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We use Direct Numerical Simulations (DNS) of the forced Navier-Stokes equation for a three-dimensional incompress-
ible fluid in order to test recent theoretical predictions. We study the two- and three-point spatio-temporal correlation
functions of the velocity field in stationary, isotropic and homogeneous turbulence. We compare our numerical results
to the predictions from the Functional Renormalization Group (FRG) which were obtained in the large wavenumber
limit. DNS are performed at various Reynolds numbers and the correlations are analyzed in different time regimes
focusing on the large wavenumbers. At small time delays, we find that the two-point correlation function decays as
a Gaussian in the variable kt where k is the wavenumber and t the time delay. We compute a triple correlation from
the time-dependent advection-velocity correlations, and find that it also follows a Gaussian decay at small t with the
same prefactor as the one of the two-point function. These behaviors are in precise agreement with the FRG results,
and can be simply understood as a consequence of sweeping. At large time delays, the FRG predicts a crossover to an
exponential in k2t, which we were not able to resolve in our simulations. However, we analyze the two-point spatio-
temporal correlations of the modulus of the velocity, and show that they exhibit this crossover from a Gaussian to an
exponential decay, although we lack of a theoretical understanding in this case. This intriguing phenomenon calls for
further theoretical investigation.

I. INTRODUCTION

Characterizing the statistical properties of a turbulent flow
is one of the main challenges to achieve a complete theo-
retical understanding of turbulence. Space-time correlations
are at the heart of statistical theories of turbulence, and have
been studied and modeled for many decades, both in the Eu-
lerian and Lagrangian frameworks1,2. One of the earliest in-
sights was provided by Taylor’s celebrated analysis of single
particle dispersion by an isotropic turbulent flow3. The un-
derstanding of the behavior of turbulent fluctuations both in
space and time is essential for many problems in fluid me-
chanics where the multiscale temporal dynamics plays a key
role, such as particle-laden turbulence, propagation of waves
in a turbulent medium or turbulence-generated noise in com-
pressible flows2. Space-time correlations are also central for
many closure schemes, such as the direct-interaction approxi-
mation (DIA) elaborated by Kraichnan4, local energy transfer
(LET) theory5, or the eddy damped quasi-normal Markovian
(EDQNM) approximation6. The accurate description of the
spatio-temporal correlations is crucial for developing time-
accurate large-eddy simulation (LES) turbulence models, as
well as for the analysis of experimental data, for example, to
assess the validity and corrections to the Taylor’s frozen flow
model used for time-to-space conversion of measurements.

A fundamental ingredient to understand the temporal be-
havior of turbulent flows in the Eulerian frame is the sweeping
effect, which was early identified in References 4, 7–9. The
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random sweeping effect results from the random advection of
small-scale velocities by the large-scale energy-containing ed-
dies, even in the absence of mean flow. This random sweep-
ing was anticipated to induce a Gaussian decay in the variable
tk, where k is the wavenumber and t the time delay, of the
two-point correlations of the Eulerian velocity field, based on
simplified models of advection4. However, at the theoreti-
cal level, the effect of sweeping also induces, in the original
formulation of DIA, a k−3/2 decay of the energy spectrum in
the inertial range instead of the Kolmogorov k−5/3 scaling.
This led Kraichnan to a complete reformulation of his theory
using Lagrangian space-time correlations instead of Eulerian
ones. The dependence of the two-point correlation function
in k2t2 predicted from sweeping has been observed and con-
firmed in numerous numerical simulations10–16 and also in ex-
periments17. A notable consequence of this dependence in the
product kt is that the frequency energy spectrum of Eulerian
velocities exhibits a ω−5/3 decay, instead of the ω−2 expected
from K41 scaling18.

The random sweeping hypothesis is also a part of the ellip-
tic approximation which provides a model for spatio-temporal
correlations in turbulent shear flows19 combining the decor-
relation effect of the sweeping by large scales and the con-
vection by the mean flow, and provides a correction to Tay-
lor frozen-flow model. The elliptic approximation model has
been tested in numerical simulations and experimental mea-
surements in Rayleigh-Bénard convection flows2. In Ref. 20 a
model of spatio-temporal spectrum of turbulence is proposed
in the presence of a mean flow4 departing from the Kraich-
nan’s advection problem, which is consistent with the ellipti-
cal model. However, fewer studies address multi-point corre-
lations, although they are used as part of closure models21, and
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despite their importance. Indeed, turbulence is not a Gaussian
theory at small scales, which implies that the knowledge of
two-point correlations is not sufficient to obtain a reliable de-
scription. An expression for the three-point correlation func-
tion in a specific wavevector and time configuration was ob-
tained within the DIA4,8, and multi-point correlation functions
were studied numerically in Ref. 22.

Although the random sweeping effect is phenomenologi-
cally known for a long time, and the models based on it pro-
vide satisfactory descriptions, the theoretical justification of
the hypothesis of random sweeping directly from the Navier-
Stokes equation has remained a challenging task. The applica-
tion of the renormalization group approach to turbulence de-
veloped by Yakhot et al. led to the conclusion that the sweep-
ing effect on space-time correlations must be small23, which
is not in agreement with the ω−5/3 Eulerian spectrum. This
result and its validity are discussed in the Ref. 12. In another
work24 the effect of the random sweeping was estimated with
the use of equations for a band-passed velocity advected by a
large scale velocity. This work demonstrated that the random
sweeping plays a dominant role in the Navier-Stokes dynam-
ics at small scales.

Recently, a theoretical progress has been achieved using
Functional Renormalization Group (FRG), which has yielded
the general form of any multi-point correlation (and response)
function in the limit of large wavenumbers. These expres-
sions are established in the Eulerian frame, in a rigorous and
systematic way. For the two-point space-time correlations,
the Gaussian decay in tk is recovered for small time delays
t, while a crossover to a slower exponential decay in t is pre-
dicted at large time delays. Similar results are obtained for any
generic correlations involving an arbitrary number of space-
time points. While the Gaussian regime is known to originate
from sweeping, the exponential large-delay regime was not
yet predicted. We show in this work that this behavior can
also be derived from the original Taylor and Kraichnan’s ar-
guments, which provide a clear physical interpretation of this
result.

The aim of this work is to make precision tests of the
FRG results using Direct Numerical Simulations (DNS) of the
forced Navier-Stokes equation. We analyze the two-point and
a specific configuration of the three-point correlation func-
tions and accurately confirm the FRG prediction in the small-
time regime. Even though the long-time regime remains elu-
sive in the simulations data due to the weakness of the signal
amplitude in this regime and the lack of statistics, we unveil
a very similar crossover from a Gaussian to an exponential
decay in the correlations of the modulus of the velocity field.
However, this observation lacks a theoretical explanation so
far.

The paper is organized as follows. In Sec. II, we briefly
introduce the functional and nonperturbative renormalization
group (FRG) framework and review the theoretical predic-
tions stemming from it on the time dependence of multi-point
correlation functions. We also provide a heuristic argument al-
lowing one to grasp the physical content of these results. We
present in Sec. III the results of our DNS analysis. We analyze
the small time delay regime of the two-point correlation func-

tion in the Sec. III A and that of the triple correlation in the
Sec. III B. The temporal behavior of the two-point correlation
of the modulus of the velocity is discussed in the Sec. III C.

II. THEORETICAL FRAMEWORK

A. Theoretical results from functional renormalization group

The FRG is a versatile method well-developed since the
early 1990’s and used in a wide range of applications, both in
high-energy physics (quantum gravity and QCD), condensed
matter, quantum many-particle systems and statistical me-
chanics, including disordered and nonequilibrium problems
(see References 25–28 for reviews). This method has been
employed in particular to study the incompressible 3D Navier-
Stokes equation in several works16,29–33. We here focus on
a recent result concerning the spatio-temporal dependence of
multi-point correlation functions of the turbulent velocity field
in homogeneous, isotropic and stationary conditions. The de-
tailed derivation of the theoretical results we present can be
found in Ref. 32; it relies on an expansion at large wavenum-
bers of the exact FRG flow equations. The field theory arising
from the stochastically forced Navier-Stokes equation pos-
sesses extended symmetries (in particular the time-dependent
Galilean invariance) which allow one to obtain the exact lead-
ing term of this expansion. We give below the ensuing ex-
pressions in three dimensions, before providing their intuitive
physical interpretation in the Sec. II B.

We are first interested in the two-point correlation function
of the velocity expressed in the time-delay−wavevector mixed
coordinates (t,~k), defined as

C(2)(t,~k)≡ FT [〈ui(t0,~r0)ui(t0 + t,~r0 +~r)〉]

=
〈

ûi(t0,~k)û∗i (t0 + t,~k)
〉

(1)

where FT denotes the spatial Fourier transform. According
to the FRG result, this function takes the following form for
large wavenumbers k = |~k| and small time delays:

C(2)
S (t,~k) =CSε2/3k−11/3 exp

{
−αS(L/τ0)

2t2k2
}

(2)

and in the regime of large time delays:

C(2)
L (t,~k) =CLε

2/3k−11/3 exp
{
−αL(L2/τ0)|t|k2} (3)

with ε the energy dissipation rate, L the integral length scale,
τ0 = (L2/ε)1/3 the eddy-turnover time at the integral scale,
and αS,L and CS,L nonuniversal constants – the subscript S and
L standing for ‘short time’ and ‘long time’ respectively. These
expressions convey that the velocity field decorrelates at small
time delays as a Gaussian of the variable tk, whereas at large
time delays, its decay crosses over to an exponential in t. As
mentioned in the introduction, the Gaussian behavior at small
t is well-known from experimental data and numerical simula-
tions and interpreted as a consequence of the random sweep-
ing effect. It turns out that the exponential decay at large t
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can also be simply understood in a similar framework, as dis-
cussed in the Sec. II B.

Let us comment on the domain of validity of these results.
In the FRG calculation, the limit of large wavenumbers corre-
sponds to the assumption that all the wavenumbers involved
in a given correlation function (and all their partial sums) are
large compared to the RG scale (which is a running wavenum-
ber scale). The physical quantities are obtained in the limit
where the RG scale tends to 0. Since the RG flow reaches a
fixed point, all observables endow their final values when the
flow essentially stops, which is the case at least at the integral
scale L−1. Thus large wavenumbers means |k|L� 1. Note
however that the expressions given for the correlation func-
tions are obtained at the fixed point, which means that they
apply for wavenumbers controlled by this fixed-point – corre-
sponding to universal properties. Hence we expect these pre-
dictions to hold in the inertial range and in the near-dissipation
range (up to some kmax), but not too deep in the far-dissipation
range which is not controlled by this fixed point.

One can show that the factors in curly brackets in Eqs. (2)
and (3) are exact in the limit of large wavenumber k� L−1,
which implies that the corrections to these terms are at most of
order O(kmaxL) (see Ref.32). We can quantify more precisely
where this limit is reached using our DNS data. In contrast,
the terms multiplying the exponential in Eqs. (2) and (3) are
not exact in these expressions, as they can be corrected by
higher-order contributions neglected in the large wavenum-
ber expansion. Otherwise stated, these expressions do not
account for intermittency corrections on the exponent 11/3,
which merely corresponds to K41 scaling.

The FRG theory yields a more general result: the spatio-
temporal dependence of any multi-point correlation func-
tion of the turbulent velocity field in the limit of large
wavenumbers32. We concentrate in this work on the three-
point correlation function, defined as

C(3)
αβγ

(t1,~k1, t2,~k2)≡

FT
[〈

uα(t0 + t1,~r0 +~r1)uβ (t0 + t2,~r0 +~r2)uγ(t0,~r0)
〉]

=
〈

ûα(t0 + t1,~k1)ûβ (t0 + t2,~k2)û∗γ(t0,~k1 +~k2)
〉

(4)

where translational invariance in space and time follow from
the assumptions of homogeneity and stationarity. In the limit
where all the wavenumbers k1, k2, |~k1 +~k2| are large with re-
spect to L−1, the FRG calculation leads to the following form
at small time delays t1 and t2

C(3)
αβγ

(t1,~k1, t2,~k2) =

C(3)
αβγ

(0,~k1,0,~k2)exp
{
−αS(L/τ0)

2
∣∣∣~k1t1 +~k2t2

∣∣∣2} (5)

with αS the same constant as in Eq. (2). Note that a similar
expression as Eq. (3) is also available for large time delays,
but it is not considered here since it is out of reach of our
simulations. In this work, we consider the simplified case t =
t1 = t2, thus aiming at testing the theoretical form

C(3)
αβγ

(t,~k1, t,~k2)∼ exp
{
−αS(L/τ0)

2
∣∣∣~k1 +~k2

∣∣∣2 t2
}
. (6)

One hence expects to observe that the three-point correlation
function at large wavenumbers is also Gaussian function of a
variable |~k1 +~k2|t for small t, with the same prefactor αS as in
the two-point correlation functions.

Let us emphasize that similar results were derived for any n-
point correlation function at large wavenumbers, and are valid
for arbitrary time regimes, although for intermediate times the
expressions take a more complicated integral form32. Their
status is generically the same as discussed above for the two-
point correlations: The leading terms in the exponentials are
exact in the limit of large wavenumbers, whereas the prefac-
tors of these exponentials are not. Let us now give a simple
physical interpretation of these results.

B. Physical interpretation

The short-time predictions for time-dependence of two-
point velocity correlations (2) and of three-point correlations
(5) were both given in an early analysis of Eulerian sweeping
effects by Kraichnan4. As we show now, the novel prediction
of long-time exponential decay (3) and similar long-time de-
cay of general multi-point correlations were implicit in that
earlier analysis, but unrecognized at the time. Both short-time
and long-time decay regimes can be obtained from the follow-
ing Lagrangian expression for the Eulerian velocity field

ui(t,~r) = exp→[−~ξ (t,~r|t0) ·~∇]ui(t0,~r)

+
∫ t

t0 ds exp→[−~ξ (t,~r|s) ·~∇]
[
ν∇2ui(s,~r)−∇i p(s,~r)

]
. (7)

This is equation (7.7) in the paper of Kraichnan4 when spe-
cialized to s = t there (and with a minor typo corrected in the
final term). Here p(t,~r) is the pressure,~ξ (t,~r|s) =~r−~X(t,~r|s)
is the Lagrangian displacement vector, where

d
ds

~X(t,~r|s) =~u(s,~X(t,~r|s)), ~X(t,~r|t) =~r (8)

defines the position ~X(t,~r|s) at time s of the Lagrangian
fluid particle located at position ~r at time t. Finally
exp→[−~ξ (t,~r|s) ·~∇] denotes an operator-ordered exponential
with all gradients ~∇ ordered to the right and thus not act-
ing upon the ~r-dependence in ~ξ (t,~r|s). The intuitive mean-
ing of equation (7) is that it “states that the velocity field at
later times is the result of self-convection of the initial veloc-
ity field, together with convection of all of the velocity incre-
ments induced at later times by viscous and pressure forces”4.

The formula (7) yields both of the FRG predictions (2) and
(3) when some plausible statistical and dynamical assump-
tions are introduced. First, the displacement field ~ξ is ex-
pected to vary more slowly in space and time than the gradi-
ents of velocity~u and of pressure p that result from the action
of the exponential operator. Slowness in time allows one to
factor out the exponential as

ui(t,~r) = exp→[−~ξ (t,~r|t0) ·~∇]×{
ui(t0,~r)+

∫ t
t0 ds

[
ν∇2ui(s,~r)−∇i p(s,~r)

]}
. (9)
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and slowness in space allows the Fourier transform to be eval-
uated as

ûi(t,~k) = exp[−i~ξ (t,~r|t0) ·~k]×{
ûi(t0,~k)−

∫ t
t0 ds

[
νk2ûi(s,~k)+ ki p̂(s,~k)

]}
. (10)

The next assumption is that the displacement field ~ξ (t,~r|t0)
for times t not too close to t0 is almost statistically indepen-
dent of the Fourier-transformed velocity fields at the initial
time t0 and at sufficiently high wavenumbers k, so that by the
definition (1)

C(2)(t,~k) = 〈exp[−i~ξ (t,~r|0) ·~k]〉C(2)(0,~k)
×
{

1+O(νk2|t|,kurms(k)|t|)
}
. (11)

where urms(k) = (kE(k))1/2 is a measure of the rms velocity
at wavenumber k. Finally, since the Lagrangian displacement
is dominated by the largest scales of the turbulent flow, which
have nearly Gaussian statistics (see34, Chapter VIII), it is plau-
sible that ~ξ is also approximately normal, so that

C(2)(t,~k) = exp
[
−1

2
〈|~ξ (t,~r|0)|2〉k2

]
C(2)(0,~k){

1+O(νk2|t|,kurms(k)|t|)
}
. (12)

Similar assumptions, both the statistical independence of dis-
placements from the initial velocities and near-Gaussianity of
the displacements, have been invoked in prior work on turbu-
lent diffusion by Corrsin35,36. According to these arguments,
the two-point velocity correlation undergoes a rapid decay in
the time-difference t which arises from an average over rapid
oscillations in the phases of Fourier modes due to sweeping,
or “convective dephasing”4.

The variance of the Lagrangian displacement in the expo-
nent of (12) was the subject of a classical study by Taylor3 on
one-particle turbulent dispersion. Exploiting the expression

~ξ (t,~r|0) =
∫ t

0
~u(t,~r|s) ds, (13)

two regimes were found:

〈|~ξ (t,~r|0)|2〉 ∼
{

u2
RMSt2 |t| � τ0

2D|t| |t| � τ0
(14)

where the early-time regime corresponds to ballistic motion
with the rms velocity uRMS and the long-time regime corre-
sponds to diffusion with a turbulent diffusivity D ∝ u2

RMSτ0.
Using the relation uRMS ∝ L/τ0 and the result (12) for the two-
point velocity correlation, these two regimes of one-particle
turbulent dispersion correspond exactly to the short-time scal-
ing (2) and the long-time scaling (3) predicted by FRG, with
1
2 u2

RMS = αS(L/τ0)
2 and D = αLL2/τ0. To make more precise

contact with the FRG analysis, one can introduce the temporal
Fourier transform

~v(t,~r;ω) =
∫

ds eiωs~u(t,~r|s) (15)

and the corresponding (Lagrangian) frequency spectrum
〈~v(ω) ·~v(ω ′)〉 = E(ω)δ (ω +ω ′). It is then easy to see that
the displacement variance in (14) can be written as

〈|~ξ (t,~r|0)|2〉= 1
π

∫
dω

1− cos(ωt)
ω2 E(ω) (16)

in terms of the velocity spectrum. This formula should be
compared with the leading-order FRG flow equation (30) of
Tarpin et al.32 obtained in the limit of large wavenumber |~k|

κ∂κ lnC(2)
κ (t,~k) =

2
3
|~k|2

∫
dω

1− cos(ωt)
ω2 Jκ(ω) (17)

where the common factor inside the two frequency integrals
yields identical short-time and long-time power-law asymp-
totics (∝ t2 and ∝ t, resp.) in both expressions (16) and (17)
1.

The above arguments can obviously be applied to gen-
eral multi-point velocity correlations, yielding similar results.
They provide an intuitive physical interpretation of the two
scaling regimes of the FRG results32, with time-decay corre-
sponding to a convective dephasing mechanism. In particu-
lar, the long-time exponential decay is suggested to arise from
the diffusive linear growth in the position variance of a La-
grangian particle advected by homogeneous turbulence. This
long-time exponential decay regime appears to be a novel pre-
diction of the FRG approach. For example, it is quite distinct
from the instantaneous exponential decay of the two-point ve-
locity correlator predicted by Rayleigh-Ritz analysis with a
K-ε closure37, which occurs on very short time-scale before
convective dephasing can act and which is interpreted as an
eddy-viscosity effect. Needless to say, the FRG derivation
of (2) and (3) is considerably more systematic and controlled
than the heuristic argument presented in this section.

III. RESULTS OF DIRECT NUMERICAL SIMULATIONS

We perform direct numerical simulations (DNS) of a sta-
tionary 3D incompressible homogeneous and isotropic tur-
bulent flow. The computation domain represents a cube
of size 2π with periodic boundary conditions. We use
five values of the Taylor-scale Reynolds number: Rλ =
40,60,90,160,250 with corresponding spatial grid size N3 =
643,1283,2563,5123,10243 (see Table I). The spatial reso-
lution of all simulations fulfills the condition kmaxη ' 1.5,
where kmax = N/2 is the maximal wavenumber in the sim-
ulation and η is the Kolmogorov length scale. The incom-
pressible Navier-Stokes equation is solved numerically with
the use of a pseudospectral method in space38 and a second
order Runge-Kutta scheme of time advancement. To achieve
a statistically stationary state, the velocity field is randomly
forced at large scales. The forcing field is randomly renewed

1 The precise expression of Jk , which plays no role here, can be found in Ref.
32
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Rλ N ν uRMS τ0 ∆t ∆Tw Nt KcL
40 64 10−4 0.0059 245 0.9 400 1008 14.6
60 128 10−4 0.0147 134 0.1 75 665 23.7
90 256 10−4 0.0375 45.3 0.03 10.0 624 42.5

160 512 10−4 0.0974 19.0 0.005 1.0 322 74.4
250 1024 10−4 0.2482 7.24 0.001 0.2 33 144

TABLE I. Parameters of simulations for the analysis of two-point
and three-point correlations at small time delays. Rλ - Taylor-scale
Reynolds number, N - spatial grid resolution, ν - kinematic viscosity,
uRMS - root mean square velocity, τ0 - eddy turnover time at the inte-
gral scale, ∆t - simulation time step, ∆Tw - width of a time window of
correlation observation, Nt - number of recorded time windows, KcL-
nondimensional cut-off wavenumber of the scale decomposition.

at each time step of the simulation, and it is uncorrelated from
the velocity field. This random forcing enables an approxima-
tion of the stochastic Gaussian forcing used in the theoretical
framework. In addition, it does not impose any characteris-
tic time scale arising from the correlation of the forcing, and
therefore it is the best option to avoid any influence of the
forcing on temporal statistics. The detailed description of the
forcing scheme can be found in the Ref. 39. We perform a de-
aliasing with the use of the polyhedral truncation method38.

A. Two-point spatio-temporal correlations at small time
delays

Once the simulations reach a statistically steady state, we
compute the velocity correlation function with the following
method: At a chosen time t0 we store the spectral 3D vector
velocity field in the memory. At the next iterations the up-
dated velocity field at time t0 + i∆t is multiplied point-wise
by the velocity field at time t0. Since the velocity field is sta-
tistically isotropic, the two-point velocity correlation function
is computed by averaging over spherical spectral shells Sn of
thickness ∆k = 1 so that~k∈ Sn if n−1<

∣∣~k∣∣< n,n= 1, ..,N/2.
After a certain number of time iterations, when the magnitude
of the correlations at all scales of interest is close to zero, the
reference time t0 is redefined as the current time, and the ref-
erence velocity field in the memory is updated. The resulting
correlation function is averaged over time windows with dif-
ferent reference times t0, and the real part is taken:

C̄(2)(t,k) =
1
Nt

Nt

∑
j=1

1
Mn

∑
~k∈Sn

Re
[
ûi(t0 j,~k)û

∗
i (t0 j + t,~k)

]
(18)

where Nt is the number of time windows in the simulation, Mn
is the number of modes in the spectral spherical shell Sn, and
k= n∆k,n∈Z . We hence obtain a numerical estimation of the
two-point spatio-temporal correlation function C(2) defined in
Eq. (1) with averaging in space and time.

Note that at t = 0, the integration over a spherical shell in
spectral space of the correlation function C(2) in Eq. (1) gives

101 102 103
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FIG. 1. Compensated spatial spectrum of the kinetic energy ob-
tained from the averaged two-point spatio-temporal correlation func-
tion C(2) at zero time delay according to Eq. (19). ε is the energy
dissipation rate, L the integral length scale, and Rλ the Reynolds
number at the Taylor microscale.

the spectrum of kinetic energy:

E(k) = 4πk2C(2)(t = 0,k) = 4πCSε
2/3k−5/3 (19)

The compensated spatial spectra obtained from the averaged
two-point spatio-temporal correlation function at zero time
delay are shown in the Fig. 1. The inertial ranges of these
spectra approximately conform to the Kolmogorov 5/3 power-
law decay and are followed by the dissipation regime. While
there is no visible inertial range at the lowest Rλ , it extends
over about one decade at the largest Rλ . We first focus on
the behavior of the correlation function C(2) at small time de-
lay, and we normalize all data by the correlation function for
coincident times C(2)(t = 0,k).

According to the theoretical expression Eq. (2), we expect a
Gaussian dependence in t at small time delays, which we pre-
cisely observe in all our simulations. We show in the Fig. 2 an
example of the numerical results for C(2) at various wavenum-
bers for Rλ = 90. All curves display a Gaussian behavior, the
fits are analyzed in details below. Prior to this, let us comment
on the scaling. When plotted as a function of the variable
tk, all the curves collapse onto a single Gaussian, as expected
from the Eq. (2). This is illustrated in the bottom panel of
Fig. 2. We emphasize that this tk scaling of the correlation
function is different from the tk2/3 scaling that one would ob-
tain from dimensional considerations based on the standard
assumptions of Kolmogorov’s theory of turbulence, taking as
the only relevant parameters the energy dissipation rate ε and
the wavenumber k. 2 As explained in Sec. II B, the tk scal-
ing arises from dimensional analysis if the root-mean-square
velocity uRMS ∼ L/τ0 is also included as a relevant parame-
ter. This constitutes an explicit breaking of scale invariance,
which originates in the random sweeping. uRMS is indeed the
characteristic velocity scale of the random advection process
of small-scale velocities by large vortices.

2 In fact, Kolmogorov in his original 1941 paper40 emphasized that such
dimensional reasoning should apply to multi-time correlations only in a
quasi-Lagrangian frame.
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FIG. 2. Time dependence of the normalized two-point correlation
function C(2)(t,k) at different wavenumbers k in the simulation at
Rλ = 90. Upper panel: data from the numerical simulation denoted
with dots and its Gaussian fits denoted with continuous lines; bottom
panel: the same data plotted as a function of the scaling variable
tk, which results in the collapse of all the curves, as expected from
Eq. (2). L is the integral length scale, τ0 is the large eddy-turnover
time scale.

We now turn to the analysis of the Gaussian fits. The corre-
lation curves as functions of time delays at various wavenum-
bers and various Reynolds numbers are fitted using the non-
linear least-square method (Levenberg–Marquardt algorithm),
with the Gaussian fitting function: fs(t) = ce−(t/τs)

2
where τs

and c are the fitting parameters. Performing a nondimension-
alization with parameter L/τ0 ≈ uRMS renders the correlation
function plots at various Reynolds number comparable. The
fitting range for all the data sets corresponds to the range
of nondimensional variable (tkL/τ0) ∈ [0,2.5]. Within this
range, all the correlation functions are accurately modelled by
the Gaussian fs.

The fitting parameter τs is the characteristic time scale of
the correlation function, its dependence on the wavenumber k
is shown in Fig. 3 for various Rλ . While for small wavenum-
bers the dependence is not regular, at intermediate and large
wavenumbers the decorrelation time clearly decays as k−1.
This result concurs with the collapse in the Fig. 2 occurring
for the tk-scaling. It is also in plain agreement with other
numerical studies of the two-time correlation function of Eu-
lerian velocity: in particular, with works11,15, where the char-
acteristic decorrelation time was estimated by integrating the
correlation function, as well as with the work13, where the
characteristic time is measured through the second derivative
of the correlation function.
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FIG. 3. Dependence of the decorrelation time τs resulting from
the Gaussian fit on the wavenumber in log-log scale for various Rλ .
Times on the vertical axis are normalized by the large eddy turnover
time scale τ0, the wavenumber on the horizontal axis is normalized
by the integral length scale L.
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FIG. 4. Estimation of the theoretical parameter αS in the Eq. (2)
from the results of the fit of numerical data.

One can estimate the coefficient αS in the theoretical ex-
pression Eq. (2) from the fits: αS ≈ (τ0/τskL)2. Plotting αS
versus k as in Fig. 4 shows that the numerical estimation of
αS reaches a plateau at large wavenumbers, which length in-
creases with Rλ . Whereas the Gaussian regime can be ob-
served already at intermediate wavenumbers, the value of kL
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FIG. 5. Rate of the direct energy transfer from the forcing range
to the wavenumber k normalized by the maximal value at various
Reynolds numbers computed with the use of the shell-to-shell energy
transfer method described in Ref. 41.
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at which αS settles to this plateau appears to be dependent on
Rλ . The deflection of αS from the plateau value at the in-
termediate wavenumbers can be attributed to the effect of the
forcing in the numerical scheme. This can be observed from
the analysis of the direct energy transfers with the modes of
the forcing range, as shown on the Fig. 5. The “ideal” numer-
ical simulation would exhibit a single peak of energy transfers
close to the forcing range itself, indicating the presence of the
local modal exchanges only, when the smaller scales receive
energy only through the turbulent energy cascade. However,
the Fig. 5 shows that direct energy transfers occur not only in
the closest vicinity of the forcing range, but also at a signif-
icant level over a band of wavenumbers, the width of which
depends on Rλ . This means that the wavenumbers from this
band are subjected not only to the energy cascade, but also
to direct energy transfers from the forcing range. The occur-
rence of these energy transfers in DNS can be a consequence
of the velocity forcing concentrated in a narrow spectral band
at large scales, as discussed in Ref. 42. This direct energy ex-
change with the forcing modes slows down the velocity decor-
relation and results in lower values of αS at small k. Matching
the horizontal axes of the figures 4 and 5 shows that the pa-
rameter αS reaches a constant value at wavenumbers where
the direct energy exchanges with the forcing modes become
negligible.

This analysis concurs with results from the Ref. 43, in
which the Eulerian velocity correlation function is studied by
means of a Taylor expansion in powers of time. It is shown
that the sweeping time scaling arises from interactions with
modes at much smaller wavenumbers (which corresponds to
the “sweeping” by a large-scale mode). These interactions are
predominant for kL� 1, while for small wavenumbers there
is no scale separation for interacting modes, and the charac-
teristic decorrelation time is estimated to be smaller. Sim-
ilar deviations from the sweeping time scaling at small kL
were observed in other DNS studies of the velocity correla-
tion function11,13,15. We can draw from these observations
that the “large wavenumber” regime of the theory can be here
identified as the values of kL such that direct energy transfers
from the forcing range are negligible.

Let us also emphasize the importance of collecting data to
obtain correct averages in numerical studies of the sweeping
effect. As discussed in the Sec. II B, the form of the time
dependence of the correlation function arises from averaging
over rapid oscillations of phases of the velocity field. This
implies that in numerical simulations, the correlation func-
tion should be averaged over a large number of realizations of
the large scale field, or in other words, the simulation should
be much longer than the large scale eddy turnover time τ0 in
order to efficiently average out the oscillations. To accumu-
late more statistics, we here exploited the isotropy of the flow
and averaged the correlation functions in space over spectral
shells, according to Eq. (18). In Ref. 44, the averaging proce-
dure is different, and the correlation curves exhibit oscillatory
behaviors, which can be a reason why the measured scaling of
the characteristic correlation time differs from our results.

Let us summarize this part. The data obtained from the
DNS accurately confirm the theoretical expression (2) for the

two-point spatio-temporal correlations of the turbulent veloc-
ity field for various scales at small time delays. In particu-
lar, the numerical data show that the theoretical parameter αS
reaches a plateau at large wavenumbers, in agreement with the
theoretical result.

B. Triple correlations at small time delays

In this part, we aim at testing the three-point spatio-
temporal correlations C(3) of the turbulent velocity field from
the DNS data. The definition of C(3) involves a product of
Fourier transforms of the velocity field û(t,~k) at three differ-
ent wavevectors:

C(3)
αβγ

(t1,~k1, t2,~k2)≡〈
ûα(t0 + t1,~k1)ûβ (t0 + t2,~k2)û∗γ(t0,~k1 +~k2)

〉
(20)

In contrast with the two-point correlation function C(2), the
product in the expression (20) is not local in ~k. When par-
allel computation and parallel memory distribution are used,
the access to nonlocal quantities requires the implementation
of additional communication operations between the proces-
sors during the simulation. This implies a great increase of
computation time and memory. In order to avoid these ad-
ditional implementation difficulties and computational costs,
we study and exploit a local triple velocity statistical moment
naturally arising from the Navier-Stokes equation and already
introduced in earlier works8. It corresponds to a specific con-
figuration of space-time arguments of the general three-point
correlation function.

Advection-velocity correlation function

The Navier-Stokes equation in the spectral space can be
written as:

∂t û`(t,~k) = N̂`(t,~k)−νk2û`(t,~k)+ f̂`(t,~k) (21)

where N̂`(t,~k) = −iknP̀ m ∑k′ ûm(t,~k′)ûn(t,~k −~k′) is the
Fourier transform of the advection and pressure gradient terms
of the Navier-Stokes equation, Pi j = δi j− kik j/k2 is the pro-
jection tensor and f̂` is the spectral forcing. Multiplying
Eq. (21) by the conjugated velocity û∗`(t0,~k) at a fixed time
t0 and performing an ensemble average leads to the following
equation for the two-point spatio-temporal correlation func-
tion C(2)(t,~k):

(∂t +νk2)C(2)(t,~k) = T̂ (t,~k)+ F̂(t,~k) (22)

where T̂ (t,~k) ≡
〈

N̂i(t + t0,~k)û∗i (t0,~k)
〉

is the spatio-temporal

correlation of the advection and velocity, and F̂(t,~k) =〈
f̂i(t + t0,~k)û∗i (t0,~k)

〉
is the spatio-temporal correlation of the

spectral forcing and velocity. Note that if the time delay is set
to zero (t = 0), then Eq. (22) simplifies to the equation of evo-
lution of the average kinetic energy of a single spectral mode
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Ekin(~k) = 1
2C(2)(0,~k). This energy splits into 1

2 T̂ (0,~k) (the av-
erage nonlinear energy transfer between modes) and 1

2 F̂(0,~k)
(the average forcing power input, which is assumed to be zero
beyond the forcing range at large scales).

The advection-velocity correlation function T̂ is a triple
correlation, and its link with the three-point correlation func-
tion C(3) becomes clear if one develops the nonlinear term in
the definition of T̂ (t,~k):

T̂ (t,~k)≡
〈

N̂`(t0 + t,~k)û∗`(t0,~k)
〉

=−iknP̀ m ∑k′

〈
ûm(t + t0,~k′)ûn(t + t0,~k−~k′)û∗`(t0,~k)

〉
=−iknP̀ m ∑k′C

(3)
mn`(t,~k

′, t,~k−~k′) (23)

Hence, the correlation function T̂ actually provides a linear
combination of three-point correlation functions. The theoret-
ical prediction (6) suggests that T̂ must also be a Gaussian of
the variable tk (at small times and large wavenumbers):

T̂ (t,~k)∼∑
k′

C(3)
mn`(t,~k

′, t,~k−~k′)∼ exp
{
−αS(L/τ0)

2k2t2}
(24)

with k = |~k|.
Another useful property of the correlation function T̂ is its

link with the two-point correlation function C(2). Considering
a small time delay t, one can use the expression of the two-
point correlation function C(2)

s (t,~k) of Eq. (2). Inserting this
result into Eq. (22) leads to an explicit expression for the func-
tion T̂ at small time delays (and for wavenumbers outside the
forcing range):

T̂ (t,~k) = νk2C(2)(0,~k)
(

1− 2αSL2

τ2
0 ν

t
)

exp
{
−αS(L/τ0)

2k2t2
}
=

= D̂(~k)
(

1−2αSRe
t
τ0

)
exp
{
−αS(L/τ0)

2k2t2
}

(25)

where D̂(~k) = νk2C(2)(0,~k) is the spectral dissipation rate and
Re = URMSL

ν
is the Reynolds number. Eq. (25) indicates that

the function T̂ is in general not symmetric with respect to the
origin of the t-axis, and that it can have a minimum and max-
imum at non-zero time delays.

To sum up, the advection-velocity correlation function T̂
is a local triple moment in spectral space, as it implies the
multiplication of the advection and velocity fields at the same
wave vector~k, and it is related to a sum of three-point non-
local velocity correlation functions. The equivalence of the
function T̂ at zero time delay to the spectral energy transfer
function and its link with the two-point spatio-temporal corre-
lation function Eq. (22) facilitate the testing of the numerical
method and the interpretation of the results in the following.

Note that an equation similar to Eq. (22) is also used in
the Direct Interaction Approximation scheme (DIA)8, where
a time dependent triple statistical moment similar to T̂ is in-
troduced. Similarly, the equation Eq. (22) lies in the core of
the local energy transfer (LET) closure. The recent work5 ex-
tends the LET approach to two-time statistics and investigates
a two-time triple statistical moment, equivalent to T̂ .

Numerical method

In the numerical simulations, we compute the correlation
function T̂ (t,~k) by point-wise multiplication of the Fourier
transform of the nonlinear term N̂(t0 + t,~k) by the velocity
field û∗(t0,~k). This quantity is local in spectral space and
the computation does not require significantly more compu-
tational resources.

We use the method already described in the Sec. III A to
collect and average the data. However, note that in this case
it becomes necessary to take into account the sign of the time
delay. The advection-velocity correlation function T̂ at nega-
tive time delays can be computed just by switching the time
instants of the fields in the following way:

T̂ (t,~k) =


〈

N̂i(t0 + |t|,~k)û∗i (t0,~k)
〉
, t > 0〈

N̂i(t0,~k)û∗i (t0 + |t|,~k)
〉
, t < 0

(26)

Hence, to compute the correlation T̂ (t,~k) at negative time de-
lays during the simulation one only needs to store the spectral
advection field at one reference time t0.

Scale decomposition

Although the advection-velocity correlation function T̂ pro-
vides a triple statistical quantity that can be easily accessed in
the numerical simulations, it contains a summation coming
from the convolution in the advection term Eq. (23). Contri-
butions from all possible wavevector triads {~k′,~k−~k′,~k} of
any scale are thus summed up. However, the FRG prediction
Eq. (5) is valid in the limit where all three wavenumbers are
large. One hence needs to refine this sum in order to eliminate
contributions from the small wavenumbers.

The simplest way to solve this issue is to perform a scale
decomposition of the velocity fields. We choose a thresh-
old wavenumber Kc, so that all wavevectors of smaller norm
|~k|< Kc are considered as "large" scales and are denoted with
a superscript L, whereas the modes with higher wavenumbers
are considered as "small scales" and denoted with S. The ve-
locity field is decomposed into small- and large-scale parts
~u =~uL +~uS. In the spectral domain the decomposition is per-
formed by a simple box-filtering operation:

ûL
i (~k, t)=

{
ûi(~k, t), |~k|< Kc

0, |~k| ≥ Kc
ûS

i (~k, t)=

{
0, |~k|< Kc

ûi(~k, t), |~k| ≥ Kc

(27)
The velocity field scale decomposition leads to a decom-

position of the advection-velocity correlation function T̂ into
four terms (here written as an example for a wavevector~k be-
longing to the "small" scales):

T̂ (~k, t) =
[
T̂ SSS + T̂ SLS + T̂ SSL + T̂ SLL](~k, t) (28)

with T̂ XY Z(~k, t, t0) =−[ûX
i ]
∗(~k, t0) FT[uY

j ∂ juZ
i ](
~k, t0+ t) where

X ,Y,Z stand for S or L.



9

A similar decomposition at equal times has been used in
studies of the energy transfer function (Ref. 41 and 45). Us-
ing the terminology of Ref. 41 for energy transfers, the first
superscript of T̂ XY Z is related to the mode receiving energy
in a triadic interaction process (it is actually the mode~k for
which the equation (28) is written setting t = 0), the inter-
mediate superscript denotes the mediator mode and the last
superscript is related to the giver mode that sends the energy
to the receiver mode. The mediator mode does not loose nor
receive energy in the interaction, it corresponds to the veloc-
ity field which comes as prefactor of the operator nabla in the
nonlinear term of the Navier-Stokes equation, so one can term
it the "advecting" field.

Let us give a physical interpretation of the terms of this de-
composition. The term T̂ SSS gathers all triadic interactions
where the three modes belong to the small scales. The term
T̂ SLS contains the energy transfers between two small scales
mediated by large scale modes, which thus represent the tri-
ads involved in the sweeping. We emphasize that both energy
transfers T̂ SSS and T̂ SLS occur between small scales, and are
thus local in spectral space, so they form the turbulent energy
cascade. The terms T̂ SSL and T̂ SLL denote the direct energy
transfers from large scale modes to small scale ones, thus non-
local transfers are expected to be small compared to the local
ones. Let us now focus on the all-small scale term T̂ SSS, which
corresponds to the limit of large wavenumbers on which the
theoretical prediction relies.

The cut-off wavenumber Kc of the filter in the Eq. (27) is
chosen in such a way that at k & Kc the direct energy transfer
between the forcing range and small scale modes (shown in
the Fig. 5) becomes negligible. We thus expect that the dy-
namics of the modes at k & Kc does not depend directly on
the forcing mechanism and we should observe an approach
to the universal behavior predicted by the theory. The value
of KcL used for each simulation is provided in Table I. The
wavenumbers k & Kc approximately correspond to the range
of validity of the theoretical prediction for the two-point cor-
relation function at large wavenumbers, as discussed in the
Sec. III A.

Results for the temporal correlations

The data presented in this section are obtained from the
same set of simulations used for the analysis of the two-point
correlation function at small time delays in Sec. III A and de-
scribed in Table I. The results for the time dependence of T̂ at
different wavenumbers k & Kc are shown in Fig. 6. One ob-
serves that the total advection-velocity correlation function T̂
(top panel of Fig. 6) is not symmetric with respect to the time
origin and takes negative values, in qualitative agreement with
the form of the Eq. (25). However, the term T̂ SSS, which only
contains contributions from small scale modes to the correla-
tion function T̂ , significantly changes shape (bottom panel of
Fig. 6).

For the wavenumbers close to the cut-off wavenumber Kc,
the curves are affected by the filter. To explain this, one should
recall that at zero time delay T̂ SSS(t = 0,~k) is equal to the
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FIG. 6. The advection-velocity spatio-temporal correlation function
T̂ (t,k) versus time at selected values of wavenumbers k/Kc: total
one (top panel), small scale one T̂ SSS (bottom panel). The curves are
normalized by the spectral dissipation rate D̂(k) = νk2C(2)(0,k).
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FIG. 7. The small scale advection-velocity correlation function T̂ SSS

versus tk in semilog scale at various wavenumbers, for Rλ = 160,
N = 512. The correlation functions are normalized by their value at
t = 0.

local nonlinear energy transfer between small scales modes.
At wavenumbers close to the filter cut-off Kc, some spec-
tral modes participating in the local energy transfers are sup-
pressed by the filter. Thus, the modes close to the filter cut-off
transmit the energy to smaller scales, but they do not receive
energy from the nullified larger scales, which results in a neg-
ative energy balance. For the larger wavenumbers k & 2Kc,
the curves deform towards the expected Gaussian shape. This
is further illustrated on Fig. 7, where the correlation function
T̂ SSS is plotted versus the scaling variable tk in semi logarith-
mic scale, inducing a collapse of all the curves onto a single
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FIG. 8. Numerical estimation of the parameter τa (upper panel) and
αS (bottom panel) obtained from the small scale advection-velocity
correlation T̂ SSS (continuous lines), compared with the result for the
two-point correlation function C(2) from Fig. 4 (dashed lines). Both
estimations converge to a similar value, as expected from the theory.
The result of the fitting for the total advection-velocity correlation T̂
is also indicated with dotted lines for completeness.

Gaussian. This is in plain agreement with the theoretical re-
sult (5) for the three-point correlation function. This behavior
is very similar to the one for the two-point correlation function
presented in Fig. 2.

We fit the curves obtained for the advection-correlation
function T̂ with a function of the form of Eq. (25):

f (t) = c
(

1− t
τb

)
e−(t/τa)

2
. (29)

where τa,τb and c are the parameters.
We find that both correlation functions T̂ and T̂ SSS accu-

rately fit (29). Moreover, we verify that the fitting parameter
τa for both functions is proportional to k−1, as displayed in
Fig. 8 (upper panel), and in agreement with Eq. (5). We es-
timate from this parameter the value of the coefficient αS in
Eq. (6) as αS = τ0/(τak2L2). The result is shown in Fig. 8.
At sufficiently large wavenumbers, the values of αS extracted
from the small scale function T̂ SSS and from the total T̂ are
comparable. They also match with the value obtained from
C(2), as predicted by the theory. The small discrepancy visi-
ble between the values of αS from C(2) and from T̂ SSS could
be attributed to a loss of accuracy due to the decomposition:
The magnitude of the filtered signal is much weaker, so it is
more sensitive to the noise due to numerical errors.

Lastly, we examine the role of the parameter τb in the fit-
ting function (29). To do this, we can refer to the Eq. (25) for
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FIG. 9. Dependence of the parameter τb of the fitting function
Eq. (29) on the wavenumber for the small scale advection-velocity
correlation T̂ SSS (continuous) and for the total one T̂ (dotted lines).
The values are normalized by 2αsRe/τ0 to enable comparison with
the Eq. (25).

the total correlation function T̂ , which was obtained from the
Navier-Stokes equation assuming that the two-point correla-
tion function C(2) is the Gaussian of the theory. Therefore, the
fitting parameter time scale τb can be estimated as:

τb =
τ0

2αsRe
(30)

In the Fig. 9, we show the dependence of the nondimensional
parameter 2αSReτb/τ0 on the wavenumber. The values of αs
are taken from the fit of the two-point correlation function
C(2). As expected, for the total advection-velocity correlation
function T̂ the values from all simulations are in the vicinity
of unity independently of the wavenumber, which is consistent
with the Eq. (30). Besides, one can observe from the Fig. 9
that for T̂ SSS the non-dimensionalized parameter τb is at least
one order of magnitude larger than for the total T̂ . This means
that for T̂ SSS the time scale of the linear part τb of the func-
tion (29) becomes much larger than the time scale τa of the
Gaussian part. In other words, the Gaussian part decays fast
and the function already approaches zero before the slower
linear part comes into play, which results in the Gaussian-like
shapes of T̂ SSS in the figures 6 and 7. On the contrary, for the
total function T̂ the time scale τb is smaller than τa and the
shape of the total T̂ is dominated by the linear part at short
times, resulting in a non-symmetric shape.

An interpretation of this result can be proposed based on
the identification of the advection-velocity correlation func-
tion T̂ at t = 0 as the spectral energy transfer function. We
have observed that a significant part of the energy transfers
between the small scales in 3D turbulence occurs in spectral
triads with participation of a large scale mode as mediator (the
term T̂ SLS in the decomposition (28)). The same conclusion
can be found in Ref. 41, 46, and 47. However, as discussed
in Ref. 48, although these triads have significant individual
contributions to energy transfer, they are much less numer-
ous than the fully local triads formed of small-scale modes
(the term T̂ SSS in the decomposition), because there are fewer
large-scale modes. In the limit of large Reynolds numbers,
the fully local triads become numerous and dominate in the
turbulent energy cascade.
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In addition, the detailed analysis of the contributions in the
decomposition (28) shows that the nonsymmetric behavior in
time of the total correlation T̂ is also inherited from the con-
tribution of T̂ SLS. The occurrence of the maximal and mini-
mal values of the advection-velocity correlation T̂ at non-zero
time delays (see the top panel of the Fig. 6) implies that there
is some coherence between two small scale vortices simul-
taneously advected by a large scale, slowly varying, vortex.
The origin of this coherence can be through an alignment of
turbulent stress and large scale strain rate. The dynamics of
the alignment between time-delayed filtered strain rate and the
stress tensor, as well as its link with the energy flux between
scales, has been recently analyzed in the Ref. 49, where the
alignment also displays an asymmetrical behavior in time and
is peaked at scale dependent time delays. As the energy flux,
which could be expressed as a product of stress and strain rate,
also represents a triple statistical moment of the velocity field,
it would be natural to expect that it exhibits a temporal behav-
ior similar to the advection-velocity correlation T̂ .

In the case of the purely small scale correlation function
T̂ SSS, the characteristic time scales of all modes in the triad
are comparable, and the mediator mode cannot impose any
coherence on the interacting modes, as all three modes decor-
relate fastly before any alignment can occur. This results in
the symmetric, close to Gaussian form of the small scale cor-
relation functions T̂ SSS. Note that all the three modes in T̂ SSS

are still transported simultaneously by the random large scale
velocity field. This mechanism is the same random sweeping
effect that is reponsible for the Gaussian time dependence of
T̂ SSS and of C(2).

To conclude, the spatio-temporal correlation between the
velocity and advection fields constitutes a triple statistical mo-
ment easily accessible in numerical simulations. The applica-
tion of the scale decomposition to this correlation is a neces-
sary refinement to approach the regime of large wavenumbers
of the theoretical result and gives an insight into the statistics
of the full three-point spatio-temporal correlation functions.
We observe a Gaussian with the same time and wavenumber
dependence as in the theoretical result. Moreover, this analy-
sis provides a further nontrivial quantitative validation, since
the parameter αS is found to be the same for the two-point and
the three-point correlations.

C. Two-point spatio-temporal correlation of the modulus of
the velocity

The numerical analysis of the two-point correlation func-
tion of the velocity at large time delays represents a more chal-
lenging task since its values become very low and are drowned
into noise and numerical errors. Moreover, it requires larger
observation times, and thus longer simulations and more com-
putational resources. We did not succeed in resolving the large
time regime from our numerical data for the two-point corre-
lation function, due to both the lack of statistics in the time
averaging and the weakness of the signal, comparable with
numerical errors.

However, in order to increase the amplitude of the signal,
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FIG. 10. Time dependence of the normalized two-point correla-
tion function of the velocity norms C̄(2)

n (t,k) at Rλ = 60 for differ-
ent wavenumbers k in semi-logarithmic scales. The numerical data
are denoted with dots, the exponential fit is denoted with the dashed
lines.

we studied the correlation function of the velocity modulus
rather than the real part of the complex correlation function.
For this quantity, the large time regime indeed turns out to
be observable, as we now report. We thus introduce the con-
nected two-point correlation function of velocity modulus in
spectral space

C̄(2)
n (t,k) =

〈
‖~̂u(t0,~k)‖ ‖~̂u(t0 + t,~k)‖

〉
−〈

‖~̂u(t0,~k)‖
〉〈
‖~̂u(t0 + t,~k)‖

〉
(31)

with spatial and time averaging identical to Eq. (18) 〈...〉 =
1
Nt

1
Mn

∑
Nt
j=1 ∑~k∈Sn

(...). This correlation function was computed
in another set of simulations with larger width of the time win-
dow.

An example of the correlation function computed according
to Eq. (31) for Rλ = 60 is presented in Fig. 10. Similarly to
the two-point correlation studied in Sec. III A, one observes at
short time delays the Gaussian decay in time and the curves
at different wavenumbers collapse in the tk-scaling. However,
Fig. 10 reveals a crossover to another regime at larger time
delays: a slower decorrelation in time, that can visually be
estimated as exponential. The curves at various wavenumbers
no longer collapse in the horizontal scaling tk, and the slope
of this decay appears to be steeper for larger wavenumbers.

In order to study the transition between these two temporal
regimes of the correlation function, we compute the normal-
ized time derivative of C̄(2)

n (t,k)

D1(t,k) =
∂tC̄

(2)
n (t,k)

C̄(2)
n (t,k)

. (32)

If the correlation function C̄(2)
n is a Gaussian, the time deriva-

tive D1 is simply a line with a slope equal to−2/τ2
s , and if the

correlation function is an exponential function, the function
D1 becomes a constant. The derivative D1 is represented in
Fig. 11 for Rλ = 60. At small time delays, D1 is a linear func-
tion with a negative slope. It then displays a non-monotonous
transition before approximately reaching a constant value at
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FIG. 12. Crossover time for the two-point correlations of the veloc-
ity norms C̄(2)

n between the small time and large time regimes as a
function of the wavenumber k, estimated from the minimum of D1.

large time delays. We can define the crossover time delay t
as the location of the minimum of the derivative D1. This
crossover time at different Reynolds numbers is shown in the
Fig. 12. It depends on the wavenumber as τc ∼ k−1. We
checked that this k−1 behavior does not depend on the precise
definition chosen for the crossover time.

Let us emphasize that the correlation function of the veloc-
ity norms introduced in Eq. (31) is not related in any simple
way to the standard real part of the correlation function (1)
computed theoretically in the FRG approach. Moreover, as
the phases play no role for these correlations, the sweeping
argument proposed in Sec. II B cannot explain this behavior.
The decorrelation must ensue a priori from another physical
mechanism, yet to be identified. However, the results of the
numerical simulation show that the correlation of the velocity
modulus and the real part of the complex velocity correlation
function at small time delays (the Gaussian decay) are simi-
lar, and exhibit close values for the characteristic decorrelation
time. In addition, at large time delays the correlations of the
velocity modulus demonstrate a crossover to an exponential
decay in time, analogous to the one expected for the real part
of the correlation function.

While a complete understanding of these intriguing obser-
vations is lacking, some insight into the mechanisms at play
in the regime of small time delays can be obtained from the
expression valid to first-order in t

~u(t0 + t,~r) =~u(t0,~r−~u(t0,~r)t)−~∇p(t0,~r)t +O(t2),

where the second term which is required to enforce incom-
pressibility involves the pressure satisfying the Poisson equa-
tion −4p(t0,~r) = tr[(~∇~u(t0,~r))2]. If one assumes that the ~r-
dependence can be ignored for the inner velocity field multi-
plied by t, then this expression simplifies to

~u(t0 + t,~r) =~u(t0,~r−~u(t0,~0)t)+O(t2)

and one obtains ~̂u(t0 + t,~k) = e−it~k·~u(t0,~0)t~̂u(t0,~k), so that
sweeping is represented by a pure change of phase of the
Fourier mode. However, it is clearly inconsistent to neglect
the ~r-dependence of ~u(t0,~r) in one instance and not in the
other. Thus, the effects observed in Fig. 11 must presum-
ably be due to the spatial inhomogeneity of sweeping and
the associated long-range pressure forces arising from incom-
pressibility, which decorrelate the moduli of the Fourier ve-
locity amplitudes. If one furthermore plausibly assumes that
the correlation C̄(2)

n (t,k) is a maximum at t = 0, then ana-
lyticity in t requires in the regime of small time delays that
C̄(2)

n (t,k) .
= C̄(2)

n (0,k)(1− t2/τ2
k ) for some parameter τk with

units of time and then immediately

D1(t,k)
.
= 1− 2t

τ2
k
,

as observed in Fig 11. These considerations do not explain the
detailed observations, neither the k-dependence of τk nor the
exponential decay in the regime of long time lags, but they do
suggest some possible relevant physics for future theoretical
and empirical exploration.

Interestingly, a very similar behavior has been observed in
the air jet experiments described in Ref. 17. In these exper-
iments, the temporal decay of the two-point correlation func-
tion of the amplitude of the vorticity field is measured, and it
displays a crossover from a tk Gaussian decay to a slower ex-
ponential one. The crossover time between these two regimes
is found to scale as k−1 as observed in our simulations50. The
correlation of the velocity norms could be probably linked
with the correlation of the energy of Fourier modes. In a re-
cent work51 the time-delayed statistics of the spectral energy
and energy transfer was studied numerically, with a focus on
cross correlation between large and small scales. In particu-
lar, it is highlighted the difference in behaviour correlations of
slow and fast components of energy fluctuations, which could
also be relevant to the observed regimes in correlation of ve-
locity norms.

IV. SUMMARY AND PERSPECTIVE

In this paper, we use DNS to study the spatio-temporal de-
pendence of the two-point and of a specific configuration of
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the three-point correlations of the velocity field in stationary,
homogeneous and isotropic turbulence. The motivation un-
derlying this work is to test a theoretical result obtained within
the FRG framework, which gives the exact leading term at
large wavenumbers of the spatio-temporal dependence of any
n-point correlation function of the velocity field32. This re-
sult establishes that the two-point correlation function decays
as a Gaussian in the variable tk (or |∑i ti~ki| for a n-point cor-
relation) at small time delays ti, while at large time delays,
the decorrelation slows down to a simple exponential in ti.
While these results can in fact be interpreted quite simply by
extending the analysis of the random sweeping effect, follow-
ing the original arguments by Kraichnan, they are endowed
through the FRG calculation with a rigorous and very general
expression. In particular, these expressions show that for any
fixed time delays, the correlation function as a function of any
wavenumber is always Gaussian. Furthermore, the multiplica-
tive constant in the exponential is the same for all the Gaussian
decays and all the exponential decays as well, independently
from the order n.

In the small time regime that we could access via DNS of
the two-point and triple correlation functions with an equal
time delay, our numerical data confirm the theoretical predic-
tion with great accuracy. In particular, we verify that the pref-
actors of time are proportional to k2 (or |~k1 +~k2|2) and the nu-
merical constants at small time delays are indeed equal for the
two-point and triple correlations. Furthermore, our analysis
provides a deeper insight into the range of validity of the the-
ory. All the theoretical results discussed here are derived un-
der the assumption that all the wavenumbers (and their partial
sums) are large. From the DNS data, we estimate the range of
k where this condition is fulfilled and show that it corresponds
to the range where the direct energy transfer from the forcing
modes is negligible. For the triple correlations, we show that
once the small wavenumbers k < Kc are removed through an
appropriate decomposition, the theoretical prediction is pre-
cisely recovered.

Our analysis of the correlation function of the modulus of
the velocity shows a very similar behavior as the one expected
for the velocity itself, although the theoretical results do not
apply in this case. It would be desirable to understand the
main physical mechanism at play for the decorrelation of the
modulus, which cannot be attributed to convective dephasing.
This calls for further theoretical developments. On the nu-
merical side, it would be interesting to extend this analysis
to higher-order correlations, and for more general configura-
tions in time (since our approach restricts to equal and short
time delays for a specific configuration of the three-point cor-
relations). A particularly challenging task is the access to
the long-time regime. This would of course require impor-
tant computing resources. The understanding of the temporal
correlations for passive scalars in turbulent flows is also very
important for many applications. This is work in progress.
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