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Abstract

A logical framework is presented for representing and reasoning about nondeter-
ministic programs that may not terminate. We propose a logic PDL(; ;, ||, d(∗)) which
is an extension of dynamic logic such that the program constructors related to de-
monic operations are introduced in its language. A complete and sound Hilbert-style
proof system is given and it is shown that PDL(; ;, ||, d(∗)) is decidable. In the second
part of this paper, a translation is defined between PDL(; ;, ||, d(∗)) and a relational
logic. A sound and complete Rasiowa-Sikorski-style proof system for the relational
logic is given. It provides a natural deduction-style method of reasoning for PDL(; ;,
||, d(∗)).

1 Introduction

The logic-based methodology of the theory of programs originated in [Sal70, Mir77a,
Mir77b, Pra76] is well established in the literature. In particular, a variety of modal-style
logical systems have been developed and a number of papers have been devoted to the
study of the underlying relational semantics of programs. In modal logics of programs
a program α is represented by means of a binary relation Rα over a state space, with
the intuition that (s, t) ∈ Rα iff the program α executed from initial state s terminates
at state t. The programs represented by relations are nondeterministic, that is for a
given input state, the output state obtained by executing a program is not necessarily
unique. The central problem in defining a formal semantics of programs is the treatment
of nontermination. The approach developed in [HHJ+87] is based on the proposal of
introducing a fictitious state, say s⊥, such that if program α does not terminate when
starting from state s, then (s, s⊥) ∈ Rα. An alternative approach is based on the postulate
that if program α does not terminate when executed from state s, then the set {t | (s, t) ∈
Rα} of Rα-successors of s is empty. In this paper we follow the latter approach.

The main motivation for introducing demonic program constructors can be expressed
as a principle that possible nontermination implies definite nontermination (see [Ngu91]).
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To incorporate this principle in the relational semantics of programs, the classical operators
of nondeterministic choice and sequential composition should be modified appropriately:

• If two commands of a nondeterministic program α can be executed nondeterminis-
tically, and if an execution of one of them does not terminate, then the execution of
α does not terminate,

• If a sequence of commands of a nondeterministic program α is executed sequentially,
and if an execution of one of them does not terminate, then the execution of α does
not terminate.

The above postulates reflect the well-known Murphy’s law: ’If it can go wrong, it will’.
Nondeterminism modelled according to these postulates is referred to as demonic nonde-
terminism, as opposed to angelic and erratic nondeterminism [BZ86].

The calculus of binary relations with operators of demonic union (||) and demonic
composition (;;) of relations have been studied in [Ngu91]. Our proposal is to extend the
calculus with a demonic iteration operator (d(∗)) defined in a natural way by means of
the respective binary demonic operators. Demonic iteration is motivated by the following
postulate:

• If a command of a nondeterministic program α is executed nondeterministically any
finite number of times and if one of these executions does not terminate, then the
execution of α does not terminate.

In this paper we develop a logical framework for the analysis of demonic nondeter-
minism. In the first part of the paper a propositional program logic PDL(; ;, ||, d(∗))
is introduced such that the language of the logic enables us to specify demonic nonde-
terministic programs. We admit in the language the standard dynamic logic program
constructors as well as demonic union, demonic composition, and demonic iteration of
programs. We present a complete Hilbert-style axiomatization of the logic and we prove
that the logic possesses the finite model property. We discuss demonic iteration and we
point out various ways of defining the respective relational operators. In the second part
of the paper a relational semantics is developed as well as a relational proof system for
the logic. Under the relational semantics both expressions that represent programs and
formulae of PDL(; ;, ||, d(∗)) are interpreted as binary relations. It enables us to interpret
our logic in a relational logic and to define a relational proof system for it, following the
method suggested in [Or lo88].

2 Syntax and Semantics of Program Logics

For a given binary relation R ⊆ U × U and for x ∈ U we denote by R(x) the set {y |
(x, y) ∈ R} of R-successors of x .

2.1 Syntax

A (propositional) program modal language is determined by four sets which are supposed
to be pairwise disjoint, viz,

(i) a set Φ0 of propositional variables,

(ii) a set Π0 of program constants,

(iii) a set of propositional operators,
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(iv) a set of program operators.

The set Π of program expressions is the smallest set that satisfies the following condi-
tions:

(i) Π0 ⊆ Π

(ii) if φ is an n-ary program operator and a0, . . . , an−1 ∈ Π then φ(a0, . . . , an−1) ∈ Π,

The set Σ of formulae is the smallest set that satisfies the following conditions:

(i) Φ0 ∪ {false, true} ⊆ Σ

(ii) if o is any n-ary propositional operator and F0, . . . , Fn−1 ∈ Σ then o(F0, . . . , Fn−1) ∈
Σ.

(iii) If α ∈ Π and F ∈ Σ then [α]F ∈ Σ and 〈α〉F ∈ Σ.

We assume throughout the paper that a fixed program modal language is given such
that it satisfies the following conditions:

(i) the set φ0 of propositional variables is an infinite denumerable set

(ii) the set of program constants is finite or infinite denumerable

(iii) the propositional operators are the unary ¬, the binary ⇔, ⇒, ∨, ∧.

(iv) the program operators are the binary ∪, ||, ; , ; ; and the unary ∗,d(∗).

2.2 Semantics

For the sake of simplicity, the same symbol is used for a relational operation and the
respective program operator. We use the symbol ; for composition, that is if R and S are
binary relations then

R; S = {(x, y) : ∃z(x, z) ∈ R and (z, y) ∈ S}

We recall that if R denotes a binary relation on the set U , the iteration operator is
defined as follows

R∗ = {Rn | n ∈ ω}

with R0 = {(x, x) | x ∈ U} and Rn+1 = R; Rn where ω denotes the set of natural numbers.
We use the symbol ; ; for demonic composition (e.g. [Ngu91]), that is if R and S are binary
relations then

R; ; S = {(x, y) : ∀z, if (x, z) ∈ R then ∃t(z, t) ∈ S and (x, y) ∈ R; S}

The set (R; ; S)(x) is empty if either (R; S)(x) is empty or there exists z0 such that
(x, z0) ∈ R and S(z0) = ∅. We use the symbol || for demonic union (e.g. [Ngu91]), that is
if R and S are binary relations then

R||S = {(x, y) : ∃t(x, t) ∈ R and ∃t′(x, t′) ∈ S and (x, y) ∈ R ∪ S}

If the relations are serial then the demonic union (respectively composition) collapses
to the classical union (respectively composition). Let R and S be two relations on the set
U . As mentioned in [Ngu93], it is a routine matter to check

• R; ; S = (R; S) ∩ −(R;−(S; (U × U)))
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• R||S = (R ∪ S) ∩ (R; (U × U)) ∩ (S; (U × U))

Observe that although the intersection and complement operations are used in the
above characterization of demonic operations, no program operator is associated to these
relational operations.

A new demonic iteration operation d(∗) is defined as follows:

Rd(∗) = ||i∈ωRd(i)

with Rd(i+1) = R; ; Rd(i) for i ≥ 1, and Rd(0) = {(x, x) | x ∈ U}. Since the demonic
composition is associative [Ngu91], for i ≥ 0, Rd(i+1) = Rd(i); ; R. As for the demonic
composition, the demonic iteration operation is locally an ’all or nothing iteration’.

Lemma 2.1. Let R be a binary relation on the set U and x ∈ U .

(i) For all i ∈ ω, if Rd(i)(x) 6= ∅ then Rd(i)(x) = Ri(x)

(ii) For all i ∈ ω, if Rd(i)(x) = ∅ then Rd(i+1)(x) = ∅

The straightforward inductive proof is omitted. In order to show that Rd(∗)(x) 6= ∅
only if x cannot reach through R an element y having no R-successor, we introduce the
standard notion of maximal R-chain.

Definition 2.2. (Maximal R-chain) Let R be a binary relation on U and x ∈ U . A maxi-
mal R-chain from x is either a finite sequence (x0, . . . , xN ) such that x0 = x, (xi, xi+1) ∈ R

for all i ∈ {0, . . . , (N − 1)} and R(xN ) = ∅ (N possibly equal to 0) or an infinite sequence
(x0, x1, . . .) such that x0 = x, (xi, xi+1) ∈ R for all i ∈ ω. We write x ↑ R iff every
maximal R-chain from x is infinite. The length of a finite maximal R-chain σ, written |σ|,
is the number of elements of the sequence. ∇

Lemma 2.3. Let R be a binary relation on the set U and x ∈ U .

(i) If x ↑ R then Rd(∗)(x) = R∗(x), otherwise Rd(∗)(x) = ∅.

(ii) (x, y) ∈ Rd(∗) iff (x, y) ∈ R∗ and for all i ∈ ω, Rd(i)(x) 6= ∅.

Proof: (i) Assume not x ↑ R. Let S be the non-empty set of all the finite maximal
R-chains from x. We write M to denote the minimal element of the set {|σ| | σ ∈ S} and
(X0, . . . , XM−1) an element of S (M ≥ 1). It shall be shown that for i ∈ {0, . . . , (M −1)},
Rd(i)(x) 6= ∅. The proof is by induction. By definition Rd(0)(x) 6= ∅. Now suppose
Rd(j)(x) = ∅ for some j ∈ {1, . . . , (M − 1)} and for all k ∈ {0, . . . , j − 1}, Rd(k)(x) 6= ∅.
Hence Rd(j)(x) = (Rd(j−1); ; R)(x) = (Rj−1; ; R)(x) (see Lemma 2.1(i)).Since Xj ∈ Rj(x),
Rj(x) 6= ∅. Moreover suppose there is z0 such that (x, z0) ∈ Rj−1 and R(z0) = ∅. It
leads to a contradiction, since M is minimal. So for all i ∈ {0, . . . , (M − 1)}, Rd(i)(x) 6= ∅
and therefore from Lemma 2.1 Rd(i)(x) = Ri(x) for all i ∈ {0, . . . , (M − 1)}. We have
Rd(M)(x) = RM−1; ; R(x). Since (x,XM−1) ∈ RM−1 and R(XM−1) = ∅, then Rd(M)(x) =
∅. It follows that Rd(∗)(x) = ∅.
Now assume x ↑ R and suppose that there exists i ∈ ω such that Rd(i)(x) = ∅. There exists
j ≥ 1 such that Rd(j)(x) = ∅ and Rd(j−1)(x) 6= ∅ (Rd(j)(x) = (Rj−1; ; R)(x)). Suppose
Rj(x) = ∅. This leads to the existence of a finite maximal R-chain from x which is a
contradiction. Now suppose there exists z0 such that (x, z0) ∈ Rj−1 and R(z0) = ∅. This
also leads to the existence of a finite maximal R-chain from x. As a consequence for all
i ∈ ω, Rd(i)(x) 6= ∅. So Rd(∗)(x) = ||i∈ωRi(x) from Lemma 2.1(i). Since each Ri(x) is
non-empty, Rd(∗)(x) =

⋃
i∈ω Ri(x) = R∗(x).
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The condition (ii) is a consequence of the proof of (i). Q.E.D.

It follows that Rd(∗)(x) is empty if either not x ↑ R or R∗(x) is empty. Kripke-style
semantics for dynamic logic with the demonic operators is defined in the standard way
(see e.g. [Seg82]).

Definition 2.4. (Frame, Program Frame, Model, Program Model) By a frame we un-
derstand a pair (U,R) such that U is a non-empty set and R = {Rα}α∈Π is a family of
binary relations on U . A program frame is a frame such that the following conditions are
satisfied:

(i) Rα∪β = Rα ∪Rβ (ii) Rα||β = Rα||Rβ (iii) Rα;β = Rα; Rβ

(iv) Rα;;β = Rα; ; Rβ (v) (Rα)∗ = Rα∗ (vi) (Rα)d(∗) = Rαd(∗)

By a model M, we understand a triple (U,R,m) such that (U,R) is a frame and m is a
function from φ0 to P(U), the power set of U . We say that the model M is based on the
frame (U,R). A program model is a model that is based on a program frame. ∇

Observe that for any program frame F , the set {Rα}α∈Π0 determines in a unique way
the set {Rα}α∈Π. Let M = (U,R,m) be any given model (not necessarily a program
model). The concept of satisfiability at a point inM is recursively defined as follows. Let
u ∈ U .

(i) M, u sat P iff u ∈ m(P ), for P ∈ φ0 ; (ii) M, u sat ¬F iff not M, u sat F

(iii) M, u sat F ⇒ G iff M, u sat F only if M, u sat G,

(iv) M, u sat [α]F iff, for all v, if uRαv then M, v sat F .

(v) M, u sat true and not M, u sat false

We omit the standard definitions of satisfiability for the other logical operators. A
formula F is true in a modelM (writtenM |= F ) iff for all x ∈ U, M, x sat F . A formula
F is true in a frame F (written F |= F ) iff F is true in every model based on F .

3 Hilbert-style Proof System for PDL(; ;, ||, d(∗))

By a normal logic we understand any set L of formulae that satisfies the following condi-
tions:

(i) L contains every tautology of the classical two-valued propositional calculus

(ii) L is closed under modus ponens ; (iii) L is closed under substitution

(iv) L contains every formula of the form

(D1) [α](F ⇒ G)⇒ ([α]F ⇒ [α]G) for α ∈ Π, F,G ∈ Σ,

(v) for every α ∈ Π and F ∈ L, [α]F ∈ L.

Finally by a program logic with demonic operators we understand a normal logic that
contains all formulae of the following form:

(D2) [α ∪ β]F ⇔ [α]F ∧ [β]F

(D3) [α; β]F ⇔ [α][β]F
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(D4) [α]F ∧ [β]F ⇒ [α||β]F

(D5) [α||β]F ∧ 〈α||β〉true⇒ 〈α〉true ∧ 〈β〉true ∧ [α]F ∧ [β]F

(D6) [α||β]false⇒ [α]false ∨ [β]false

(D7) [α][β]F ⇒ [α; ; β]F

(D8) [α; ; β]F ∧ 〈α; ; β〉true⇒ [α](〈β〉true ∧ [β]F )

(D9) [α; ; β]false⇒ [α][β]false ∨ 〈α〉[β]false

(D10) [α∗]F ⇒ F ∧ [α][α∗]F

(D11) F ⇒ ([α∗](F ⇒ [α]F )⇒ [α∗]F )

(D12) [α∗]F ⇒ [αd(∗)]F

(D13) [αd(∗)]false⇒ 〈α∗〉[α]false

(D14) [αd(∗)]F ∧ 〈αd(∗)〉true⇒ [α∗]〈α〉true ∧ [α∗]F

Axioms (D2) and (D3) are standard for the union and the composition operators (see
e.g. [Seg82]). Axioms (D10) and (D11) are the Segerberg axioms for the iteration op-
eration [Seg82]. Axiomatisation of the operator || (respectively ; ;) is provided by the
axioms (D4),(D5) and (D6) (respectively (D7),(D8) and (D9)). Observe that if 〈α〉true

is added to the system (seriality axiom) then [α||β]F ⇔ [α ∪ β]F , [α; ; β]F ⇔ [α; β]F and
[αd(∗)]F ⇔ [α∗]F can be deduced in the system. In a standard way, we define the notions
of theoremhood in L, and deducibility. Let PDL(; ;, ||, d(∗)) be the smallest program logic
with demonic operators.

The lemmas 3.1, 3.2 and 3.3 express correspondences between modal formulae and
properties of relations in the frames. A survey of correspondence theory can be found in
[vB84].

Lemma 3.1. The axioms (D4),(D5),(D6) are true in a frame F = (U, {Rγ}γ∈Π) iff for all
α, β ∈ Π, Rα||β = Rα||Rβ.

Proof: Let F = (U, {Rγ}γ∈Π) be a frame.
(I) Suppose there exists x, y ∈ U such that (x, y) ∈ Rα||β and (x, y) 6∈ Rα||Rβ.
Suppose (x, y) 6∈ Rα ∪ Rβ. Consider the model M0 = (U, {Rγ}γ∈Π,m0) such that

for a certain p ∈ φ0, m0(p) = {u ∈ U | (x, u) ∈ Rα ∪ Rβ}. Since (D4) is true in F ,
M0, x sat [α]p∧ [β]p⇒ [α||β]p. By construction of m0,M0, x sat [α]p∧ [β]p and therefore
M0, x sat [α||β]p. Since (x, y) ∈ Rα||β, we have M0, y sat p. By construction of m0,
M0, y sat ¬p which leads to a contradiction.

Now suppose Rα(x) = ∅. Consider the model M0 = (U, {Rγ}γ∈Π,m0) such that
for a certain p ∈ φ0, m0(p) = {u ∈ U | (x, u) ∈ Rα||β}. Since (D5) is true in F ,
M0, x sat [α||β]p ∧ 〈α||β〉true ⇒ 〈α〉true ∧ 〈β〉true ∧ [α]p ∧ [β]p. By construction of m0,
we have M0, x sat [α||β]p. Since (x, y) ∈ Rα||β , we have M0, x sat 〈α||β〉true. Hence
M0, x sat 〈α〉true ∧ 〈β〉true ∧ [α]p ∧ [β]p. There exists x0 such that (x, x0) ∈ Rα which
leads to a contradiction. If Rβ(x) = ∅, then a contradiction can be found in a similar
way. This proves that if the axioms (D4),(D5),(D6) are true in F then for all α, β ∈ Π,
Rα||β ⊆ Rα||Rβ .

(II) Suppose there exists x, y ∈ U such that (x, y) 6∈ Rα||β and (x, y) ∈ Rα||Rβ.
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First suppose Rα||β(x) = ∅. Consider a model M = (U, {Rγ}γ∈Π,m) based on F .
Since (D6) is true in F , M, x sat [α||β]false ⇒ [α]false ∨ [β]false. Since Rα||β(x) = ∅,
M, x sat [α||β]false and therefore M, x sat [α]false ∨ [β]false. Since (x, y) ∈ Rα||Rβ,
there exist x1, x2 such that (x, x1) ∈ Rα and (x, x2) ∈ Rβ. It follows that neither
M, x sat [α]false nor M, x sat [β]false can hold, which leads to a contradiction.

Now suppose Rα||β(x) 6= ∅. Consider the model M0 = (U, {Rγ}γ∈Π,m0) such that
for a certain p ∈ φ0, m0(p) = {u ∈ U | (x, u) ∈ Rα||β}. Since (D5) is true in F ,
M0, x sat [α||β]p ∧ 〈α||β〉true ⇒ 〈α〉true ∧ 〈β〉true ∧ [α]p ∧ [β]p. By construction of m0,
M0, x sat [α||β]p. Since Rα||β(x) 6= ∅,M0, x sat 〈α||β〉true and thereforeM0, x sat 〈α〉true∧
〈β〉true∧ [α]p∧ [β]p. Since (x, y) ∈ Rα ∪Rβ, we haveM0, y sat p. M0, y sat ¬p ((x, y) 6∈
Rα||β), which leads to a contradiction. This proves that if the axioms (D4),(D5),(D6) are
true in F then for all α, β ∈ Π, Rα||Rβ ⊆ Rα||β.

(III) Suppose that in the frame F = (U, {Rγ}γ∈Π), for all α, β ∈ Π, Rα||β = Rα||Rβ.
Let M = (U, {Rγ}γ∈Π,m) be a model based on F and x ∈ U .
(D4) Assume that M, x sat [α]F ∧ [β]F . It follows that for y ∈ U if either (x, y) ∈ Rα or
(x, y) ∈ Rβ thenM, y sat F . So for all y ∈ (Rα ∪Rβ)(x), we haveM, y sat F . A fortiori,
for all y ∈ (Rα||Rβ)(x), we have M, y sat F , which entails that M, x sat [α||β]F .
(D5) Assume that M, x sat [α||β]F ∧ 〈α||β〉true. It follows that there exists x0 ∈ U such
that (x, x0) ∈ Rα||Rβ = Rα||β. So there exists x1, x2 ∈ U such that (x, x1) ∈ Rα and
(x, x2) ∈ Rβ . It follows thatM, x sat 〈α〉true∧〈β〉true. Moreover, since (Rα||Rβ)(x) 6= ∅
it follows that (Rα||β)(x) = (Rα ∪Rβ)(x). Hence we also have M, x sat [α]F ∧ [β]F .
(D6) Assume thatM, x sat [α||β]false. It follows that (Rα||Rβ)(x) = ∅. In case Rα(x) = ∅
or Rβ(x) = ∅, we have eitherM, x sat [α]false orM, x sat [β]false. In case for all z ∈ U ,
(x, z) 6∈ Rα ∪Rβ, we have M, x sat [α]false and M, x sat [β]false.

This proves that if for all α, β ∈ Π, Rα||β = Rα||Rβ , then the axioms (D4),(D5),(D6)
are true in F . Q.E.D.

Lemma 3.2. The axioms (D7),(D8),(D9) are true in a frame F = (U, {Rγ}γ∈Π) iff for all
α, β ∈ Π, Rα;;β = Rα; ; Rβ.

Proof: Let F = (U, {Rγ}γ∈Π) be a frame.
(I) Suppose there exists x, y ∈ U such that (x, y) ∈ Rα;;β and (x, y) 6∈ Rα; ; Rβ.
Suppose (x, y) 6∈ Rα; Rβ . Consider the model M0 = (U, {Rγ}γ∈Π,m0) such that

for a certain p ∈ φ0, m0(p) = {u ∈ U | (x, u) ∈ Rα; Rβ}. Since (D7) is true in F ,
M0, x sat [α][β]p ⇒ [α; ; β]p. By construction of m0, M0, x sat [α][β]p. Hence we get
M0, x sat [α; ; β]p. Since (x, y) ∈ Rα;;β , we have M0, y sat p. By construction of m0,
M0, y sat ¬p which leads to a contradiction.

Now suppose there exists z0 such that (x, z0) ∈ Rα and Rβ(z0) = ∅. Consider the model
M0 = (U, {Rγ}γ∈Π,m0) such that for a certain p ∈ φ0, m0(p) = {u ∈ U | (x, u) ∈ Rα;;β}.
Since (D8) is true in F ,M0, x sat [α; ; β]p∧〈α; ; β〉true⇒ [α](〈β〉true∧[β]p). By construc-
tion of m0, we getM0, x sat [α; ; β]p. Since (x, y) ∈ Rα;;β, we haveM0, x sat 〈α; ; β〉true.
and thereforeM0, x sat [α](〈β〉true∧ [β]p). Since (x, z0) ∈ Rα,M0, z0 sat 〈β〉true∧ [β]p.
We conclude that there exists t0 such that (z0, t0) ∈ Rβ which leads to a contradic-
tion. This proves that if the axioms (D7),(D8),(D9) are true in F then for all α, β ∈ Π,
Rα;;β ⊆ Rα; ; Rβ.

(II) Suppose there exists x, y ∈ U such that (x, y) 6∈ Rα;;β and (x, y) ∈ Rα; ; Rβ.
Suppose Rα;;β(x) = ∅. Consider a model M = (U, {Rγ}γ∈Π,m). Since (D9) is true

in F , we obtain M, x sat [α; ; β]false ⇒ [α][β]false ∨ 〈α〉[β]false. Since Rα;;β(x) = ∅,
we have M, x sat [α; ; β]false. Hence we get M, x sat [α][β]false ∨ 〈α〉[β]false. In case
M, x sat [α][β]false, considering that (x, y) ∈ Rα; ; Rβ it entails that (x, y) ∈ Rα; Rβ and
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therefore M, y sat false, which leads to a contradiction. In case M, x sat 〈α〉[β]false,
considering that (x, y) ∈ Rα; ; Rβ , it follows that for all z ∈ U , if (x, z) ∈ Rα then there
exists t ∈ U such that (z, t) ∈ Rβ . However, there exists z0 ∈ U such that (x, z0) ∈ Rα

and M, z0 sat [β]false. Hence there exists t0 ∈ U such that (z0, t0) ∈ Rβ, which leads to
a contradiction.

Now suppose Rα;;β(x) 6= ∅. Consider the model M0 = (U, {Rγ}γ∈Π,m0) such that for
a certain p ∈ φ0, m0(p) = {u ∈ U | (x, u) ∈ Rα;;β}. Since (D8) is true in F , we obtain
M0, x sat [α; ; β]p ∧ 〈α; ; β〉true ⇒ [α](〈β〉true ∧ [β]p). By construction of m0, we have
M0, x sat [α; ; β]p. Considering that Rα;;β(x) 6= ∅, it follows that M0, x sat 〈α; ; β〉true.
Hence, we deduce M0, x sat [α](〈β〉true ⇒ [β]p). Since (x, y) ∈ Rα; ; Rβ then there
exists z1 ∈ U such that (x, z1) ∈ Rα and (z1, y) ∈ Rβ. So M0, z1 sat 〈β〉true ∧ [β]p and
M0, y sat p, which is in contradiction with the fact that not M0, y sat p since (x, y) 6∈
Rα;;β . This proves that if the axioms (D7),(D8),(D9) are true in F then for all α, β ∈ Π,
Rα; ; Rβ ⊆ Rα;;β .

As in the proof of Lemma 3.1 it can be easily proved that if for all α, β ∈ Π, Rα;;β =
Rα; ; Rβ then the axioms (D7),(D8),(D9) are true in F . Q.E.D.

Lemma 3.3. Given a frame F = (U, {Rγ}γ∈Π) satisfying for all α ∈ Π, Rα∗ = (Rα)∗, the
axioms (D12), (D13), (D14) are true in the frame F iff for all α ∈ Π, (Rα)d(∗) = Rαd(∗) .

Proof: Let F = (U, {Rγ}γ∈Π) be a frame satisfying for all α ∈ Π, Rα∗ = (Rα)∗.
(I) Suppose there exists x, y ∈ U such that (x, y) ∈ Rαd(∗) and (x, y) 6∈ (Rα)d(∗).
Suppose (x, y) 6∈ Rα∗ . Consider the model M0 = (U, {Rγ}γ∈Π,m0) such that for

a certain p ∈ φ0, m0(p) = {u ∈ U | (x, u) ∈ (Rα)∗}. Since (D12) is true in F , it
follows M0, x sat [α∗]p ⇒ [αd(∗)]p. By construction of m0, M0, x sat [α∗]p and therefore
M0, x sat [αd(∗)]p. Since (x, y) ∈ Rαd(∗) , we have M0, y sat p. By construction of m0,
M0, y sat ¬p which leads to a contradiction. Now suppose that x ↑ Rα does not hold.
There exists a finite maximal Rα-chain from x, namely (x0, . . . , xN ). Consider the model
M0 = (U, {Rγ}γ∈Π,m0) such that for a certain p ∈ φ0, m0(p) = {u ∈ U | (x, u) ∈
Rαd(∗)}. Assuming that (D14) is true in F , we get M0, x sat [αd(∗)]p ∧ 〈αd(∗)〉true ⇒
[α∗]〈α〉true ∧ [α∗]p. By construction of m0, M0, x sat [αd(∗)]p. Since (x, y) ∈ Rαd(∗) , we
haveM0, x sat 〈αd(∗)〉true. Hence,M0, x sat [α∗]〈α〉true∧ [α∗]p. Since (x, xN ) ∈ Rα∗ , we
have M0, xN sat 〈α〉true which leads to a contradiction. This proves that if the axioms
(D12),(D13),(D14) are true in F then for all α ∈ Π, Rαd(∗) ⊆ (Rα)d(∗).

(II) Suppose there exists x, y ∈ U such that (x, y) 6∈ Rαd(∗) and (x, y) ∈ (Rα)d(∗).
Suppose Rαd(∗)(x) = ∅. Consider a model M = (U, {Rγ}γ∈Π,m). Since (D13) is true

in F , we have M, x sat [αd(∗)]false ⇒ 〈α∗〉[α]false. Since Rαd(∗)(x) = ∅, we obtain
M, x sat [αd(∗)]false. Hence M, x sat 〈α∗〉[α]false. There exists x0 ∈ U such that
(x, x0) ∈ Rα∗ and Rα(x0) = ∅. It follows that not x ↑ Rα which leads to a contradiction
since (x, y) ∈ (Rα)d(∗).

Now suppose Rαd(∗)(x) 6= ∅. Consider the model M0 = (U, {Rγ}γ∈Π,m0) such that
for a certain p ∈ φ0, m0(p) = {u ∈ U | (x, u) ∈ Rαd(∗)}. Since (D14) is true in F ,
M0, x sat [αd(∗)]p ∧ 〈αd(∗)〉true ⇒ [α∗]〈α〉true ∧ [α∗]p. By construction of m0, we have
M0, x sat [αd(∗)]p. Since Rαd(∗)(x) 6= ∅, we have M0, x sat 〈αd(∗)〉true. Hence, we obtain
M0, x sat [α∗]〈α〉true ∧ [α∗]p. Since (x, y) ∈ (Rα)∗ then M0, y sat p, which is in contra-
diction with the fact that not M0, y sat p since (x, y) 6∈ Rαd(∗) . This proves that if the
axioms (D12),(D13),(D14) are true in F , then for all α ∈ Π, (Rα)d(∗) ⊆ Rαd(∗) .

As in the proof of Lemma 3.1 it can be easily proved that if for all α ∈ Π, Rαd(∗) =
(Rα)d(∗) then the axioms (D12),(D13),(D14) are true in F . Q.E.D.
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Theorem 3.4. (Soundness of PDL(; ;, ||, d(∗)))
If F is a theorem of PDL(; ;, ||, d(∗)), then for every program modelM we haveM |= F .

Proof: The proof consists in showing that the axioms are valid and the rules preserve
validity. Validity of specific axioms (D4),. . . ,(D9) and (D12) . . . (D14) follows from Lemma
3.1, Lemma 3.2, and Lemma 3.3. Q.E.D.

4 Completeness of PDL(; ;, ||, d(∗))

We use the standard construction of the canonical structure (e.g., [Mak66, Seg82]).

Definition 4.1. A canonical structure for PDL(; ;, ||, d(∗)) is the system Mc = (U c,
{Rc

α}α∈Π, mc) where

(i) U c is the family of all the maximal consistent sets of formulae.

(ii) For all α ∈ Π, the relations Rc
α over U c are defined by (Z, T ) ∈ Rc

α iff {F ∈ Σ |
[α]F ∈ Z} ⊆ T .

(iii) Valuation mc is constructed by taking mc(p) = {Z ∈ U c | p ∈ Z} for every formula
p ∈ φ0.

∇

We show that Mc is a model but not necessarily a program model.

Lemma 4.2. For all u ∈ U c, F ∈ Σ and α, β ∈ Π,

(i) Mc, u sat F iff F ∈ u

(ii) F is a theorem of PDL(; ;, ||, d(∗)) iff F is true in Mc.

(iii) Rc
α∪β = Rc

α ∪Rc
β ; (iv) Rc

α;β = Rc
α; Rc

β ; (v) (Rc
α)∗ ⊆ Rc

α∗ ; (vi) Rc
αd(∗) ⊆ Rc

α∗

Proof(sketch): From Lemma 4.1 (respectively Corollary 4.2, Lemma 4.3A, Lemma
4.3B, Lemma4.3C) in [Seg82] we can easily deduce (i) (respectively (ii), (iii), (iv), (v))
holds. (vi) follows from axiom (D12). Q.E.D.

Lemma 4.3. If S is a maximal consistent set of formulae of PDL(; ;, ||, d(∗)), then

(i) If [α]F, [β]F ∈ S then [α||β]F ∈ S ; (ii) If [α][β]F ∈ S then [α; ; β]F ∈ S

(iii) If [α∗]F ∈ S then [αd(∗)]F ∈ S

(iv) [α||β]false ∈ S iff either [α]false ∈ S or [β]false ∈ S

(v) [α; ; β]false ∈ S iff either [α][β]false ∈ S or 〈α〉[β]false ∈ S

(vi) If [αd(∗)]false ∈ S then 〈α∗〉[α]false ∈ S

(vii) If [α||β]F, 〈α||β〉true ∈ S then 〈α〉true, 〈β〉true, [α]F, [β]F ∈ S

(viii) If [α; ; β]F, 〈α; ; β〉true ∈ S then [α](〈β〉true ∧ [β]F ) ∈ S.

(ix) If [αd(∗)]F, 〈αd(∗)〉true ∈ S then [α∗]F, [α∗]〈α〉true ∈ S
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The proof of Lemma 4.3 is by an easy verification knowing that any maximal consistent
set is closed on modus ponens and contains all the theorems of PDL(; ;, ||, d(∗)). In the
canonical model the demonic union and the demonic composition satisfy the conditions
of Definition 2.4, namely we have the following lemma.

Lemma 4.4. For all α, β ∈ Π,

(i) Rc
α||β = Rc

α||Rc
β

(ii) Rc
α;;β = Rc

α; ; Rc
β .

Proof: By way of example, the proof of (ii) is presented below.
(ii) Suppose that Rc

α;;β 6⊆ Rc
α; ; Rc

β. Then there exist x, y ∈ U c such that (x, y) ∈ Rc
α;;β

and either (x, y) 6∈ Rc
α; Rc

β, or there exists z0 ∈ U such that (x, z0) ∈ Rc
α and Rc

β(z0) = ∅.
First suppose (x, y) 6∈ Rc

α; Rc
β. There exists F1 ∈ Σ such that [α][β]F1 ∈ x and F1 6∈ y.

From Lemma 4.3(ii) it follows that [α; ; β]F1 ∈ x. Since (x, y) ∈ Rc
α;;β , we have F1 ∈ y,

which leads to a contradiction. Now suppose that there exists z0 ∈ U such that (x, z0) ∈ Rc
α

and Rc
β(z0) = ∅. It follows 〈α〉[β]false ∈ x. From Lemma 4.3(v) [α; ; β]false ∈ x. Hence

false ∈ y since (x, y) ∈ Rc
α;;β , which leads to a contradiction.

Now suppose that Rc
α; ; Rc

β 6⊆ Rc
α;;β. Then there exist x, y ∈ U c such that (x, y) ∈

Rc
α; ; Rc

β and (x, y) 6∈ Rc
α;;β. Suppose that Rc

α;;β(x) = ∅. It follows that [α; ; β]false ∈ x.
From Lemma 4.3(v) we have [α][β]false ∨ 〈α〉[β]false ∈ x. Since (x, y) ∈ Rc

α; ; Rc
β (and

therefore (x, y) ∈ Rc
α; Rc

β), for all z ∈ U , if (x, z) ∈ Rc
α, then there exists t ∈ U such

that (z, t) ∈ Rc
β. Hence neither [α][β]false ∈ x nor 〈α〉[β]false ∈ x, which leads to a

contradiction. Now suppose that Rc
α;;β(x) 6= ∅. It follows that 〈α; ; β〉true ∈ x. Since

(x, y) 6∈ Rc
α;;β, there exists [α; ; β]F1 ∈ x such that F1 6∈ y. From Lemma 4.3(viii), we have

[α]〈β〉true, [α][β]F1 ∈ x. Since (x, y) ∈ Rc
α; Rc

β it follows that F1 ∈ y, which leads to a
contradiction. Q.E.D.

To prove completeness, we use the filtration method developed in [Seg82] (see also
[Gab72, Gol92]) and we show that the demonic operators behave adequately. Let Sub(F )
be the set of subformulae of a formula F . Let Γ(F ) be the smallest set such that

(i) Sub(F ) ∪ {false, true} ⊆ Γ(F )

(ii) Γ(F ) is closed under subformulae

(iii) if [α ∪ β]G ∈ Γ(F ) then [α]G, [β]G ∈ Γ(F )

(iv) if [α; β]G ∈ Γ(F ) then [α][β]G ∈ Γ(F )

(v) if [α||β]G ∈ Γ(F ) then [α]G, [β]G ∈ Γ(F )

(vi) if [α; ; β]G ∈ Γ(F ) then [α][β]G, 〈α〉[β]false ∈ Γ(F )

(vii) if [α]G ∈ Γ(F ) then [α]false ∈ Γ(F )

(viii) if [α∗]G ∈ Γ(F ) then [α][α∗]G ∈ Γ(F )

(ix) if [αd(∗)]G ∈ Γ(F ) then [α∗]G, [α∗]〈α〉true ∈ Γ(F )

By the set of program terms of a formula F , denoted by Π(F ), we understand the
smallest set such that {α | [α]F ∈ Γ(F )} ⊆ Π(F ) and Π(F ) is closed under subterms.
By the set of program letters of a formula F , denoted by Π0(F ) we understand the set
Π(F ) ∩ Π0. The set Γ(F ) is an extension of the Fischer-Ladner closure of the set {F}
[FL79]. Using the standard techniques, it can be shown that the set Γ(F ) is finite.
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For any formula F and modelM, we define a structureMF which is a filtration of the
canonical model through the set Γ(F ). Let M = (U, {Rα}α∈Π,m) be a program model.
Define an equivalence relation ≡Γ(F ) on U by identifying states which satisfy the same
formulae from Γ(F ), that is

x ≡Γ(F ) y iff for all G ∈ Γ(F ), M, x sat G iff M, y sat G

We denote by |x|Γ(F ) the set {y | y ∈ U, x ≡Γ(F ) y} of equivalence classes of ≡Γ(F ). The
subscript Γ(F ) may be omitted in |x|Γ(F ) when the context is not ambiguous.

Definition 4.5. Let F be a formula andMc = (U c, {Rc
α}α∈Π,mc) be the canonical model.

Define the model MF = (U ′, {R′
α}α∈Π,m′) as follows:

(i) U ′ = {|x|Γ(F ) | x ∈ U c}

(ii) For α ∈ Π0, (|x|, |y|) ∈ R′
α iff there exists x0, y0 ∈ U c such that x0 ≡Γ(F ) x,

y0 ≡Γ(F ) y and x0R
c
αy0.

(iii) m′(p) = {|x|Γ(F ) | x ∈ mc(p)} for p ∈ φ0

(iv) For α ∈ Π \ Π0, R′
α is defined inductively with respect to the complexity of the

program operators in α

∇

By construction, MF is a program model.

Lemma 4.6. Let F be a formula and MF = (U ′, {R′
α}α∈Π,m′). For any γ ∈ Π(F ),

(i) if (x, y) ∈ Rc
γ then (|x|Γ(F ), |y|Γ(F )) ∈ R′

γ .

(ii) if (|x|Γ(F ), |y|Γ(F )) ∈ R′
γ then for all [γ]G ∈ Γ(F ) ifMc, x sat [γ]G thenMc, y sat G.

Proof: The proof is by induction on the complexity of γ. The basic step follows from the
definition ofMF . For γ of the form α∪ β, α; β and α∗ the proof can be found in [Seg82].
We prove the induction step for demonic operators.

(I) Assume (x, y) ∈ Rc
α||β . From Lemma 4.4(i), there exist u1, u2 ∈ U such that

(x, u1) ∈ Rc
α and (x, u2) ∈ Rc

β. Moreover either (x, y) ∈ Rc
α or (x, y) ∈ Rc

β. By the induc-
tion hypothesis we get (|x|, |u1|) ∈ R′

α and (|x|, |u2|) ∈ R′
β . Moreover either (|x|, |y|) ∈ R′

α

or (|x|, |y|) ∈ R′
β . Since MF is a program model, we get (|x|, |y|) ∈ R′

α||β.
Assume (|x|, |y|) ∈ R′

α||β. Take any [α||β]F1 ∈ x∩Γ(F ). Suppose that [α||β]false ∈ x.
From Lemma 4.3(iv) we get [α]false ∨ [β]false ∈ x. Since either [α]false ∈ Γ(F ) ∩ x or
[β]false ∈ Γ(F ) ∩ x, by the induction hypothesis false ∈ y, which naturally leads to a
contradiction. So 〈α||β〉true ∈ x. From Lemma 4.3(vii) we get [α]F1 ∧ [β]F1 ∈ x. Since
(|x|, |y|) ∈ R′

α ∪R′
β, by the induction hypothesis we get F1 ∈ y.

(II) Assume (x, y) ∈ Rc
α;;β. From Lemma 4.4(ii), there exists t ∈ U c such that (x, t) ∈

Rc
α and (t, y) ∈ Rc

β . First, suppose (|x|, |y|) 6∈ R′
α; R′

β . By the induction hypothesis, we get
(|x|, |t|) ∈ R′

α and (|t|, |y|) ∈ R′
β, which leads to a contradiction. Now suppose there exists

|z0| ∈ U ′ such that (|x|, |z0|) ∈ R′
α and R′

β(|z0|) = ∅. Since 〈α; ; β〉true, [α; ; β]true ∈ x,
from Lemma 4.3(viii) we have [α]〈β〉true ∈ x. By the induction hypothesis, we have
〈β〉true ∈ z0. There exists z1 ∈ U c such that (z0, z1) ∈ Rc

β. By the induction hypothesis
it follows that (|z0|, |z1|) ∈ R′

β which leads to a contradiction.
Assume (|x|, |y|) ∈ R′

α;;β. Take any [α; ; β]F1 ∈ x ∩ Γ(F ). Suppose [α; ; β]false ∈
x. By Lemma 4.3(v), we get [α][β]false ∨ 〈α〉[β]false ∈ x. In case [α][β]false ∈ x,
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by the induction hypothesis we get false ∈ y, which leads to a contradiction. In case
〈α〉[β]false ∈ x, there exists z0 ∈ U such that (x, z0) ∈ Rc

α and [β]false ∈ z0. So by
the induction hypothesis, (|x|, |z0|) ∈ R′

α and there exists |t0| ∈ U ′ such that (|z0|, |t0|) ∈
R′

β since (|x|, |y|) ∈ R′
α;;β . By the induction hypothesis, false ∈ t0 which leads to a

contradiction. It follows that 〈α; ; β〉true ∈ x. By Lemma 4.3(viii), [α; β]F1 ∈ x and
therefore [α][β]F1 ∈ x. There exists |t| ∈ U ′ such that (|x|, |t|) ∈ R′

α and (|t|, |y|) ∈ R′
β.

By the induction hypothesis, [β]F1 ∈ t and F1 ∈ y.
(III) Assume (x, y) ∈ Rc

αd(∗) . Suppose that (|x|, |y|) 6∈ R′
αd(∗) . Since Rc

αd(∗) ⊆ Rc
α∗

we have (x, y) ∈ Rc
α∗ . By the induction hypothesis we have (|x|, |y|) ∈ R′

α∗ . Since
R′

αd(∗) = (R′
α)d(∗) there is a sequence (|x0|, . . . , |xN |) (N ≥ 0) such that |x0| = |x| and

for i ∈ {0, . . . , (N − 1)} we have (|xi|, |xi+1|) ∈ R′
α and R′

α(|xN |) = ∅. It follows that
Rc

α(xN ) = ∅. Since (x, y) ∈ Rc
αd(∗) it follows that 〈αd(∗)〉true ∈ x. Moreover, since

[αd(∗)]true ∈ x, we have [α∗]〈α〉true ∈ x (see Lemma 4.3(ix)). Then [α][α∗]〈α〉true ∈
x∩Γ(F ) (see the condition (viii) in the definition of Γ(F )) and by the induction hypothesis
it follows that [α∗]〈α〉true ∈ x1 since (|x0|, |x1|) ∈ R′

α. By continuing this process we get
[α∗]〈α〉true ∈ xN , which is in contradiction with the fact that Rc

α(xN ) = ∅.
Assume (|x|, |y|) ∈ R′

αd(∗) . Take any [αd(∗)]F1 ∈ x ∩ Γ(F ). Suppose F1 6∈ y. First
suppose 〈αd(∗)〉true ∈ x. From Lemma 4.3(ix), we get [α∗]F1 ∈ x. Since (|x|, |y|) ∈
R′

α∗ , by the induction hypothesis we have F1 ∈ y, which leads to a contradiction. Now
suppose 〈αd(∗)〉true 6∈ x. From Lemma 4.3(vi), we get 〈α∗〉[α]false ∈ x. There exists
y0 ∈ U c such that (x, y0) ∈ Rc

α∗ and Rc
α(y0) = ∅. By the induction hypothesis, we deduce

(|x|, |y0|) ∈ R′
α∗ . Since R′

αd(∗)(|x|) 6= ∅, there exists t0 ∈ U c such that (|y0|, |t0|) ∈ R′
α.

Since [α]false ∈ y0 ∩ Γ(F ), by the induction hypothesis it follows that false ∈ t0 which
leads to a contradiction. Q.E.D.

We can now prove the following lemmas.

Lemma 4.7. Let F be a formula. For each state x of U c, G ∈ Γ(F ), MF , |x|Γ(F ) sat G

iff Mc, x sat G.

The standard proof is by the induction with respect to the complexity of G.

Theorem 4.8. (Completeness of PDL(; ;, ||, d(∗))) If F is true in every program model,
then F is a theorem of PDL(; ;, ||, d(∗)).

The standard proof is based on Lemma 4.7.

Theorem 4.9. The logic PDL(; ;, ||, d(∗)) has the finite model property.

Proof: It is sufficient to show the following statement: for every satisfiable formula F ,
there exists a modelM = (U, {Rα}α∈Π,m) with a finite set U of states and there is x ∈ U

such that M, x sat F . Assume G is a satisfiable formula. By Theorem 4.8, there exists
a state x ∈ U c (from the canonical model) such that Mc, x sat G. From Lemma 4.7,
MG, |x|Γ(G) sat G. The set of states of MG has less than 2Card(Γ(G)) elements. Q.E.D.

Since PDL(; ;, ||, d(∗)) has the finite model property and PDL(; ;, ||, d(∗)) has a complete
finite axiomatization, then it is decidable (see Theorem 8.15 in [HC84]).

Corollary 4.10. The logic PDL(; ;, ||, d(∗)) is decidable.

12



���
��

HHH
Hj

?

HH
HHj

��
���

o1 → o2 : ∀R,Ro1 ⊆ Ro2d(∗)

? •

∗

Figure 1: The lattice of demonic iteration operations

Alternative demonic iteration operations The demonic operator d(∗) is defined in
terms of the demonic union and the demonic composition. Two other demonic iteration
operations can be defined:

R•(x) = (||i∈ωRi)(x) R?(x) = (
⋃
i∈ω

Rd(i))(x)

Properties of these two operators are stated in the following lemmas.

Lemma 4.11. Let R be a binary relation on U and x ∈ U . If for all i ∈ ω, Ri(x) 6= ∅
then R•(x) = R∗(x), otherwise R•(x) = ∅.

The iteration operation • is also an ’all or nothing iteration’. However it is different
from d(∗). It can be easily shown that Rd(∗) ⊆ R• but the converse does not always hold.
The iteration operator ? can be characterized as follows.

Lemma 4.12. Let R be a binary relation on U and x ∈ U . If the set Sx = {σ | σ is a finite
maximal R-chain from x} is non-empty -i.e., not x ↑ R-, then R?(x) =

⋃
0≤i≤M−1 Ri(x)

with M = min{|σ| | σ ∈ Sx}, otherwise R?(x) = R∗(x).

The proof of this lemma is similar to the proof of Lemma 2.3. The operation ? is not
an ’all or nothing iteration’. However, it can be easily shown that Rd(∗) ⊆ R?. Figure 1
presents relationships between the different demonic iteration operations. Axiomatisation
of a dynamic logic with the operators ? or • is an open problem.

5 Relational Formalization of PDL(; ;, ||, d(∗))

In sections 5 and 6 we develop a relational formalization of logic PDL(; ;, ||, d(∗)) based
on the method developed in [Or lo90, Or lo91, Or lo92]. The method consists in defining a
relational logic RelPDL(; ;, ||, d(∗)) for PDL(; ;, ||, d(∗)), and next in providing a validity
preserving embedding of PDL(; ;, ||, d(∗)) into RelPDL(; ;, ||, d(∗)). Then the deduction
system of RelPDL(; ;, ||, d(∗)) provides a means of natural deduction for PDL(; ;, ||, d(∗)).

The syntax of RelPDL(; ;, ||, d(∗)) consists of terms and formulae. The language of
RelPDL(; ;, ||, d(∗)) is determined by five sets of symbols which are supposed to be pairwise
disjoint:

(i) a denumerable set VR of relational variables

(ii) a denumerable set VI of individual variables

(iii) the set of relational operators {−,∪,∩, ; , ∗, ||, ; ; , d(∗)} denoting the relational op-
erations of complement, union, intersection, composition, iteration, demonic union,
demonic composition, demonic iteration, respectively.
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(iv) the set Π0 of relational constants denoting atomic programs

(v) the set of relational constants {1, I} denoting the universal relation and the identity
relation, respectively.

The set of terms of RelPDL(; ;, ||, d(∗)) is the smallest set S that satisfies the following
conditions: (i) Π0∪{1, I} ⊆ S, and (ii) if φ is a n-ary relational operator and a1, . . . , an ∈ S

then φ(a1, . . . , an) ∈ S. Formulae of the relational logic are of the form xAy where A is a
term and {x, y} ⊆ VI .

Definition 5.1. A model of RelPDL(; ;, ||, d(∗)) is a system of the form M = (U, {Rα |
α ∈ Π0}, R1, RI ,m) where U is a nonempty set, Rα are binary relations in U and R1, RI

are relations such that

(i) R1 = U × U and RI = {(x, x) | x ∈ U}

m is a meaning function such that

(ii) m(α) = Rα for all α ∈ Π0, m(1) = R1 and m(I) = RI

(iii) if A is a relational variable then m(A) = X × U for some X ⊆ U

(iv) m preserves the relational operations.

∇

Relations of the form X × U are called right ideal relations. Observe that if A,B are
right ideal relations then (i) A; 1 = A, (ii) −A, A ∪B, A ∩B are right ideal relations and
(iii) P ; A is a right ideal relation for any relation P .

By a valuation inM we mean an assignment v : VI → U of states from U to individual
variables. We say that in model M a valuation v satisfies a relational formula xAy

(M, v sat xAy) whenever it holds (v(x), v(y)) ∈ m(A). A formula xAy is true in a model
M iff M, v sat xAy for all valuations v in M. A formula is valid in RelPDL(; ;, ||, d(∗))
iff it is true in all models.

Lemma 5.2. A formula xAy is true in a model M = (U, {Rα | α ∈ Π0}, R1, RI ,m) iff
m(A) = m(1).

Following [Or lo92] we define a translation t of formulae from PDL(; ;, ||, d(∗)) into
formulae of RelPDL(; ;, ||, d(∗)). Let t′ be a bijection from the set φ0 of propositional
variables into set VR of relational variables. Then we define:

t(p) = t′(p) for any propositional variable p, t(true) = 1
t(α) = α for α ∈ Π0

and t is a homomorphism with respect to the Booleans; while for any formula F of PDL(; ;,
||, d(∗)) and program expressions α, β:

t(〈α〉F ) = t(α); t(F )
t([α]F ) = −(t(α);−t(F )).
t(αoβ) = t(α)o(β) for o ∈ {∪, ; , ||, ; ; }
t(αo) = (t(α))o for o ∈ {∗,d(∗) }

In this way, every formula of PDL(; ;, ||, d(∗)) is translated into a term that represents
a right ideal relation. Semantical relationship between logic PDL(; ;, ||, d(∗)) and relational
logic RelPDL(; ;, ||, d(∗)) is provided by the following lemma.
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Lemma 5.3. A formula F of logic PDL(; ;, ||, d(∗)) is valid iff xt(F )y is valid in RelPDL(; ;,
||, d(∗)).

Proof: The proof consists of the following two parts. (I) For every modelM= (U ,(Rα)α∈Π,
m) of PDL(; ;, ||, d(∗)) there is a modelM′ = (U, {R′

α | α ∈ Π0}, R1, RI ,m
′) of RelPDL(; ;,

||, d(∗)) such that for every formula F of PDL(; ;, ||, d(∗))we have (i) M, x sat F iff
(x, z) ∈ m′(t(F )) for all z in U . We define the modelM′ as follows. Its universe coincides
with the universe U of M. If P ∈ VR and P = t′(p) for a propositional variable p, then
we put m′(P ) = m(p)×U . We put m′(1) = U ×U , m′(I) = {(x, x) | x ∈ U}, m′(α) = Rα

for α ∈ Π0 and we extend m′ to all the relational terms according to Definition 5.1 (iv).
Observe that relational variables are interpreted as right ideal relations. It is easy to see
that M′ satisfies conditions 5.1(i). . . (iv). The proof of the required condition (i) is by
induction on the complexity of F .

(II) For every model M′ = (U, {R′
α | α ∈ Π0}, R1, RI ,m

′) of the relational logic
RelPDL(; ;, ||, d(∗)) there is a model M = (U, (Rα)α∈Π,m) of PDL(; ;, ||, d(∗)) such that
condition (i) is satisfied. We define the model M as follows. Its universe coincides with
the universe U of M′. For any propositional variable p we put m(p) = domain of m′(P )
where P = t′(p). By induction on the complexity of a formula F one can show that
condition (i) is satisfied. Q.E.D.

6 A Relational Proof System for RelPDL(; ;, ||, d(∗))

Proof systems for relational logics are Rasiowa-Sikorski style systems [RS63]. They consist
of rules that apply to finite sequences of relational formulae in a top-down manner. There
are the two groups of rules: decomposition rules and specific rules. Decomposition rules
enable us to decompose formulae in a sequence into some simpler formulae (see Figures 2
and 3). Specific rules characterize relational constants from the language. In the figures,
K and H denote finite, possibly empty, sequences of formulae of the relational logic
RelPDL(; ;, ||, d(∗)). A variable is said to be restricted in a rule whenever it does not
appear in any formula of the upper sequence in this rule. The rules of Figure 2 have been
defined in [Or lo92] for the standard propositional dynamic logic PDL.

The specific rules enable us to modify a sequence to which they are applied, they have
a status of structural rules (see Figure 4).

The role of axioms is played by fundamental sequences. A sequence of formulae is said
to be fundamental whenever it contains formulae of the following form.
(F) Fundamental sequences:

(f1) xAy, x−Ay for any relational term A and for any x, y ∈ VI

(f2) x1y for any x, y ∈ VI ; (f3) xIx for any x ∈ VI

A sequence K of relational formulae is true in a model M of the relational logic
RelPDL(; ;, ||, d(∗)) if for every valuation v over M there is a formula in K which is
satisfied by v inM. Sequence K is valid in RelPDL(; ;, ||, d(∗)) iff it is true in all models.
It follows that sequences of formulae are interpreted as (metalevel) disjunction of their
elements. A relational rule of the form K

{Hi:i∈I} is admissible whenever the sequence K is
valid iff for all i ∈ I the sequence Hi is valid.

Lemma 6.1. (i) All the rules in R1 ∪R2 ∪R3 are admissible.

(ii) All the sequences in (F) are valid.
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(∪) K,xA∪By,H
K,xAy,xBy,H (−∪) K,x−(A∪B)y,H

K,x−Ay,H K,x−By,H

(∩) K,xA∩By,H
K,xAy,H K,xBy,H (−∩) K,x−(A∩B)y,H

K,x−Ay,x−By,H

(−−)K,x−−Ay,H
K,xAy,H

(; ) K,xA;By,H
K,xAz,H,xA;By K,zBy,H,xA;By z is a variable

(−; ) K,x−(A;B)y,H
K,x−Az,z−By,H z is a restricted variable.

(∗) K,xA∗y,H
K,xAiy,H,xA∗y

for any natural number i where A0 = I, Ai+1 = A; Ai

(−∗) K,x−A∗y,H
{K,x−Aiy,H}i≥0

Figure 2: (R1) Decomposition rules for the standard relational operations

(||) K,xA||By,H
K,xAz,H,xA||By K,xBt,H,xA||By K,xAy,xBy,H z, t are arbitrary variables

(−||) K,x−(A||B)y,H
K,x−Az,x−Bt,x−Ay,H K,x−Az,x−Bt,x−By,H z, t are restricted variables

(; ; ) K,xA;;By,H
K,x−Az,H,zB;1y K,xAt,H,xA;;By K,tBy,H,xA;;By z is restricted variable and t is an arbi-

trary variable

(−; ; ) K,x−(A;;B)y,H
K,x−Az,z−By,xAu,H,x−(A;;B)y K,x−Az,z−By,u−Bt,H,x−(A;;B)y with z restricted variables

and t, u are arbitrary variables

(d(∗)) K,xAd(∗)y,H
K,xA∗y,H {K,xAd(i);1y,H}i≥0

where Ad(0) = I, Ad(i+1) = A; ; Ad(i)

(−d(∗)) K,x−Ad(∗)y,H
K,x−A∗y,x−(Ad(i);1)y,H,x−Ad(∗)y

for any natural number i

Figure 3: (R2) Decomposition rules for the demonic operations

(I1) K,xAy,H
K,xIz,H,xAy K,zAy,H,xAy z is a variable, A ∈ VR ∪Π0

(I2) K,xAy,H
K,xAz,H,xAy K,zIy,H,xAy z is a variable, A ∈ VR ∪Π0

(SymI) K,xIy,H
K,yIx,H,xIy

(TranI) K,xIy,H
K,xIz,H,xIy K,zIy,H,xIy z is a variable

(ideal) K,xAy,H
K,xAz,H,xAy z is a variable, A ∈ VR

Figure 4: (R3) Specific rules
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Proof: Admissibility of the decomposition rules follows from definitions of the respective
relational operations, and admissibility of the specific rules follows from the properties of
relational constants reflected by those rules [Or lo92]. By way of example, the proof for
the rules (||), (−; ; ) and (d(∗)) is given below.

(||) Assume K, xA||By,H is a valid sequence. It is immediate that the sequences
K, xAz, H, xA||By and K, xBt, H, xA||By are also valid. Now suppose that K, xAy, xBy,
H is not valid. There exists a model M0 = (U, {Rα}α∈Π0 , R1, RI ,m) and a valuation v0

such that for every formula x1A1y1 of K, xAy, xBy, H , notM0, v0 sat x1A1y1. It follows
that (v0(x), v0(y)) 6∈ m(A) ∪m(B). Hence (v0(x), v0(y)) 6∈ m(A||B). It follows that the
sequence K, xA||By,H is not valid which leads to a contradiction.

Now assume that the lower sequences of the rule (||) are valid. Let M be any
model and v a valuation in M. There exists x1A1y1 ∈ K, xAz, H, xA||By, x2A2y2 ∈
K, xBt,H, xA||By and x3A3y3 ∈ K, xAy, xBy, H such that M, v sat x1A1y1, M, v sat
x2A2y2, and M, v sat x3A3y3. If x1A1y1 ∈ K, xA||By,H, or x2A2y2 ∈ K, xA||By,H or
x3A3y3 ∈ K, H then it is immediate that there is a formula x4A4y4 ∈ K, xA||By,H such
that M, v sat x4A4y4. Now assume x1A1y1 = xAz and x2A2y2 = xBt. First, assume
x3A3y3 = xAy. Since (v(x), v(y)) ∈ m(A), (v(x), v(t)) ∈ m(B) and (v(x), v(y)) ∈ m(A) it
follows that (v(x), v(y)) belongs to m(A)||m(B) = m(A||B). HenceM, v sat xA||By. Now
assume x3A3y3 = xBy. Since (v(x), v(y)) ∈ m(A), (v(x), v(t)) ∈ m(B) and (v(x), v(y)) ∈
m(B) it follows that (v(x), v(y)) belongs to m(A)||m(B) = m(A||B). HenceM, v sat xA||By.

(−; ; ) Assume K, x−(A; ; B)y, H is a valid sequence. It is immediate that the sequences
K, x−Az, z −By, xAu, H, x−A; ; By and K, x−Az, z −By, u−Bt,H, x− (A; ; B)y are
also valid.

Now assume that K, x − (A; ; B)y, H is not valid. There exists a model M0 = (U ,
{Rα}α∈Π0 , R1, RI , m) and a valuation v0 such that for all x1A1y1 ∈ K, x−(A; ; B)y, H, not
M0, v0 sat x1A1y1. In particular, (v0(x), v0(y)) ∈ m(A; ; B) = m(A); ; m(B). There exists
z0 ∈ U such that (v0(x), z0) ∈ m(A) and (z0, v0(y)) ∈ m(B). Let v′0 be the valuation such
that v′0(z) = z0 and v′0(w) = v0(w) for all w ∈ VI \{z}. It can be easily shown that neither
M0, v

′
0 sat x−Az norM0, v

′
0 sat z−By. Moreover for all s ∈ U either (v′0(x), s) 6∈ m(A) or

for s′ ∈ U , (s, s′) ∈ m(B). For u ∈ VI , if (v′0(x), v′0(u)) 6∈ m(A) then not M0, v
′
0 sat xAu.

Otherwise for t ∈ VI , (v′0(u), v′0(t)) ∈ m(B) and therefore not M0, v
′
0 sat u−Bt.

(d(∗)) We recall that according to Lemma 2.3(ii) we have (x, y) ∈ Rd(∗) iff (x, y) ∈ R∗

and for all i ∈ ω, (x, y) ∈ Rd(i); 1.
Assume that K, xAd(∗)y, H is a valid sequence. Now suppose that K, xA∗y, H is not

valid. There exists a model M0 = (U, {Rα}α∈Π0 , R1, RI ,m) and a valuation v0 such
that for every formula x1A1y1 of K, xA∗y, H, not M0, v0 sat x1A1y1. It follows that
(v0(x), v0(y)) 6∈ m(A∗). Hence (v0(x), v0(y)) 6∈ m(Ad(∗)). It follows that the sequence
K, xAd(∗)y, H is not valid which leads to a contradiction. Suppose that there exists i ∈ ω

such that K, xAd(i); 1y, H is not valid. There exists a modelM0 = (U, {Rα}α∈Π0 , R1, RI ,m)
and a valuation v0 such that for all x1A1y1 ∈ K, xAd(i); 1y, H, not M0, v0 sat x1A1y1.
In particular it follows that (v0(x), v0(y)) 6∈ m(A)d(i); 1 and therefore (v0(x), v0(y)) 6∈
m(Ad(∗)), which leads to a contradiction.

Now assume that all the lower sequences of the rule (d(∗)) are valid. Let M be
any model and v a valuation in M. There exists x′A′y′ ∈ K, xA∗y, H, and xiAiyi ∈
K, xAd(i); 1y, H for all i ∈ ω such that M, v sat x′A′y′ and for all i ∈ ω, M, v sat xiAiyi.
If x′A′y′ ∈ K, H, or if there exists k ∈ ω such that xkAkyk ∈ K, H then it is im-
mediate that there is a formula x′′A′′y′′ ∈ K, xAd(∗)y, H such that M, v sat x′′A′′y′′.
Now assume x′A′y′ = xA∗y and for all i ∈ ω xiAiyi = xAd(i); 1y. It follows that
(v(x), v(y)) ∈ m(A)∗ and for all i ∈ ω, (v(x), v(y)) ∈ m(A)d(i); 1. By definition of d(∗)
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it follows that M, v sat xAd(∗)y. Q.E.D.

Relational proofs have the form of trees. Given a relational formula xAy, where A

might be a compound relational expression, we successively apply decomposition or specific
rules. In this way we form a tree whose root consists of xAy and whose nodes consist of
finite sequences of relational formulae. We stop applying rules to the formulae in a node
after obtaining a fundamental sequence, or when none of the rules is applicable to the
formulae in this node. A branch of a proof tree is said to be closed whenever it contains a
node with a fundamental sequence of formulae. A tree is closed iff all of its branches are
closed.

Definition 6.2. (Complete branch, Complete tree) Let T be a tree whose root is labeled
by the formula xAy and b a branch of T . The branch b is said to be complete iff either b

is closed or b satisfies the following conditions. In what follows we write G ∈ b whenever
a formula G is a member of a sequence of formulae in a certain node of branch b.

(b1) xAy ∈ b.

(b2) If x(B ∪C)y (x− (B ∩C)y) ∈ b, then both xBy (x−By) ∈ b and xCy (x−Cy) ∈ b

obtained by application of rule (∪) (resp. (−∩)).

(b3) If x− (B ∪C)y (x(B ∩C)y) ∈ b, then either x−By (xBy) ∈ b or x−Cy (xCy) ∈ b

obtained by application of rule (−∪) (resp. (∩)).

(b4) If x(B; C)y ∈ b, then for every z ∈ VI either xBz ∈ b or zCy ∈ b obtained by
application of rule (;).

(b5) If x− (B; C)y ∈ b, then for some z ∈ VI both x− Bz ∈ b and z − Cy ∈ b obtained
by application of rule (−;).

(b6) If x−−By ∈ b, then xBy ∈ b obtained by application of rule (−−).

(b7) If xB∗y ∈ b, then for all i ∈ ω, xBiy ∈ b obtained by application of rule (∗)

(b8) If x−B∗y ∈ b, then for some i ∈ ω, x−Biy ∈ b obtained by application of rule (−∗)

(b9) If xBy ∈ b and B ∈ VR ∪Π0, then for all z ∈ VI either xIz ∈ b or zBy ∈ b obtained
by application of rule (I1)

(b10) If xBy ∈ b and B ∈ VR ∪Π0, then for all z ∈ VI either xBz ∈ b or zIy ∈ b obtained
by application of rule (I2)

(b11) If xIy ∈ b, then yIx ∈ b obtained by application of the rule (SymI)

(b12) If xIy ∈ b, then for all z ∈ VI either xIz ∈ b or zIy ∈ b obtained by application of
rule (TranI)

(b13) If xBy ∈ b and B ∈ VR, then for every z ∈ VI we have xBz ∈ b obtained by
application of rule (ideal)

(b14) If xB||Cy ∈ b, then for all z, t ∈ VI either xBz ∈ b or xCt ∈ b or xBy ∈ b and
xCy ∈ b obtained by application of the rule (||)

(b15) If x − (B||C)y ∈ b, then for some z, t ∈ VI either x − Bz, x − Ct, x − By ∈ b or
x−Bz, x− Ct, x− Cy ∈ b obtained by application of rule (−||)
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(b16) If xB; ; Cy ∈ b, then for all t ∈ VI and for some z ∈ VI either x− Bz, zC; 1y ∈ b or
xBt ∈ b or tCy ∈ b obtained by application of rule (; ; )

(b17) If x − (B; ; C)y ∈ b, then for all t, u ∈ VI and for some z ∈ VI x − Bz, z − Cy ∈ b

and either xBu ∈ b or u− Ct ∈ b obtained by application of rule (−; ;)

(b18) If xBd(∗)y ∈ b, then either xB∗y ∈ b or for some i ∈ ω xBd(i); 1y ∈ b obtained by
application of rule (d(∗))

(b19) If x−Bd(∗)y ∈ b then for all j ∈ ω x− (Bd(j); 1)y ∈ b and x−B∗y ∈ b obtained by
application of rule (−d(∗))

A tree is said to be complete iff all of its branches are complete. ∇

Lemma 6.3. For any finite sequence S of relational formulae there is a complete tree T

such that its root is labeled by the sequence S.

The full technical development of the proof of Lemma 6.3 is quite tedious and is omitted
here. The basic idea is to define a procedure which guarantees that any tree constructed
according to the procedure is such that if the procedure runs infinitely, then every branch
will be complete. The application of the rules is made in a fair way so that it is not the
case that when two rules can be applied in a sequence, one of them is applied infinitely
many times. Furthermore, a particular treatment is provided for the infinitary rules.

Theorem 6.4. (Completeness of RelPDL(; ;, ||, d(∗)))
A relational formula xA′y is valid iff there is a closed proof tree with the root xA′y.

Proof: Observe that there exists a complete tree T such that the root is labeled by
xA′y (Lemma 6.3). Suppose that a complete branch b of T is non-closed. We define the
structureMb = (W b,mb) such that W b = VI and mb(P ) = {(x, y) ∈W b×W b : xPy 6∈ b}
for P ∈ VR∪Π0∪{1, I}. We extend mb in a homomorphic way to all the relational terms.
Observe that:

(i) mb(1) is the universal relation on W b (see (f2)).

(ii) mb(P ) is an ideal relation for any P ∈ VR (see (b13)).

(iii) mb(I) is an equivalence relation on W b (see (f3), (b11), (b12)).

Define the quotient structure M′b = Mb/mb(I) = (W ′b, {R′
α : α ∈ Π0}, R′

1, R
′
I ,m

′)
such that

• W ′b = {|x|mb(I) : x ∈ VI} is the set of equivalence classes of mb(I)

• (|x|mb(I), |y|mb(I)) ∈ R′
α iff (x, y) ∈ mb(α) for α ∈ Π0 ∪ VR ∪ {1, I}

• m′b is defined as in Definition 5.1

Definition of R′
α is correct (does not depend on the choice of elements from the

respective equivalence classes), since due to (b9) and (b10) we have mb(I); mb(α) =
mb(α) = mb(α); mb(I). In M′b the constant I is interpreted as the identity relation
since we have |x|mb(I) = |y|mb(I) iff (x, y) ∈ mb(I) iff (|x|mb(I), |y|mb(I)) ∈ R′

I . We con-
clude that M′b is a model of RelPDL(; ;, ||, d(∗)). Moreover for every term A we have
(|x|mb(I), |y|mb(I)) ∈ m′b(A) iff (x, y) ∈ mb(A). Hence the structures Mb and M′b are
elementary equivalent, and we can treat Mb as a model of RelPDL(; ;, ||, d(∗)).
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Let vb be a valuation in Mb such that vb(x) = x for every individual variable x. We
define a well-founded ordering relation ≺ in the set of relational terms. For each relational
term A we denote by size(A) the number of relational operators occurring in A. We
also write subterm(A) the set of subterms of the relational term A recursively defined as
follows:

• For A1 ∈ VR ∪Π ∪ {I, 1}, subterm(A1) = {A1}

• For ] ∈ {∪, ; , ||, ; ; }, subterm(A1]A2) = {A1]A2} ∪ subterm(A1) ∪ subterm(A2)

• subterm(−A1) = {−A1} ∪ subterm(A1) ; For ] ∈ {∗, d(∗)}, subterm(A]
1) = {A]

1} ∪
subterm(A1)

For any relational term A we define N1(A), N2(A), N3(A) and ∆(A) as follows:

• N1(A) = max{size(A
′d(∗)) | A′d(∗) ∈ subterm(A)}

• N2(A) = max{size(A
′∗) | A′∗ ∈ subterm(A)}

• N3(A) = max{size(A1; ; A2) | A1; ; A2 ∈ subterm(A)}

• ∆(A) = (N1(A), N2(A), size(A), N3(A))

We write <4 to denote the left-right lexicographical order of ω4 that is a well-founded
order. We define for any relational terms A,B, A ≺ B iff ∆(A) <4 ∆(B). It follows
that ≺ is well-founded. As a consequence, there are no terms A,B such that A ≺ B and
B ≺ A, otherwise there would exist an infinite chain A � B � A � B � . . ..

We will show that:

not Mb, vb sat xA′y

For suppose conversely, and let Xb be the set of formulae zBt on b such thatMb, vb sat
zBt. Xb is non-empty since xA′y ∈ Xb. Let C be a term of a minimal order such that
uCw ∈ Xb for some variables u, w. We show that C must belong to VR ∪Π0 ∪ {1, I}.

• Suppose that C is of the form u−Pw with P ∈ VR∪Π0∪{1, I}. SoMb, vb sat u−Pw

and from the definition of mb uPw ∈ b. It follows that there is a node in b such
that both u − Pw and uPw occur among the formulae in this node which is in
contradiction with the fact that b is not closed. Indeed if uPw (resp. u − Pw)
occurs in a sequence of formulae in a node, then all the sequences occurring in the
successors of this node contain uPw (resp. u− Pw) as well.

• Suppose that C is of the form u − (A ∪ B)w. So Mb, vb sat u − (A ∪ B)w and
hence Mb, vb sat u − Aw and Mb, vb sat u − Bw. From (b3) either u − Aw ∈ b or
u−Bw ∈ b. Since −A ≺ −(A ∪B) and −B ≺ −(A ∪B) it leads to a contradiction
with the minimality of C.

• Suppose that C is of the form u − (A||B)w. So Mb, vb sat u − (A||B)w and hence
either for all z′ ∈W b Mb, vb sat u−Az′, or for all z′ ∈W b Mb, vb sat u−Bz′. From
(b15), for some z, t ∈ W b, u − Az, u − Bt ∈ b. In particular Mb, vb sat u − Az, or
Mb, vb sat u−Bt. Hence either u−Az ∈ Xb or u−Bt ∈ Xb. Since −A ≺ −(A||B)
and −B ≺ −(A||B) it leads to a contradiction from the minimality of C.
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• Suppose that C is of the form u− (A; ; B)w. SoMb, vb sat u− (A; ; B)w and either
Mb, vb sat u−(A; B)w (C1), or for some z0 ∈W b Mb, vb sat uAz0 and for all t ∈W b

Mb, vb sat z0−Bt (C2). (C1) is equivalent to for all t′ ∈W b eitherMb, vb sat u−At′

or Mb, vb sat t′ − Bw. From (b17), for all t1, t
′ ∈ W b and for some z1 ∈ VI either

u−Az1, z1 −Bw, uAt′ ∈ b or u−Az1, z1 −Bw, t′ −Bt1 ∈ b .

Suppose (C1) holds. There is z1 ∈ W b such that u − Az1, z1 − Bw ∈ b -(b5)-
and either Mb, vb sat u − Az1 or Mb, vb sat z1 − Bw. Since −A ≺ −(A; ; B) and
−B ≺ −(A; ; B) it leads to a contradiction from the minimality of C.

Now suppose (C2) holds. For t1 ∈ W b, there exists z1 ∈ W b, such that either
u−Az1, z1−Bw, uAz0 ∈ b (C3) or u−Az1, z1−Bw, z0−Bt1 ∈ b (C4) -t′ is instanciated
with z0. Suppose (C3) holds. We have both uAz0 ∈ b and Mb, vb sat uAz0. Since
A ≺ −(A; ; B) it leads to a contradiction from the minimality of C. Now suppose
(C4) holds. We have both z0 − Bt1 ∈ b and Mb, vb sat z0 − Bt1 -from (C2). Since
−B ≺ −(A; ; B) it leads to a contradiction from the minimality of C.

• Suppose that C is of the form u−Ad(∗)w. SoMb, vb sat u−Ad(∗)w and hence either
there is some j ∈ ω such thatMb, vb sat u−(Ad(j); 1)w orMb, vb sat u−A∗w. From
(b19), for all k ∈ ω u−Ad(k); 1w ∈ b and x−A∗y ∈ b. In particular, u−Ad(j); 1w ∈ b.
Since −Ad(j); 1 ≺ −Ad(∗) and −A∗ ≺ −Ad(∗) it leads to a contradiction from the
minimality of C.

• Suppose that C is of the form u(A||B)w. SoMb, vb sat u(A||B)w and for some t1 ∈
W bMb, vb sat uAt1, for some t2 ∈W bMb, vb sat uBt2 and eitherMb, vb sat uAw or
Mb, vb sat uBw. From (b14), for all z, t ∈ VI either uAz ∈ b or uBt ∈ b or uAw ∈ b

and uBw ∈ b. In particular, either uAt1 ∈ b or uBt2 ∈ b. Since A ≺ (A||B) and
B ≺ (A||B) it leads to a contradiction from the minimality of C.

• Suppose C is of the form uAd(∗)w (∈ Xb). So Mb, vb sat uAd(∗)w and hence
Mb, vb sat uA∗w and for all i ∈ ω, Mb, vbsat uAd(i); 1w. As a consequence for
all i ∈ ω there is z0 such that Mb, vbsat uAd(i)z0 and Mb, vbsat z01w. From (b18)
either (a) uA∗w ∈ b or (a′) for some l, uAd(l); 1w ∈ b. When (a′) holds, from (b4)
for every z ∈ VI either (b) uAd(l)z ∈ b or (c) z1w ∈ b. If (a) holds then since
A∗ ≺ Ad(∗) we obtain a contradiction with the minimality of C. If (b) holds, then
since Ad(l) ≺ Ad(∗) we again obtain a contradiction. If (c) holds then branch b would
be closed, a contradiction.

In the remaining cases the proof is similar. It follows that C is of the form uPw with
P ∈ VR ∪ Π ∪ {1, I}. So Mb, vb sat uPw by definition of Xb and not Mb, vb sat uPw by
definition of mb which obviously leads to a contradiction.

A verification of part (←) can be easily obtained from Lemma 6.1. Q.E.D.

Example In Figure 5 we give a relational proof of axiom (D12). The corresponding
relational term is t([α∗]A ⇒ [αd(∗)]A) = − − (α∗;−A) ∪ −(αd(∗);−A). For the sake of
simplicity we denote t(A) by A.

7 Conclusion

A logic of programs PDL(; ;, ||, d(∗)) has been defined admitting demonic operators as
program constructors. These operators are of special interest when nontermination of a
program α is represented by the local nonseriality of the corresponding binary relation Rα.
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x−−(α∗;−A) ∪ −(αd(∗);−A)y
(∪)

x−−(α∗;−A)y, x− (αd(∗);−A)y
(−−)

x(α∗;−A)y, x− (αd(∗);−A)y
(−;) with the restricted variable z1

x(α∗;−A)y, x− αd(∗)z1, z1 −−Ay
(−−)

x(α∗;−A)y, x− αd(∗)z1, z1Ay
(;) with the variable z1

xα∗z1, x− αd(∗)z1, z1Ay z1 −Ay, x− αd(∗)z1, z1Ay
(−d(∗)) with i = 0 closed

xα∗z1, x− α∗z1, x− (I; 1)z1, z1Ay
closed

Figure 5: Relational proof of (D12)

A demonic iteration operator has been included in the language of the logic. It has been
motivated by the following assumption. If a command α in a nondeterministic program
P is executed a nondeterministic number of times and if one of its executions does not
terminate then the whole program does not terminate. Other demonic iteration operators
have been also discussed.

A Hilbert-style proof system has been defined and proved to be complete and sound for
the logic PDL(; ;, ||, d(∗)). Decidability of PDL(; ;, ||, d(∗)) has also been proved using the
filtration construction. In the second part of our work, we have applied the methodology
developed in [Or lo88, Or lo92] in order to define the underlying relational logic for PDL(; ;,
||, d(∗)). A sound and complete Rasiowa-Sikorski proof system has been defined for the
relational logic RelPDL(; ;, ||, d(∗)).

Some open problems are the following:

• To find a complete axiomatization of d(∗) without using ∗

• To find a complete axiomatization of the iteration operators • and ?
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APPENDIX

Proof of Lemma 6.3

The key problem is to find a systematic procedure which will guarantee that any tree
T constructed according to the procedure is such that if the procedure runs infinitely,
every branch will have to be complete. At the initial step of the procedure, the tree T is
composed of a unique node labeled by the sequence S. At each step a rule is applied to a
leaf of T such that the corresponding sequence is not fundamental. At any step the height
of the tree is finite and the number of leaves is finite as well. To each node v of the tree
T we associate a unique sequence of natural numbers, noted σ(v), such that

1. The sequence for the root of T is the empty sequence Λ.

2. If {v0, v1, . . . , vi, . . .} are the children of the node v in T then σ(vj) = σ(v), j.

Considering that VI is denumerable, we shall use the following 1-1 functions:

1. φ : ω → ω∗ (ω∗ is the set of all the finite sequences of natural numbers)

2. φ1 : ω → VI

3. φ2 : ω → VI × VI

These functions enable us to enumerate leaves of T , individual variables and pairs of
individual variables. If all the leaves of T are closed, then the procedure stops. Otherwise,
let N be the smallest natural number such that φ(N) is the sequence that is associated
with a leaf of T that is not closed. Such a leaf is unique and a rule is then applied to
φ(N). The application of the rules is made in a fair way so that it is not the case that
when two rules can be applied in a sequence, one of them is applied infinitely many times.

We build a tree T = (V,R, r) step by step. V is a set of nodes, R is a binary relation
on V and r ∈ V is the root. To guide the application of the rules, with each node v ∈ V
we associate the following information:

• Σ(v): the sequence of formulas occurring in the node v

• σ(v): the sequence of natural numbers which can be seen as the address of v in T

• V ar(v): the set of variables from VI that occur in the formulas that appear in the
nodes between the root and the node v

• Ind(v): the index of the next rule to be applied. To each rule ri corresponds an
index i for i ∈ {1, . . . , 20}.

• L∪(v) (respectively L−∪(v),L∩(v),L−∩(v),L−−(v), L−;(v),L−∗(v),Ld(∗)(v),L−||(v)) is
a finite list (e1, . . . , en) such that each ei is a formula of the form x(A∪B)y (respec-
tively x−(A∪B)y,x(A∩B)y,x−(A∩B)y,x−−Ay, x−(A; B)y,x−A∗y,xAd(∗)y,x−(A ||
B)y).

• L;(v) (respectively Lideal(v),LI1,LI2,L∗(v),L−d(∗)(v),L||(v), L;;(v),L−;;(v)) is a finite
list (e1, . . . , en) such that each ei is a pair (f, j) such that j ∈ ω and f is a formula
of the form x(A; B)y (respectively xAy with A ∈ VR, xAy with A ∈ VR,xAy with
A ∈ VR, xA∗y, x−Ad(∗)y, x(A || B)y, x(A; ; B)y,x− (A; ; B)y).

• LSymI and LTranI are lists of formulas of the form xIy.
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• App(v) is either Nil or a name of the rule that is applied to the node v

The set of all the sets of the form Lε(v) is denoted by L(v) where

ε ∈ {−∪,−∩,−−,−; ,−∗, d(∗),− ||, ideal, ∗,−d(∗), ||, ; ; ,−; ; , I1, I2, SymI, TranI}

Let S be a sequence of formulas of the following form: x1t1y1, . . . , xKtKyK . The function
build−complete−tree builds a complete tree (it may run infinitely) for the initial sequence
S. For a list l = (a1, . . . , an) we denote by cdr(l) the sublist (a2, . . . , an) (if n = 0 then it
is the empty list Nil). Moreover, we denote by queue(l, an+1) the list (a1, . . . , an, an+1).
According to the standard notation, car(l) = a1. The figures 6 and 7 contain auxiliary
functions.

Function Update (L′, (xty))
input: L′: set of lists, xty: formula
output: L the updated set of lists %

Begin
L← copy(L′);
If t has the form A ∪B Then L∪ ← queue(L∪, x t y) endIf;
If t has the form −(A ∪B) Then L−∪ ← queue(L−∪, x t y) endIf;
If t has the form A ∩B Then L∩ ← queue(L∩, x t y) endIf;
If t has the form −(A ∩B) Then L−∩ ← queue(L−∩, x t y) endIf;
If t has the form −−A Then L−− ← queue(L−−, x t y) endIf;
If t has the form −(A; B) Then L−; ← queue(L−;, x t y) endIf;
If t has the form −A∗ Then L−∗ ← queue(L−∗, x t y) endIf;
If t has the form Ad(∗) Then Ld(∗) ← queue(Ld(∗), x t y) endIf;
If t has the form −A || B Then L−|| ← queue(L−||, x t y) endIf;
If t has the form A; B Then L; ← queue(L;, ((x t y), 0)) endIf;
If t ∈ VR Then
Lideal ← queue(Lideal, ((x t y), 0)) ; LI1 ← queue(LI1, ((x t y), 0)) ;
LI2 ← queue(LI2, ((x t y), 0)) ; endIf;
If t has the form A∗ Then L∗ ← queue(L∗, ((x t y), 0) endIf;
If t has the form −Ad(∗) Then L−d(∗) ← queue(L−d(∗), ((x t y), 0) endIf;
If t has the form A || B Then L|| ← queue(L||, ((x t y), 0)) endIf;
If t has the form (A; ; B) Then L;; ← queue(L;;, ((x t y), 0)) endIf;
If t has the form −(A; ; B) Then L−;; ← queue(L−;;, ((x t y), 0)) endIf;
If t = I Then LTranI ← queue(LTranI , xIy); LSymI ← queue(LSymI , xIy) EndIf;
Return (L)

End

Figure 6: Procedure Update

Function build− complete− tree (S)
input: S: a formula sequence
output: T a tree %

Begin
Generate a new node r; T ← ({r}, ∅, r); L← {r}; Σ(r)← S; σ(r)← Λ; V ar(r)← {x1, y1, . . . , xK , yK};
Ind(v)← 1;
All the Lε(r) are initialized to Nil; Auxi← 1;
While (Auxi < K)
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Do L(r)← Update(L(r), xAuxitAuxiyAuxi); Auxi← Auxi + 1
Done
While [L 6= ∅ Or ∃v ∈ V, App(v) ∈ {(d(∗)), (−(∗))}]
Do N1 ← {(n, v) | ∃v ∈ L, σ(v) = φ(n), n ∈ ω}; N2 ← {(n, v) | v ∈ V, Condition1(T, v, n)};

(N,V ) is defined as follows, N = min({n | (n, v) ∈ N1 ∪N2}) and (N,V ) ∈ (N1 ∪N2);
% Rules without the introduction of variables
For ε In {(∪), (¬∪), (∩), (¬∪), (−−), (SymI)} Do If rInd(V ) = ε And Lε(V ) 6= Nil Then

Children← 1;
For Each sequence S′ generated by applying ε on Σ(V ) with car(Lε(V ))
Do Generate a new node: W ;
V ← V ∪ {W}; R ← R∪ {(V,W )}; Σ(W ) = S′;
σ(W )← σ(V ), Children; Children← Children + 1 ;
L(W )← L(V ); V ar(W )← V ar(V ); Lε(W )← cdr(Lε(W ));
For Each x′A′y′ ∈ S′ and x′A′y′ 6∈ Σ(V )
Do L(W )← Update(L(W ), x′A′y′);
Done
App(W )← ∅; App(V )← ε; Ind(W )← 1 + Ind(V ) mod 20;
If S′ is not fundamental Then L← L ∪ {W} EndIf;

Done
L← (L \ {V });

Done
% Rules with the introduction of a unique arbitrary variable
If rInd(V ) = (ideal) And Lideal(V ) 6= Nil
Then F ← car(car(Lideal(V ))) ; z ← φ1(car(cdr(car(Lideal(V )))));

(F is of the form xAy with A ∈ VR)
Let S′ be the sequence generated from Σ(V ) by applying (ideal) with F and z;
Generate a new node: W ;
V ← V ∪ {W}; R ← R∪ {(V,W )}; Σ(W ) = S′; σ(W )← σ(V ), φ−1

1 (z);
L(W )← L(V ); V ar(W )← V ar(V ) ∪ {z};
Lideal(W )← queue(cdr(Lideal(W )), (F, φ−1

1 (z) + 1)); L(W )← Update(L(W ), xAz);
App(W )← ∅; App(V )← (ideal); Ind(W )← 1 + Ind(V ) mod 20;
If S′ is not fundamental Then L← L ∪ {W} EndIf;
L← (L \ {V });

Endif

The cases for (; ), (∗), (I1), (I2), (TranI) and (−d(∗)) are very similar to the previous one.
In particular with (; ) two new nodes are introduced.
With (∗) and (−d(∗)), the index are related to the number of (possibly demonic) compositions.

% Rule with the introduction of a unique restricted variable
If rInd(V ) = (−; ) And L−;(V ) 6= Nil
Then F ← car(Lideal(V )); z ← φ1(min({k′ | φ1(k′) 6∈ V ar(V )}));

Let S′ be the sequence generated from Σ(V ) by applying (−; ) with the formula F and the variable z;
Generate a new node: W ; V ← V ∪ {W}; R ← R∪ {(V,W )}; Σ(W ) = S′;
σ(W )← σ(V ), 1; L(W )← L(V ); V ar(W )← V ar(V ) ∪ {z};
L−;(W )← cdr(L−;(W ));
For Each x′A′y′ ∈ S′ and x′A′y′ 6∈ Σ(V )
Do L(W )← Update(L(W ), x′A′y′);
Done
App(W )← ∅; App(V )← (−; ); Ind(W )← 1 + Ind(V ) mod 20;
If S′ is not fundamental Then L← L ∪ {W} EndIf;
L← (L \ {V });

Endif
% Rule with the introduction of 2 arbitrary variables
If rInd(V ) = (||) And L||(V ) 6= Nil
Then F ← (car(L||(V ))) ; (z, t)← φ2(car(cdr(car(L||(V )))));

Children← 1;
For Each sequence S′ generated by applying (||) with F , z and t
Do Generate a new node: W ;
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V ← V ∪ {W}; R ← R∪ {(V,W )}; Σ(W ) = S′;
σ(W )← σ(V ), Children; Children = Children + 1 ;
L(W )← L(V ); V ar(W )← V ar(V ) ∪ {z, t};
If F is not reintroduced in the sequence S′

Then L||(W )← cdr(L||(W ))
Else L||(W )← queue(cdr(L||(W )), (F, φ−1

2 (z, t) + 1))
Endif
For Each x′A′y′ ∈ S′ and x′A′y′ 6∈ Σ(V )
Do L(W )← Update(L(W ), x′A′y′);
Done
App(W )← ∅; App(V )← (||); Ind(W )← 1 + Ind(V ) mod 20;
If S′ is not fundamental Then L← L ∪ {W} EndIf;

Done
L← L \ {V };

Endif
% Rule with the introduction of 2 restricted variables
If rInd(V ) = (− ||) And L−||(V ) 6= Nil
Then F ← (car(L−||(V ))) ;

z ← φ1(min({k′ | φ1(k′) 6∈ V ar(V )})); t← φ1(min({k′ | φ1(k′) 6∈ V ar(V ) and k′ > φ−1
1 (z)}));

Children← 1;
For Each sequence S′ generated by applying (− ||) with F , z and t
Do Generate a new node: W ;
V ← V ∪ {W}; R ← R∪ {(V,W )}; Σ(W ) = S′;
σ(W )← σ(V ), Children; Children = Children + 1 ;
L(W )← L(V ); V ar(W )← V ar(V ) ∪ {z, t}; L−||(W )← queue(cdr(L−||(W )), F );
For Each x′A′y′ ∈ S′ and x′A′y′ 6∈ Σ(V )
Do L(W )← Update(L(W ), x′A′y′);
Done
App(W )← ∅; App(V )← (− ||); Ind(W )← 1 + Ind(V ) mod 20;
If S′ is not fundamental Then L← L ∪ {W} EndIf;

Done
L← L \ {V };

Endif
% Rule with the introduction of one arbitrary variable and one restricted variable
If rInd(V ) = (; ; ) And L;;(V ) 6= Nil
Then F ← car(car(L||(V ))) ;

t← φ1(car(cdr(car(L;;(V ))))); z ← φ1(min({k′ | φ1(k′) 6∈ V ar(V ), k′ > φ−1
1 (t)})); Children← 1;

For Each S′ generated by applying (; ; ) with F , z and t
Do Generate a new node: W ;
V ← V ∪ {W}; R ← R∪ {(V,W )}; Σ(W ) = S′;
σ(W )← σ(V ), Children; Children = Children + 1 ;
L(W )← L(V ); V ar(W )← V ar(V ) ∪ {z, t};
L;;(W )← queue(cdr(L;;(W )), (F, φ−1

1 (t) + 1));
For Each x′A′y′ ∈ S′ and x′A′y′ 6∈ Σ(V )
Do L(W )← Update(L(W ), x′A′y′);
Done
App(W )← ∅; App(V )← (; ; ); Ind(W )← 1 + Ind(V ) mod 20;
If S′ is not fundamental Then L← L ∪ {W} EndIf;

Done
L← L \ {V };

Endif
% Rule with the introduction of one restricted variable and two arbitrary variables
If rInd(V ) = (−; ; ) And L−;;(V ) 6= Nil
Then F ← car(car(L−;;(V ))) ;

(t, u)← φ2(car(cdr(car(L;;(V ))))); z ← φ1(min({k′ | φ1(k′) 6∈ V ar(V ), k′ > φ−1
2 ((t, u))}));

Children← 1;
For Each sequence S′ generated by applying (−; ; ) with F , z, u and t
Do Generate a new node: W ;
V ← V ∪ {W}; R ← R∪ {(V,W )}; Σ(W ) = S′;
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σ(W )← σ(V ), Children; Children← Children + 1 ;
L(W )← L(V ); V ar(W )← V ar(V ) ∪ {z, t, u};
L−;;(W )← queue(cdr(L−;;(W )), (F, φ−1

2 ((t, u)) + 1));
For Each x′A′y′ ∈ S′ and x′A′y′ 6∈ Σ(V )
Do L(W )← Update(L(W ), x′A′y′);
Done
App(W )← ∅; App− rule(V )← (−; ; ); Ind(W )← 1 + Ind(V ) mod 20;
If S′ is not fundamental Then L← L ∪ {W} EndIf;

Done
L← L \ {V };

Endif
% Infinitary rules
If rInd(V ) = (d(∗)) And Ld(∗)(V ) 6= Nil And (N,V ) ∈ N1

Then F ← car(Ld(∗)(V ))) (F is of the form xAd(∗)y and Σ(V ) of the form K, F, H);
Generate a new node: W ;
V ← V ∪ {W}; R ← R∪ {(V,W )}; Σ(W )← K, xA∗y, H;
σ(W )← σ(V ), 0; L(W )← L(V ); V ar(W )← V ar(V );
Ld(∗)(W )← cdr(Ld(∗)(W )); L(W )← Update(L(W ), xA∗y);
App(W )← ∅; App(V )← (d(∗)); Ind(W )← 1 + Ind(V ) mod 20;
If S′ is not fundamental Then L← L ∪ {W} EndIf;
L← L \ {V }

Endif

If rInd(V ) = (−∗) And L−∗(V ) 6= Nil And (N,V ) ∈ N1

Then F ← car(L−∗(V ))) (F is of the form x−A∗y and Σ(V ) of the form K, F,H);
Generate a new node: W ;
V ← V ∪ {W}; R ← R∪ {(V,W )}; Σ(W ) = K, x− Iy, H;
σ(W )← σ(V ), 0; L(W )← L(V ); V ar(W )← V ar(V );
L−∗(W )← cdr(L−∗(W )); L(W )← Update(L(W ), x− Iy);
App(W )← ∅; App(V )← (−∗); Ind(W )← 1 + Ind(V ) mod 20;
If S′ is not fundamental Then L← L ∪ {W} EndIf;
L← L \ {V }

Endif

If rInd(V ) = (d(∗)) And (N,V ) ∈ N2

Then F ← car(Ld(∗)(V ))) (F is of the form xAd(∗)y and Σ(V ) of the form K, F,H);
Let α be the natural number such that σ(V ), α = N ;
Generate a new node: W ;
V ← V ∪ {W}; R ← R∪ {(V,W )}; Σ(W ) = K, xAd(α−1); 1y, H;
σ(W )← σ(V ), α; L(W )← L(V ); V ar(W )← V ar(V ); Ld(∗)(W )← cdr(Ld(∗)(W ));
L(W )← Update(L(W ), XAd(α−1); 1Y ); App(W )← ∅; Ind(W )← 1 + Ind(V ) mod 20;
If S′ is not fundamental Then L← L ∪ {W} EndIf;

Endif

If rInd(V ) = (−∗) And (N,V ) ∈ N2

Then F ← car(L−∗(V ))) (F is of the form xA−∗y and Σ(V ) of the form K, F, H);
Let α be the natural number such that σ(V ), α = N ;
Generate a new node: W ;
V ← V ∪ {W}; R ← R∪ {(V,W )}; Σ(W ) = K, x−Aαy, H;
σ(W )← σ(V ), α; L(W )← L(V ); V ar(W )← V ar(V );
L−∗(W )← cdr(L−∗(W )); L(W )← Update(L(W ), x −Aα y);
App(W )← ∅; Ind(W )← 1 + Ind(V ) mod 20;
If S′ is not fundamental Then L← L ∪ {W} EndIf;

Endif
If the rule rInd(V ) cannot be applied to Σ(V )
Then Ind(V )← 1 + Ind(V ) mod 20
Endif

Done
Return (T)
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End

Let T be a tree obtained after a finite number of steps. Let n be a non-fundamental
leaf of T on the branch b. The following facts can be easily shown:

(i) After at most φ−1(σ(n)) steps a rule shall be applied on n.

(ii) If the sequence S′ can be inserted on the branch b, then after a finite number of
steps, S′ shall be inserted on b unless the branch b has been closed.

To prove (i) observe that N ≤ φ−1(σ(n)). If N = φ−1(σ(n)) then (i) is proved. Otherwise
after each step the set {i | φ(i) is a non closed leaf and i ≥ φ−1(σ(n))} strictly decreases
until {i | φ(i) is a non closed leaf and i ≥ φ−1(σ(n))} = {φ−1(σ(n))}. Indeed, when a
rule is applied to a non-fundamental leaf n, then n is not anymore a leaf (see also the
particular treatment of the infinitary rules). The proof of (ii) is by an easy verification
knowing that the rules are applied in a fair way. This terminates the proof.
Q.E.D.

Function Condition1 (T, v, n)
input: T : tree, v:node, n:natural number
output: true or False %

Begin
If App(v) 6∈ {(d(∗), (−∗)} Then Return (False) endIf;
If there is no α ∈ ω such that φ(n) = σ(v), α Then Return (False) endIf;
If there is no β ∈ ω and v′ ∈ V such that σ(v), β = σ(v′) Then Return (False) endIf;
If {w | φ(n) = σ(w), w ∈ V} 6= ∅ Then Return (False) EndIf;
Return (True)

End

Figure 7: Procedure related to the application of infinitary rules
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