

Reproductive allocation strategies: a long-term study on proximate factors and temporal adjustments in a viviparous lizard

Josefa Bleu, Jean-François Le Galliard, Patrick S. Fitze, Sandrine Meylan, Jean Clobert, Manuel Massot

▶ To cite this version:

Josefa Bleu, Jean-François Le Galliard, Patrick S. Fitze, Sandrine Meylan, Jean Clobert, et al.. Reproductive allocation strategies: a long-term study on proximate factors and temporal adjustments in a viviparous lizard. Oecologia, 2013, 171 (1), pp.141-151. 10.1007/s00442-012-2401-1. hal-03193611

HAL Id: hal-03193611 https://hal.science/hal-03193611

Submitted on 8 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Reproductive allocation strategies: a long-term study on proximate

2 factors and temporal adjustments in a viviparous lizard

- 3 Josefa Bleu^{*1,2}, Jean-François Le Galliard^{1,3}, Patrick S. Fitze^{4,5}, Sandrine Meylan^{1,6}, Jean
- 4 Clobert⁷ & Manuel Massot¹
- 5
- ¹ CNRS ; UPMC ; ENS UMR 7625, Laboratoire Ecologie et Evolution, 7 Quai St. Bernard,
 75005 Paris, France.

² Université de Savoie ; CNRS – UMR 5553, Laboratoire d'Ecologie Alpine, 73370 Le Bourget
du Lac, France

- ³ CNRS ; ENS UMS 3194, CEREEP Ecotron IleDeFrance, École Normale Supérieure, 78
- 11 rue du Château, 77140 St-Pierre-lès-Nemours, France.
- ⁴ University of Lausanne, Department of Ecology and Evolution (DEE), Biophore, 1015
 Lausanne, Switzerland.
- ⁵ Instituto Pirenaico de Ecología (IPE-CSIC) and Fundación ARAID, Avenida Regimiento de
- 15 Galicia s/n, 22700 Jaca, Spain.
- ⁶ IUFM de Paris Université Sorbonne Paris IV, 10 rue molitor, 75016 Paris, France.
- ⁷ CNRS, USR 2936, Station d'Ecologie Expérimentale du CNRS à Moulis, 09200 Saint Girons,
- 18 France.
- 19
- 20 * Author for correspondence:
- 21 Université de Savoie UFR CISM, UMR 5553 Laboratoire d'Ecologie Alpine Josefa Bleu
- 22 73376 Le Bourget du Lac Cedex
- 23 Tel: + 33 4 79 75 88 86; email: josefa.bleu@gmail.com
- 24
- 25 The final publication is available at <u>www.springerlink.com</u>
- 26 Citation: J. Bleu, J.-F. Le Galliard, P. S. Fitze, S. Meylan, J. Clobert & M. Massot (2013)
- 27 Reproductive allocation strategies: a long-term study on proximate factors and temporal
- 28 adjustments in a viviparous lizard. Oecologia. 171: 141-151. <u>doi:10.1007/s00442-012-2401-1</u>.

29 Abstract

30 Optimisation of reproductive investment is crucial for Darwinian fitness, and detailed long-term 31 studies are especially suited to unravel reproductive allocation strategies. Allocation strategies 32 depend on the timing of resource acquisition, the timing of resource allocation, and trade-offs 33 between different life-history traits. A distinction can be made between capital breeders that fuel 34 reproduction with stored resources and income breeders that use recently acquired resources. In 35 capital breeders, but not in income breeders, energy allocation may be decoupled from energy 36 acquisition. Here, we tested the influence of extrinsic (weather conditions) and intrinsic (female 37 characteristics) factors during energy storage, vitellogenesis, and early gestation on reproductive 38 investment, including litter mass, litter size, offspring mass and the litter size and offspring mass 39 trade-off. We used data from a long-term study of the viviparous lizard, Lacerta (Zootoca) 40 vivipara. In terms of extrinsic factors, rainfall during vitellogenesis was positively correlated 41 with litter size and mass, but temperatures did not affect reproductive investment. With respect 42 to intrinsic factors, litter size and mass were positively correlated with current body size and 43 postpartum body condition of the previous year, but negatively with parturition date of the 44 previous year. Offspring mass was negatively correlated with litter size, and the strength of this trade-off decreased with the degree of individual variation in resource acquisition, which 45 46 confirms theoretical predictions. The combined effects of past intrinsic factors and current 47 weather conditions suggest that common lizards combine both recently acquired and stored 48 resources to fuel reproduction. The effect of past energy store points out a trade-off between 49 current and future reproduction.

50

51 **Keywords:** capital breeder, energy allocation, phenotypic plasticity, viviparity, trade-off.

53 **INTRODUCTION**

Reproductive allocation decisions are of central interest in evolutionary ecology as they 54 determine lifetime reproductive success and some of the costs associated with reproduction (Roff 55 56 2002). It is possible to distinguish the allocation of resources to reproduction (i.e. how much to 57 invest in reproduction) and the allocation of reproductive resources between the size and number of offspring. The energy invested into reproduction by a female depends on the total amount of 58 59 energy available, and reproductive investment as well as allocation rules are under maternal 60 and/or environmental (e.g. climatic) controls. In animals, there are capital breeding species that fuel reproduction with stored resources and income breeding species that use recently acquired 61 62 resources (Stephens et al. 2009). Thus, in capital breeders pre-reproductive resource stores or 63 environmental conditions experienced during the energy storage period, such as food 64 availability, should correlate with future reproductive investment (Doughty and Shine 1997, 1998; Bonnet et al. 2001; Lourdais et al. 2002; Reading 2004) or future reproductive success 65 66 (Festa-Bianchet 1998). However, the capital and income breeding strategies describe only the 67 extremes of a continuum (e.g. Houston et al. 2007). Thus, females may adjust their energy 68 allocation strategy at multiple points in the reproductive cycle. In particular, adjustment of 69 offspring size or litter size may occur during gestation in viviparous (i.e. live-bearing) species 70 via embryo resorption or nutritional transfer. In viviparous lizards, for example, food and thermal 71 conditions experienced by the mother during gestation can affect offspring mass at birth (e.g. 72 Shine and Downes 1999; Swain and Jones 2000). A second aspect of reproductive investment decisions is the existence of trade-offs between reproduction and other life-history traits, 73 74 including trade-offs between different reproductive events. In particular, current fecundity can 75 be traded-off with future fecundity. For example, a high investment in reproduction decreases the probability to breed again and thus increases the inter-breeding interval (e.g. Bonnet et al. 76

2001; Hadley et al. 2007), or a lower investment in reproduction increases survival later in life
(e.g. Clutton-Brock et al. 1983; Massot et al. 2011). In line with this trade-off hypothesis,
experiments in mammals (Koivula et al. 2003), lizards (e.g. Cox and Calsbeek 2010) and birds
(e.g. Richner and Tripet 1999; Hanssen et al. 2005) demonstrate that a higher reproductive effort
results in a decrease in survival or fecundity the following year.

82 Finally, females can also adjust how the energy is allocated into each offspring (e.g. offspring mass), i.e. how the trade-off between litter size and offspring mass is solved. Females may vary 83 84 in their resource stores and resource acquisition efficiency (Doughty and Shine 1997; Glazier 1999). The van Noordwijk and de Jong's model (1986) suggests that trade-offs will be weaker 85 86 if variation in resources acquisition is high relative to variation in resources allocation. 87 Furthermore, the pattern of energy allocation to offspring mass may follow distinct pathways. It 88 is often assumed that females decide in a sequential manner, first deciding how much to invest 89 into reproduction, and then, how much to invest in litter size versus offspring mass (e.g. Charnov 90 et al. 1995). However, investment and allocation decisions may also be simultaneous, genetically 91 linked, or correlated, as suggested by an old theoretical model (Winkler and Wallin 1987) and 92 by evidence from natural populations (Christians 2000; Uller et al. 2009).

Long-term studies are especially suited to disentangle the effects of past and present, and 93 94 extrinsic and intrinsic factors on both total reproductive investment and reproductive allocation 95 in litter size versus offspring mass. Squamate reptiles (i.e. lizards and snakes) are good model species for such studies because they often lack parental care (Shine 2005), and thus reproductive 96 investment is completed during vitellogenesis and gestation in viviparous species. Moreover, 97 98 potential factors affecting the investment in reproduction are well identified. In many squamates, 99 body size influences reproductive output, such that larger females invest more in reproduction 100 than smaller females (e.g. Shine 2005). Some squamates are typical capital breeder but others 101 may also use mixed capital and income strategies (e.g. Bonnet et al. 2001; Houston et al. 2007).

102 Weather conditions are also of particular importance for reproduction because they directly 103 affect habitat quality and food availability and also because foraging performances are linked to 104 the ability to maintain optimal body temperatures (Le Galliard et al. in press). Thus, we expect 105 that reproductive decisions should be largely dependent on pre-reproductive resource stores, 106 food availability and weather conditions in squamates. Moreover, because parturition dates 107 affect the duration of the energy storage period, early breeders may be able to capitalise more 108 resources than late breeders for the next reproductive event. In this study, we used 13 years of 109 field data on the viviparous common lizard, Lacerta (Zootoca) vivipara, to test the effects of 110 extrinsic factors (temperature and rainfall during the current and previous year) and intrinsic 111 factors (current body size, previous postpartum body condition (PBC), previous parturition date) 112 on reproductive output. From previous studies on the common lizard we know the following. 113 First, life-history traits are sensitive to variation in air temperature and rainfall (Chamaillé-114 Jammes et al. 2006; Marquis et al. 2008; Le Galliard et al. 2010). Second, stored lipids decrease 115 during vitellogenesis (Avery 1974) and vitellogenesis occurs during a short period of 3 weeks 116 after winter emergence (Bauwens and Verheyen 1985), which are features of capital breeders. 117 Third, females can assimilate food during vitellogenesis (Avery 1975) and there are maternal effects during gestation (e.g. Massot and Clobert 1995; Marquis et al. 2008), which are features 118 119 of income breeders.

Previous studies on *L. vivipara* addressed the effects of current weather (Marquis et al. 2008; Le Galliard et al. 2010) and of social interactions (Le Galliard et al. 2008) on reproductive investment, but none investigated the relative importance of past and present factors. We therefore specifically tested the importance of the previous year's weather conditions and female condition on reproductive investment. If common lizards are true capital breeders, we predict that weather conditions during energy storage, PBC and/or parturition date of the previous year should affect reproductive investment (litter mass, litter size and offspring mass). A correlation of reproductive investment decisions with weather conditions during vitellogenesis and/or gestation would suggest income breeding. Finally, an intermediate situation would suggest a mixed strategy. We expect the strength of the litter size and offspring mass trade-off to depend on the variation in resource acquisition and resource allocation as predicted by the van Noordwijk and de Jong's model (1986).

132 MATERIAL AND METHODS

133 Model species

134 Lacerta (Zootoca) vivipara is a small (50-70 mm adult snout-vent length, SVL) ground-dwelling 135 lizard that is widely distributed across Eurasia. We studied viviparous populations located in the 136 Massif Central mountain range (south-eastern France) where the reproductive cycle is annual 137 (Fig. 1). In this area, adults start to become active around mid-April (males) or early May 138 (females). Emergence of the females from hibernation is highly synchronised, with mating 139 occurring 0-3 days after emergence and reproductive investment (vitellogenesis) occurring on 140 average during the first 3 weeks after emergence (Bauwens and Verheyen 1985) (first 3 weeks 141 of May for the Massif Central populations). During gestation, a primitive chorioallantoic placenta allows respiratory, aqueous and mineral exchanges between mother and embryos 142 143 (Panigel 1956; Stewart et al. 2009). Parturition occurs after an average gestation period of 2 months, i.e. in late July to mid-August. Mean litter size is five (range 1-12), including both 144 145 nonviable offspring (fertilised or unfertilised eggs where only yolk is visible, undeveloped 146 embryos, and stillborns) and live offspring. Live offspring hatch immediately after parturition 147 and are thereafter autonomous. Adult females replenish their lipid stores during the summer 148 immediately after parturition and gradually enter into hibernation in September (Avery 1974; 149 Bauwens 1981).

150 **Population survey and rearing conditions**

151 Longitudinal data on reproductive strategies were obtained from a long-term mark-recapture 152 survey conducted each year from 1990 to 2002 in a population at Mont-Lozère (1,420 m a.s.l., 153 44°23'03''N, 3°52'40''E) that consists of two adjacent habitats with different structures (Clobert 154 et al. 1994). Adult females were captured on average 1 month before parturition (June), identified 155 or marked by toe-clipping, and kept in the laboratory until parturition (rearing conditions as in 156 Massot and Clobert 1995). After parturition, litter size was recorded, and females and their live 157 offspring were weighed. Females were then released together with their live offspring at the 158 original capture location 3-5 days after parturition. We recorded litter size for all litters (litters 159 containing exclusively viable offspring and litters containing nonviable offspring), and we 160 calculated litter mass and offspring mass only for litters containing exclusively viable offspring 161 (because we could not avoid the desiccation of the nonviable offspring and thus could not weight 162 them accurately). Litter mass was the sum of all offspring body masses, and offspring mass was 163 litter mass divided by litter size.

164 Weather

165 Temperature and rainfall data were recorded by Météo-France at a meteorological station 166 situated at a similar altitude, 50 km south of the study site (Mont Aigoual, 1,567 m a.s.l., 44°07' 167 N, 3°35' E, see Chamaillé-Jammes et al. 2006; Marquis et al. 2008). We used daily maximum 168 temperature and daily cumulative amount of precipitation as descriptors of thermoregulation 169 opportunities and habitat humidity (Huey 1982). For each year, we calculated mean values for 170 different periods of the reproductive cycle, namely (1) during the previous summer activity 171 season (energy storage period), (2) during vitellogenesis, and (3) during the early gestation 172 period in natura (see Fig. 1 for more details). Correlations between these variables are reported 173 in Electronic Supplementary Material (ESM) 1. We tested the effects of temperature during energy storage and temperature during early gestation both separately and together to address 174

175 potential colinearity issues caused by a significant correlation between these variables. Effects

176 were all robust, and colinearity was therefore not a strong issue in our analyses.

177 Offspring mass and litter size trade-off

178 We also modelled the trade-off between offspring mass and litter size in more detail. Correlations 179 were run between offspring mass and residual litter size for each year (Pearson correlations). We 180 also ran correlations on log-transformed variables to make the results comparable with those 181 reported in recent publications (e.g. Christians 2000). Van Noordwijk and de Jong's model 182 (1986) predicts that more negative correlations should be found when variation in resource 183 acquisition is low compared to variation in resource allocation. Christians (2000) adapted the 184 van Noordwijk and de Jong's model (1986) to the litter size and offspring mass trade-off by 185 calculating the variation in resource acquisition as the variation in total reproductive investment, 186 i.e. variation in clutch or litter mass. Thus, as suggested by Christians (2000), we calculated the 187 allocation as (log(offspring mass)/(log (litter mass)) and the investment as (log(litter mass)). 188 Then, to avoid the confounding effect of maternal size, we used the residuals of a linear 189 regression of these variables (investment or allocation) against maternal SVL (Christians 2000; 190 Brown 2003). We calculated the variances of these residuals to estimate the variation in female 191 investment and in female allocation. These variances were calculated for each year. We expect 192 a negative relationship between the ratio of allocation variance to investment variance and the 193 Pearson's correlation coefficient between offspring mass and litter size.

- 194
- 195

196 Statistical analyses

All statistical models were implemented in R 2.14.1 statistical software (<u>http://cran.r-</u> <u>project.org/</u>). We analysed variation in the litter mass, litter size, and offspring mass at birth of litters containing exclusively viable offspring (n = 157) and variation in litter size of all litters 200 (i.e. litters containing exclusively viable offspring and litters containing nonviable offspring, n201 = 239) with mixed-effects linear models, including year as a random effect (Pinheiro and Bates 202 2000) (Ime procedure). The annual sample sizes are reported in ESM 2. Fifty females were 203 captured several times in two successive years, and the measurements performed on them cannot 204 be assumed independent. To be sure that there is no problem of pseudo-replication (only some 205 females appeared several times in the dataset) we also did the same statistical analyses with two 206 random effects: year and female identity (Imer procedure). Both analyses yielded very similar 207 results (see ESM 3 and 4 for the results with two random effects).

208 A first random-effect model was fitted to assess inter-annual variation. Then, a mixed-effect 209 model was fitted to test for intrinsic effects. In this model, we included, as explanatory variables, 210 PBC of the previous reproductive season [PBC(t-1)], parturition date of the previous 211 reproductive season [parturition(t-1)], and female SVL during the current reproductive season 212 [SVL(t)]. Body condition was calculated as residuals of a linear regression of body mass against 213 SVL. We also added a habitat effect (there are two habitats in our study site, see "population 214 survey and rearing conditions") because previous studies have reported spatial differences in life 215 history traits between these two habitats (Clobert et al. 1994). For offspring mass, we modelled 216 a potential trade-off with litter size. Since litter size and maternal SVL are correlated (Pearson's 217 r = 0.66, P < 0.0001), we included relative litter size in the model (residuals of a linear regression 218 of litter size against maternal SVL). To test for potential differences between litters containing 219 exclusively viable offspring and litters containing at least one nonviable offspring, we included 220 a categorical effect ("success") when analysing all litters. The full model included additive and 221 first-order interaction terms. A first minimum adequate model was selected using both backward elimination and forward selection of higher order interactions based on the Akaike Index 222 223 Criterion (AIC). Finally, additive effects of weather conditions were added to the first minimum 224 adequate model. A second minimum adequate model was then selected using the same procedure

as mentioned above. We report only significant effects using F tests based on restricted maximum
likelihood conditional estimates of variance. Estimates ± standard errors (SE) are shown for fixed
effects and the 95% confidence intervals (CI) are given for random effects.

228 **Results**

229 Reproductive data for 239 females, including 157 exclusively viable litters and 82 litters 230 containing nonviable offspring, were collected over a 13-year period. We found no effect of temperature or habitat in any of the models tested (Table 1). The mass and size of litters 231 containing exclusively viable offspring were positively correlated with rainfall during 232 233 vitellogenesis (Table 1, Fig. 2), as well as with current female body size and with female PBC 234 the previous year (Fig. 3a). However, offspring mass was only explained by residual litter size 235 (litter size corrected by the maternal body size, Table 1). The size of all litters (litters containing 236 exclusively viable offspring and litters also containing nonviable offspring) increased with 237 rainfall during vitellogenesis and female body size, but was additionally influenced by the 238 interaction between the parturition date the previous year, PBC the previous year and litter 239 success of the current year (Table 1). In fact, consistent with the analysis reported above, the 240 interaction between parturition date and PBC the previous year was not significant for litters 241 containing exclusively viable offspring (partial test with "successful" litters: $F_{1,141} = 1.54$, P =0.22). This interaction was significant for litters containing nonviable offspring (partial test with 242 "unsuccessful" litters: $F_{1,66} = 7.73$, P = 0.0071, Fig. 3b). In these unsuccessful litters, PBC had 243 244 a positive effect on litter size for females giving birth late in the season but not for early breeders 245 (Fig. 3b).

Inter-annual variation was estimated using mixed-effects linear models with reproduction year
as random effect. Annual factors explained between 15.93 and 27.67 % of the total inter-annual
standard deviation in reproductive traits (Table 2). Intrinsic factors (body size and condition)

explained a large part of the inter-annual variation in litter size (for litters containing exclusively
viable offspring and all litters) and litter mass (Table 2), but inter-annual variation in offspring
mass remained unchanged when significant intrinsic factors (residual litter size) were included
in the model (Table 2). The effect of rainfall during vitellogenesis, which was significant for
litter mass and litter size, explained all remaining inter-annual variation in these two reproductive
traits (Table 2).

In litters containing exclusively viable offspring, the correlations between residual litter size and offspring body mass were negative in all years (7 years not significant, Table 3) and there was an annual variation in the strength of the correlation (Table 3). Our analysis confirmed the existence of a strong, negative relationship between the variance ratio and the correlation between litter size and offspring mass (Figure 4, Pearson's r = -0.860, range = [-0.960; -0.566], P = 0.0003). These results are in line with analyses based on log transformed values of offspring mass and litter size (ESM 5).

262 **Discussion**

In this study we tested how weather conditions and female characteristics may affect reproductive investment at different time scales, especially with regard to the relative importance of past and present factors. Our major results are that reproductive investment is positively correlated with current rainfall and female condition the year before, and is negatively correlated with the parturition date of the previous reproduction. Our data also indicate that adjustments of the reproductive investment occurred via the number of offspring and that offspring mass was subsequently traded-off with litter size.

270 **Reproduction and weather conditions**

We investigated the effects of weather conditions on reproductive investment because they can have direct or indirect effects. First, weather conditions can directly influence the metabolism 273 and physiology of an animal. In particular, in ectotherms, it is known that temperatures influence 274 directly maternal activity (opportunity to feed), the efficiency of food assimilation (e.g. Adolph 275 and Porter 1993) and, during gestation, embryonic development (see below). Yet, in this study, 276 we found no effect of temperatures on litter size, litter mass and offspring mass at birth. Previous 277 laboratory experiments in viviparous squamates found effects of temperature or basking 278 opportunities during gestation on offspring mass (Shine and Harlow 1993; Doughty and Shine 279 1998; Swain and Jones 2000; Wapstra 2000; Hare and Cree 2010). Experiments in the laboratory 280 may not reflect the natural variations of thermal conditions and also may reduce the possibility 281 of a maternal response to compensate such variations. Some field studies have been conducted, 282 and different results have been found, with some authors finding no effect of temperature during 283 gestation on offspring size at birth (Vipera aspis Lourdais et al. 2004; Niveoscincus ocellatus, 284 Cadby et al. 2010) and other authors finding an effect of temperature during gestation on 285 offspring mass at birth but only at some altitudes (Niveoscincus ocellatus, Uller et al. 2011). 286 Thus, under natural conditions, females may be able to compensate for poor climatic conditions 287 - for example, by active thermoregulation - and may thus not be so strongly constrained by 288 thermal conditions (Webb et al. 2006). In particular, when there is strong selection to produce 289 larger offspring, females may be strongly selected to compensate for poor thermal conditions 290 (for example, despite an increased predation risk) (Uller et al. 2011).

Second, weather conditions can have indirect effects on females since they influence habitat quality. Weather conditions influence environmental productivity and thus food availability: more rainfall can be associated with a higher productivity and a higher reproductive investment (e.g. Jordan and Snell 2002). In this case, the positive effect of rainfall during vitellogenesis on reproductive investment may indicate income breeding for the common lizard. This result shows that rainfall may be more important for successful breeding than thermal conditions. However, the confirmation of underlying mechanisms and of income breeding will require direct tests of

resource use either by measuring body composition and resource allocation with isotopic 298 299 analysis (e.g. Warner et al. 2008) or by manipulating the food intake during vitellogenesis (e.g. 300 Lourdais et al. 2003). We also observed that weather conditions experienced during gestation 301 had no effect on reproductive investment, confirming previous findings (Marquis et al. 2008; 302 Bleu et al. 2011). Finally, we observed that weather conditions experienced during energy 303 storage, here taken to correspond to the summer activity of the previous year, had no effect on reproductive investment. Thus, this period may not be limiting for females. This result is in line 304 305 with an experimental manipulation in the common lizard: manipulation of food intake after 306 parturition during the summer revealed no major effect of food availability on reproductive 307 investment the following year (Mugabo et al. 2011).

308 **Reproduction and intrinsic factors**

Body size was positively correlated with current reproductive investment. Body size may limit a female's reproductive output due to size-dependent availability of abdominal space (Qualls and Shine 1995). Furthermore, larger lizards are usually more efficient foragers (González-Suárez et al. 2011) and thus have more resources to allocate to reproduction than smaller lizards, leading to a positive relationship between body size, fat body reserves and reproductive investment (Avery 1974, 1975).

315 We also investigated the effects of PBC and parturition date of the previous year on current 316 reproduction. PBC indicates the resource stores of the female after reproduction, and parturition 317 date the previous year determines the length of the energy storage period. We found a positive 318 effect of PBC the previous year on current reproductive investment. This result may suggest 319 capital breeding as in other species (e.g. Doughty and Shine 1997; Festa-Bianchet 1998). 320 However, such a long-term effect of body condition is somewhat surprising since lizards can 321 store resources during the summer after reproduction and may thus compensate for a low PBC. 322 The lack of compensation suggests that feeding rate is positively correlated with body condition

and that a low PBC indicates probably a low individual quality. In addition, we found a statedependent effect of the parturition date of the previous year on current reproductive investment for females that produced litters containing nonviable offspring. In these cases, litter size was constrained by PBC of the previous year when females gave birth late in the previous season, but not when females gave birth early in the previous season. This illustrates that earlier breeding and parturition may be advantageous for subsequent reproduction for some females.

329 The effect of previous PBC on current reproductive investment suggests a trade-off between 330 successive reproductive events, because a low PBC is associated with a stronger reproductive 331 effort in the common lizard (Le Galliard et al. 2010). The mechanisms of such trade-offs are 332 increasingly studied. First, there may be a simple energetic link between the two reproductive 333 events (Roff 2002): females that used more energy have fewer resources for the next season and 334 may not be able to compensate this difference. However, more complex scenarios are also 335 possible. Resources allocated to reproduction are not available for other functions, which may 336 thus be down-regulated as a consequence of a high reproductive investment, leading to a lower 337 investment in reproduction the following year. For example, a reduction of the investment in the 338 immune system may increase the risks of infection and thus decrease the condition of the female 339 and consequently its reproductive investment. Major functions that can be down-regulated are 340 the immune system (e.g. Gustafsson et al. 1994; Hanssen et al. 2005; French et al. 2007; Cox et 341 al. 2010), the oxidative defence (e.g. Alonso-Alvarez et al. 2004) and growth (e.g. Landwer 342 1994). Reduction in growth may be an important costs in species where female size is positively 343 correlated with female fecundity, as typically observed in squamates but also in other species 344 (e.g. in a crustacean, Berglund and Rosenqvist 1986). In this study we did not measured growth, 345 but we used female current size as a covariate in the statistical models. Thus, we have corrected 346 our analyses for potential differences in growth and quantified the effects of PBC and parturition

347 date independently from their potential effects on growth. Future studies should attempt to348 measure these different functions to understand their relative importance.

349 Offspring mass and litter size trade-off

350 More than two decades ago, van Noordwijk and de Jong (1986) suggested that trade-offs will be 351 more difficult to detect if variation in resources acquisition is high relative to variation in 352 resources allocation. We tested this hypothesis on the litter size and offspring mass trade-off. We 353 found a strong correlation between the variance ratio (i.e. the ratio of allocation variance to 354 investment variance) and the strength of the litter size and offspring mass trade-off, confirming 355 the prediction of the van Noordwijk and de Jong's model (1986). Previous studies in different 356 species and situations also confirmed this prediction. Christians (2000) explained inter-specific 357 variation in the strength of the trade-off between different bird species of the same order. This 358 prediction has also been confirmed at the intra-specific level between years or different populations of the same species in scorpions (Brown 2003) and in lizards (Jordan and Snell 359 360 2002). In the common lizard, Uller and Olsson (2005) compared field and laboratory data for a 361 given year. They showed that the strength of the trade-offs was higher under laboratory 362 conditions, i.e. when variation in resources acquisition was presumably lower. Our study on a 363 multi-annual data set from a natural population also confirms the van Noordwijk and de Jong's 364 model (1986).

Despite annual variations in the strength of the litter size-offspring mass trade-off, we did not detect variation in offspring mass that was independent of this trade-off. In particular, offspring mass was not influenced by previous female reproduction nor by weather conditions before, during or after vitellogenesis. Thus, our data indicate that adjustments of the reproductive investment occurred via the number of offspring and that offspring mass was subsequently traded-off with litter size. This result confirms that the litter size and offspring mass trade-off is the major determinant of offspring mass (see also Bleu et al. 2012). Actually, an increased food intake caused by better weather conditions may not be invested in offspring mass (Massot and
Clobert 1995), these extra resources may instead be invested in female somatic growth, resulting
in higher PBC (Gregory 2006; Le Galliard et al. 2010).

375 **ACKNOWLEDGMENTS**

- 376 We are grateful to the students who helped collect data and to the *Parc National des Cévennes*
- and the *Office National des Forêts* for providing good conditions during fieldwork. We thank
- 378 *Météo-France* for providing the weather data used in this study. Financial support was received
- 379 from the Agence Nationale de la Recherche (grant 07-JCJC-0120 to J.F.L.G and grant 07-
- 380 BLAN-0217 to M. M. and J. C.), the Spanish Ministry of Education and Science (CGL2005-
- 381 01187, CGL2008-01522, and Programa Ramón y Cajal to P. S. F.), the Swiss National Science
- Foundation (PPOOP3_128375) and the *Ministère de l'Éducation Supérieure et de la Recherche*
- 383 (Ph.D grant to J. B.). The authors declare that they have no conflict of interest.

384 **LITERATURE CITED**

- Adolph SC, Porter WP (1993) Temperature, activity, and lizard life histories. Am Nat
- 386 142:273–295. doi:10.1086/285538
- Alonso-Alvarez C, Bertrand S, Devevey G, Prost J, Faivre B, Sorci G (2004) Increased
 susceptibility to oxidative stress as a proximate cost of reproduction. Ecol Lett 7:363–

389 368. doi:10.1111/j.1461-0248.2004.00594.x

- 390 Avery RA (1974) Storage lipids in the lizard Lacerta vivipara: a quantitative study. J Zool
- 391 173:419–425. doi:10.1111/j.1469-7998.1974.tb04124.x
- Avery RA (1975) Clutch size and reproductive effort in the lizard *Lacerta vivipara* Jacquin.
 Oecologia 19:165–170. doi:10.1007/BF00369099

394	Bauwens D (1981) Survivorship during hibernation in the European common lizard, Lacerta
395	vivipara. Copeia 1981:741-744. doi:10.2307/1444592
396	Bauwens D, Verheyen RF (1985) The timing of reproduction in the lizard Lacerta vivipara:
397	differences between individual females. J Herpetol 19:353-364. doi:10.2307/1564263
398	Berglund A, Rosenqvist G (1986) Reproductive costs in the prawn Palaemon adspersus:
399	effects on growth and predator vulnerability. Oikos 46:349–354. doi:10.2307/3565833
400	Bleu J, Le Galliard J-F, Meylan S, Massot M, Fitze PS (2011) Mating does not influence
401	reproductive investment, in a viviparous lizard. J Exp Zool Part A 315A:458-464.
402	doi:10.1002/jez.693
403	Bleu J, Massot M, Haussy C, Meylan S (2012) Experimental litter size reduction reveals costs
404	of gestation and delayed effects on offspring in a viviparous lizard. Proc R Soc B
405	279:489-498. doi:10.1098/rspb.2011.0966
406	Bonnet X, Naulleau G, Shine R, Lourdais O (2001) Short-term versus long-term effects of food
407	intake on reproductive output in a viviparous snake, Vipera aspis. Oikos 92:297–308.
408	doi:10.1034/j.1600-0706.2001.920212.x
409	Brown CA (2003) Offspring size-number trade-offs in scorpions: an empirical test of the van
410	Noordwijk and de Jong model. Evolution 57:2184–2190. doi:10.1111/j.0014-
411	3820.2003.tb00397.x
412	Cadby CD, While GM, Hobday AJ, Uller T, Wapstra E (2010) Multi-scale approach to
413	understanding climate effects on offspring size at birth and date of birth in a reptile.
414	Integr Zool 5:164–175. doi:10.1111/j.1749-4877.2010.00201.x
415	Chamaillé-Jammes S, Massot M, Aragón P, Clobert J (2006) Global warming and positive
416	fitness response in mountain populations of common lizards Lacerta vivipara. Global
417	Change Biol 12:392–402. doi:10.1111/j.1365-2486.2005.01088.x

- 418 Charnov EL, Downhower JF, Brown LP (1995) Optimal offspring sizes in small litters. Evol
 419 Ecol 9:57–63. doi:10.1007/BF01237697
- 420 Christians JK (2000) Trade-offs between egg size and number in waterfowl: an interspecific
- 421 test of the van Noordwijk and de Jong model. Funct Ecol 14:497–501.
- 422 doi:10.1046/j.1365-2435.2000.00444.x
- 423 Clobert J, Massot M, Lecomte J, Sorci G, De Fraipont M, Barbault R (1994) Determinants of
- 424 dispersal behavior: the common lizard as a case study. In: Vitt LJ, Pianka ER (eds)
- 425 Lizard ecology: historical and experimental perspectives. Princeton University Press,
- 426 Princeton, NJ, pp 183–206
- 427 Clutton-Brock TH, Guinness FE, Albon SD (1983) The costs of reproduction to red deer hinds.
 428 J Anim Ecol 52:367–383. doi:10.2307/4560
- Cox RM, Calsbeek R (2010) Severe costs of reproduction persist in *Anolis* lizards despite the
 evolution of a single-egg clutch. Evolution 64:1321–1330. doi:10.1111/j.1558-
- 431 5646.2009.00906.x
- 432 Cox RM, Parker EU, Cheney DM, Liebl AL, Martin LB, Calsbeek R (2010) Experimental
- evidence for physiological costs underlying the trade-off between reproduction and
 survival. Funct Ecol 24:1262–1269. doi:10.1111/j.1365-2435.2010.01756.x
- 435 Doughty P, Shine R (1997) Detecting life history trade-offs: measuring energy stores in
- 436 "capital" breeders reveals costs of reproduction. Oecologia 110:508–513.
- 437 doi:10.1007/s004420050187
- 438 Doughty P, Shine R (1998) Reproductive energy allocation and long-term energy stores in a
- 439 viviparous lizard (*Eulamprus tympanum*). Ecology 79:1073–1083. doi:10.1890/0012-
- 440 9658(1998)079[1073:REAALT]2.0.CO;2
- 441 Festa-Bianchet M (1998) Condition-dependent reproductive success in bighorn ewes. Ecol Lett
- 442 1:91–94. doi:10.1046/j.1461-0248.1998.00023.x

- French SS, DeNardo DF, Moore MC (2007) Trade-offs between the reproductive and immune
 systems: facultative responses to resources or obligate responses to reproduction? Am
 Nat 170:79–89. doi:10.1086/518569
- 446 Glazier DS (1999) Trade-offs between reproductive and somatic (storage) investments in
- 447 animals: a comparative test of the Van Noordwijk and De Jong model. Evol Ecol

448 13:539–555. doi:10.1023/A:1006793600600

- 449 González-Suárez M, Mugabo M, Decencière B, Perret S, Claessen D, Le Galliard J-F (2011)
- 450 Disentangling the effects of predator body size and prey density on prey consumption
- 451 in a lizard. Funct Ecol 25:158–165. doi:10.1111/j.1365-2435.2010.01776.x
- 452 Gregory PT (2006) Influence of income and capital on reproduction in a viviparous snake:
- 453 direct and indirect effects. J Zool 270:414–419. doi:10.1111/j.1469-7998.2006.00149.x
- 454 Gustafsson L, Nordling D, Andersson MS, Sheldon BC, Qvarnström A (1994) Infectious
- diseases, reproductive effort and the cost of reproduction in birds. Philos Trans R Soc
 Lond B 346:323–331. doi:10.1098/rstb.1994.0149
- 457 Hadley GL, Rotella JJ, Garrott RA (2007) Evaluation of reproductive costs for Weddell seals
- 458 in Erebus Bay, Antarctica. J Anim Ecol 76:448–458. doi:10.1111/j.1365-
- 459 2656.2007.01219.x
- 460 Hanssen SA, Hasselquist D, Folstad I, Erikstad KE (2005) Cost of reproduction in a long-lived
 461 bird: incubation effort reduces immune function and future reproduction. Proc R Soc B
 462 272:1039–1046. doi:10.1098/rspb.2005.3057
- 463 Hare KM, Cree A (2010) Exploring the consequences of climate-induced changes in cloud
- 464 cover on offspring of a cool-temperate viviparous lizard. Biol J Linn Soc 101:844–851.
- 465 doi:10.1111/j.1095-8312.2010.01536.x

466	Houston AI, Stephens PA, Boyd IL, Harding KC, McNamara JM (2007) Capital or income
467	breeding? A theoretical model of female reproductive strategies. Behav Ecol 18:241-
468	250. doi:10.1093/beheco/arl080

- Huey RB (1982) Temperature, physiology, and the ecology of reptiles. In: Gans C, Pough FH
 (eds) Biology of the reptilia. Academic Press, New-York, pp 25–91
- 471 Jordan MA, Snell HL (2002) Life history trade-offs and phenotypic plasticity in the
- 472 reproduction of Galapagos lava lizards (*Microlophus delanonis*). Oecologia 130:44–52.
 473 doi:10.1007/s004420100776
- 474 Koivula M, Koskela E, Mappes T, Oksanen TA (2003) Cost of reproduction in the wild:
- 475 manipulation of reproductive effort in the bank vole. Ecology 84:398–405.

476 doi:10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2

- 477 Landwer AJ (1994) Manipulation of egg production reveals costs of reproduction in the tree
 478 lizard (*Urosaurus ornatus*). Oecologia 100:243–249. doi:10.1007/BF00316951
- 479 Le Galliard J-F, Cote J, Fitze PS (2008) Lifetime and intergenerational fitness consequences of
- 480 harmful male interactions for female lizards. Ecology 89:56–64. doi:10.1890/06-2076.1

481 Le Galliard J-F, Marquis O, Massot M (2010) Cohort variation, climate effects and population

482 dynamics in a short-lived lizard. J Anim Ecol 79:1296–1307. doi:10.1111/j.1365-

483 2656.2010.01732.x

Le Galliard J-F, Massot M, Baron J-P, Clobert J (in press) Ecological effects of climate change
on European reptiles. In: Brodie JF, Post E, Doak D (eds) Conserving wildlife
populations in a changing climate. University of Chicago Press, Chicago

487 Lourdais O, Bonnet X, Shine R, Denardo D, Naulleau G, Guillon M (2002) Capital-breeding
488 and reproductive effort in a variable environment: a longitudinal study of a viviparous
489 snake. J Anim Ecol 71:470–479. doi:10.1046/j.1365-2656.2002.00612.x

- 490 Lourdais O, Bonnet X, Shine R, Taylor EN (2003) When does a reproducing female viper
 491 (*Vipera aspis*) "decide" on her litter size? J Zool 259:123–129.
- 492 doi:10.1017/s0952836902003059
- 493 Lourdais O, Shine R, Bonnet X, Guillon M, Naulleau G (2004) Climate affects embryonic
- 494 development in a viviparous snake, *Vipera aspis*. Oikos 104:551–560.
- 495 doi:10.1111/j.0030-1299.2004.12961.x
- 496 Marquis O, Massot M, Le Galliard J-F (2008) Intergenerational effects of climate generate
 497 cohort variation in lizard reproductive performance. Ecology 89:2575–2583.
- 498 doi:10.1890/07-1211.1
- 499 Massot M, Clobert J (1995) Influence of maternal food availability on offspring dispersal.

500 Behav Ecol Sociobiol 37:413–418. doi:10.1007/BF00170589

Massot M, Clobert J, Montes-Poloni L, Haussy C, Cubo J, Meylan S (2011) An integrative
study of ageing in a wild population of common lizards. Funct Ecol 25:848–858.

503 doi:10.1111/j.1365-2435.2011.01837.x

Mugabo M, Marquis O, Perret S, Le Galliard J-F (2011) Direct and socially-mediated effects
 of food availability late in life on life-history variation in a short-lived lizard. Oecologia

506 166:949–960. doi:10.1007/s00442-011-1933-0

507 Panigel M (1956) Contribution à l'étude de l'ovoviviparité chez les reptiles: gestation et

508 parturition chez le lézard vivipare *Zootoca vivipara*. Ann Sci Nat Zool (XI) 18:569–668

509 Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer-Verlag, New-

510 York, NY

- 511 Qualls CP, Shine R (1995) Maternal body-volume as a constraint on reproductive output in
- 512 lizards: evidence from the evolution of viviparity. Oecologia 103:73–78.
- 513 doi:10.1007/BF00328427

- Reading CJ (2004) The influence of body condition and prey availability on female breeding
 success in the smooth snake (*Coronella austriaca Laurenti*). J Zool 264:61–67.
- 516 doi:10.1017/S0952836904005515
- 517 Richner H, Tripet F (1999) Ectoparasitism and the trade-off between current and future
 518 reproduction. Oikos 86:535–538. doi:10.2307/3546657
- 519 Roff DA (2002) Life history evolution. Sinauer Associates, Sunderland, MA
- 520 Shine R (2005) Life-history evolution in reptiles. Annu Rev Ecol Evol Syst 36:23–46.
 521 doi:10.1146/annurev.ecolsys.36.102003.152631
- Shine R, Downes SJ (1999) Can pregnant lizards adjust their offspring phenotypes to
 environmental conditions? Oecologia 119:1–8. doi:10.1007/s004420050754
- Shine R, Harlow P (1993) Maternal thermoregulation influences offspring viability in a
 viviparous lizard. Oecologia 96:122–127. doi:10.1007/BF00318039
- 526 Stephens PA, Boyd IL, McNamara JM, Houston AI (2009) Capital breeding and income
- 527 breeding: their meaning, measurement, and worth. Ecology 90:2057–2067.
- 528 doi:10.1890/08-1369.1
- 529 Stewart JR, Ecay TW, Heulin B (2009) Calcium provision to oviparous and viviparous
- 530 embryos of the reproductively bimodal lizard *Lacerta* (*Zootoca*) *vivipara*. J Exp Biol
- 531 212:2520–2524. doi:10.1242/jeb.030643
- 532 Swain R, Jones SM (2000) Maternal effects associated with gestation conditions in a
- 533 viviparous lizard, *Niveoscincus metallicus*. Herpetol Monogr 14:432–440.
- 534 doi:10.2307/1467056
- Uller T, Olsson M (2005) Trade-offs between offspring size and number in the lizard *Lacerta vivipara*: a comparison between field and laboratory conditions. J Zool 265:295–299.
- 537 doi:10.1017/s0952836904006326

539	divergence in maternal thermoregulatory behaviour may be driven by differences in
540	selection on offspring survival in a viviparous lizard. Evolution 65:2313–2324.
541	doi:10.1111/j.1558-5646.2011.01303.x
542	Uller T, While GM, Wapstra E, Warner DA, Goodman BA, Schwarzkopf L, Langkilde T,
543	Doughty P, Radder RS, Rohr DH, Bull CM, Shine R, Olsson M (2009) Evaluation of
544	offspring size-number invariants in 12 species of lizard. J Evol Biol 22:143–151.
545	doi:10.1111/j.1420-9101.2008.01629.x
546	van Noordwijk AJ, de Jong G (1986) Acquisition and allocation of resources: their influence
547	on variation in life history tactics. Am Nat 128:137–142. doi:10.1086/284547
548	Wapstra E (2000) Maternal basking opportunity affects juvenile phenotype in a viviparous
549	lizard. Funct Ecol 14:345–352. doi:10.1046/j.1365-2435.2000.00428.x
550	Warner DA, Bonnet X, Hobson KA, Shine R (2008) Lizards combine stored energy and
551	recently acquired nutrients flexibly to fuel reproduction. J Anim Ecol 77:1242–1249.
552	doi:10.1111/j.1365-2656.2008.01442.x
553	Webb JK, Shine R, Christian KA (2006) The adaptive significance of reptilian viviparity in the
554	tropics: testing the maternal manipulation hypothesis. Evolution 60:115–122.
555	doi:10.1554/05-460.1
556	Winkler DW, Wallin K (1987) Offspring size and number: a life history model linking effort
557	per offspring and total effort. Am Nat 129:708–720. doi:10.1086/284667

Uller T, While GM, Cadby CD, Harts A, O'Connor K, Pen I, Wapstra E (2011) Altitudinal

558

559 **TABLES**

Table 1. Effects of intrinsic and extrinsic factors on reproductive traits. Final models were selected starting with full models. These included intrinsic factors [current body size: SVL(t), PBC of the previous reproductive season: PBC(t-1), parturition date of the previous reproductive season: Parturition(t-1), litter success: Success], and extrinsic factors (habitat, rainfall and temperatures during energy storage, vitellogenesis and gestation, see Fig. 1 for details). Residual litter size was calculated as the residuals of a linear regression between litter size and maternal SVL. Random effects are presented in Table 2.

Effects		Estim	ate	F	DF	Р	
Litter mass							
	SVL(t)	0.058 ± 0	0.005	149.62	1,143	< 0.0001	
P	BC(t-1)	0.132 ± 0.000	0.050	7.10	1,143	0.0086	
Rainfall during vitello	genesis	0.015 ± 0	0.005	9.45	1,10	0.0117	
Size of litters containing exclusively	viable o	ffspring					
	SVL(t)	0.311 ± 0	0.029	118.28	1,143	< 0.0001	
P	BC(t-1)	0.748 ± 0).299	6.26	1,143	0.0135	
Rainfall during vitello	genesis	0.089 ± 0	0.030	8.86	1,10	0.0139	
Size of all litters							
	SVL(t)	0.306 ± 0.000	0.024	167.47	1,219	< 0.0001	
PBC(t-1)	1.268	± 0.473	8.94	1,219	0.00	31	
Parturition(t-1)	-0.030	± 0.019	1.74	1,219	0.18	81	
Success	-0.357	± 0.178	0.44	1,219	0.50	93	
$PBC(t-1) \times Parturition(t-1)$	0.239	± 0.078	9.34	1,219	0.002	25	
$PBC(t-1) \times Success$	-0.496	± 0.577	4.54	1,219	0.03	41	
Parturition(t-1) × Success	0.019	± 0.025	0.35	1,219	0.55	25	
$PBC(t-1) \times Parturition(t-1) \times State{2}$	Success	-0.192 ±	0.089	4.62	1,219	0.0327	
Rainfall during vitello	genesis	0.090 ± 0	0.025	12.94	1,10	0.0049	
Offspring mass							
Residual lit	tter size	$-0.008 \pm$	0.001	59.66	1,144	< 0.0001	

566 SVL, snout-vent length; PBC, postpartum body condition

568 Table 2. Annual variations of reproductive traits. Estimates of year random effect for litter mass, size 569 of exclusively viable litters, offspring mass, and size of all litters. Estimates are given as standard 570 deviations (SD) calculated from a random model with no fixed effect ("annual variation" model), a mixed 571 effect model with significant intrinsic factors ("intrinsic factors" model) and a mixed effect model with 572 significant intrinsic and extrinsic factors ("final best model", Table 1).

	σ _{annual}	σ _{residual}	ICC	LRT	Р
Litter mass					
Annual variation	0.09 [0.05 ; 0.19]	0.29 [0.25 ; 0.32]	24.50	4.95	0.0260
Intrinsic factors	0.05 [0.01; 0.15]	0.21 [0.18; 0.23]	18.15	1.17	0.2786
Final best model	~ 0	0.21 [0.18; 0.23]	0		
Size of litters conta					
Annual variation	0.61 [0.32 ; 1.16]	1.59 [1.42 ; 1.79]	27.67	7.89	0.0050
Intrinsic factors	0.20 [0.03 ; 1.38]	1.25 [1.11; 1.40]	13.94	0.35	0.5542
Final best model	~ 0	1.23 [1.10 ; 1.38]	0		
Size of all litters					
Annual variation	0.63 [0.35 ; 1.13]	1.68 [1.53 ; 1.84]	27.32	13.24	0.0003
Intrinsic factors	0.33 [0.14 ; 0.76]	1.26 [1.15 ; 1.39]	20.64	3.25	0.0710
Final best model	$\sim 0^{a}$	1.24 [1.16 ; 1.39]	0		
Offspring mass ^b					
Annual variation	0.0035 [0.0010; 0.0125]	0.0187 [0.0167 ; 0.0210]	15.93	1.03	0.310
Intrinsic factors	0.0030 [0.0009 ; 0.0103]	0.0160 [0.0142 ; 0.0179]	15.90	1.08	0.2994

- 573 Values between square brackets indicate the confidence interval.
- 574 $\sigma_{annual} =$ year effect standard deviation, $\sigma_{residual} =$ residual standard deviation, ICC = intraclass correlation
- 575 coefficient (% of total standard deviation), LRT = likelihood ratio test.
- 576 ^a ~ 0 indicates an estimate at the boundary of the parameter space.
- ^b Effects of extrinsic factors were not significant for offspring mass

579 Table 3. Annual variation in the offspring mass and litter size trade-off. The trade-off was 580 investigated in litters containing exclusively viable offspring (n = 157). Pearson's r correlation coefficient 581 was calculated between offspring mass and residual litter size for each year (see ESM 5 for results on 582 log-transformed values). Following on Christians (2000), we calculated the variance ratio as the ratio of 583 the variance in allocation [i.e. var{log(offspring mass)/log(litter mass)}] to the variance in investment 584 [i.e. var{log(litter mass)}].

585

					Variance
Year	n	Pearson's r	95% confidence interval	Р	ratio
1991	11	-0.415	-0.813 to 0.246	0.204	0.0190
1992	10	-0.313	-0.787 to 0.394	0.379	0.0152
1993	21	-0.493*	-0.762 to -0.078	0.023*	0.0189*
1994	18	-0.226	-0.627 to 0.269	0.366	0.0133
1995	13	-0.713*	-0.908 to -0.267	0.006*	0.0246*
1996	15	-0.611*	-0.855 to -0.143	0.016*	0.0195*
1997	12	-0.870*	-0.963 to -0.592	< 0.001*	0.0451*
1998	11	-0.475	-0.837 to 0.174	0.140	0.0169
1999	11	-0.705*	-0.917 to -0.182	0.015*	0.0246*
2000	12	-0.319	-0.755 to 0.312	0.312	0.0163
2001	10	-0.305	-0.784 to 0.402	0.392	0.0138
2002	13	-0.451	-0.802 to 0.133	0.122	0.0148

586 * Correlation is significant at P < 0.05

FIGURE LEGENDS

Figure 1. Reproductive cycle of the common lizard at Mont Lozère. During the course of our study, lizards were captured during mid-gestation in June and maintained in the laboratory until parturition (hollow lines). We calculated average weather conditions (1) during energy storage: from parturition (date 1: 8 August) to the start of hibernation (date 2: 30 September), (2) during vitellogenesis: from 1 May (date 3) to 21 May (date 4), and (3) during gestation before capture and maintenance in the laboratory: from 1 June (date 5) to capture (date 6: 21 June).

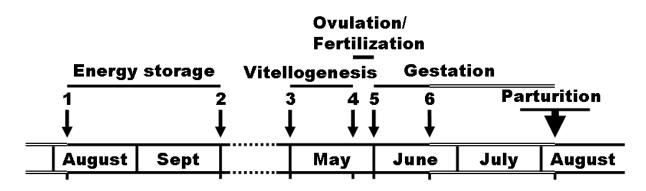
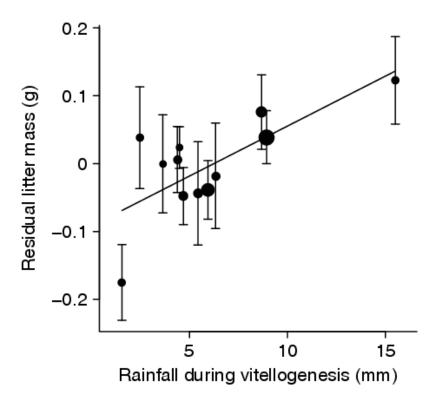
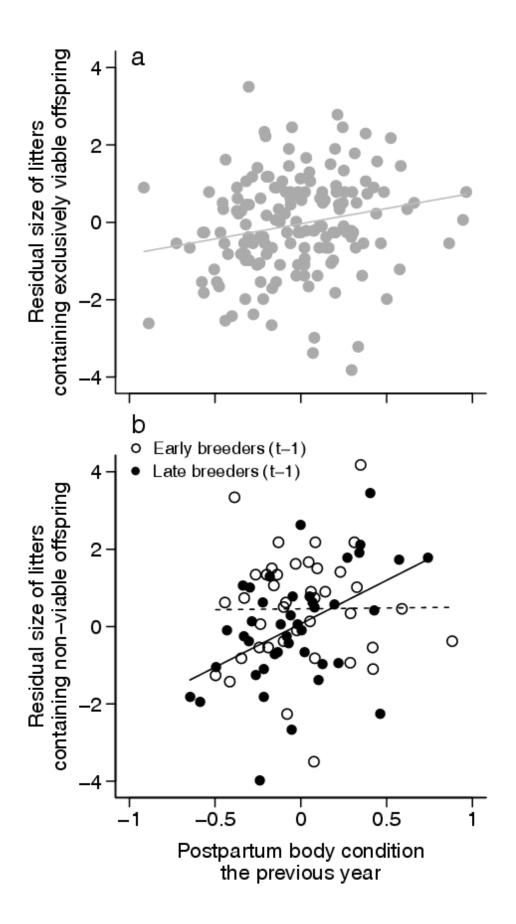

Figure 2. Variation in litter mass. Residual litter mass (residuals of litter mass from a linear regression against maternal SVL and previous postpartum body condition (PBC), see Table 1) is shown as means (\pm SE) per year. Size of filled circles is proportional to sample size (range = 10-21). Solid line represents model predictions from Table 1. The slope estimate was robust to the exclusion of the year with the highest rainfall (slope = 0.016 ± 0.007, F_{1.9} = 2.18, P = 0.057).

Figure 3. Variation in litter size. a) Postpartum body condition (PBC) of the previous year was correlated with the size of litters containing exclusively viable offspring (n = 157). The solid line indicates model predictions (Table 1). b) PBC of the previous year was correlated with the size of litters containing nonviable offspring for late breeding females, but not for early breeding females. Model predictions are represented using a dashed line for early breeding females (parturition date < mean parturition date) and a solid line for late breeders (parturition date > mean parturition date). Slopes estimates obtained from the model in Table 1 were positive and significant for late breeders (n = 42, slope = 2.225 ± 0.648 , P = 0.0007) but not significantly different from zero in early breeders (n = 40, slope = 0.063 ± 0.690 , P = 0.93). Data for litter sizes are residuals of a linear regression between litter size and maternal SVL.


Figure 4. Variation in the offspring mass and number trade-off. There is a negative correlation between the Pearson's correlation coefficient (r), calculated between offspring mass and residual litter size, and the variance ratio, calculated as the ratio of the variance in allocation to the variance in investment (see Table 3). Note that this negative correlation is still significant if we exclude the highest variance ratio (Pearson's r = -0.918, range = [-0.979; -0.707], P < 0.0001).


Figure 1

