due to bribe-taking (as the only PM in the Dyad Bribe [DB] condition; GLM1b). As

predicted, we observed a strong involvement of the right TPJ, extending to the posterior part of the

superior temporal sulcus, in encoding this PM (pSTS; peak MNI coordinates: 54/–-48/–4, t(38) =

4.70, p(SVC-FWE)=0.010; see Figure 3B; also see Supplementary file 1f for other activated

regions). Results still held after controlling the effect of expected gains for both the proposer and

the participant (peak MNI: 54/–48/–4; t(38) = 4.63, p(SVC-FWE)=0.012; see Figure 3—figure sup-

plement 2).

This finding suggested another possibility that TPJ/pSTS might be selectively engaged during

bribery-related decision-making in the Dyad (vs. Solo) scenario, where the interest of a third party is

explicitly compromised. To test this hypothesis, we first performed post-hoc univariate analyses but

did not find any supportive evidence (i.e., no significant TPJ/pSTS signal was observed in the follow-

ing contrasts of GLM1c; contrast 1: DB vs. Dyad Control [DC]; contrast 2: (DB – DC) vs.

(Solo Bribe [SB] – Solo Control [SC])). However, using a post-hoc multivariate-based decoding analy-

sis with a leave-one-subject-out (LOSO) cross-validated approach, we found that the decision-rele-

vant multivoxel activation patterns of TPJ/pSTS only dissociated the bribery-related decision-making

in the Dyad (DB vs. DC; two-choice forced-alternative accuracy ± SE: 69.2 ± 11.1%, p=0.024; ppermu-

tation = 0.020) but not the Solo scenario (SB vs. SC; 53.8 ± 8.6%, p=0.749; ppermutation = 0.300; see

Figure 3C; also see Figure 3—figure supplement 3 for decoding results of the left and right TPJ/
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Figure 3. Parametric modulation of expected personal gains and potential loss for the third-party during bribery-related decision-making. (A) Enhanced

ventral part of anterior insula (vAI) signal by the modulation of the expected personal gain during bribery-related decision-making (Bribe vs. Control;

GLM1a). The contrast values of the activated cluster were extracted for visualization. (B) The parametric modulation of the expected potential loss for

the third party in the temporoparietal junction/posterior superior temporal sulcus (TPJ/pSTS) (GLM1b). Notably, this parametric modulation only exists

in the Dyad Bribe condition due to the experimental design. To visualize the effect of parametric modulation, we split these continuous parameters into

three bins (low: 0–33%; medium: 33–67%; and high: 67–100%), re-estimated the general linear model and extracted the percent signal change (PSC) in

relevant activated clusters via rfxplot (http://rfxplot.sourceforge.net/; Gläscher, 2009). Each line refers to the linear fit between the bin and the PSC. (C)

Multivariate patterns of TPJ/pSTS distinguished bribe (vs. Control) only in the Dyad scenario. The regions of interest (ROI) of TPJ/pSTS was defined

based on a whole-brain parcellation map from the Neurosynth database (left). The receiver operating characteristic curve showed that the multivoxel

TPJ/pSTS activity pattern during decision-making can distinguish the Bribe condition from the Control condition only in the Dyad scenario but not in

Figure 3 continued on next page
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pSTS). This finding corroborated what we found in the parametric analysis and further indicated that

TPJ/pSTS works differently between the Solo and the Dyad scenarios by showing distinct activation

patterns rather than a mean activation intensity across voxels, during bribery-related decision-

making.

vmPFC encodes relative SV during bribery-related decision-making
Next, we investigated the brain regions encoding the relative SV during bribery-related decision-

making. To this end, we established GLM2a to distinguish the Bribe condition from the Control con-

dition (by pooling the Solo and Dyad scenarios). The relative SV was defined by subtracting the SV

of the non-chosen option from that of the chosen option (i.e., relative SV = SVchosen– SVunchosen)

based on the winning model. As expected, the vmPFC was more engaged in integrating the value

signals in the Bribe condition (peak MNI coordinates: 0/34/–10, t(38) = 4.73, p(SVC-FWE)=0.007). A

smaller effect was also observed in the Control condition (peak MNI coordinates: 0/52/–10, t(38) =

3.76, p(SVC-FWE)=0.064; see Figure 4A). These findings suggest that the vmPFC played a common

role in computing an integrated value signal during the decision period regardless of whether the

decision-making concerned bribery. To further test this hypothesis, we performed additional analy-

ses that provided supportive evidence.

First, a direct comparison between the value signal of vmPFC in the Bribe and the Control condi-

tions did not reveal any significant difference. A supplementary pattern similarity analysis revealed a

significantly positive correlation between multivoxel vmPFC patterns of value computation in the

Bribe and the Control conditions (r = 0.14 ± 0.36, p(permutation)=0.023; see Figure 4B, C). In addi-

tion, we also ran a separate GLM (GLM 2b) that pooled all conditions as a single regressor to investi-

gate the neural network generally involved in value computation. We found that vmPFC, together

with bilateral middle/inferior temporal gyri and posterior cingulate cortex extending to cuneus, cor-

related positively with the relative SV signal (see Figure 4—figure supplement 1; also see

Supplementary file 1g for other activated regions).

dlPFC is selectively engaged in rejecting bribes in the Dyad scenario
We also examined how neural signals during bribery-related decision-making were associated with

different choices and how they varied depending on scenarios. To this end, we established GLM3

that contained the onset of each condition with respect to specific choices (i.e., eight onset regres-

sors in total, namely accept or reject in conditions of SC, SB, DC, and DB). To simplify the analysis,

we computed the neural activity specific to rejecting as opposed to accepting offers (i.e., reject vs.

accept) in all four conditions and then defined the anti-corruption neural signals with such rejection-

specific neural activity in the Bribe condition (i.e., contrast: Bribe(reject - accept) – Control(reject - accept)).

Given our hypothesis, we focused on the dlPFC in this analysis. We found an increased anti-corrup-

tion signal in the dlPFC in the Dyad scenario compared with the Solo scenario (left dlPFC: peak MNI

coordinates: �38/48/18, t(96) = 3.70, p(SVC-FWE)=0.024; right dlPFC: peak MNI coordinates: 42/

50/16, t(96) = 3.52, p(SVC-FWE)=0.050; see Supplementary file 1h for other activated regions).

Importantly, post-hoc analyses revealed that the anti-corruption signal in the dlPFC was significantly

Figure 3 continued

the Solo scenario (middle). Permutation test (N = 5000) further illustrated that the two-choice forced alternatives decoding accuracy in TPJ/pSTS in the

Dyad scenario were unlikely achieved by chance (p=0.020; right). The violin plot (right) describes the null distribution of decoding accuracy of the

multivoxel TPJ patterns during decision-making that distinguishes the bribe from the Control condition in the Solo and Dyad scenarios, respectively,

obtained via 5000 times of permutation. Significance: *p<0.05. Error bars refer to SEM. Display threshold: voxel-level p (uncorrected) <0.005 (A, B).

L: left; R: right.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Enhanced dorsal part of anterior cingulate cortex (dACC) activity during bribery-related decision-making (Bribe vs. Control;

GLM1c).

Figure supplement 2. Parametric modulation of the expected loss to the third party in the temporoparietal junction/posterior superior temporal

sulcus (TPJ/pSTS) after controlling for the effect of expected gains either for the proposer or the participant (GLM1b-s).

Figure supplement 3. Results of decoding analyses using decision-related multivoxel neural patterns of (A) the left and (B) the right temporoparietal

junction/posterior superior temporal sulcus (TPJ/pSTS).
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higher than 0 only in the Dyad scenario (ps <0.002), but not the Solo scenario (ps >0.056; see

Figure 5A, Figure 5—figure supplement 1).

Individual differences in susceptibility to the moral cost of conniving with
fraud modulates vmPFC–dlPFC functional connectivity during bribery-
related decision-making
Using a general psycho-physiological interaction (gPPI) analysis, we further tested whether there was

functional connectivity between the vmPFC and dlPFC (and other brain regions) during bribery-

related decision-making. No region was detected that significantly enhanced the functional connec-

tivity with vmPFC during bribery-related decision-making in general. However, we observed a nega-

tive correlation between the functional coupling of the vmPFC and the right dlPFC during bribery-

related decision-making (i.e., PPI contrast: Bribe vs. Control) and the parameter q(peak MNI coordi-

nates: 46/36/30, t(37) = 4.78, p(SVC-FWE)=0.005; see Figure 5B). This parameter characterizes the

aversion to conniving with the fraud committed by the briber. The control analysis confirmed the

Figure 4. Value computation in the ventromedial prefrontal cortex (vmPFC) during bribery-related decision-making. (A) Ventromedial prefrontal cortex

(vmPFC) encodes relative subjective value (SV) in the Bribe and the Control conditions, respectively. Relative SV was defined as the SV difference

between the chosen and the non-chosen option. To visualize the effect of parametric modulation, we split the relative SV into three bins, that is, low (0–

33%), medium (33–67%), and high (67–100%), re-estimated the general linear model and extracted the percent signal change (PSC) in the activated

cluster via rfxplot (http://rfxplot.sourceforge.net/). The line refers to the linear fit between the bin and the PSC. (B) Procedure of pattern similarity

analyses. For each participant, we extracted the multivoxel neural patterns (i.e., those heat maps; only for illustration) within the vmPFC mask from the

parametric contrast of relative SV in Bribe and Control conditions, respectively (pooling the Solo and Dyad scenarios). Next, we computed the similarity

(correlation) between these neural patterns in the two conditions. For statistical analysis, all correlation coefficients were transformed to Fisher’s z value.

(C) Histogram of the distribution of pattern similarity across all participants. The vertical dashed line refers to the mean of the pattern similarity.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Brain regions positively correlate relative subjective value (SV) during decision period regardless of experimental conditions

(GLM2b).
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above results in the right dlPFC after ruling out the effect of parameter w (peak MNI coordinates:

46/36/30, t(36) = 4.58, p(SVC-FWE)=0.014; see Supplementary file 1i for other activated regions).

The left dlPFC also showed a similar connectivity pattern with vmPFC when we adopted a lenient

threshold (peak MNI coordinates: 42/44/18, t(37) = 3.40, p(SVC-FWE)=0.093; after controlling for

the effect of parameter w: peak MNI coordinates: 42/44/18, t(37) = 3.58, p(SVC-FWE)=0.065).

Figure 5. Context-dependent anti-corruption signal and the functional connectivity results. (A) Anti-corruption signal in dorsolateral prefrontal

cortex (dlPFC) was specifically enhanced in the Dyad scenario. We defined the anti-corruption signal as the activities (i.e., contrast value) of rejection (vs.

acceptance) choice that were specific to the Bribe (vs. Control) condition. Post-hoc analyses on anti-corruption signals within the activated clusters of

bilateral dlPFC showed that the interaction was mainly driven by increased anti-corruption signals in the Dyad scenario. Display threshold: voxel-level p

(uncorrected) <0.001. Error bars represent the SEM; significance: ***p<0.001. (B) Individual differences in q negatively modulate the functional

connectivity between ventromedial prefrontal cortex (vmPFC) and right dlPFC during bribery-related decision-making (i.e., Bribe vs. Control). The seed

region of vmPFC was defined based on a whole-brain parcellation given a meta-analytic functional coactivation map of the Neurosynth database

(http://neurovault.org/images/39711/). To visualize the relationship, we extracted the contrast value (cv) of the psycho-physiological interaction

regressors of the Bribe and Control conditions within the activated cluster and plotted the correlation between the cv and the individual parameter.

Each gray dot represents the data of a single participant; the blue line represents the linear fit using robust correlation (r = �0.54, 95% CI: �0.88,–0.19,

p=0.003); the gray density curve indicates the distribution of each variable, respectively.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Modulation of scenario on the dorsolateral prefrontal cortex (dlPFC) activity during bribery-related decision-making regarding

specific choice.
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Individual differences in bribery-related dlPFC activity represent variations in
bribery-specific preference
Finally, we investigated how inter-individual differences in bribery-specific preferences were imple-

mented in the brain. In particular, we focused on the dlPFC because decision-related neural signals

in this region have been shown to be modulated by inter-individual variations of moral behaviors (e.

g., self-serving dishonesty; Yin and Weber, 2018) and other-regarding preferences in moral deci-

sion-making (e.g., harm aversion; Crockett et al., 2017).

To this end, we used an IS-RSA, which allowed us to directly investigate whether the neural pat-

terns in dlPFC during bribery-related decision-making are similar for participants who displayed simi-

lar bribery-specific preferences for bribery, measured by the moral costs involved during bribe-

related decision-making (i.e., q and w). In particular, we established a parameter representational

dissimilarity matrix (RDM) by calculating the Euclidean distance between the two parameters specifi-

cally characterizing the moral costs (i.e., q and w; the correlation between these two parameters: r

(37) = 0.258, p=0.113). We next constructed the neural RDMs by calculating the correlation dissimi-

larity of the parameter estimates of subjective-level contrasts during bribery-related decision-making

extracted from the bilateral dlPFC (i.e., the contrast of Bribe vs. Control). We then measured the

Figure 6. Illustration of the inter-subject representational similarity analysis. We created a parameter representational dissimilarity matrix (RDM), which

measures the dissimilarity across participants in the bribery-specific preference that is calculated by the Euclidean distance between each pair of

participants in q and w driven from the winning model. Both parameters together characterize the individual differences in bribery-specific preference

(see the scatter plot: each dot represents the data of a single participant; the density curve indicates the distribution of each parameter, respectively).

We also created a neural RDM, which measures the dissimilarity across participants in the neural activities within bilateral dorsolateral prefrontal

cortex (dlPFC) during bribery-related decision-making (i.e., Bribe vs. Control) that is measured by the correlation distance between the multivoxel

patterns of each pair of participants (i.e., those heat maps; only for illustration). The region of dlPFC was defined based on a whole-brain parcellation

given a meta-analytic functional coactivation map of the Neurosynth database (http://neurovault.org/images/39711/). We then calculated the Spearman

rank-order correlation between these two RDMs and implemented a permutation test to confirm the statistical significance.
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similarity between the neural RDMs and the preference RDM (see Figure 6). The results revealed a

significant inter-subject similarity effect in the decision activity pattern, specific to corruption in the

dlPFC (Spearman’s rho = 0.108, ppermutation = 0.019).

Discussion
We have used a novel paradigm that captures the core components of real-life bribery to offer a

behavioral and neural characterization of how a power-holder determines whether or not to accept

bribes. Both the model-free behavioral results and the computational modeling findings indicate

that when facing the temptation of a bribe power-holders take into account the moral costs of con-

niving with the briber (measured by the parameter q) and the harm inflicted on a third party (mea-

sured by the parameter w). Incorporating these moral costs into the SV computation explains why

the probability of accepting a bribe is lower than that of accepting an otherwise-comparable honest

offer. This is especially the case when accepting the bribe also harms a third party. Post-task subjec-

tive ratings also confirm that participants did feel more moral conflict while making decisions in the

Bribe (vs. Control) condition. They also felt it was more morally inappropriate to accept bribes than

honest offers, especially when doing so harmed a third party. Our study extends to the context of

corruption previous behavioral results on dishonesty that reveal people are generally aversive to dis-

honesty (López-Pérez and Spiegelman, 2013) and that deception is less morally acceptable when it

harms another’s interests (Lindskold and Walters, 1983).

At the neural level, we explored the neurocomputational mechanisms underlying bribery-related

decision-making using model-based fMRI. First, we identified the neural bases of two types of moral

costs engaged when deciding whether to take a bribe (i.e., Bribe vs. Control). The vAI was more sen-

sitive to the expected ill-gotten personal gains (PM contrast: Bribe vs. Control). Interestingly, we

also observed that the vAI (especially the right part) is more engaged in encoding expected personal

gains in the Dyad (vs. Solo) scenario. The vAI plays a critical role in guiding dishonest decisions under

various circumstances (Yin et al., 2017) and in perceiving other’s dishonest intentions (Yin and

Weber, 2016). These findings can be broadly linked to the modulation of aversive feelings by vAI

that generate motivation to social norm enforcement (Bellucci et al., 2018). Consistent with previ-

ous studies, our results show that a key computation performed by the vAI signal is to encode brib-

ery-related profits, especially when a potential victim is involved in the social context. This signal

might reflect an aversive feeling towards moral transgression due to bribe-taking behavior. This

might contribute, but not necessarily lead, to preventing power-holders from being corrupted.

Moreover, the right TPJ/pSTS shows the expected role in tracking the expected loss to a third party

due to potential bribe-taking decisions in the Dyad scenario. It is well-established that TPJ/pSTS

(especially the right part) functions as a core component of the mentalizing brain network

(Schurz et al., 2014). Mentalizing ability is a prerequisite for making judgments and decisions that

take into account the welfare of others (de Waal, 2008), mainly via recruitment of the right TPJ

(Young et al., 2010). Indeed, recent neuroimaging studies have shown that TPJ/pSTS is critically

involved in pitting personal interests against other-regarding (or moral) concerns during prosocial

decision-making (Morishima et al., 2012; Tusche et al., 2016). Supporting this claim, we also found

that the multivoxel neural patterns of TPJ extending to pSTS selectively discriminated bribery-

related decision-making (i.e., Bribe vs. Control) only when a third party victim was explicitly involved.

Both our findings indicate that TPJ/pSTS is likely to reflect the moral cost incurred by participants

when harming a third party.

We also observed a strong involvement of dACC during bribery-related decision-making (event

contrast: Bribe vs. Control). Together with the aforementioned results of brain regions encoding

moral cost, these findings also build an interesting link to the literature of guilt. Several neuroimag-

ing studies adopting different paradigms (Bastin et al., 2016; Takahashi et al., 2004; Yu et al.,

2014) consistently report the engagement of dACC (adjacent to the mid-anterior cingulate or dorso-

medial prefrontal areas), AI, and TPJ when guilt-specific feelings are elicited. Indeed, theoretical and

behavioral evidence shows that either guilt proneness (as a personality trait) or (anticipated or eli-

cited) guilt feelings might curb immoral behaviors including cheating or bribe-taking (Balafou-

tas, 2011; Cohen et al., 2012; Köbis et al., 2016; Motro et al., 2016). Although investigating the

role of guilt in corrupt actions is not the goal of the current study, our results suggest a promising

future direction of exploring the effect of social/moral emotions in bribery-related decision-making.
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We further showed how value computation engaged in the trade-off between personal profits

and bribe-related moral costs is implemented in the brain. As predicted, these moral costs along

with monetary payoffs are integrated into a value signal computed in the vmPFC, together with

other regions (e.g., posterior cingulate cortex). The vmPFC is known to be a central hub of the brain

valuation network (Bartra et al., 2013). This region has been reported to be involved in guiding

choices in various domains via the computation of the SV of the available options, and it is thought

to encode the common neural currency for value (Levy and Glimcher, 2012). Our findings extend

recent fMRI studies indicating that vmPFC is involved in the trade-off between moral values and

monetary profits to the domain of corruption (Crockett et al., 2017; Qu et al., 2020).

Another critical contribution of this study is to address how specific choices, such as accepting or

rejecting a bribe, shape the neural substrates of decision-making in various bribe-related scenarios.

We found that a higher anti-corruption signal in the dlPFC, defined as the neural activity of rejecting

(vs. accepting) an offer specifically in the Bribe (vs. Control) condition, was identified in the Dyad sce-

nario but not the Solo scenario. This finding parallels our behavioral results showing that participants

were less likely to accept a bribe and rated this behavior as the most morally inappropriate when the

interests of a third party were compromised. Thus, these findings suggest that the dlPFC plays a

dedicated role in ethical behavior to guide the choice of rejecting a bribe in a situation combining

different forms of moral costs and is specifically sensitive to harm caused to third parties. Consistent

with this claim, recent studies reported that the lateral prefrontal cortex is more engaged in encod-

ing profits that were obtained by inflicting physical pain on others (Crockett et al., 2017) and when

individuals flexibly align moral goals with value representations (Carlson and Crockett, 2018).

We also provide novel empirical evidence regarding how inter-individual differences in bribery-

specific preferences modulate neural activities during bribery-related decision-making. On the one

hand, the functional coupling between vmPFC and dlPFC during bribery-related decision-making (i.

e., Bribe vs. Control), decreased with the inter-individual level of the moral cost of conniving with a

briber (i.e., a fraudulent proposer; as reflected by the q parameter). Previous literature has consis-

tently shown an increased vmPFC–dlPFC functional connectivity when self-control is required during

various types of value-based decision-making (Hare et al., 2009; Hare et al., 2014). This leads to

our initial prediction that a generally stronger vmPFC–dlPFC functional connectivity would be

observed during bribery-related decision-making (Bribe vs. Control). However, recent evidence also

suggests that the strength of the vmPFC–dlPFC coupling, enhanced by self-control, might vary from

person to person. For instance, a recent study has shown inter-individual differences in vmPFC–

dlPFC connectivity when resisting to trade honesty values against economic benefits (Dogan et al.,

2016). This indicates that the modulatory role of dlPFC on value representation is flexible, according

to individuals’ other-regarding preferences. In agreement, our result of functional connectivity sug-

gests that more self-control might be needed to devalue the temptation to earn morally tainted

profits for those power-holders who are less aversive to the briber’s fraudulence (i.e., participants

with smaller q). On the other hand, using IS-RSA, we revealed that neural patterns during bribery-

related decision-making in the dlPFC were similar for participants who displayed similar preferences

for bribery (i.e., indexed by a dissimilarity matrix of q and w across participants). Standard univariate

regression analyses have established that this region is linked to individual variations in concerns for

dishonesty and related behaviors (Dogan et al., 2016; Yin and Weber, 2018), as well as in harm

aversion (Crockett et al., 2017). Compared with the traditional univariate approaches, IS-RSA can

directly map multidimensional psychological states (computations) between individuals to specific

neural patterns (Kriegeskorte et al., 2008; Popal et al., 2019). Thus, the multivariate approach

allows us to leverage both individual differences in task-based preferences of corruption and deci-

sion-relevant multivoxel neural patterns. This reveals that the dlPFC represents a complex geometry

characterized by a multidimensional model space of moral preferences across individuals.

Notably, all these results provide evidence for a critical role of the dlPFC in different aspects of

bribery-related decision-making. The univariate result (based on GLM3) suggests that, from a within-

subject perspective, the dlPFC plays a dedicated role in guiding the choice to reject bribes in a con-

text-dependent manner. Both the functional connectivity results and the IS-RSA results concern the

between-subject perspective. In general, these findings indicate that the dlPFC signature (or pattern)

might reflect the preference of whether to accept or refuse a bribe across individuals as power-hold-

ers. These results are consistent with a causal role of dlPFC in ethical behaviors (Maréchal et al.,
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2017; Zhu et al., 2014) and may inspire future studies to investigate whether such a causal role

extends to the corrupt behaviors and how it varies between individuals.

Several issues concerning the present study need further discussion. First, although the present

task captures the essence of corruption from the perspective of a person in power, it only simulates

a specific type of corruption in a lab setting. The real phenomenon is far more complex and diverse.

This obviously constrains the generalization of the current findings to corruption in field settings.

Second, the present task did not contain a condition in which the proposer honestly reported the

option with the lower payoff having been randomly selected by the computer. We did this purposely

to preserve the symmetry of the experimental design and maintain the motivation of proposers’

behaviors to being entirely rational and explainable by the optimization of personal profits. Thus the

offer proposition, in either the Bribe or the Control condition, was realistic for the proposer, that is,

it would not make sense if the proposer proposed an offer to earn a lower payoff. In addition, add-

ing such trials to the current task would inevitably prolong the duration of the experiment, which

might make participants more tired and thus influence the quality of the data we collected. Third,

the present task adopted a multiround single-shot economic game that did not involve any real part-

ner physically present during the experiment. We decided to use such an experimental setting not

only because it is commonly used in neuroeconomics studies (e.g., Aimone et al., 2014; Hu et al.,

2018; Spitzer et al., 2007) but also because, here, each choice can be considered independent,

thus alleviating the potentially confounding effects of learning and concerns of reputation in

repeated interactions. Although the lack of social interactions in the task might diminish the involve-

ment of participants and influence their beliefs about the authenticity of the experiment setting, our

behavioral results were consistent with the predictions that were built on the assumption that partici-

pants believed the existence of proposers and third parties. Nevertheless, the concern raised above

cannot be completely ruled out because participants were never asked about whether or not they

believed the cover story. All these limitations, we believe, should be addressed in future studies.

To conclude, the present study provides a neurocomputational account characterizing how a

power-holder reaches corrupt decisions by weighing bribe-related moral costs and material gains. It

shows that corruption is controlled by an interconnected brain network with nodes processing spe-

cific computational signals. Moreover, our study offers new clues on how individuals who vary in

bribery-specific preferences differ in neural signals during bribery-related decision-making. These

findings open a new gate for improving our understanding of the neurobiological mechanisms

underlying corruption from a micro-level using a multidisciplinary research approach. At the societal

level, our results may have mechanistic implications for the design of institutions that aim to promote

honest conduct and prevent corruption of officials with entrusted powers. Our study also provides

insights for future research on corruption, such as investigating the neurocomputations required

from a briber’s perspective when proposing a bribe, and how the brain-synchrony between a briber

and a power-holder predicts the subsequent success of bribery attempts.

Materials and methods

Participants
Forty Chinese-speaking undergraduates and graduate students (25 females; mean age: 20.0 ± 2.0

years, ranging from 18 to 27 years; two left-handed) were recruited via online fliers from the South

China Normal University (SCNU). The sample size was determined based on previous human fMRI

studies in similar topics including recent human fMRI studies on dishonesty (Yin et al., 2017; N = 47)

and harm-aversion (Crockett et al., 2017; N = 28), which also adopted single-shot multiround eco-

nomic decision-making paradigms. All participants had normal or corrected-to-normal vision and

reported no history of psychiatric or neurological disorders. The study was performed at the Imaging

Center of SCNU and was approved by the local ethics committees. All experimental protocols and

procedures were conducted in accordance with the IRB guidelines for experimental testing and

were in compliance with the latest revision of the Declaration of Helsinki (BMJ 1991; 302: 1194).

Cover story
Participants were assigned the role of the power-holder who decides to accept or reject financial

offers (see Figure 1A). They were informed that they would be presented with a series of choices
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from an independent group, whose data were previously collected by the experimenter. This inde-

pendent group was actually fake, and the choices made by this group were controlled by the experi-

menters (see Stimuli for details). Specifically, participants were led to believe that this independent

group of online attendants participated in a ‘Game of Chance’ and had been randomly assigned to

one of two roles, that is, a proposer and the third party. The proposer played either alone (i.e., the

Solo scenario) or with a randomly matched third party (i.e., the Dyad scenario). In the Solo scenario,

each proposer was presented with two options that would earn them different payoffs with the total

of the two payoffs fixed at CNY ¥100. Similarly, in the Dyad scenario, each proposer was presented

with two offers involving different combinations of payoffs divided between themself and the third

party (i.e., the total amount of each payoff was also fixed to ¥100). In either scenario, one of the pay-

offs was randomly indicated by the computer. According to the rules of the game, the proposer

should report the option indicated by the computer, which determined his/her payoff (and that of

the third party if he/she was involved). However, the response of the proposer was never checked

by the experimenters. This allowed the proposer to lie by reporting the alternative option that had

not been indicated by the computer when this brought him/her more profits. The third party in the

Dyad scenario would only be presented with the option reported by the proposer without knowing

the alternative one, thus being left with no choice but to accept the monetary distribution involved

in the reported option.

Importantly, the real participants were also told that each proposer had been informed that

whether he or she would obtain the payoff of the reported options crucially depended on the deci-

sions of the real participants in their role as power-holders. Therefore, to obtain the profits in the

reported options, the proposer could ‘share’ a portion of the money from their payoff (i.e., the pay-

off in the reported option) to influence the power-holder. The task for the real participants was to

decide whether to accept or reject the offer given the information above. If accepted, both the pro-

poser and the participant would benefit from the payoff. However, in the Dyad scenario this could

harm the interests of the innocent third party. If the participant rejected a proposition, neither the

proposer nor the participant earned anything. The third party, if involved, would still be paid accord-

ing to the option indicated by the computer.

Design
We implemented a 2-by-2 within-subject design (i.e., scenario: Solo/Dyad; proposer’s conduct: con-

trol/bribe) forming four experimental conditions (i.e., SC, SB, DC, and DB; see Figure 1B). Here, we

operationally defined corrupt behaviors as the acceptance of offers proposed by the proposer in the

Bribe conditions (SB and DB). In these conditions, moral costs would be elicited by conniving with

the proposer to increase the payoff when the proposer lies and reports the wrong proposition, and,

in the Dyad scenario, additionally harming the interests of an innocent third party. In other words,

we deliberately made the potential victim (i.e., the experimenter) implicit in the Solo scenario to dis-

entangle this kind of bribe from the one defined in the Dyad scenario where the potential victim was

the third party. The other conditions (SC and DC) control the corrupt-nonspecific preference (e.g.,

inequity aversion) as in the typical Ultimatum game.

Each trial began with a 1.5 s information screen displaying the two payoff options together with

the computer’s choice (indicated by a computer icon) and the proposer’s report (indicated by a blue

arrow). Next, the participant was presented with an offer (proposed by the proposer) and asked to

decide whether to accept or reject the offer by pressing relevant buttons with either left or right

index finger within 8 s. A yellow bar appeared below the corresponding option for 0.5 s once the

decision was made. If an invalid response was made (i.e., no response in 8 s or response less than

0.2 s), a warning screen showed up and this trial was repeated at the end of the scanning session.

Each trial ended up with an inter-trial interval showing a jittered fixation (i.e., 3–7 s; see Figure 1C).

To further clarify our design, several aspects need to be noted. First, due to the potential framing

effect elicited by the wording in the instruction (Abbink and Hennig-Schmidt, 2006), we adopted

the word ‘persuade’ in place of words such as ‘bribe’ and ‘corrupt’ to avoid demand characteristics.

Second, identities of all proposers and innocent third parties were indicated only by the initials of

their names to control other confounding effects when using photos (e.g., gender, attractiveness,

facial expression, dominance, and trustworthiness levels). Third, to avoid possible learning effects or

strategic responses, participants were led to believe that each trial was independent and was

matched with different proposers and innocent third parties. Fourth, the positions of payoff options
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were randomized within participants and that of the decision options (i.e., accept or reject) were

counterbalanced across participants. Fifth, participants were told that they would be paid based on

the decision of only one trial (among all trials) randomly selected after the experiment. Furthermore,

participants were told that the proposer (as well as the innocent third party if in the Dyad scenario)

in the selected trial would also be paid accordingly.

Stimuli
The payoffs of the proposer met the following criteria: (1) total payoffs indicated in both options (i.

e., the computer-indicated option and the alternative option) were always fixed at ¥100 and (2) the

payoff in the reported option by the briber was always the higher of the two for the briber (i.e., from

¥ 56 to ¥ 96 with an increment of ¥ 8). These criteria mimicked the motivation for a rational selfish

proposer to lie, which increased the contextual validity of the present study. In addition, the payoffs

for the innocent third party in both options (i.e., only in the Dyad scenario) were always equal to

¥100 minus the proposer’s payoff in the corresponding option.

Regarding the offers (i.e., the monetary distribution between the proposer and the participant),

we set the payoffs based on a fundamental principle that the proposer is selfish and always earns

more for themselves in the reported options than in the alternative ones, even after bribing the

power-holder (i.e., the real participant) at their own cost. The offer proportion was defined as the

proportion of the amount the proposer decided to share with the power-holder from the payoff the

proposer would have earned in the reported option, ranging from 10% to 90%, which in turn

increases the variance of participants’ responses and further benefited the computational modeling

analyses. As a result, 36 different offers were adopted for the present study (see Supplementary file

1j for details). Each unique offer appeared once in each of the four experimental conditions (i.e., SC,

SB, DC, and DB).

An event-related design was adopted and consisted of two functional runs with each containing

72 trials and lasting about 12–15 min. For each participant, we randomly divided the 36 offers into

two equal datasets, then randomly associated two conditions with the first subset and two other

conditions with the second subset, and assigned these stimuli to the first run (e.g., subset 1: SC, DB;

subset 2: SB, DC) and the rest to the second run (e.g., subset 1: SB, DC; subset 2: SC, DB). These

steps ensured that each specific bribe appears exactly twice in each run (i.e., once for two of the

four conditions, respectively).

All stimuli were presented using Presentation v14 (Neurobehavioral Systems Inc, Albany, CA,

USA) and were back-projected on a screen outside the scanner using a mirror system attached to

the head coil.

Procedure
Upon arrival, participants signed the written informed consent according to the Declaration of Hel-

sinki. They were provided with the instructions for the task and completed a series of comprehension

questions to ensure that they fully understood the task. Before the incentivized task, participants

completed a practice session to get familiar with the paradigm and the response button. Participants

were additionally informed at the beginning that the whole study included two independent tasks

and the current task was always set to be the first task. To rule out the possibility of hedging the

income risk across two tasks, they were informed that only one task would be randomly chosen by

the computer to determine their final payoff at the end of the experiment. A 6 min structural scan-

ning was performed at the end of the MRI session.

After that, participants filled out a battery of questionnaires. In particular, they were asked to

report the subjective feeling towards (1) the moral inappropriateness of the proposer’s behavior in

the previous online test, (2) the seriousness of the fraud committed by the proposer, (3) the degree

of their own moral conflict during decision-making, and (4) the moral inappropriateness when they

accepted offers in the four experimental conditions, respectively, on a 0–100 Likert scale. In the end,

participants were debriefed on all task-relevant information, informed about their final payoffs (i.e.,

¥80–¥166, where ¥1 approximates to e0.13) via mobile payment, and thanked.
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Data acquisition
The imaging data were acquired on a 3-Tesla Siemens Trio MRI system (Siemens, Erlangen, Ger-

many) with a 32-channel head coil at the Imaging Center of SCNU. Functional data were acquired

using T2*-weighted echo-planar imaging sequences employing a BOLD contrast (TR = 2000 ms,

TE = 30 ms; flip angle = 90˚; slice thickness = 3.5 mm, slice gap = 25%, matrix = 64 � 64,

FoV = 224 � 224 mm2) in 32 axial slices. Slices were axially oriented along the AC-PC plane and

acquired in ascending order. A high-resolution structural T1-weighted image was also collected for

every participant using a 3D MRI sequence (TR = 1900 ms, TE = 2.52 ms; flip angle = 9˚; slice thick-

ness = 1 mm, matrix = 256 � 256, FoV = 256 � 256 mm2).

Data analyses
One participant was excluded due to excessive head movements (>3 mm), thus leaving a total of 39

participants whose data were further analyzed (24 females; mean age ± SD = 19.9 ± 1.9 years, rang-

ing from 18 to 27 years; two left-handed).

Behavioral analyses
All behavioral analyses and visualization were conducted using R (http://www.r-project.org/) and rel-

evant packages. All reported p values are two-tailed, and p<0.05 was considered statistically

significant.

For subjective rating, we implemented the within-subject MANOVA test due to the high correla-

tion between rating measures (i.e., Pearson rs >0.67, ps <0.001) by the manova function in ‘stat’

package. For choice data, we performed the repeated mixed-effect logistic regression on the deci-

sion of choosing the ‘accept’ option by the glmer function in ‘lme4’ package, with scenario (dummy

variable; reference level: Solo), proposer’s conduct (dummy variable; reference level: Control), and

their interaction as the fixed-effect predictors controlling for the effect of offer proportion (continu-

ous variable; grand mean-centered) and the larger payoff the proposer would earn in the reported

option (continuous variable; grand mean-centered). For the random-effect structure, we followed

the ‘maximal’ principle (Barr et al., 2013) and incorporated scenario, proposer’s conduct, and their

interaction as the by-subject random-effect slopes. Once the regression model failed to converge,

we dropped the highest interaction by-subject random-effect slope and refitted the model. In addi-

tion, we included random-effect intercepts that vary across participants and (fMRI) runs. For the sta-

tistical inference on each predictor, we performed the type II Wald chi-square test on the model fits

by using the Anova function in ‘car’ package.

For the RT, we first did the log-transformation due to its non-normal distribution (i.e., Anderson–

Darling normality test: A = 232.54, p<0.001) and then performed a mixed-effect linear regression on

the log-transformed RT by the lmer function in ‘lme4’ package, with decision (dummy variable; refer-

ence level: accept), scenario, proposer’s conduct, and their interactions (i.e., decision � scenario,

decision � proposer’s conduct, scenario � proposer’s conduct, decision � scenario � proposer’s

conduct) as fixed-effect predictors controlling for the effect of offer proportion and the gain the pro-

poser would earn in the reported option. Random-effect predictors were specified in the same way

as above. We followed the procedure recommended by Luke, 2017 to obtain the statistics of each

predictor by applying the Satterthwaite approximations on the restricted maximum likelihood model

fit via the ‘lmerTest’ package.

Computational modeling
To provide a refined characterization of how power-holders (real participants) integrated information

to determine their final decision of accepting or rejecting the offer, we tested and compared a total

of seven models with different utility functions. We started from a simple model assuming that

power-holders care about the offer (i.e., the monetary allocation between the proposer and oneself)

differentially in terms of whether the proposer commits a bribe or not. The utility function (Model 1;

Equation 2) is defined as follows:

SV pP;pPHð Þ¼ bPpPþ bPH � �qð ÞpPH (2)

where, in a given trial, SV denotes the subjective value, pP and pPH represent the payoff (i.e., mone-

tary gain) for the proposer (P) and power-holder (PH) given different choices (i.e., accept or reject
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the offer), q is an indicator reflecting whether the proposer bribes (q = 1) or not (q = 0; same for

models below). bP and bPH are two independent free parameters capturing the weights on the pay-

off of the proposer and the power-holder, respectively. q describes the moral cost brought by con-

niving with a fraud committed by a briber (the prior range of these parameters: �20 <= bB, bP,

q <= 20; same for models below).

Model 2 and 3 are variations established on the basis of Model 1. Specifically, Model 2 (Equa-

tion 3) additionally assumes that power-holders also take into consideration the unsigned inequality

in the payoffs between the proposer and themselves, scaled by a free parameter g (�20 <=

g <= 20).

SV pP;pPHð Þ¼ bPpPþ bPH � �qð ÞpPHþgjpP� pPH j (3)

Model 3 (Equation 4) hypothesizes that power-holders bear an extra moral cost to their own pay-

off as a result of accepting a bribe that harms the interests of an innocent third party. This moral

cost is captured by an extra parameter d (�20 <= d <= 20). These utility functions are defined as

follows:

SV pP;pPHð Þ ¼
bPpPþ bPH � �qð ÞpPH if Soloscenario

bPpPþ bPH � �þ dð Þqð ÞpPH if Dyadscenario

�

(4)

Model 4 (Equation 5) integrates both (additional) computational components in Models 2 and 3

into the model, which is defined as

SV pP;pPHð Þ ¼
bPpPþ bPH � �qð ÞpPHþgjpP� pPH j if Soloscenario

bPpPþ bPH � �þ dð Þqð ÞpPHþgjpP� pPH j if Dyadscenario

�

(5)

Model 5 (Equation 1) differs from Model 4 in the way of representing the moral cost associated

with the harm to the innocent third party’s interest due to the acceptance of a bribe. Thus, Model 5

assumes that power-holders take into account the exact payoff loss to the innocent third party due

to the acceptance of the bribe (i.e., pT represents the payoff for the third party), which is captured

by parameter w (�20 <= w <= 20; see Equation 1 in the Results).

We also tested the Fehr–Schmidt model (Models 6 and 7), which is adapted to the current set-

ting. Model 6 (Equation 6) assumes that power-holders only consider the inequality in payoffs

between themselves and the proposer, which is defined as follows:

SV pP;pPHð Þ¼ pPH �amax pP � pPH ;0ð Þ�bmax pPH � pP;0ð Þ (6)

where a and b measure the degree of aversion to payoff inequality in disadvantageous and advanta-

geous situations, respectively (i.e., how much power-holders dislike it when they earn less/more than

the proposer). Here, we vary a and b according to different conditions (i.e., aSC, aSB, aDC, aDB, bSC,

bSB, bDC, bDB; �20 <= a, b <= 20).

Model 7 (Equation 7) is established based on the three-person version of the Fehr–Schmidt

model, namely assuming that participants are concerned about payoff inequality between them-

selves and either of the other agents in the context. The utility function is defined as follows:

SV pP;pPHð Þ ¼ pPH �amax pP� pPH ;0ð Þ�bmax pPH � pP;0ð Þ if Soloscenario

SV pP;pr;pPHð Þ ¼ pPH �0:5ðapmaxðpp � pPH ;0Þþarmaxðpr � pPH ;0ÞÞ

�0:5ðbpmaxðpPH � pP;0ÞþbrmaxðpPH � pPr;0ÞÞ
if dyadscenario

(7)

Here, we varied a and b according to different agents depending on conditions (i.e., Solo sce-

nario: aSC, aSB, bSC, bSB; Dyad scenario: aP:DC, bP:DC for the inequality aversion to the proposer, aT:

DB, bT:DB for that to the third party).

The probability of accepting the offer was determined by the softmax function (Equation 8):

p SVaccept

� �

¼
et SVaccept

et SVacceptþet SV reject
(8)

where t is the inverse softmax temperature parameter (0 <= t <= 10) denoting the sensitivity of
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an individual’s choice to the difference in SV between the choice of accepting the offer and that of

rejecting the offer.

We fitted all the above-mentioned candidate models using the HBA approach via the ‘hBayesDM’

package (Ahn et al., 2017). The ‘hBayesDM’ package is developed based on the Stan language

(https://mc-stan.org/), which adopts a MCMC sampling scheme to perform full Bayesian inference

and obtain the actual posterior distribution. We used HBA rather than maximum likelihood estima-

tion (MLE) method because HBA provides much more stable and accurate estimates than MLE does

(Ahn et al., 2011). Following the approach in ‘hBayesDM’ package, we assumed the individual-level

parameters were drawn from a group-level normal distribution: individual-level parameters ~ Normal

(�, s). In HBA, all group-level parameters and individual-level parameters were simultaneously esti-

mated by the Bayes rule given the behavioral data. We fitted each candidate model with four inde-

pendent MCMC chains using 1000 iterations after 2000 warm-up iterations for both studies for initial

algorithm warmup per chain, resulting in 4000 valid posterior samples. Convergence of the MCMC

chains was assessed through Gelman–Rubin R-hat Statistics (Gelman and Rubin, 1992).

For model comparison, we computed the score of leave-one-out information criterion (LOOIC)

for each model (Vehtari et al., 2017). Compared to the point-estimate information criterion (e.g.,

Akaike Information Criterion), the LOOIC score offers the estimate of out-of-sample predictive accu-

racy in a fully Bayesian way. Conventionally, the lower LOOIC score indicates better out-of-sample

prediction accuracy of the candidate model. A difference score of 10 on the information criterion

scale is regarded as decisive (Burnham and Anderson, 2004). We selected the model with the low-

est LOOIC as the winning model for subsequent analysis.

We also perform a parameter recovery analysis to ensure that our model was robustly identifiable.

We first generated a simulated dataset (choices) for each participant using the individual-level poste-

rior mean of these parameters (i.e., the true value) corresponding to that specific participant based

on the winning model. Next, we fitted our winning model to the simulated dataset with the same

methods (see Materials and methods for details) and obtained the individual-level posterior mean of

these parameters (i.e., the recovered value). We quantified the performance of the parameter recov-

ery by calculating the bivariate correlation, with Pearson correlation test, between the true value and

the recovered value for each parameter, respectively.

To further examine the absolute performance of the winning model (i.e., whether the prediction

of the winning model could characterize the features of real choices), we also performed a PPC

(Zhang et al., 2020). Specifically, we generated new choice datasets, given each individual’s joint

posterior MCMC samples (i.e., 4000 times), in accordance with the actual trial-wise stimuli sequences

presented to each participant, resulting in 4000 choices per trial per participant. Thus, for each par-

ticipant, we obtained the model prediction by calculating the average offers given these new data-

sets in the four experimental conditions, respectively. We also performed an out-of-sample PPC to

avoid the overfitting concern. Given that the stimuli (e.g., proposer’s offers) in each condition were

randomly but evenly distributed into two fMRI runs for each participant (see Materials and methods

for details), we used the choice data from Run 1 for model estimation based on the winning model.

Then, we used the mean of the posterior distribution of the individual-level parameters to simulate

an independent dataset based on the stimuli used in Run 2 and calculated the acceptance rate for

each participant in the different conditions (i.e., predicted acceptance rate), as we did for the real

choice data in Run 2 (i.e., actual acceptance rate). For both PPC, we examined to what degree the

individual difference in model prediction was correlated with that of the actual acceptance propor-

tion using the Pearson correlation test.

fMRI data analyses
Functional imaging data were analyzed using SPM12 (Wellcome Trust Centre for Neuroimaging, Uni-

versity College London, London, UK). The preprocessing procedure followed the pipeline recom-

mended by SPM12. Functional images were first realigned to the first volume to correct motion

artifacts, unwarped, and corrected for slice timing. Next, the structural T1 image was segmented

into white matter, gray matter, and cerebrospinal fluid with the skull removed, and co-registered to

the mean functional images. Then all functional images were normalized to the MNI space,

resampled with a 2 � 2 � 2 mm3 resolution, based on parameters generated in the previous step.

The normalized images were smoothed using an 8 mm isotropic full width half maximum Gaussian

Hu et al. eLife 2021;10:e63922. DOI: https://doi.org/10.7554/eLife.63922 20 of 27

Research article Neuroscience

https://mc-stan.org/
https://doi.org/10.7554/eLife.63922


kernel. High-pass temporal filtering was performed with a default cut-off value of 128 s to remove

low-frequency drifts.

Univariate analyses
For each participant, we constructed the following GLMs to address specific aims.

Specifically, GLM1 was built to address how different types of moral cost were represented in the

brain during bribery-related decision-making, which included two variants. GLM1a identified brain

regions encoding the moral cost of conniving with a briber (i.e., a fraudulent proposer) on the

expected gains (i.e., the profits for both the proposer and the participant had the participant

accepted the offer) during bribery-related decision-making. This GLM included the onset of decision

period in each condition separately as regressors of interest (i.e., SC, SB, DC, and DB). These events

were modeled with the duration of the actual decision time in each trial. Furthermore, GLM1a incor-

porated trial-wise expected gains for both the participant and the proposer associated with each

condition event as two PMs. Notably, the default orthogonalization process on the PMs was

switched off, allowing that these two PMs competed for variance during the estimation. We also per-

formed a supplementary GLM analysis (GLM1a-s) to explore regions that encode the above PMs

across all trials. GLM1b aimed at investigating regions tracking the losses to the innocent third party

because of corruption. It was constructed similarly to GLM1a, except that only the onset of the deci-

sion period in DB condition was associated with the trial-wise expected loss to the third party (i.e.,

the absolute payoff difference of the innocent third party had the participant accepted the offer) as

the sole PM. We did not add the same PM to the DC condition as the payoff to the innocent third

party would not change as a result of the participant’s decision (i.e., the third party would receive

the payoff indicated in the computer-chosen option anyway) and the expected loss would always be

0. Notably, we chose not to incorporate the PM of expected loss to the third party into the GLM1a

because this GLM aims to identify brain regions specifically encoding the expected gains due to

bribe-taking. For this reason, it is better to keep the design matrix balanced so that each onset

regressor of the decision event is attached with the exact same PMs (i.e., PM of expected gains for

the proposer and the participant). To control for the possible effect of these PMs on the result, we

implemented a supplementary GLM analysis (i.e., GLM1b-s) in which we not only added the PM of

the expected loss (the first PM) but also incorporated the PMs of expected gains for the proposer

and the participant to the DB condition (the second and third PM). The orthogonalization was per-

formed to control for the co-linearity between these PMs (see Supplementary file 1k). We also

established GLM1c, which did not contain any PM for subsequent functional connectivity and multi-

variate analyses.

GLM2 identified regions computing relative SV (i.e., relative SV) during bribery-related decision-

making. The relative SV was defined by subtracting the SV of the non-chosen option from that of the

chosen option (i.e., relative SV = SVchosen - SVunchosen) based on the winning model. GLM2 consisted

of two variants. GLM2a distinguished the Bribe condition from the Control condition (pooling the

Solo and Dyad scenarios), which contained the onset of relevant trials during the decision period

with the trial-wise relative SV as the associated PMs as the regressor of interest. GLM2b was similar

to GLM2a except that it pooled all trials as the single regressor of interest, which examined a gen-

eral value-related neural network regardless of experimental conditions.

GLM3 examined the neural activities during bribery-related decision-making with regard to spe-

cific choices. Thus, GLM3 contained the onset of decision period of each condition with respect to

specific choices (i.e., accept or reject in conditions of SC, SB, DC, DB), resulting in eight regressors

of interest. To control the differential effect of SV on trials with regard to specific choice, we also

attached each onset regressor with corresponding trial-wise relative SV as PMs. Notably, six partici-

pants had to be further excluded from this specific GLM analyses due to the missing type of choices

in one or more of the four conditions. To simplify further analyses, we computed the neural activity

specific to rejecting as opposed to accepting offers (i.e., reject vs. accept) in each of the four

conditions.

For all GLMs above, we also separately modeled the onsets of information period for each condi-

tion, together with the onset of the button press. Furthermore, once the participant showed invalid

responses, a regressor modeling events of no interest was included, which contained decision onsets

of invalid trials (i.e., for trials for which RT of making choices was less than 200 ms, duration equals
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the actual RT; for trials of no response, duration equals 8 s) as well as the warning feedback (duration

equals 1 s). Onsets of these events were regarded as regressors of no interest. The six movement

parameters were added to all models as covariates to account for the artifacts of head motion. The

canonical hemodynamic response function (HRF) was applied to model the fMRI signal.

Individual-level contrasts were fed to group-level random-effect analyses. One-sample t-tests

were mainly adopted to test the parametric effect or to compare simple contrasts between two con-

ditions. A 2 � 2 within-subject flexible factorial ANOVA model was also adopted to examine the

main effect of scenario (i.e., Dyad vs. Solo), the main effect of the proposer’s conduct (i.e., Bribe vs.

Control), and their two-way interaction (i.e., (DB – DC) – (SB - SC)) on neural activity while applicable

(see Results for details of the tests we used for specific analyses).

For all univariate analyses, we adopted a whole-brain corrected threshold of p<0.05 at the clus-

ter-level controlling for family-wise error (FWE) rate with an uncorrected voxel-level threshold of

p<0.001 as the cluster-defining threshold (Eklund et al., 2016). Moreover, a small volume correction

(SVC) was conducted within these hypothetical regions of interest (ROI). All masks were defined

based on a whole-brain parcellation given a meta-analytic functional coactivation map of the Neuro-

synth database (https://neurovault.org/collections/2099/). Compared with an ROI definition based

on specific peak coordinates, this approach generates masks that are much less biased by a specific

scientific research (e.g., an empirical study or a meta-analysis) and are larger in volume (vs. a sphere

with a radius of 6–8 mm). This ensures the validity and the reliability of the SVC. Regions were

labeled according to the AAL template via the xjView toolbox (http://www.alivelearn.net/xjview8/).

To illustrate the parametric effect of potential loss for the third party (GLM1b, GLM1b-s), and rela-

tive SV (GLM2a), we adopted the rfxplot toolbox (Gläscher, 2009) (http://rfxplot.sourceforge.net/).

Multivariate decoding analyses
To investigate whether TPJ/pSTS was selectively involved in bribery-related decision-making that

harmed a third party, we performed an ROI-based multivariate decoding analysis via python-based

nltools package (v 0.3.6 in Python 3.7.1; http://github.com/ljchang/nltools). Specifically, we trained a

linear support vector machine (slack parameter C = 1 chosen as default) classifier, a widely used

algorithm to deal with the binary classification, to discriminate decision-relevant activity pattern in

TPJ/pSTS in Bribe vs. Control for the Solo (i.e., individual contrast maps in GLM1: SB vs. SC; the first

condition was coded as 1 and the second as �1, same below) and the Dyad scenario (DB vs. DC)

separately.

A LOSO cross-validation procedure was adopted such that it trained the classifier on N-1 partici-

pants and generated a weight map that best classified the sample, and then tested the classification

on the left-out participant. This procedure looped for all participants once to obtain their respective

cross-validated signature response values. As a result, the classifier obtained a hyperplane that best

discriminates the individual contrast maps in two conditions (e.g., SB vs. SC). Receiver operating

characteristic curve was created based on the performance of classification (i.e., the two-choice

forced-alternative accuracy) via Canlab Matlab toolbox (https://github.com/canlab). Statistical signifi-

cance was obtained via the permutation test (i.e., 5000 times of permutation).

Pattern similarity analyses
To further examine whether vmPFC was engaged in value computation during decision-making in

both the Bribe and the Control conditions, we implemented a multivariate pattern similarity analysis

with the nltools package.

For each participant, we extracted the multivoxel patterns within the vmPFC mask (defined based

on the Neurosynth coactivation map; see above for details) from parametric contrasts of relative SV

in the Bribe and the Control conditions (GLM2a). Then we calculated the similarity between these

two patterns via the Pearson correlation and performed Fisher’s z transformation on these correla-

tion coefficients for statistical analyses. Group-level statistical significance was obtained via the per-

mutation-based one-sample t-test (i.e., 5000 times of permutation).

Functional connectivity analyses
To explore how the value signal in the vmPFC (i.e., the relative SV effect in GLM2a) interacts with

other parts of the brain during the bribery-related decision-making process, we implemented a PPI
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analysis (Friston et al., 1997) using the gPPI toolbox (https://www.nitrc.org/projects/gppi)

(McLaren et al., 2012). To this end, for each participant, we constructed a PPI-GLM containing the

following regressors: (1) the de-convolved time series in the vmPFC within the parcellation-based

vmPFC mask as the physiological regressor, (2) all onsets of the decision period in GLM1c as the psy-

chological regressors, and (3) the generated PPI regressors by multiplying the physiological regres-

sor with each psychological regressor. These regressors were all convolved with the canonical HRF

to model the BOLD signal. In addition, we also incorporated six movement parameters as covariates

to account for artifacts of head motion. Given the purpose of this analysis, we focused on the PPI

contrast of Bribe vs. Control with dlPFC as our target region and examined whether the dlPFC

enhanced functional connectivity with vmPFC during the bribery-related decision-making.

Inter-subject representational similarity analysis (IS-RSA)
The IS-RSA was treated as an exploratory analysis with a focus on dlPFC and conducted using the

nltools package. We first computed the corruption-relevant contrast (Bribe vs. Control) during the

decision period derived from GLM1c. Next, we extracted the parameter estimates (i.e., contrast val-

ues) of all voxels from the bilateral dlPFC (i.e., neural activity patterns; see above for details of mask

selection) and constructed neural representational dissimilarity matrices (neural RDM) using pairwise

correlation dissimilarity of these neural patterns between each pair of participants. To characterize

bribery-specific preferences across participants, we also created a parameter RDM that measures

the Euclidean distance between each pair of participants in a parameter space reflecting two forms

of bribery-specific moral costs (i.e., q and w). Then, we computed the correlation between the

parameter RDM and the neural RDMs using Spearman’s rank-order correlation, which did not

assume a linear behavior–brain relationship. Statistical significance was obtained via the permutation

t-test (i.e., 5000 times of permutation).
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Tusche A, Böckler A, Kanske P, Trautwein FM, Singer T. 2016. Decoding the charitable brain: empathy,
perspective taking, and attention shifts differentially predict altruistic giving. Journal of Neuroscience 36:4719–
4732. DOI: https://doi.org/10.1523/JNEUROSCI.3392-15.2016, PMID: 27122031

van Baar JM, Chang LJ, Sanfey AG. 2019. The computational and neural substrates of moral strategies in social
decision-making. Nature Communications 10:1483. DOI: https://doi.org/10.1038/s41467-019-09161-6,
PMID: 30940815

Vehtari A, Gelman A, Gabry J. 2017. Practical bayesian model evaluation using leave-one-out cross-validation
and WAIC. Statistics and Computing 27:1413–1432. DOI: https://doi.org/10.1007/s11222-016-9696-4

Yin L, Hu Y, Dynowski D, Li J, Weber B. 2017. The good lies: altruistic goals modulate processing of deception in
the anterior insula. Human Brain Mapping 16:3675–3690. DOI: https://doi.org/10.1002/hbm.23623

Yin L, Weber B. 2016. Can beneficial ends justify lying? neural responses to the passive reception of lies and
truth-telling with beneficial and harmful monetary outcomes. Social Cognitive and Affective Neuroscience 11:
423–432. DOI: https://doi.org/10.1093/scan/nsv127, PMID: 26454816

Yin L, Weber B. 2018. I lie, why don’t you: neural mechanisms of individual differences in self-serving lying.
Human Brain Mapping 40:1–13.

Hu et al. eLife 2021;10:e63922. DOI: https://doi.org/10.7554/eLife.63922 26 of 27

Research article Neuroscience

https://doi.org/10.1037/gpr0000069
https://doi.org/10.3389/neuro.06.004.2008
http://www.ncbi.nlm.nih.gov/pubmed/19104670
https://doi.org/10.1016/j.conb.2012.06.001
http://www.ncbi.nlm.nih.gov/pubmed/22766486
https://doi.org/10.1080/00224545.1983.9712018
https://doi.org/10.1007/s10683-012-9324-x
https://doi.org/10.3758/s13428-016-0809-y
http://www.ncbi.nlm.nih.gov/pubmed/27620283
https://doi.org/10.1073/pnas.1614912114
http://www.ncbi.nlm.nih.gov/pubmed/28396395
https://doi.org/10.2307/2946696
https://doi.org/10.2307/2946696
https://doi.org/10.1016/j.neuroimage.2012.03.068
https://doi.org/10.1016/j.neuroimage.2012.03.068
http://www.ncbi.nlm.nih.gov/pubmed/22484411
https://doi.org/10.1016/j.neuron.2012.05.021
https://doi.org/10.1016/j.neuron.2012.05.021
http://www.ncbi.nlm.nih.gov/pubmed/22794262
https://doi.org/10.3389/fpsyg.2017.00159
https://doi.org/10.3389/fpsyg.2017.00159
https://doi.org/10.1196/annals.1390.022
https://doi.org/10.1196/annals.1390.022
http://www.ncbi.nlm.nih.gov/pubmed/17416921
https://doi.org/10.7554/eLife.40671
http://www.ncbi.nlm.nih.gov/pubmed/30561334
https://doi.org/10.1093/scan/nsz099
http://www.ncbi.nlm.nih.gov/pubmed/31989169
http://www.ncbi.nlm.nih.gov/pubmed/31989169
https://doi.org/10.1093/scan/nsaa029
https://doi.org/10.1093/scan/nsaa029
http://www.ncbi.nlm.nih.gov/pubmed/32163158
https://doi.org/10.1016/j.joep.2014.10.002
https://doi.org/10.1038/nrn3776
http://www.ncbi.nlm.nih.gov/pubmed/24986556
https://doi.org/10.1016/j.neubiorev.2014.01.009
https://doi.org/10.1016/j.neubiorev.2014.01.009
http://www.ncbi.nlm.nih.gov/pubmed/24486722
https://doi.org/10.1016/j.neuron.2007.09.011
http://www.ncbi.nlm.nih.gov/pubmed/17920024
https://doi.org/10.1016/j.neuroimage.2004.07.054
https://doi.org/10.1016/j.neuroimage.2004.07.054
http://www.ncbi.nlm.nih.gov/pubmed/15528097
https://doi.org/10.1523/JNEUROSCI.3392-15.2016
http://www.ncbi.nlm.nih.gov/pubmed/27122031
https://doi.org/10.1038/s41467-019-09161-6
http://www.ncbi.nlm.nih.gov/pubmed/30940815
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1002/hbm.23623
https://doi.org/10.1093/scan/nsv127
http://www.ncbi.nlm.nih.gov/pubmed/26454816
https://doi.org/10.7554/eLife.63922


Young L, Camprodon JA, Hauser M, Pascual-Leone A, Saxe R. 2010. Disruption of the right temporoparietal
junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. PNAS 107:6753–
6758. DOI: https://doi.org/10.1073/pnas.0914826107, PMID: 20351278

Yu H, Hu J, Hu L, Zhou X. 2014. The voice of conscience: neural bases of interpersonal guilt and compensation.
Social Cognitive and Affective Neuroscience 9:1150–1158. DOI: https://doi.org/10.1093/scan/nst090
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