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Abstract

Adapting fishing regulations in a highly uncertain environment remains a complex challenge for
managers who have to deal with non-linear dynamics of fish population and harvest levels. In
this research, a recent method of stochastic control is adapted to a general fishery management
problem under multiples sources of uncertainty related to the dynamics of the fish population
and the effect of fishing on its growth. The question is about adjusting permanently the man-
agement rule or to hold a fixed policy thus avoiding additional noise. The mathematical problem
developed here, though oversimplified, represents an original approach to the fishery manage-
ment issue inspired by the monetary policy challenge of a central bank (Brainard principle).
It assumes that Control Variation Increases the level of Uncertainty (namely CVIU approach)
under particular conditions, resulting in preferable inaction regions for managers. We specify
these conditions to show that the management of a poorly known fishery is still possible by using
a CVIU approach.
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1. Introduction

Research in fisheries management has a long tradition of applying operational research meth-
ods to address optimal control issues through deterministic or stochastic dynamic programming
approaches. Several reviews in the past such as Lane (1989); Rodrigues (1990); Bjørndal et al.
(2004); Arnason (2009) mention methods that are developed in descriptive mathematical mod-
elling, mathematical programming and optimisation, statistical analysis and estimation pro-
cedure, numerical simulation, decision (and game) theory (Lane, 1989). Operations research
is deemed very relevant to find optimal pathways and levels for investment, search and vessel
movements, target stocks, fishing effort in a very uncertain decisional context (Reed, 1979; Sethi
et al., 2005). However, beyond the mere identification of optimal management objectives, a lack
of operational research dealing with the design of the fisheries management, enforcement and
judicial systems has been pointed out (Arnason, 2009).

The overexploitation of common renewable resources like fisheries may turn to a situation
where it becomes optimal to overfish a natural stock to extinction (Clark, 1973). Such cases
occur when the pace of biomass growth is too slow, property rights are not well defined, fishing
costs are too small or hidden by subsidies, discount rates and fish prices are too high, and
technical change make exploitation still profitable at low levels of biomass (Munro and Sumaila
(2002), Grafton et al. (2010), Collette et al. (2011), Squires and Vestergaard (2013)).

As a political response to overexploitation, conservation measures encompassing the choice
of a target stock size and a harvest time path to improve or stabilize it have been developed
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(Anderson and Seijo (2010)). For Arnason (2009) fishery management is technically demanding
and such measures can be very complex to implement. As noticed by Bjørndal et al. (2004),
one of the reasons is that the task of modelling stock population dynamics is at the heart of
fisheries management, which implies dealing with complex and unpredictable dynamics. Given
the degree of uncertainty surrounding models, the situation of a fishery may even worsen if
the target of sustainable yield is overestimated by scientists or set above the advised level for
political or short-sighted economic reasons (Borges (2018), Wiedenmann and Jensen (2018)).

Sources of uncertainty in the management of renewable resources are multiple. Several
surveys and classifications of uncertainty are proposed by authors (Francis and Shotton (1997),
Charles (1998), Regan et al. (2002), Hill et al. (2007)). Uncertainty in fisheries may come
from random fluctuations influenced by environmental variability, wrong parameter estimates
leading to stock assessment errors, and structural uncertainty stemming from a lack of knowledge
about the nature of the fishery system and an inaccurate implementation of harvest quotas
(Reed (1979), Clark and Kirkwood (1986), Roughgarden and Smith (1996), Charles (1998),
Hill et al. (2007)). These distinct sources of uncertainty may have different implications for
managers. If environmental variability is unpredictable because of a random multiplicative
shock disturbing the growth but the stock is correctly assessed every period, then managers can
choose a constant optimal escapement rule avoiding stock exhaustion (Reed, 1979). However,
constant escapement is no longer possible when managers do not know accurately what the stock
is in the current period (Clark and Kirkwood, 1986). As a result, the optimal management policy
can be significantly different, justifying less cautious strategies and even extinction in some rare
cases (Sethi et al., 2005). By introducing stochastic behaviors of fishers when choosing their
catch levels on the basis of managers decision, the outcome becomes even more unpredictable
and analytical solutions can hardly be discovered (Roughgarden and Smith, 1996).

Regarding specifically the fishing or natural resource management problems, there are few
stochastic models, since most of the papers deal with deterministic simple models. We can
nonetheless cite a number of works such as (Williams, 2009) that applies Stochastic Dynamic
Programming (SDP) to solve sequential optimization problems. The model, built as Markov
chain process, suggests several future uncertain states of the spawning stock biomass as a func-
tion of an initial state and decision model such as a TAC. It allows an optimal management
strategy with respect to different possible states of the stock. Several other studies have relied
on SDP to look at various sources of uncertainty, including the natural variability of stocks
or market price changes (Sethi et al., 2005), and other authors applied SDP in more complex
contexts such as straddling stocks by integrating stochastic processes (Kulmala et al., 2008;
Kompas et al., 2010). A stochastic continuous time model that deals with the fishery problem
is studied in (Yoshioka, 2019), driven by a Poisson jump process. Because of their complexities,
most applications to fisheries are numerical and based on a deterministic framework (Marescot
et al., 2013).

Uncertainty is likely to increase by considering the marine ecosystems and their dynamics.
Beyond the errors of parameter estimates, the uncertainty about model structures has been
poorly regarded by scientists. All ecosystem dynamics models simplify the structure of the food
web, the nature of ecological interactions, and the demographic structure of populations (Hill
et al., 2007), making predictions highly risky. Such a complexity has resulted in the development
of new management policies called adaptive (or experimental) management, robust management,
or balanced harvest, sometimes advocating opposite measures to what had been advised so far
by scientists to managers, such as increasing selectivity (Levin and Lubchenco (2008), Garcia
et al. (2012)). In this ecosystem approach of fisheries, what matters most is the conservation
of ecosystem structure and functioning in order to maintain ecosystem services and marine
biodiversity. By broadening the range of sizes and species being caught in fisheries, the balanced
harvest policy would provide economic benefits derived from food security, higher productivity
of the ecosystem and greater resilience to climate change (Charles et al., 2015). It has even been
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reported for some African lake fisheries that no management at all could bring better outcomes
than a strictly selective management, by conserving the structure of the ecosystem (Jul-Larsen
et al., 2003). This option is challenged by other authors who consider that balanced harvesting
should not mean a laissez-faire approach and the rejection of selective management, but rather
upscale selectivity to the integrated ecosystem level (Garcia et al. (2012), Reid et al. (2016)).

Questions about the timely type of management is more than ever on top of the research
agenda, because management decisions may directly influence the level of uncertainty surround-
ing the fishery. Taking this debate to the extreme, uncertainty can lead to two opposite options
for managers: doing nothing (or keeping the rule unchanged whatever the circumstances), well
known in the monetary economic literature as the Brainard principle (Brainard, 1967), or acting
as vividly and often as possible to adapt decisions to the best existing knowledge of biomass,
effort and harvest targets. The second strategy can be the optimal one in case of necessary
learning process (Kling et al., 2017) but both solutions can also be deemed sub-optimal or un-
satisfying solutions on both biological and economic grounds if the biomass dynamics is affected
by inappropriate management decisions.

Indeed, social and natural systems may respond to management options in multiple unex-
pected ways. Despite its influence, the human behavior is much less studied than any other
source of uncertainty (Fulton et al., 2011). However, investment decisions in fisheries, like in
other economic activities, must rely on a certain amount of stability depending on the state of
the resource stock, the total allowable catch (TAC) decided by managers, the fishers individual
catch share, etc. Fishers behavior can become erratic if their regulated access to resources varies
from period to period because of adaptive management. Within the framework of the Common
Fisheries Policy, TACs and quotas for most stocks are set annually in December by the Council
of fisheries ministers, creating an uncertain climate for European fishers whose short and mid-
term business depends on such decisions. Most producers organizations claim for multi-annual
quotas to secure their own activity, rather than operating in a context of incomplete information
(Dwyer and Minnegal, 2006).

Natural systems are also profoundly affected by fishing (Glaser et al., 2014). Engwerda
(Engwerda, 2017) analyzed the level of activities of fishers in an uncertain world where fishers
may take care —or not— of a biomass stabilization constraint. As usual in robust control models,
the growth of fish stocks (e.g. the state variable) depends on some aggregate uncertain factors
(water quality, weather, etc.). This disturbance is somehow independent from any stock level or
any amount of fishing effort. However, the way fish is caught may easily put stock growth onto
non-linear dynamics (Anderson et al. (2008), Glaser et al. (2014), Gray (2016)). As reported
by FAO (2003), fishing impacts natural stocks by reducing population abundance, its spawning
capacity and, potentially, the population growth parameters (growth, fecundity, etc.) (Rochet,
1998). Fishing modifies the age and size structure, sex ratio, genetics and species composition
of the targeted renewable resources, as well as their associated and dependent species (Jennings
and Kaiser, 1998). For example, bottom trawling is a fishing method that drags a large net
across the seafloor, destroying some essential habitats for marine fauna (Lindholm et al., 1999).
Large amounts of bycatch are unintentionally caught and thrown overboard dead or dying,
changing the community structure and trophic interactions (Jennings and Kaiser, 1998). All
these negative externalities can obviously reduce the carrying capacity of the whole ecosystem.

Anderson et al. (2008) studied larval fish records over fifty years in California and showed
that the intrinsic growth rate of the population had increased because of fishing, amplifying the
non-linear dynamics of the biomass. This evidence may appear counter-intuitive because the
truncation of the stock across the age structure cuts down the number of highly productive big
old fat fecond female fish (BOFFFFs) (Hixon et al., 2014), and therefore should reduce pop-
ulation growth. However, this truncation produces other interesting dynamic effects. Higher
survival rates of offspring individuals compensate their shorter life history traits. Fewer com-
petitors for food and cannibalism enhance the somatic growth and the per-capita fecundity of
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the population, therefore increasing the intrinsic growth rate which amplifies the stock fluctu-
ations. It is well known that unstable dynamics may result from increased values of intrinsic
growth rates, but fairly high values of this rate are required for a single species stock. However,
a truncated age-size structure of a population interacting with other related species can create
unpredictable variability with only a small increase of the growth rate parameter (Anderson
et al., 2008). The resulting non-linear dynamics urges the need for a precautionary approach of
fishery management.

In this article, we assume that the level of uncertainty is directly linked, and somehow
proportional, to the evolution of the gap between the current fish stock and a desired one, which
can be a biological optimized stock such as the maximum sustainable yield (MSY). Moving away
from the desired level creates more uncertainty, thus affecting the growth function parameters
and the biomass dynamics. We also assume that catch levels influence the amount of uncertainty,
either because the ecosystem and the carrying capacity are modified (Jennings and Kaiser,
1998), or because it endogenously changes the intrinsic growth rate (Anderson et al., 2008).
As recommended by FAO (2017), it becomes urgent to move away before being trapped in a
situation where only extreme strategies are possible (stock exhaustion, area closure, fishing ban).

The central issue of the present research can be summarised as follows: what are the condi-
tions under which changing the management rules creates more uncertainty and unpredictable
outcomes than addressing the overexploitation problem in a context of poor knowledge about
fish stocks, harvest levels and population dynamics? We expect situations where taking no other
action than sticking to the long-term management rule (e.g. a fixed Total Allowable Cach) is
more appropriate for both natural and social systems than adjusting permanently the amount of
authorized catches on the basis of new but inconsistent knowledge. To approach these aspects,
we apply a recent control theory framework where Control and State Variations Increase the
level of Uncertainty (CVIU) due to a lack of a trustful model. Namely, the CVIU approach
allows better understanding of resource management in a context of poorly known dynamics,
cf. Calmon et al. (2009a),Calmon et al. (2009b), do Val and Souto (2017)). As stated by Powell
(2018), the quality of a policy depends on the quality of the underlying model, and in this
regards, we believe that the stochastic optimization model developed here might improve the
relevance of management policies.

The paper is organized as follows. Section 2 presents the bioeconomic model and how
uncertainty impacts the model. Section 3 presents the CVIU optimization problem. Section 4
provides the CVIU solutions and shows the existence of an Inaction Region. Section 5 discusses
the characteristics of the inaction region in the bioeconomic model, and presents numerical
simulations. It explores the impact of state uncertainty (e.g. surrounding the dynamics of
biomass) and the discount factor as key elements of the rising of an inaction region. Control
uncertainty (e.g. the impact of the TAC policy) sets the location of the inaction region around
the desired state level. Section 6 provides some concluding remarks and policy implications.

2. Bio-Economics of the fisheries and the CVIU approach

2.1. Economic considerations

The fish population {z(t)}t≥0, is harvested at any time t under a controlled rate {h(t)}t≥0,
and in this model the fishers will always harvest at their technological capacity and according
to the level set by the Total Allowable Catch (TAC) instrument,

h(t) = TAC(t) = he + u(t) (1)

meaning that fishers cannot catch more than the TAC at time t, but they will try to catch
no less. The TAC is split into two components: a fixed element, he, and a flexible element,
u(t). Consequently, u(t) acts as the incremental, u(t) > 0, or reduced, u(t) < 0, amount
of allowed catches around the fixed TAC. Such a variable allows the policymaker to adjust
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whenever necessary the TAC level at each period t, in order to align increasing profits of fishers
and enhancing the biomass level, given the uncertainty involved.

Let us assume that fishers are identical and small (e.g. price takers). Let also assume that,
at the industrial level, the individual total costs and revenues of fishers can be summed up to
give the following overall profit function for the fishing sector:

π(h(t)) = ph(t)− ch(t)2 (2)

under a constant market price p, the quadratic cost with c > 0 expresses the decreasing returns
to scale. With no dynamic considerations, maximization of the profit function in (2) leads to
the static optimal solution h∗(t) = p/2c. Using the decomposition in (1), the profit as a function
of the managers flexible instrument, u(t) is:

π(he, u(t)) = (phe − ch2
e) +

(
(p− 2che)u(t)− cu(t)2

)
≡ π + π(u(t))) (3)

This instantaneous profit is made up with two corresponding components: a maximum fixed
value, π = phe − ch2

e depending on the fixed component of the TAC value, and a maximum
variable value, π(u(t)), relying on the amount by which the policymaker restricts (u(t) < 0) or
increases (u(t) > 0) catches below or over, the fixed component of the TAC at time t. Note from
(3) that p− 2che > 0 necessarily to yield profit.

Let us assume that the government wishes to minimize the following expected cost function
(in the case of constant price) by setting an optimal sequence {u(t)}, t ≥ 0,

E
[∫ T

0
e−αt

(
−π(he, u(t)) + x(t)2 + qx(t)

)
dt
]

(4)

where α a discount rate and x(t) is the gap value between a desired biomass level, as aimed in the
choice of the nominal TAC value he having considered a corresponding population equilibrium,
see (6) below for more details.

Given (3), one can rewrite this minimization problem in a standard linear quadratic setting
such as:

J(s, x, u(·)) = Ex
[∫ ∞

s
e−αt

(
Qx(t)2 + qx(t) +Ru(t)2 + ru(t)−K

)
dt

]
, (5)

with Q = 1, r = −(p− 2che), R = c > 0, K = π > 0. The term qx(t) added to (4)–(5) produces
one of the two impacts. If q < 0, it means that when a biomass is over the desired level, it can
provide a small reward by itself. On the contrary, if q > 0, a biomass over the desired level is
seen as a cost.

By defining {u(t)}t≥0 it is possible to offset (if u(t) 6= 0) on the agreed nominal harvesting
rate he. In other words, the manager has to trade off between maximizing a profit level and
keeping x(t) closed to zero, i.e. keeping the biomass level at its desired level.

2.2. Biological considerations

The fishery manager wishes to control, via authorized harvesting, the dynamics of stocks
for some species of economic interest, striving to avoid depletion or even exhaustion of the
population. Assume that the population follows a natural growth behavior subject to small
fluctuations on its growth rate, that could be well represented by additive noise with variable
intensity. However, due of the complexity of ecosystems, the actual parameters defining the
growth curve are not known, and only approximated estimates of the parameters can be used.
This assumption is quite realistic since these values are highly influenced by the fluctuations of
the environment as discussed in Section 1. Such a large degree of uncertainty should be taken
into account, specially the impact on the intensity of the control and on the evolution of the
state, both having to be properly accounted in the model.
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Typically, the growth of the biomass is expressed as a function of the biomass itself, z(t),
and as a function of the aggregated catch level, h(t), to model the population dynamics. Among
the potential growth function candidates, the logistic function is frequently used by fisheries
economists. This logistic function will lead to an inverted U-shaped curve at a given level of
biomass or effort. It is well known that the maximum sustainable yield (MSY) is reached when
the growth (e.g. the productivity of the biomass) is at its maximum. It is also well known that
the biological equilibrium may not correspond to an optimal economic solution when taking
into consideration other parameters such as prices, costs, technological change, discount rate,
and the access regime to resources (Grafton et al., 2010), (Collette et al., 2011), (Squires and
Vestergaard, 2013).

Interestingly, even in the simplest scenario, both parameters of the logistic curve, the carrying
capacity and the intrinsic growth rate r, may not be perfectly known.

At least four sources of uncertainty can be defined as a function of some noise-error ε.
Firstly, the policymaker may not know what is the exact current biomass, z(t) + εx. Secondly,
the intrinsic growth rate can be either underestimated or overestimated, r + εr. Thirdly, one
may ignore the accurate carrying capacity, K+εK . Finally, the specified TAC policy may not be
strict in force, TAC(t) = he +u(t) + εu. Traditionally, these noises are set exogenously, but here
we consider that uncertainties on intrinsic growth rate and on carrying capacity are functions
of the gap between the observed biomass and the desired one, and of the value of the control
offset u(t) in use.

To discuss these assumptions, along with a nonlinear growth curve, first consider that at a
given point of interest, one can locally approximate the nonlinear dynamics ż(t) = f(z(t))−h(t),
by a linear one. The dynamics may locally evolve according to:

ż(t) ≈ ẋ(t) = Ax(t) + f0 − u(t) (6)

where x(t) = z(t) − ze, u(t) = h(t) − he, and f0 = f(ze) − he is set to zero by the obvious
choice he = f(ze) in the linearization. For the logistic model,

A = r

(
1− 2ze

K

)
, f0 = r

(
1− 2ze

K

)
ze (7)

Because of uncertainty in the logistic curve, the linear equation may exhibit the following
parameter uncertainties

ẋ(t) = (A+ εz)x(t) + (f0 + ε0)− u(t) (8)

In Eq. (8), a direct link between the value of the state and the degree of uncertainty is considered.
Another source of uncertainty may come from the harvesting impact. By fishing “big fish”

rather than small ones, and because fishing gears can somehow degrade the ecosystem, either
the carrying capacity (K) or the growth rate can be negatively impacted (Lindholm et al. 1999,
Anderson et al. 2008). Including this harmful effect in equation (6) will give:

ẋ(t) = Ax(t) + f0 − (1 + εh)u(t) (9)

Which means that the net impact of fishing maybe distinct to an one-to-one to an “average fish”.
Taking into account all uncertainties by aggregating (8) and (9), and adding another source of
uncertainty due to external and unpredictable events (such as climate oscillations), the general
bio-economic dynamics equation becomes:

ż = Az(t) + f0 − u(t) + (Aεzx(t) + ε0 − εhu(t)) + ε (10)

Such a dynamic equation means that we poorly understand the population dynamics, even
in a locally chosen equilibium point (ze, he). It means also that, ceteris paribus, there exists a
link between the state (biomass) level, z(t), the harvest action value, h(t), and the degree of
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uncertainty. Finally, and from the managers perspective, managing uncertainty is likely to be
more important when the biomass value is lower than the targeted value ze, than on the other
side, the surplus side. The system is actually more dangerously uncertain on the shortage side
because, for example, the whole ecosystem may be affected by some irreversible damages. In
the next section, we show that the management of a poorly known fishery system, with the
described features, is still made possible by using a CVIU approach (do Val and Souto, 2017)
based on the control of an associate stochastic differential equations (SDE).

3. The CVIU for Growth Modeling

3.1. CVIU state dynamics

Let us denote for some scalar variable y, y+ = max(y, 0) and y− = min(y, 0). We apply this
notation to the process t→ x(t) and t→ u(t) to write, t→ x(t)+ and t→ u(t)+ and t→ x(t)−

and t→ u(t)−, to elaborate on sideways values.
The uncertain model sketched in (10) can be made precise by the following SDE model.

Let (Ω,F , {Ft}t≥0, P ) be a complete filtered probability space satisfying the usual conditions,
cf. (Yong and Zhou, 1999, Ch 1, def 2.6), on which a three-dimensional Brownian motion (BM)
W = {W (t),W x(t),W u(t)}t≥0 is defined and Ft is the P -augmentation of the natural filtration
of W . Consider a real-valued controlled Markov diffusion process x = {x(t)}t≥0 described by
the Itô’s SDE,

dx(t) = (Ax(t) +Bu(t)) dt+ σdW (t) + (σ̄x + (σ+
x x(t)+ − σ−x x(t)−)dW x(t)

+ (σ̄u + (σ+
u u(t)+ − σ−u u(t)−)dW u(t), (11)

x(0) = x ∈ R, t ≥ 0, where,
A and B are scalars and W x,W u are added one-dimensional standard BM each. The two

groups of scalars σ̄x, σ
+
x , σ

−
x and σ̄u, σ

+
u , σ

−
u possesses the same signal and without loss we assume

that they are all nonnegative. The control strategy u = {u(t)}t≥0 is a {Ft}t≥0-adapted stochastic
process taking its values in a compact set U of the real line and admissible controls, denoted
by U [0, T ], are U -valued Markov functions t → u(t, ω) = u(t, x(t)) and u(·) ∈ L2

Ft
(0, T ;R) :=

{φ(·) = {φ(t, ω) : 0 ≤ t ≤ T} such that φ(·) is an {Ft}t≥0-adapted, real-valued measurable

process on [0, T ], and E[
∫ T

0 ‖φ(t, ω)‖2Xdt] <∞}. For the infinite horizon α-discounted problem
to be studied, we consider U [0,∞] as admissible class, similar as above, but with elements
satisfying E[

∫∞
0 e−αt‖φ(t, ω)‖2Xdt] <∞ for α > 0.

With these elements, the control problem of minimizing (5) in the class U [0,∞] can be
framed under the weak formulation of Itô diffusion stochastic control problems; cf., (Yong and
Zhou, 1999, Ch 2, sec 4).

In the CVIU class of models, the modeling errors are associated to extra independent BM
driven terms that are modulated by constant terms and offsets terms, according with (11).
The uncertainties introduced on the state and control vectors at the equilibrium (ze, he) are
represented by the products σ̄xdW

x(t) and σ̄udW
u(t) respectively. These are possibly due to

the choice of inaccurate parameters A and B in the linearization procedure. In addition, when
the state of the system deviates from the equilibrium, the multiplicative portions of the noise,
namely, (σ+

x x(t)+−σ−x x(t)−)dW x(t) and (σ+
u u(t)+−σ−u u(t)−)dW u(t) stand for the uncertainty

increase due to the loss of accuracy of the adopted linear model.
If σ+

x = σ−x and σ+
u = σ−u one can write σ+

x x
+ − σ−x x

− = σx|x|, σ+
u u

+ − σ−u u
− = σu|u|

and one retrieves the symmetric CVIU model studied in do Val and Souto (2017) for the scalar
case. It is appropriate for engineering purposes but here the model takes the unsymmetrical
and more general form than that in do Val and Souto (2017) because in the fishery management
problem it is desirable that the uncertainty on the nature could be stressed asymmetrically in
the model. If the biomass is above of what is the assigned equilibria for one reason or another,
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it is not so critical as if it falls below the equilibria, in the sense that the depletion due to
harvesting may be getting too harsh on the population number. No matter if its due to a coarse
model parametrization or other effects that are not accounted for, the uncertainty here is not
symmetrically taken into the model, by setting σ−x > σ+

x in (11). Similarly, the uncertainty
should be amplified if the decision is to harvest more than the agreed rate he, compared to the
decision of harvesting less than what had been previously consented, and σ−u < σ+

u in the model.
The management problem for fisheries is seen as the choice of a harvesting nominal point he,

a rule that can be reviewed to a value h(t) = u(t) + he at any time t ≥ 0, subject to unknown
dynamics, which is “roughly modeled” by (11). As indicated before, even for the simplest logistic
model, possibly r 6= r0 and K 6= K0, and the model is equipped for this realistic framework.

The robust approach is a possible way to deal with this scenario, e.g. see Engwerda (2017).
However since it provides policies that need to be adjusted to the worst case scenario, it is
bound to be conservative from its inception. In a situation when the probability of the worst
case scenario to happen is quite low, the robust policies do not account for this fact. Moreover,
the policies that optimize a CVIU model are richer than the ones obtained by the robust approach
based on LMIs. For a deeper discussion on that matter, see Silva et al. (2017).

3.2. Asymmetric Scalar CVIU

With the SDE model (11), the objective in the control problem is to solve the family of
problems, which amounts to determine J∗, the value function,

J∗(s, x) := inf
u(·)∈U [s,∞]

J(s, x, u(·)), (12a)

of J such as (5), associated to the scalar assymetric CVIU diffusion model,

dx(t) = (Ax(t) +Bu(t)) dt+ σ̂(x(t), u(t)) dŴ (t), (12b)

t ∈ [s,∞], x(s) = x ∈ O, with

σ̂(x, u) =
[
σ σ̄x + σ+

x x
+ − σ−x x− σ̄u + σ+

u u
+ − σ−u u−

]
(12c)

and
dŴ (t) =

[
dW (t) dW x(t) dW u(t)

]ᵀ
,

with the assumption that
σ+
x , σ

−
x , σ̄x and σ+

u , σ
−
u , σ̄u are all nonegative.

The goal is to find an admissible pair u∗(·) ∈ U [s,∞] and the corresponding x∗(·), such
that (x∗(·), u∗(·)) achieves the minimum of J(s, x, u(·)) over U [s,∞]. The above problem can be
framed under the weak formulation of Itô diffusion stochastic control problems, cf., (Yong and
Zhou, 1999, Ch 2, sec 4).

The elements above place the control problems (12) for a general asymmetric CVIU and the
idea here is to explore, within the general framework, important features of the control problem,
and whenever possible, we quote from the results in do Val and Souto (2017).

The first important aspect is stated in the next proposition. The proof of it in the case of
symmetric multivariable CVIU model is presented in do Val and Souto (2017), and the proof
for the asymmetric case is derived without much effort, thus omitted.

Proposition 1. Consider the problem in (12) with the quadratic running cost in (5). It follows
that the cost J(·, ·, ·) and the value J∗(·, ·) are continuous and J(t, ·, ·), J∗(t, ·) are (strictly)
convex for each t ≥ 0.

For each (x, u, p, P ) ∈ R4 define the Hamiltonian function as,

H(x, u, p, P ) :=
1

2
Pσ̂(x, u)2 + p(Ax+Bu) + f(x, u) (13)
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with f(x, u) = Qx2 + qx+Ru2 + ru. Provided that J∗ is a continuous function, then it is also
the unique solution of the Hamilton-Jacobi-Bellman (HJB) equation, in the viscosity sense, cf.
Crandall et al. (1992). The following definition indicates the adequate HJB for the problem.

Definition 1. An upper semicontinuous (respectively, lower semicontinuous) function v : Rn →
R is called a viscosity subsolution (respectively, supersolution) of the HJB equation if

− αϕ(x) + inf
u∈U

H(t0, x0, u, ϕx(t0, x0), ϕxx(t0, x0)) ≤ (≥)0, (14)

whenever v − ϕ attains a local maximum (respectively, minimum) in a neighborhood of (t0, x0)
for ϕ ∈ C2(Rn), where ϕx and ϕxx indicate respectively, the gradient and the Hessian matrix of
ϕ at (t, x). A function v is called a viscosity solution of the HJB equation if it is both a viscosity
subsolution and a viscosity supersolution of (14).

It follows that the viscosity solution for the problem studied here is a convex and continuous
function with n = 1. We employ the notions of super and subdifferentials, (p, P ) ∈ D1,2,spJ∗(x)
and (p′, P ′) ∈ D1,2,sbJ∗(x), and since J∗ is convex, P, P ′ ≥ 0. These are the tools to deal with
the control problem in the next section.

4. The Design of a CVIU Controller

Before going, we define some auxiliary elements, notations and equivalences that will be
necessary to the next sections.

For the use of representing subdifferentials, we consider the following notations. For some
v ∈ R, S̃+(v) and S̃−(v) are sets defined as

S̃+(v) :=


+1, if v > 0,

[0,+1], if v = 0,

0 otherwise.

S̃−(v) :=


−1, if v < 0,

[−1, 0], if v = 0,

0 otherwise.

(15)

They correspond to the sets D1,sb
v v+ = D1,sb

v max(v, 0) and D1,sb
v v− = D1,sb

v min(v, 0), respec-
tively.

Analogously, set for v ∈ R, S+(v) : R→ {0,+1} and S−(v) : R→ {0,−1} the sign functions,
defined as

S+(v) =

{
+1, if v > 0

0, otherwise
S−(v) =

{
−1, if v < 0

0, otherwise
(16)

respectively. We also employ the notation S(v) to express S+(v) + S−(v), and also add the
subscript Sx and Su whenever necessary.

Proposition 2. For A ∈ R and v ∈ R, the following subdifferentials with respect to v can be
calculated:

D1,sb
v

(
A(v+)

)
= AS̃+(v), D1,sb

v

(
A(v+)2

)
= 2Av+ (17)

D1,sb
v

(
A(v−)

)
= −AS̃−(v), D1,sb

v

(
A(v−)2

)
= 2Av− (18)

We define the following operators. Let H : R × {−1, 0,+1} → R, G : R × {−1, 0,+1} → R,

9



Q : R× {−1, 0,+1} → R, R : R× {−1, 0,+1} → R and T : R→ R,

H(U, s) = 2Uσ̄x
(
σ+
x s

+ + σ−x s
−) (19)

G(U, s) = 2Uσ̄u
(
σ+
u s

+ + σ−u s
−) (20)

Q(U, s) = U
((
σ+
x s

+
)2

+
(
σ−x s

−)2) (21)

R(U, s) = U
((
σ+
u s

+
)2

+
(
σ−u s

−)2) (22)

T (U) = U
(
σ2 + σ̄2

x + σ̄2
u

)
(23)

Note that if U ≥ 0 then Q(U, ·),R(U, ·) and T (U) ≥ 0.

Proposition 3. The Hamiltonian in (13) can be written equivalently as

H(x, u, p, P ) = f(x, u) +
1

2
Q(P,S(x))x2 +

1

2
R(P,S(u))u2

+
1

2
H(P,S(x))x+

1

2
G(P,S(u))u+ p(Ax+Bu) +

1

2
T (P ) = 0 (24)

Inspecting the pointwise minimization in the HJB equation (14) that involves the Hamilto-
nian function H in (24), one notices that the values u+ and u− makes it nondifferentiable w.r.t.
u at the origin.

Lemma 1. Consider v : R → R, a convex function and p ∈ R and P ∈ R, with (p, P ) ∈
D1,2,sp
x v(x), for some fixed x. If such a v is the solution of the HJB equation in (14), the

minimum u = u∗ of the HJB satisfies

0 ∈ D1,sb
u H(x, u, p, P )|u=u∗ =

∂uf(x, u)

∂u
|u=u∗ +Bp

+ P
(
σ̄uσ

+
u

)
S̃+(u)|u=u∗ + P

(
σ̄uσ

−
u

)
S̃−(u)|u=u∗

+ P
(
(σ+
u )2
)
u+|u=u∗ + P

(
(σ−u )2

)
u−|u=u∗ . (25)

Proof. First order condition for the optimality of u in the HJB equation in (14) provides (25)
(see Proposition 2). Since P ≥ 0, the condition in the provides the global minimum of H on the
set U , namely, the function H(t, x, ·, p, P ) is indeed convex and the minimum is attained for u∗

that satisfies (25).

Regarding (15) and (25), note that it is necessary to determine the sets of signals S+(u∗)
and S−(u∗) to best determine u∗ itself. In fact, it is possible to divide the state space line R
into three segments for which the optimal control u∗ has known sign. The next result is drawn
mutatis mutandis from do Val and Souto (2017), and thus, the proof is omitted.

Proposition 4. Consider that f(·, ·) and g(·) are convex and f(x, ·) is continuously differentiable
for each x. Then the optimal control u∗ for the problem in (12) satisfies the following sign
conditions, 

u∗ > 0, if x ∈ R+, with

R+ :=
{
x ∈ R : limu↓0 ∂H(x, u, p, P )

/
∂u < 0

}
,

u∗ < 0, if x ∈ R−, with

R− :=
{
x ∈ R : limu↑0 ∂H(x, u, p, P )

/
∂u > 0

}
,

u∗ = 0, if x ∈ R0 :=
{
x ∈ R : (R+ ∪R−(t))c

}
,

(26)

for some (p, P ) ∈ D1,2,sp
x J∗(t, x), a.e. t ≥ 0,P-a.s.
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4.1. The Inaction Region

Note from Proposition 4 that region R0 can be equivalently represented by

R0 =
{
x ∈ R : lim

u↑0
∂H(x, u, p, P )

∂u
≤ 0 ≤ lim

u↓0
∂H(x, u, p, P )

∂u

}
. (27)

Note also that u∗(x) ≡ 0,∀x ∈ R0 is optimal and for this reason R0 is called Inaction Region
for the control input. Note however that “inaction” does mean that a zero-control variation
should be optimal inside region R0, since, u∗(t) = 0 implies that h∗(t) = he and the nominal
effort is optimal.

The next lemma gives conditions for the inaction region R0 to be a nondegenerate interval
of the line, from the fact that J∗(t, ·) is a convex function.

Lemma 2. Assume that σ+
x , σ

−
x , σ̄x and σ+

u , σ
−
u , σ̄u are all nonnegative scalars and that f(x, ·)

is a continuously differentiable function for each x. Let (p, P ) ∈ D1,2 sp
x J∗(x), for each x ∈ R,

and define.
δ+ := Pσ̄uσ

+
u , δ− := Pσ̄uσ

−
u . (28)

The region R0 ⊂ R is an interval defined by

R0 =
{
x ∈ R : −δ+ ≤ ∂f(x, u)

∂u

∣∣∣
u∗=0

+Bp ≤ δ−
}
. (29)

Note that Pσ̄uσ
+
u ≥ 0 and Pσ̄uσ

−
u ≥ 0 hold from the assumption on the lemma and the fact

that P ≥ 0. It is enough that one of the products indicated in (28) is positive to conclude that
the region R0(t) ⊂ R is of nonzero length in the state space line.

Proof. Consider the definition of the regions R0 in (27). By applying the limits to the Hamil-
tonian function derivatives in (25), (see (24)), we obtain

lim
u↑0

∂H(x, u, p, P )

∂u
= lim

u↑0

[
∂f(x, u)

∂u
+ P (σ−u )2u

]
+Bp− Pσ̄uσ−u ≤ 0, (30)

lim
u↓0

∂H(x, u, p, P )

∂u
= lim

u↓0

[
∂f(x, u)

∂u
+ P (σ+

u )2u

]
+Bp+ Pσ̄uσ

+
u ≥ 0. (31)

Thus, the condition for the inaction gap to appear is that at least δ+ or δ− be positive.

4.2. Discounted Quadratic-linear Running Cost

Let us consider the control problem in (12) with the quadratic costs in (5). Since the data
of the problem is time-homogenous and from the structure of the cost, one can introduce the
following representation,

J∗ (s, x) = e−αsV ∗(x), (32)

where V ∗ is a time-invariant solution, see do Val and Souto (2017) for details. The announced
control problem has its solution connected to the HJB equation in (14) and V ∗ would be its
unique solution. The Hamiltonian function as detailed in (24), with f(x, u) = Qx2+qx+Ru2+ru,
allow us to write the HJB equation as

αϕ(x)− inf
u∈U

{
(Q+

1

2
Q(P,S(x)))x2 + (R+

1

2
R(P,S(u)))u2

+
1

2
H(P,S(x))x+

1

2
G(P,S(u))u

+ p(Ax+Bu) + qx+ ru+
1

2
T (P ) = 0 (33)
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with p = ϕx and P = ϕxx if ϕ ∈ C2(R). As previously mentioned, one cannot presume
that V ∗ ∈ C2(R) and the solution for the HJB equation (33) should be coined in terms of
viscosity solution. In that case, for each (p, P ) ∈ D1,2 sp

x ϕ(x) (33) holds with ‘≤ 0’ (ϕ is a

viscosity subsolution), and for each (p′, P ′) ∈ D1,2 sb
x ϕ(x) (33) holds with ‘≥ 0’ (ϕ is a viscosity

supersolution).

Remark 1. Since ϕ(·) that satisfies (24) in the classic or in the viscosity sense is such that
ϕ = V ∗, it is a convex function according with Theorem 1, and therefore, either ϕxx ≥ 0, or for
each P with (p, P ) ∈ D1,2 sp

x ϕ(x) one has P ≥ 0.

Section 4.1 indicated that the optimal control is related to three distinct regions on the state
space R+,R− and R0, related to the corresponding signs of the optimal u∗. In the next section
we show that the value V ∗ coincides piecewisely with some quadratic solutions and the inaction
region is completely determined from this analysis.

4.3. Characterization of the inaction region

In Section 4.1 a region of inaction R0 for control input u was identified in the state space,
possibly of nonzero length interval of the real line.

Recall that the time-invariant solution V ∗(·) is a convex function, and one can conclude that
its minimum is attained next to the origin and near region R0. The idea is to solve the control
problem inside R0, relying on the quadratic expansion of V ∗ sufficiently close to an arbitrary
point x0 inside R0, and realize that the choice of x0 does not affect the representation. Let us
consider the following type of equation,

(2A− α)X +Q+Q (X, s) = 0, (34)

with s = +1 or s = −1.

Lemma 3. Consider the control problem in (12). Suppose that

X+ = − Q

2A− α+ (σ+
x )2

, or, X− = − Q

2A− α+ (σ−x )2
, (35)

are such that X+, X− > 0. Then set

v+
0 = −q + 2X+σ̄xσ

+
x

A− α or, v−0 = −q − 2X−σ̄xσ−x
A− α (36)

The inaction region R0 is the connected interval,

R0 ={x ≤ 0 : −σ̄uσ+
u ≤ Bx+ (Bv−0 + r)/2X− ≤ σ̄uσ−u }

∪ {x ≥ 0 : −σ̄uσ+
u ≤ Bx+ (Bv+

0 + r)/2X+ ≤ σ̄uσ−u }. (37)

If X+ or X− is not positive, the corresponding subinterval is empty.

The proof of Lemma 3 is presented in Appendix A.

4.4. Asymptotic solutions in regions R+ and R−
In the previous section the optimal solution was obtained inside region R0 of the state space

line, which contains the minimum of V ∗. The region R0 separates two distinct regions for which
either u∗(x) > 0 or u∗(x) < 0, denoted respectively by R+ and R−.

Here the situation in which u∗ 6= 0 is considered, whether the interval R0 is of zero length
or not. If one takes points x ∈ R such that |x| is sufficiently large, the control sign is either
positive or negative, and it remains the same for a large neighborhood of such a point x.
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In parallel to Section 4.3, we seek steady state solutions for the HJB equation inside regions
R+ and R− for |x| > L for large enough L. The following equations, in Xsx , vsx,u and `sx,u are
considered here.

(2A− α)Xsx − (BXsx)2

R+R(Xsx , su)
+Q+Q(Xsx , sx) = 0, (38a)(

A− α− B2Xsx

R+R(Xsx , su)

)
vsx,u

− BXsx

R+R(Xsx , su)

(
G(Xsx , su) + r

)
+H(Xsx , sx) + q = 0 (38b)

− α`sx,u + T (X)− 1

4(R+R(X, su))
(Bvsx,u + G(Xsx , su) + r)2 = 0 (38c)

for certain combinations of sx = ±1 and su = ±1. Consider also the feedback control

u(x) = − 1

R+R(Xsx , su)

(
BXsxx+

1

2
(Bvsx,u + G(Xsx , su) + r)

)
(39)

The next lemma presents some simple asymptotic solution for the HJB equation, valid when
L→∞.

Lemma 4. Consider the control problem in (12). If there exists a solution for (38a) with
Xsx > 0, then the value V ∗ tends asymptotically to V

sx,u
a for |x| > L→∞, where,

V
sx,u
a (x) := Xsxx2 + vsx,ux+ `sx,u , (40)

with Xsx, v
sx,u and `sx,u as in (38) for suitable combination of signals sx = ±1, su = ±1.

Moreover, for |x| > L with L → ∞, the optimal control policy u∗(x) tends asymptotically to
u(x) in (39) as |x| → ∞.

The proof of Lemma 4 is presented in Appendix B.

Remark 2. To set the right combination of signals of x and the optimal u one needs a matched
signals reasoning. For the fishery management problem B < 0 thus, if x � 0 then u∗ < 0 and
if x � 0 then u∗ > 0 and in this case the signals are coupled, i.e., sx = su. Writing (38) more
explicitly for this case,

sx = su = +1


(2A− α+ (σ+

x )2)X+ +Q− (X+B)2

R+X+(σ+
u )2

= 0

Then X+ = (−b+
√
b2 − 4ac)/2a, with,

a = (σ+
u )2(2A− α+ (σ+

x )2)−B2

b = R(2A− α+ (σ+
x )2) +Q(σ+

u )2, c = RQ

v+ = −
(
A− α− B2X+

R+X+(σ+
u )2

)−1(
q + 2X+σ̄xσ

+
x (+1)

−BX
+(r + 2X+σ̄uσ

+
u (+1))

R+X+(σ+
u )2

)
`+ =

1

α

(
T (X+)− (Bv+ + 2X+σ̄uσ

+
u (+1) + r)2

4(R+X+(σ+
u )2)

)


Asymptotic optimal solution:

u∗(x) = − 1

2(R+X+(σ+
u )2)

(
2X+Bx+ v+B +X+σ̄uσ

+
u (+1) + r

)
valid when x→ +∞.
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For sx = su = −1 replace ‘+1’ above by ‘−1’ and superscripts ‘+’ by ‘−’. The first equation is a
modified version of the Riccati equation that appears in the discounted quadratic cost problem
for deterministic controls and it resembles the ones that apply to stochastic optimal control with
multiplicative BM noise. In classic problems σ+

x = σ−x = 0 and σ+
u = σ−u = 0, and the Riccati

theory reveals in the scalar case that if B 6= 0, there exist unique solutions X+ > 0 and X− > 0.

Remark 3. So far the optimal solution was established inside the inaction region, and such a
region was determined in Lemma 3. In addition, Lemma 4 outlines the asymptotic solution for
any |x| sufficiently large. The exact solution outside the region of inaction but for small values
of state x is hard to find and it has to rely on the HJB equation in Proposition 3. However a
good approximation is obtained at each half line by a linear interpolation between the optimal
control u∗ = 0 at the inaction region and the asymptotic control (39) obtained in Lemma 4. For
more details, including the stochastic stability notion for the solutions see (do Val and Souto,
2017, sec. V).

4.5. About the Inaction Region

Remark 4. The characterization in Lemma 3 above allows the following considerations:

(i) From (35) note that it is necessary that 2A−α+ (σ+
x )2 < 0 to exist an inaction region for

x > 0 and correspondently, 2A−α+(σ−x )2 < 0 to exist an inaction region for x < 0. Hence,
by increasing α or decreasing the uncertainty represented by σ+

x and σ−x respectively, one
eventually gives rise to the inaction region in the solution.

(ii) From (37) one can understand how the length of the inaction interval varies. For the
positive line write equivalently the expression in (37).

−σ̄uσ+
u ≤ Bx+ p0 ≤ σ̄uσ−u , p0 =

Bv+
0 + r

2X+

For the case depicted in Fig. 1, B > 0, σ+
u > σ−u and e− > 0. In this situation, {x ≤ 0 :

−σ̄uσ+
u ≤ Bx+ (Bv−0 + r)/2X− ≤ σ̄uσ−u } = ∅.

Conversely, in the negative line, if B > 0, and the upper end of the interval e+ = (σ̄uσ
−
u −

p1)/B with p1 = (Bv−0 + r)/2X− is such that e+ < 0 then the set {x ≥ 0 : −σ̄uσ+
u ≤

Bx+ (Bv+
0 + r)/2X+ ≤ σ̄uσ−u } must be empty.

are such that X+,X− > 0. Then set

v+0 = −q + 2X+σ̄xσ
+
x

A− α
or, v−0 = −q − 2X−σ̄xσ−

x

A− α
(32)

The region R0 is the connected interval,

R0 ={x ≤ 0 : −σ̄uσ
+
u ≤ Bx+ (Bv−0 + r)/2X− ≤ σ̄uσ

−
u }

∪ {x ≥ 0 : −σ̄uσ
+
u ≤ Bx+ (Bv+0 + r)/2X+ ≤ σ̄uσ

−
u }.

(33)

If X+ or X− is not positive, the corresponding subinterval is empty.

Remark 2. The characterization in Lemma 3 above allows the following considerations:

(i) From (31) note that it is necessary that 2A − α + (σ+
x )

2 < 0 to be possible to
have a inaction region for x > 0 and correspondently 2A − α + (σ−

x )
2 < 0 to be

possible to exist inaction region for x < 0. Hence increasing α or decreasing the
uncertainty represented by σ+

x and σ−
x , respectively, eventually will give rise to the

inaction region.

(ii) From (33) one can understand how the length of the inaction interval varies. For
the positive line write equivalently the expression in (33).

−σ̄uσ
+
u ≤ Bx+ p0 ≤ σ̄uσ

−
u , p0 =

Bv+0 + r

2X+

For the case depicted in Fig. 1, B > 0, σ+
u > σ−

u and e− > 0. In this situation,
{x ≤ 0 : −σ̄uσ

+
u ≤ Bx+ (Bv−0 + r)/2X− ≤ σ̄uσ

−
u } = ∅.

Conversely, in the negative line, if B > 0, and the upper end of the interval
e+ = (σ̄uσ

−
u − p1)/B with p1 = (Bv−0 + r)/2X− is such that e+ < 0 then the set

{x ≥ 0 : −σ̄uσ
+
u ≤ Bx+ (Bv+0 + r)/2X+ ≤ σ̄uσ

−
u } must be empty.

-p0B

e− e+

0 x

Figure 1: The inaction interval with extremes values e− = −(σ̄uσ
+
u + p0)/B and e+ =

(σ̄uσ
−
u − p0)/B for B > 0.

(iii) From (ii) one can conclude that the larger σ̄u, σ
+
u and σ−

u are, the widest the
inaction region will be; in particular, σ̄u influences the lower and upper ends e−

and e+.

The way that σ̄x, σ
+
x and σ−

x influences the inaction region is more complex. First
recall remark (i) above. Then note that points −p0/B and −p1/B depend linearly
on σ̄x, which brings them closer as σ̄x increases.

13

Figure 1: The inaction interval with extremes values e− = −(σ̄uσ
+
u + p0)/B and e+ = (σ̄uσ

−
u − p0)/B for B > 0.

(iii) From (ii) one can conclude that the larger σ̄u, σ
+
u and σ−u are, the wider the inaction region

will be; in particular, σ̄u influences both e− and e+, the lower and upper ends.
The way that σ+

x , σ
−
x and σ̄x influence the inaction region is more complex. First recall

(i) above for the role of σ+
x and σ−x . Then note that points −p0/B and −p1/B depend

linearly on σ̄x, which brings them closer as σ̄x increases.

5. Application to the bio-economic fishery model

Recall that the objective of the policymaker is to minimize

J(s, x, u(·)) = Ex
[∫ ∞

s
e−αt (x(t)ᵀQx(t) + qᵀx(t) + u(t)ᵀRu(t) + rᵀu(t)−K) dt

]
, (41)

with Q = 1, r = −(p−2che), R = c > 0, K = π > 0. When q < 0 a reward for having a biomass
surplus is introduced, otherwise, if q > 0 a penalty holds for a biomass increase.
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About sign of r. If he is set to the value that maximizes the static profit, then he = hMax =
p/2c and r = 0. If he < hMax then r < 0, otherwise, he > hMax and then r > 0. We assume
that the TAC value is chosen to be smaller than the one that maximizes the static profit, thus
he < hMax and r < 0.

The dynamic is as in (12b)–(12c),

dx(t) = (Ax(t) +Bu(t)) dt+ σ̂(x(t), u(t))dŴ (t), (42a)

with
σ̂(x, u) =

[
σ σ̄x + σ+

x x
+ − σ−x x− σ̄u + σ+

u u
+ − σ−u u−

]
(42b)

and
dŴ (t) =

[
dW (t) dW x(t) dW u(t)

]ᵀ
, (42c)

with the assumption that σ+
x , σ

−
x , σ̄x ≥ 0, and σ+

u , σ
−
u , σ̄u ≥ 0.

Since x(t) = z(t)− ze, when x(t) > 0, the biomass is larger than the targeted level, whereas
x(t) < 0 means that the biomass is smaller than its desired level. It is reasonable to assume that
σ+
x ≤ σ−x , meaning that above the targeted level is somehow less “risky” than falling below. We

set B = −1 which means that fishing removes the biomass at the same unit rate.
Finally, it is reasonable to assume that A ≤ 0, which means that, when there is an excess of

biomass (x(t) > 0), any increase of the living biomass will decrease the flow of new biomass due
to carrying capacity (for the logistic model it implies that ze ≥ K/2 = zMSY). It also means
that when the biomass is low, x(t) < 0, but not too far from ze, the biomass may grow back to
its desired level. As consequence of setting A > 0 (ze < K/2 in the logistic model), the biomass
dynamics will never settle at ze without continuous intervention, moving away from this desired
level, even without fishing. In this situation, an inaction region would not be optimal.

5.1. Existence of the Inaction Region

Recall from remark 4 that the condition of existence of the Inaction Region is

X+ = − Q

2A− α+ (σ+
x )2

> 0, and, X− = − Q

2A− α+ (σ−x )2
> 0, (43)

Since Q = 1 > 0, the condition of existence is that

2A− α+ σ+2
x < 0 or 2A− α+ σ−2

x < 0 (44)

should be satisfied. From (44), the following propositions are straightforward.

Proposition 5 (Biomass (State) uncertainty). Ceteris Paribus, when the biomass drift
coefficient A < 0, an increase of the state uncertainty (represented by (σ±x )2), will reduce the
chance of an inaction region to exist. In the case of A > 0, the dynamics implies that x(t) will
move away from ze and hence inaction is no longer an optimal policy, or equivalently, the size
of inaction region will be empty.

Proposition 6 (Discount rate). Ceteris Paribus, an increase of the discount rate α will
increase the chance of an inaction region to exist, even if A > 0.

Proposition 7 (Stability around ze). The more (less) negative is the biomass drift coefficient
A is around ze, the more (less) likely the inaction region will exist.

5.2. Size and position of the Inaction Region

By definition, σ̄u, σ
−
u , σ

+
u , σ̄x, σ

+
x , σ

−
x > 0, B = −1 < 0, r < 0, and we assume A < 0, meaning

that ze is stable equilibrium point. Assume also that X+ > 0 and/or X− > 0, i.e., the inaction
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region is nonempty. From Lemma 3, we know that the inaction region R0 is the connected
interval,

R0 =R−0 ∪R+
0 = {x ≤ 0 : −σ̄uσ−u ≤ x+ (v−0 − r)/2X− ≤ σ̄uσ+

u }
∪ {x ≥ 0 : −σ̄uσ−u ≤ x+ (v+

0 − r)/2X+ ≤ σ̄uσ+
u }.

(45)

with

v+
0 = −q + 2X+σ̄xσ

+
x

A− α or, v−0 = −q − 2X−σ̄xσ−x
A− α (46)

One can easily check that the signs of v+
0 and v−0 will depend on the sign of q. If q < 0, which

means a reward for the state being above the desired state level, then v−0 < 0 and v+
0 S 0. If

q > 0, which means a penalty for the biomass state being above the desired state, then v+
0 > 0

and v−0 S 0. Finally of q = 0, then v+
0 > 0 and v−0 < 0. Taking into account these remarks, and

given (45)-(46), the following propositions hold.

Proposition 8 (Control uncertainty). Ceteris Paribus, an increase of the control uncertain-
ties, σ̄u, σ

−
u , σ

+
u , will increase the size of the inaction region.

Thus, the more uncertain is the impact of the control on the state evolution, the wider the
Inaction Region should be. In other words, when the control action affects the state evolution
with high uncertainty, the best policy is to do nothing up to a considerable drifting of the state
away from its desired level. The proof of this proposition is straightforward and comes from
the fact that an increase of σ+

u and/or σ−u will increase the interval for the conditions in (45)
to hold. This eases the existence and enlarge the size of the connected region, i.e. the inaction
region.

Corollary 1 (No Control Uncertainty). Without uncertainty on the control effect, the size
of inaction region is empty.

The corollary means that if there is no doubt about the consequences of a change in the
TAC policy, then the management rule should always be flexible, accompanying the evolution
of t→ x(t).

From (46) it is possible to check that v+
0 increases with σ+

x and σ̄x, whereas v−0 decreases
with σ−x and σ̄x. As a consequence, the conditions −σ̄uσ−u ≤ x+ (v−0 − r)/2X−, for x < 0, and
the condition x + (v+

0 − r)/2X+ ≤ σ̄uσ
+
u , for x > 0, in (45) will be less easily verified. As a

result, the size of the inaction region will reduce and the following proposition holds.

Proposition 9 (State uncertainty). An increase of the state uncertainties, σ+
x , σ

−
x , will de-

crease the size of the inaction region.

In summary, the more uncertain is the impact of the state level on the state evolution, the
less the Inaction Region may exist. In other words, if doubt exists about the impact of the state
evolution, one should intervene as much as possible into the state evolution via the control.
Notice that an increase of Q, the cost parameter in the cost function related to the state gap,
will have a similar effect to reduce the size of the inaction region (by increasing the value of X+

and X−). The consequences of A and α on the size of the inaction region are less obvious since
they will impact both X+ and X−, and, in an opposite way, v+

0 or v−0 .
Finally, there is an obvious proposition which depends on the biomass level being drifted

away from the desired level.

Proposition 10 (State deviation). If the current level of biomass is far away from its desired
level (|x| � 0), distant it will be from a possible Inaction Region.

5.3. Numerical Simulations

The purpose of this section is to explore some numerical simulations to highlight the previous
propositions. In all cases, we set B = −1, R = 0.5 and r = −0.1.
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5.3.1. Impact of q and α

The next figures show the range of the inaction region as a function of the q values. In all
cases: A = −0.2, σ̄x = σ̄u = 0.2, σ+

x = σ+
u = 0.3, σ−x = σ−u = 0.5. Below the solid line the

optimal action u∗ is to reduce the TAC (u∗ < 0, points C and D in in Fig. 2), while above
the dashed line, the optimal action is to increase the TAC (u∗ > 0, points B and E in Fig. 2).
Between the two lines lies the inaction region (no change of TAC, u∗ = 0, point A, Fig. 2).

In Fig. 2, at point A, the state is close to its desired value (x ' 0) and no reward or penalty
is given (q = 0). The most appropriate strategy is to do nothing, given the level of uncertainty
associated with the use of the control (e.g. uncertainty created by a change of the fixed TAC
value). One can see that the position of the inaction region at q = 0 is asymmetric around
x = 0, leading to more room for inaction when x < 0 than when x > 0. This is explained by the
uncertainty values employed in the model for the control, which are asymmetric and it weights
more a decrease of u rather than an increase of u, e.g. σu

+ = 0.3 < σ−u = 0.5.
As a result, when the fishery manager is expected to change the fixed TAC, the optimal

choice will be not to act so as to avoid uncertainty created by the change of the fixed TAC. Of
course, when the deviation from the desired state becomes too important, e.g. |x| � 0, then the
manager should take action whatever the level of uncertainty. Compared to A, points B and C
require to act and change the rule, either to increase the fixed TAC (point B), or to reduce it
(point C). Points D and E have the same state level than A but lead to different interpretations
of the situation with respect to the desired state value. In point D, since q < 0, there is a reward
for the state being above the desired value, e.g. a reward for x > 0. In other words, q < 0
creates an incentive for the policymaker to set up a reduction of the TAC in order to increase
the value of x. On the opposite side, point E with q > 0 prevails a penalty for letting the state
be above the desired level, e.g. a penalty if x > 0. At point E, the policymaker tends to increase
the TAC despite of the uncertainty.

More generally, the following remarks apply to Figs. 2–10. Firstly, the position of the inaction
region changes with the value of q: a reward for being above the desired state level (e.g. q < 0)
is more compatible with the problem since the inaction interval arises more for x > 0 than
for x < 0. Secondly, when x drifts away from its desired level, it will leave at some point the
inaction region, and the fishery manager should take action by changing the TAC rule. Thirdly,
an increase of the discount rate α = 0.9 rather than α = 0.2 will increase the likelihood of
existence of an inaction region but not necessarily its size.

Figure 2: Position of the inaction region in the state x with respect to q, with α = 0.9
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Figure 3: Position of the inaction region in the state x with respect to q, with α = 0.2

5.3.2. Impact of control uncertainties

We set in all simulations: A = −0.2, α = 0.9, σ̄x = σ̄u = 0.2, and σ+
x = σ−x = 0. In this case,

we do not assume any endogenous uncertainty generated by the evolution of the state value
but only consider the role of control uncertainties. Figs. 4–5 highlight the impact of having
asymmetric control uncertainties. Firstly, note that without any state uncertainty, the inaction
region has a constant size. Secondly, a comparison of Figs. 4–5 indicates the fact that, ceteris
paribus, the existence of control uncertainties will shift down (up) the inaction region when
uncertainty is mainly due to negative (positive) value of the control, e.g. σ−u > 0 in Fig. 4 (e.g.
σ+
u > 0 in Fig. 5). When the inaction region is moving downward (upward), the likelihood of

cases where the manager should decrease (increase) the TAC is decreasing.

Figure 4: Position of the inaction region in the state x with respect to q, with σ−
u = 0.8 and σ+

u = 0

Figure 5: Position of the inaction region in the state x with respect to q, with σ−
u = 0 and σ+

u = 0.8
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5.3.3. Impact of asymmetric state uncertainties

Figures 6–7 highlight the impact of increasing the state uncertainties given the other uncer-
tainty values. For all simulations, we set: A = −0.2, α = 0.9, σ̄x = σ̄u = 0.2, σ−x = σ−u = 0, and
σ+
u = 0.8. Under this set of parameters, control uncertainty is only created when the policymaker

increases the TAC value, that is, when u∗ > 0. In Fig. 6 one assumes a small positive state
uncertainty (σ+

x = 0.3), whereas in Fig. 7 a higher positive state uncertainty value (σ+
x = 0.8) is

set. It is seem from the figures that when the level (positive value) of state uncertainty increases,
for a given control uncertainty, the inaction region is reduced (Fig. 7). In addition, even when
a reward for the state being above the desired level exists, e.g. when q < 0, the inaction region
moves down (compare with Fig. 6). Since positive values of x create a high level of uncertainty,
the best strategy is to reduce x by increasing the TAC.

Figure 6: Position of the inaction region in the state x with respect to q, with σ−
x = σ−

u = 0 and σ+
x = 0.3 and

σ+
u = 0.8

Figure 7: Position of the inaction region in the state x with respect to q, with σ−
x = σ−

u = 0 and σ+
x = 0.8 and

σ+
u = 0.8

5.3.4. Effect of strictly biological objectives

Here, we consider the case where the policymaker does not pay attention to the profit of
fishers, but only to the stock evolution. In that respect, we set R = r = 0 in the cost function
(41). Figure 8 highlights the impact of setting a policy which is only resource-oriented. The
main effect is to move upward the inaction region. For example, when the stock is over its desired
level (point A), without any economic (profit) consideration, the stock is still seen high enough
to allow for an increase of TAC. On the other hand, when including an economic objective, the
TAC will be augmented.
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Figure 8: Comparison of the position of the inaction region with respect to q, with α = 0.9, and with (R, r 6= 0)
or without (R = r = 0) profit consideration in the cost function.

Point B shows that, although the stock is only slightly above the desired level, the policy
maker will not reduce the TAC if profit is taken into consideration, although the TAC will be
decreased with a mere biological attention.

5.3.5. Two biological opposite cases

We conclude the numerical illustrations with a discussion on the desired state value, ze, and
possible consequences of this choice.

K as the desired level

Let assume that ze = K, the carrying capacity. From an ecological perspective, K is a stable
equilibrium, which means that we would have A < 0. On that basis, there may exist a general
agreement between conservationists and fishers that would target an acceptable level of biomass
below the K value. Consequently, the fishery manager may include a term q ≥ 0 in the cost
function, which gives a reward for x < 0, i.e. z < K, and a penalty if x > 0, i.e. z > K. In Fig.
9, we set A = −0.1, with α = 0.9, B = −1, σ−x = σ−u = 0.2, σ+

x = 0.5 and σ+
u = 0.8. In other

words, we assume here that there is more uncertainty when the TAC is decreasing (u < 0) and
when the biomass is greater than K (x > 0), than when the TAC is increasing (u > 0), and
when the biomass level is less than K (x < 0).

Figure 9: Position of the inaction region in the state x with respect to q, with α = 0.9 and with σ−
x = σ−

u = 0.2
and σ+

x = 0.5 and σ+
u = 0.8
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The following observations are put forward. At point A, q = 0, which means that no reward
or penalty of being away from K is implemented, the best option for the manager is to do
nothing as long as the biomass is sufficiently close to its desired value K. In points B, C and
D, we have xB = xC = xD = −0.2 < 0, meaning that the biomass is below the K values. The
three points differ because of their q-values: qB = 0.1 < qC = 0.4 < qD = 0.8. As q increases,
the reward of being below the K value increases. As a consequence, with the same state level,
the fishery manager with qB value chooses to reduce the TAC since the biomass is below K,
while with another ruler with qD value would trigger an opposite choice by increasing the TAC.
Between these two strategies, a manager using the qC value would not change the fixed TAC
rule.

MSY as the desired level

Let us assume that ze = zMSY. At the MSY biomass level occurs the maximum growth rate
of the population and the growth derivative will always be zero. Thus, A = 0 in the model and
it is not, per se, an asymptotic equilibrium. Figure 10 shows the inaction region when we set
A = 0, together with α = 0.9 and B = −1.

Let us compare situations A, B and C where xB = xC = xA < 0. In A, we have q = 0,
meaning no reward or penalty for being away from the MSY value. At xA, the biomass level is
below the MSY value but belongs to an inaction region, commanding the manager not to act
here. Compared to A, in B, we have q = −0.1 rewarding any biomass level that would overcome
the MSY value, which is desirable from a conservationist viewpoint. In such circumstances, the
optimal decision will lead to reduce the TAC. Conversely, in C, the q = 0.4 penalty makes it
profitable to accept a biomass level below the MSY value, in line with an economic target. The
optimal solution will then switch to an increase of the TAC.

Similarly, if the two cases of q = −0.4 and q = 0.4 were to be compared at x = 0.025, an
economic-driven strategy will claim for an increase of the TAC, while the conservationist will
stick to the fixed TAC rule until the biomass far exceed the MSY level, preferring a sort of
precautionary approach.

Figure 10: Position of the inaction region in the state x with respect to q, with α = 0.9 and with σ−
x = σ−

u = 0.2
and σ+

x = σ+
u = 0.5

6. Discussion and conclusion

The paper develops an asymmetric model to deal with the control problem of continuous
stochastic systems with a poorly known dynamics, when the deviations of the desired value
should be taken with unbalanced risk. It is based on the CVIU approach that inbuilt in the
model the fact that control variations increase the overall state uncertainty. This method is
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proposed as an alternative to the robust approach in the context of a poor knowledge of the
system dynamics.

The use of dynamic programming to design the CVIU model controller requires tools from
viscosity analysis, and simple assumptions are made to show that the value function is convex.
The optimal feedback control policy is derived and reveals a region in the state space in which
the policy is to sustain the action while inside it. Making use of a nomenclature already used
in economics, this region is called inaction region, and it creates a precautionary control policy,
not seen in the robust worst-case analysis. It is an expected behavior, since the decision maker
should exercise care to intervene in a not well known system.

The problem is formulated in an infinite time horizon control framework, as a discounted
quadratic cost problem, to study time-invariant optimal solutions. Closed-forms are derived for
the solution inside the inaction region, and asymptotically, far away from it. These solutions
are quadratic functions obtained as a type of Lyapunov (inside the inaction interval) or Riccati
equations (asymptoticaly, as |x| → ∞). Motivated by the fishery management problem, the case
of asymmetric uncertainties is studied here for the first time.

We found that the CVIU framework is particularly appropriate in the case of fishery manage-
ment. It has been recognised that fishery systems dynamics is rather poorly understood, both
on the natural and social grounds. The most conventional management measures are based
on setting catch (TAC) or effort limits, as implemented by the European Common Fisheries
Policy for a number of species (with TACs and quotas fixed every December). However, these
management measures rely on accurate stock assessment which is altered by many sources of
uncertainties: random shocks caused by environmental variability, data based on catches, errors
in parameter estimates, structural uncertainty in ecosystemic models and trophic interactions,
inefficient enforcement of harvest quotas resulting in illegal, unregulated and unreported fishing,
etc.

According to the source of uncertainty (natural resources facing random oscillations of the
environment, stochastic behaviors of fishers responding to harvest control rules), choosing a
constant optimal escapement rule is not always possible, as shown in previous studies (Clark
and Kirkwood (1986), Roughgarden and Smith (1996), Sethi et al. (2005)). Optimal control be-
comes even more erratic when the system-to-be-governed includes uncertainty within the model
structure itself (Hill et al. (2007), Bavinck et al. (2013)). Increasingly, fishery scientists advo-
cate new forms of management policy towards an ecosystemic approach of fisheries, including
robust, experimental or adaptive management, harvest control rules, balanced harvest manage-
ment striving to keep the ecosystem structure and functioning intact, in spite of fishing mortality
(Garcia et al. (2012), Charles et al. (2015)). Fishing across ages and sizes and giving up the
golden rule of selectivity would enhance the fishery system better than usual recommendations
setting an age limit and targeting the older individuals of the fish population. To the extreme,
in some cases, the exploited system could be better off with no management at all, avoiding
costly and impacting changes of management rules for users (Jul-Larsen et al. (2003), Boettiger
et al. (206)), a position argued by other scientists (Garcia et al. (2012), Reid et al. (2016)).

With a poorly known dynamics of the fishery system, the CVIU approach points out the
limit cases within which fishery managers should rather stick to a fixed management rule (e.g.
TAC) instead of adapting it permanently to the latest state of knowledge surrounding stock
assessment and harvest levels. Following the well-known Brainard principle (Brainard, 1967)
applied to the implementation of a monetary policy by a central bank, we demonstrate and
explain the existence of inaction regions for fishery managers. In this particular case, inaction
would not mean for a fishery manager to do nothing at all, but instead to keep a time fixed
harvest control rule like a TAC, rather than adjusting it permanently, in view of the inherent
uncertainties surrounding the model.

Such inaction regions are more likely to be met when the discount rate is high, the biomass
dynamics is stable around the desired level of biomass, and the (state) uncertainty of the biomass
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decreases. When it comes to uncertainty created by the harvest control rules (e.g. changing the
TAC level), we found an asymmetric response of the system dynamics and distinct trends of the
inaction region. When the uncertainty coming from harvest control is caused by a decrease of
the TAC, the fishery manager ought to adjust the control rule on a regular basis. Conversely, if
uncertainty is endogenously created by modifying positively the control rule (i.e. increasing the
TAC), then the inaction region is likely to expand and the laissez-faire policy (no new action)
should be the rule. Whatever the response of the system to new control rules, whenever the
current state of biomass drifts away from the desired (e.g. MSY) level, the inaction region tends
to fade away and managers should change the output control (TAC) level.

The implications for fishery management are important. As long as the biomass state level
is likely to drift away from the desired level, the risk of critical thresholds and tipping points
(Scheffer et al. (2003), Schill et al. (2015), Boettiger et al. (206)) would increase and jeopardize
the survival of the population. As long as changing the TAC is not costly, in terms of creating
additional uncertainty, the precautionary approach should be imposed in such circumstances
and the fishery manager ought to monitor closely the fishery by adjusting downward or upward
more frequently the authorized harvest level. On the other hand, if the biomass fluctuates
around the desired level of conservation, even in the case of a high state uncertainty, the fishery
manager should hold the same control rule and avoid a too frequent intervention. The choice of
the desired state level, together with the willingness to reward or penalize more any deviation
from this desired state level, will impact on existence and magnitude of the inaction region.
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Appendix A. Proof of Lemma 3

Let us assume that point x ∈ R0 and knowing that u∗ = 0, (24) yields,

αV ∗(x)−
{

(Q+
1

2
Q(P, sign(x))x2 +

1

2
H(P, sign(x))x+ (pA+ q)x+

1

2
T (P )

}
= 0 (A.1)

with p = V ∗x and P = V ∗xx if V ∗ is twice differentiable at x; otherwise, (p′, P ′) ∈ D1,2 sp
x V ∗(x)

and (p′′, P ′′) ∈ D1,2 sb
x V ∗(x) with (A.1) changed to corresponding inequalities.

It was already hinted that the value function V ∗(·) inherits convexity as result of Theorem 1,
and a quadratic function provides a good approximation to the optimal cost in a neighborhood of
any point x0. Set here x0 ≤ 0 or x0 ≥ 0 and a sequence {ζk}k≥0 with each ζk an Alexandrov point
of function V ∗ and ζk → x0 having homogenous signals, in such a way that sign(ζk) = −1,∀k
for the former, or sign(ζk) = +1,∀k, for the latter choice. Let us set a quadratic approximation
for V ∗ near x0 and for some ε > 0 and k sufficiently large, we write,∣∣∣∣V ∗(x)−

(
V ∗(ζk) + V ∗x (ζk)(x− x0) +

1

2
V ∗xx(ζk)(x− x0)2

)∣∣∣∣ < ε,

provided that x ∈ R0, and ‖x− x0‖ < δ = δ(ε). It follows from Alexandrov theorem for convex
functions (Niculescu and Persson, 2006, Th 3.11.2) that 0 ≤ V ∗xx(ζk) ≤ ρI, for some ρ > 0.

Consider a point x in the neighborhood of x0 as above. Substituting the approximation of
V ∗ at such a x near x0 into (A.1), one can write that

α

(
V ∗(ζk) + V ∗x (ζk)(x− x0) +

1

2
V ∗xx(ζk)(x− x0)2

)
−
{

(Q+
1

2
Q(V ∗xx(ζk), sign(ζk))x

2 +
1

2
H(V ∗xx(ζk), sign(ζk))x+ qx

+ (V ∗xx(ζk)(x− x0) + V ∗x (ζk))Ax+
1

2
T (V ∗xx(ζk))

}
(A.2)

is dominated from above and from below by some ±γ(ε) with γ(ε) → 0 as ε → 0. Rearranging
(A.2),

1

2

(
(2A− α)V ∗xx(ζk) + 2Q+Q(V ∗xx(ζk), sign(ζk))

)
x2

+
(
q +

1

2
H(V ∗xx(ζk), sign(ζk)) + (α−A)V ∗xx(ζk)x0 + (A− α)V ∗x (ζk)

)
x

− αV ∗(ζk) +
1

2
T (V ∗xx(ζk)) + αV ∗x (ζk)x0 −

1

2
αV ∗xx(ζk)x

2
0. (A.3)

Taking the limit of {ζk}k≥0, the choices V ∗xx(x) = 2Xs and V ∗x (x) = vs, with s = −1 or s = +1
as appropriate, the above expression reads as:(

(2A− α)Xs +Q+Q(Xs, s)
)
x2

+
(
q +H(Xs, s) + (α−A)(2Xsx0 − vs)

)
x

− αV ∗(x0) + T (Xs)− α(Xsx2
0 − vsx0). (A.4)

Suppose that (2A−α)Xs+Q+Q(Xs, s) = 0 has a positive solution for Xs. Then one can set
the Hamiltonian to zero by a qualified choice of the parameter vs and obtain the corresponding
value of V ∗(x0) from (A.4). That provides the quadratic representation for the value function,

V ∗(x) = Xs(x− x0)2 + vs(x− x0) +
T (Xs)

α
− (Xsx2

0 + vsx0) (A.5)
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valid for each x ∈ R0 in a neighborhood of x0 of same signal. Note that one may choose x0 such
that sign(x0) = s, but otherwise arbitrarily, to set (A.3) to zero.

Recall the definition of region R0 in (29), Lemma 2. In the present situation, with quadratic
running costs, the HJB equation in (24) specialized for region R0 in (A.1) for the time-invariant

solution, V ∗ in (A.5), one obtains P = 2Xs, p = 2Xs(x−x0)+vs with vs = − q+H(Xs,s)
A−α +2Xsx0,

valid for x, x0 ∈ R0 of same signals. Now let x0 ↑ 0 if s = −1, and x0 ↓ 0 if s = +1, to obtain
form Lemma 2 the characterization,

R0 = {x ≤ 0 : −2X−σ̄uσ+
u ≤ B(2X−x+ v−0 ) + r ≤ 2X−σ̄uσ−u }∪

{x ≥ 0 : −2X+σ̄uσ
+
u ≤ B(2X+x+ v+

0 ) + r ≤ 2X+σ̄uσ
−
u }

(A.6)

with v+
0 = − q+H(X+,+)

A−α and v−0 = − q+H(X−,−)
A−α as in (36). Rearranging (A.6), we obtain (37).

It remains to show that R0 expressed by (A.6) is a connected region. Note for this purpose
that x → V ∗x (x) is defined for x < 0 or x > 0 inside R0, and it should be monotone increasing
function from the fact that V ∗ is convex (piecewise quadratic) function1. If B > 0, consider the
upper limit of the first interval and the lower limit of the second one. Otherwise, consider the
lower limit of the first interval and the upper limit of the second one. Region R0 will be connect
provided that

B > 0 :

{
BV −x (z − σ̄uσ

−
u

B ) + r ≤ 0,

BV +
x (y + σ̄uσ

+
u

B ) + r ≥ 0.
B < 0 :

{
BV −x (z + σ̄uσ

+
u

B ) + r ≥ 0,

BV +
x (y − σ̄uσ

−
u

B ) + r ≤ 0.

with z ≥ y.
Let us assume that the interval R0 is not connected for the case B > 0. This is equivalent

to assume that there exist a z+ with BV −x (z+ − σ̄uσ−u /B) + r = 0 and a y− with BV +
x (y− +

σ̄uσ
+
u /B) + r = 0 with z+ < y−. It then follow that

V −x (z+ − σ̄uσ
−
u

B
) = V +

x (y− +
σ̄uσ

+
u

B
) = − r

B

Since x → V ∗x (x) is monotone increasing function, the above would imply that V ∗x (x) = −r/B
in the interval z+ − σ̄uσ−u /B ≤ x ≤ y− + σ̄uσ

+
u /B and hence V ∗xx(x) = 0 in the same interval.

However, from the HJB equation (24) comes the fact that the optimal control would be u∗(x) = 0
in the same interval, which denies the assumption and implies the fact that region R0 is a
connected interval.

When B < 0 the proof follows exactly the same arguments considering the interval z+ +
σ̄uσ

+
u /B ≤ x ≤ y− − σ̄uσ−u /B, and the details are omitted. �

Appendix B. Proof of Lemma 4

We take into account the HJB equation (24) in Proposition 3. As in Section 4.3, let us employ
the quadratic approximation here in a neighborhood of a point x0 with |x0| > L for some large
value of L. For this, consider the HJB equation in (24) with a quadratic approximation valid

1A generalized verson of the monotocity pointed out can be developed when V ∗ is not differentiable but convex.
We choose to write these arguments when V ∗ is continuously differentiable and V ∗

x exists as a standard function,
to not impair the clarity with too many technical details. However, they can be shown in the general case.
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for x near x0,

α

(
V ∗(ζk) + V ∗x (ζk)(x− x0) +

1

2
V ∗xx(ζk)(x− x0)2

)
− inf
u∈U

{
(Q+

1

2
Q(V ∗xx(ζk), sign(ζk))x

2 +
1

2
H(V ∗xx(ζk), sign(ζk))x+ qx

+ (R+
1

2
R(V ∗xx(ζk), sign(u)))u2 +

1

2
G(V ∗xx(ζk), sign(u))u+ ru

+ (V ∗xx(ζk)(x− x0) + V ∗x (ζk))(Ax+Bu) +
1

2
T (V ∗xx(ζk))

}
(B.1)

Let us denote,

R̃k = R+
1

2
R(V ∗xx(ζk), sign(u)) (B.2a)

Q̃k = Q+
1

2
Q(V ∗xx(ζk), sign(ζk)) (B.2b)

Υ̃k = Υ 1
kx+ Υ 0

k (B.2c)

with Υ 1
k = V ∗xx(ζk)B, and

Υ 0
k = (V ∗x (ζk)− x0V

∗
xx(ζk))B +

1

2
G(V ∗xx(ζk), sign(u)) + r

Rearranging (B.1) it gives,

1

2

(
(2A− α)V ∗xx(ζk) + 2Q̃k

)
x2

+
(
q +

1

2
H(V ∗xx(ζk), sign(ζk)) + (α−A)V ∗xx(ζk)x0 + (A− α)V ∗x (ζk)

)
x

− αV ∗(ζk) +
1

2
T (V ∗xx(ζk)) + αV ∗x (ζk)x0 −

1

2
αV ∗xx(ζk)x

2
0

+ inf
u∈U

{
R̃ku

2 + Υ 1xu+ Υ 0u
}

(B.3)

and since

R̃ku
2 + Υ 1xu+ Υ 0u =

(u+
1

2
R̃−1
k (Υ 1x+ Υ 0))R̃k(u+

1

2
R̃−1
k (Υ 1x+ Υ 0))− 1

4
(Υ 1x+ Υ 0)R̃−1

k (Υ 1x+ Υ 0) =

R̃k(u+
1

2
R̃−1
k (Υ 1x+ Υ 0))2 − 1

4
R̃−1
k (Υ 1x+ Υ 0)2 (B.4)

and R̃k > 0, one has that

inf
u∈U
{R̃ku2 + Υ 1xu+ Υ 0u} = −1

4
R̃−1
k (Υ 1x+ Υ 0)2

Hence, the optimal control at x is

u∗ = −1

2
R̃−1
k (Υ 1x+ Υ 0)
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and (B.3) can be written as

1

2

(
(2A− α)V ∗xx(ζk) + 2Q̃k −

1

2
R̃−1
k (Υ 1

k )2
)
x2

+
(
q +

1

2
H(V ∗xx(ζk), sign(ζk)) + (α−A)V ∗xx(ζk)x0 + (A− α)V ∗x (ζk)−

1

2
R̃−1
k Υ 1

kΥ
0
k

)
x

− αV ∗(ζk) +
1

2
T (V ∗xx(ζk)) + αV ∗x (ζk)x0 −

1

2
αV ∗xx(ζk)x

2
0 −

1

4
R̃−1
k (Υ 0

k )2 (B.5)

Denote sign(x0) = sx and sign(u) = su. Taking the limit of any sequence {ζk}k≥0 with each
ζk an Alexandrov point, sign(ζk) = sx and ζk → x0, together with the choice V ∗xx(x) = 2X to
get from (B.5) that(

(2A− α)X +Q+Q(X, sx)− (R+R(X, su))−1(XB)2
)
x2

+
(
q +H(X, sx) + 2(α−A)Xx0 + (A− α)V ∗x (x0)

− (R+R(X, su))−1XB{(V ∗x (x0)− 2x0X)B + G(X, su) + r}
)
x

− αV ∗(ζk) + T (X) + αV ∗x (ζk)x0 − αXx2
0

− 1

4
(R+R(X, su))−1((V ∗x (x0)− 2x0X)B + G(X, su) + r)2 (B.6)

holds. Now, assume that the quadratic equation,

(2A− α)X +Q+Q(X, sx)− (R+R(X, su))−1(XB)2 = 0

has a solution X > 0. Since x0 is arbitrary, except for its signal, one can set x0 ↑ 0 or ↓ 0
accordingly. For that, the quadratic of form V (x) = Xx2 + vx+ ` with an appropriate choice of
v and ` can be set V ∗(x) = V (x) and V ∗x (x) = Vx(x) = 2Xx+ v in such a way that (B.6) is set
to zero by simply choosing v and ` such that,

q +H(X, sx) + (A− α)v − (R+R(X, su))−1XB{Bv + G(X, su) + r} = 0 (B.7)

− α`+ T (X)− 1

4
(R+R(X, su))−1(Bv + G(X, su) + r)2 = 0 (B.8)

Such a quadratic functions V defines an upper bound for the optimal V ∗ at the positive and
negative line, since they satisfy the HJB equation at a point x with |x| → ∞. �
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