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Abstract

A novel stochastic model to produce voiced sounds is proposed and, mainly, the corresponding identification of some
model parameters using an Artificial Neural Network (ANN). The procedure described in this paper is about an
intermediate step, which has as final objective to identify pathologies in the vocal folds through the voice of patients,
that is, through a non-invasive method. The proposed model presented here uses the source-filter Fant theory and
three main novelties are presented: a new mathematical model to produce voice obtained from the unification of two
other deterministic one mass-spring-damper models obtained from the literature; a stochastic model that can generate
and control the level of jitter resulting even in hoarse voice signals and/or with pathological characteristics but using
a simpler model than those usually discussed in the literature; and the most important novelty, the identification of
parameters of the proposed model, from experimental voice signals, using an ANN, particularly in a pathological case.
The proposed neural network-based identification method requires a construction of a database from which an ANN
can be trained to learn the nonlinear relationship between the parameters of the stochastic model and some relevant
quantities of interest. The corresponding inverse stochastic problem is then solved in two cases: for one utterance
corresponding to a normal voice and for another utterance corresponding to a pathological case corresponding to a
nodulus in the vocal folds, helping to validate the model.

Keywords: Voice production, jitter, stochastic biomechanical models, voice pathologies.

1. Introduction

Voice has a fundamental importance in the transmission of knowledge, feelings and emotions. It has also an
important role in the culture of a people, such as singing and acting and also it is the main work tool for many
agents, such as singers, speakers, teachers, and others. The phonation occurs when a column of air, expelled from the
lungs, passes through the vocal folds. Then, pulses of air are generated forming a (quasi-)periodic acoustic pressure
signal called the glottal signal, which is further filtered and amplified by the vocal tract and finally, radiated by the
mouth generating the voice. The glottal signal is not exactly periodic due to small random deviations in relation to a
mean value of the glottal time interval called jitter. This phenomenon has some practical applications as to help in the
identification of pathologies from the vocal folds, identification of voice aging, voice recognition, speaker recognition,
and other (Wilcox, 1980;Li et al., 2010; Mendonza et al., 2014; Fraile et al., 2012). In general, values of relative jitter
between 0.1% and 1.04% indicate normal voice, that is, a voice that is not symptomatic of a pathology (Wong et al.,
1991; Manfredi et al., 2009).

Some stochastic models of jitter have already been proposed taking into account only mathematical expressions of
the glottal signal without considering a mechanical model for the vocal folds (Schoentgen et al., 1997, 2001; Vasilakis
and Stylianou, 2009). Other authors have recently described a mechanical model for the vocal folds considering the
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generation of jitter (Cataldo et al., 2012; Cataldo and Soize, 2016, 2018). However these models consider the coupling
between the vocal folds and the vocal tract causing a relative model complexity that induces a significant computa-
tional cost. In addition, for addressing the problem related to the statistical inverse identification of stochastic models
the proposed methods require solving a statistical inverse problem classically formulated as a stochastic optimiza-
tion problem, which may be computationally expensive, because it is necessary to run many times the computational
model related to the direct problem.

It is important to say that the work presented here is a continuation and an extension of the paper previously
published in Journal of Biomedical Signal Processing and Control (Cataldo et al., 2016) but with a new methodoly
and also new results.

In this work, a simplified model is proposed for the generation of jitter, considering the unification of two de-
terministic models proposed by Qureshi (2011) and also by Titze (1984,1988) with posterior modifications (Lucero,
1999; Lucero et al., 2001), disregarding a coupling equation between the vocal tract and the vocal folds, and consid-
ering the stiffness associated to the vocal folds as a stochastic process following the ideas proposed by Cataldo and
Soize (2016,2018). With simplified stochastic model it is possible to obtain very good intelligible synthesis of voiced
sounds, including jitter, characterizing normal voices but also hoarse voices or voices indicating pathologies due to the
high level of jitter. To validate the model, a stochastic inverse problem is solved through an Artificial Neural Network.
The statistical inverse problem under consideration consists in finding the values of the parameters of the stochastic
model to produce voice for some given observed quantities of interest of the voice signals. An initial database is
first generated from forward numerical simulations of the computational model. A processed database can then be
deduced by conditioning the initial database in order to improve the performance of the trained ANN and therefore
the efficiency of the neural network-based identification method. A multilayer ANN can then be designed to learn the
nonlinear relationship between the parameters (network outputs) and the quantities of interest (network inputs). As a
consequence, the proposed ANN-based identification strategy is computationally cheap, easy to implement, and use.

With this model experimentally validated, through Artificial Neural Networks, it is possible to generate the random
phenomenon that is present in all voice signals. By numerical simulation, a big dataset can be generated for different
voice signals, with different levels of jitter, and for different kinds of pathologies. Such a big dataset can be used for
training an Artificial Neural Network. Finally, it should be noted that simple models have been used for the vocal
folds, even nowadays, to better understand their movement as, for example, in the recently published paper by Lucero
et al. (2020).

In this moment and in this work, it is very important to say that the discussion is an intermediate step to reach
a final objective that is to help the pre-diagnosis of pathologies related to the vocal tract and the vocal folds in
a noninvasive method. The idea is to find a set of parameters from the model, which can generate voices with
pathological characteristics, even if only a specific group of pathologies is considered. Then, given a voice signal, the
inverse problem is solved and if the parameters obtained belong to the range of the initial group of parameters, it will
indicate that a possible pathology is present to the speaker of that voice signal.

In this paper, two experimental cases are considered, one of them corresponding to a normal voice and another
from an experimental signal with pathological characteristics, the case of a nodulus in the vocal folds.

2. A proposed unified deterministic model for the vocal folds

The complete model presented here is based on the source-filter Fant theory (Fant, 1981), illustrated in Fig. 1.

Figure 1: Sketch of the source-filter theory.

The voice signal generated, s(t), is given by the convolution of the glottal signal ug(t), the corresponding impulse
response function h f (t) of the filter that models the vocal tract, and the radiation by the mouth for which the impulse
response function is r(t). Then, Eq. (1) can be written as,

s(t) = (r ∗ (h f ∗ ug))(t) , (1)
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where ∗ is the convolution product. In the frequency domain, Eq. (2) can be written as,

ŝ(ω) = r̂(ω) ĥ f (ω) ûg(ω) , (2)

where .̂ means the Fourier Transform. This equation is well discussed in the literature about voice synthesis (Rabiner
and Schafer, 1978; Prasad, 2017). With this formulation, there is no coupling between the vocal folds and the vocal
tract, simplifying the model. In this paper, ug(t) is constructed using the proposed model, h f (t) is one coming from
the literature and detailed later, and r(t) is a first order high-pass FIR (finite impulse response) filter, such as suggested
in (Rabiner and Schafer, 1978). Before discussing the stochastic model, the also original deterministic model is
constructed based on two other models from the literature, which generate the glottal signal. The final idea is to join
the best characteristics of each model to construct the proposed unified deterministic model.

The sketch considered is the one proposed by Qureshi (2011) and reproduced in Fig. 2. The movement of each

Figure 2: Sketch of the Qureshi model.

vocal fold is given by a rotary motion about its support point p0. A single mass-spring-damper system is attached
to the glottis at its entrance. The model is assumed to be symmetric about its central line so that the left side of the
vocal fold is the same as its right one. The glottal entry displacement is represented by x1(t). The characteristic of a
nonlinear damping is introduced in the model, according to (Laje et al.,2001), and the equation of the motion for a
single vocal fold is described by (Lucero et al., 2011):

Mẍ1(t) + B (1 + η x2
1(t)) ẋ1(t) + Kx1(t) = pg(t; x1(t), ẋ1(t)) . (3)

where M, B, and K are the mass, the damping, and the stiffness, per area unit, and η is the nonlinear coefficient
damping. The mean glottal pressure pg is obtained using the Bernoulli law, and after some simplifications given by
Eq. (4) (Titze, 1988;Lucero, 1999):

pg(t; x1(t), ẋ1(t)) =
2 τ psub(t) ẋ1(t)

kt
(x01 + x1(t)) , (4)

where x01 is the initial glottal displacement, pre-phonation, in relation to the mean point of oscillation, in the entry, τ is
a short glottal delay time, kt is the coefficient of transglottal pressure, and psub(t) is the subglottal pressure. According
to Qureshi (2011), the glottal flow ug(t) is given by Eq. (5):

ug(t) =

√
2psub(t)

kt ρ
area(t) , (5)

where ρ is the air density and area(t) is the area at the exit of the glottis and given by

area(t) =

{
2 ` (x02 + x2(t)) , x2(t) > −x02
2 ` x02 , otherwise (6)
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in which x02 is the initial glottal displacement, pre-phonation, in relation to the mean point of oscillation, in the exit,
` is the width of the vocal folds, and

x2(t) = −(x1(t) − x0) , (7)

where the mean position of the oscillation is x0, which is specified by the horizontal position of the fulcrum point p0.
In this text, without loosing generality, the same values are considered for x0, x01 and x02. After generating ug(t), the
convolution with the filter (vocal tract and the mouth) should be performed to produce the sound.

The next step is the construction of the corresponding stochastic model to generate the glottal pulse, which will
be then a stochastic process, based upon the unified deterministic model proposed here.

3. Proposed stochastic model

The objective is to vary instantaneously the frequency of the voice signal to generate jitter. As the mass is fixed,
the stiffness K is considered as a stochastic process {K(t), t ∈ R} following some ideas proposed by (Cataldo and
Soize, 2018) with the corresponding changes, because the model created here does not consider the coupling between
the vocal tract and the vocal folds. The consideration is that jitter is generated due to the variation of the stiffness of
the vocal folds, giving possible additional information to the biomechanics of the vocal folds. In (Cataldo and Soize,
2018) a more complex model was considered, taking into account a coupling equation between the vocal folds and the
vocal tract. The idea is to reproduce similar results using the same consideration of the stochastic model associated
with the stiffness and to show that it is possible to generate jitter and very good intelligible voice sounds. The details
about the construction of the stochastic model associated with the stiffness will not be explained here, because they
can be obtained in (Cataldo and Soize, 2018). Only the most important characteristics will be listed.

Let E be the mathematical expectation. The stochastic process {K(t), t ∈ R} is constructed according to the
properties defined as follows.

(i) For all t in R, it is assumed that 0 < K0 ≤ K(t) almost surely, where K0 is a positive constant independent of t.
(ii) {K(t), t ∈ R} is a non-Gaussian stationary stochastic process such that E{K(t)2} < +∞ for all t (second-order

stochastic process), for which its mean function (that is independent of t) is written as E{K(t)} = K > k0 > 0,
and which is assumed to be mean-square continuous in order to guaranty the existence of a power spectral
measure.

A representation of the stochastic process K(t) is chosen as,

K(t) = K0 + (K − K0)(z̄ + Z(t))2 . (8)

in which z̄ is a positive real number and where {Z(t), t ∈ R} is a Gaussian second-order real-valued stochastic process,
centered, mean-square continuous, stationary and ergodic, physically realizable, such that Z = h ∗ N∞, where N∞ is
the centered Gaussian white noise (generalized stochastic process) whose power spectral density function is written,
for all real ω, as S N(ω) = 1/(2π), and h = F −1{H} is the inverse Fourier transform of the complex-valued frequency
response function ω 7→ H(ω) chosen, for all real ω, as H(ω) = a/(b + iω), in which a and b are positive constants, so
that stochastic process Z can be constructed as the asymptotic stationary random solution of the following linear Itô
stochastic differential equation,

dZ(t) = −b Z(t) dt + a dW(t) , t > 0 , (9)

with the initial condition Z(0) = 0, where {W(t), t ≥ 0} is the real-valued normalized Wiener stochastic process. The
power spectral density function of stochastic process Z is then given by Eq. (10):

S Z(ω) =| H(ω) |2=
a2

2π(ω2 + b2)
. (10)

The level of jitter will mainly be controlled by a (and b), which should satisfy the condition a2 < 4b (Cataldo and
Soize, 2016). It could be intoduced a filter with a high order and then with more parameters to be identified. However,
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it has been chosen a filter of first order with two parameters. The simulations, discussed later, show that this filter
chosen is enough to generate jitter. Following Eq. (3), the displacement x1(t) of the vocal folds becomes the stochastic
process X1(t). The dynamics of the vocal folds is then given by the following nonlinear stochastic differential equation,

MẌ1(t) + B (1 + η X2
1(t)) Ẋ1(t) + K(t) X1(t) = pg(t; X1(t), Ẋ1(t)) . (11)

All the other equations related to the unified deterministic model should be rewritten substituting x1(t) and x2(t)
by X1(t) and X2(t), and also pg by Pg. The realizations of the stochastic process {K(t), t ∈ R} are obtained using
Eqs. (8) and (9). Consequently, the realizations of the stochastic process X1(t) are computed by solving Eq. (11)
and the realizations of the stochastic process X2(t) are deduced. Finally, realizations of the stochastic process Ug(t),
corresponding to the glottal signal, are computed. The voice signal is generated through the convolution given by
Eq. (1). The voice signals generated will indicate the presence of jitter and to quantify its level some measures can be
used.

3.1. Jitter measures

Let Tg be the random variable associated with the duration of the glottal cycle, which is defined as the duration be-
tween two successive times, the first one corresponding to the instant the vocal folds (glottis) open and the second one
the instant when they close completely. To calculate Tg from Ug(t), it is used an algorithm based on an implementation
of the RAPT pitch tracker (Talkin, 1995).

For each glottal cycle j, and each realization θ j of the random variable Tg, the duration denoted by Tg(θ j) can
be associated with. Considering that the set {Tg(θ j), j = 1, . . . ,N} constitutes N realizations of random variable Tg

(corresponding to all the glottal cycles of the voice signal), jitter can be measured by the following equations (Mongia
and Sharma, 2014).

(i) The absolute jitter, denoted by Jitabs, is defined by

Jitabs =
1

N − 1

N−1∑
j=1

|Tg(θ j+1) − Tg(θ j)| . (12)

(ii) The relative jitter, denoted by Jitrel, is defined by

Jitrel =

1
N − 1

N−1∑
j=1

|Tg(θ j) − Tg(θ j+1)|

1
N − 1

N−1∑
j=1

Tg(θ j)

. (13)

In general, values of Jitrel from 0.1% up to 1.04% are associated to non pathological characteristics for the voice.
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4. Simulation

In this section, simulations are performed using the proposed stochastic model. The variation of the parameter a
(see Eq. (10)) is considered. The subglottal pressure pattern, more realistic (Lucero et al., 2011) is given by

psub(t) =


0, i f 0 ≤ t ≤ t0 or T f − t0 ≤ t ≤ T f

pmsin( π(t−τ)
0.280 ), i f t0 ≤ t ≤ t0 + 0.140

pm, i f t0 + 0.140 ≤ t ≤ T f − (t0 + 0.140)
pmsin(−π(t+t0−T f )

0.280 ), i f T f − 0.140 − t0 ≤ t ≤ T f − t0 ,

(14)

in which pm is the maximum glottal pressure and t ∈ [0, t f ]. In this work, the values considered are pm = 800 Pa,
t0 = 0.01 s, and t f = 1 s. All the other parameters are fixed and their values are summarized in Tab. 1.

Parameters Values
M 4.76 kg/m2

B 100 (N×s/m)/m2

K 4.2 × 106(N/m)/m2

K0 2 × 105(N/m)/m2

η 5 × 103/m2

pm 800 Pa
kt 1.1
τ 0.001 s
x0 10−3 m
x01 10−3 m
x02 10−3 m
ρ 1.15 kg/m3

` 0.014 m
b 106

Table 1: List of parameters and their values (M , B, K and K0 are given per area unit).
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Figure 3 shows the graph of the function t 7→ psub(t). In general, the frequency response function ĥ f (ω) corre-

Figure 3: Graph of the subglottal-pressure function t 7→ psub(t).

sponding to the digital filter (the vocal tract) is characterized by having only poles associated with the resonance fre-
quencies (the formants) related to voiced sounds. Function ĥ f considered here takes into account the speech-forming
frequencies and the effects of soft-wall, friction, thermal conduction losses and radiation on lips, which will be given
by the bandwidths associated with the formant frequencies. Table 2 shows the values (in Hertz) for the first four
resonance frequencies of the vocal tract, the formants, for five vowels, and also losses in the vocal tract represented by
the bandwidths (Bw) of the formant frequencies based on the findings of Titze et al. (2014). For the simulations, it is

F1 F2 F3 F4
/a/ 860 1513 2489 3600
/e/ 423 1899 2017 3546
/i/ 283 2113 2800 3566
/o/ 504 905 2624 3439
/u/ 352 809 2394 3450
Bw 20 25 200 50

Table 2: Formants, in Hertz, of the vocal tract, the digital filter, for the case of vowels production and the corresponding bandwidths.

important to perform a convergence analysis, mainly for the solution of the Itô stochastic differential equation used to
generate realizations of K(t). Let K = E{K(t)} be the mean value and K

2
= E{K(t)2} be the second-order moment of

K(t), which are classically estimated using the asymptotically stationary and ergodic solution. After performing tests,
it was concluded that the convergence for K(t) is warranty from 3 × 105 time steps.
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Figure 4 shows three cases of glottal signals considering different levels of jitter, taking into account different
values of a, illustrating the generation of the jitter phenomenon with the model proposed. Table 3 shows different

Figure 4: (a) Glottal signal without jitter a = 0, (b) Glottal signal with Jitrel = 0.5% and (c) Glottal signal with Jitrel = 6.13%.

values of jitter, for two corresponding measures, considering different values for the parameter a, in the case of
normal voices, without pathological characteristics (the first two values of a) and also three cases of hoarse voices
and/or with pathological characteristics (the last three values of a). The values presented here correspond to the voice
signal for the producing of a vowel /a/.
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a Jitabs Jitrel

160 2.27 × 10−5 0.34%
200 3.25 × 10−5 0.50%
500 1.72 × 10−4 2.70%
700 1.88 × 10−4 3.00%

1000 3.78 × 10−4 6.13%

Table 3: Absolute and local jitter for voices without pathological characteristics and also with pathological characteristics (hoarse voices).

Let F0 = 1/Tg be the random variable called the fundamental frequency. Considering the values of the parameter
a from Tab. 3, it is possible to construct the probability density function of the random variable F0, estimated by using
the Gaussian kernel estimation method from the nonparametric statistics (Bowman and Azzalini, 1997), and shown in
Fig. 5, for all cases of the Tab. 3.

Figure 5: pdf of the fundamental frequency considering (a) a = 160 and a = 200; (b) a = 500, a = 700 and a = 1000.

Some synthesized sounds corresponding to the five vowels can be heard following the link:
www.dropbox.com/sh/fw0qmqfn3amo5yv/AABFHfe6Dt6-MpEuw7Ha9wcPa?dl=0

and are described in Tab. 4: Although the levels of jitter in Tab. 4 correspond to the vowel/a/, all of the other voice

a Local jitter file
100 0.16% UnifiedA100Jit00016
500 2.42% UnifiedA500Jit00242
1000 5.89% UnifiedA1000Jit00589

Table 4: Synthesized sounds with values corresponding to the vowel /a/ generated.

signals corresponding to the other synthesized vowels have similar levels of jitter.

5. Solution of the inverse problem using an artificial neural network (ANN)

In order to validate the model proposed, parameters a, b, and K are identified using experimental voice signals.
The main role of K is to fit the fundamental frequency while the parameters a and b fit the values of jitter. The objective
is to use an ANN to learn the nonlinear relationship between the values of the hyperparameters a, b, and K and the
measures extracted from the voice signal: the jitter measures and the mean value of the fundamental frequency.
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5.1. Constructing the database

The database is constructed using the stochastic model. Values of a, b and K are varied and for each given triplet
(a, b,K) in the model, a voice signal is generated, and JitRel, JitAbs, and the value of the fundamental frequency are
extracted form it. All the other parameters of the model are fixed.

The fundamental frequency varies from low values up to higher values to cover a reasonable range of frequencies.
The main parameter related to the variation of the fundamental frequency is K, because the mass is fixed. The
parameter a is the main responsible for the level of jitter. Then, it is important to vary this parameter from a = 0 (the
deterministic case) up to a value corresponding to a pathology not much severe or the case corresponding to a hoarse
voice. The third parameter, b, is directly related to the convergence of the solution of the Itô Differential Equation,
although it also has some contribution to the level of jitter. For this parameter b, a convenient value is chosen so
that the solution converges and variations around this value are considered. It is important to say that for each triplet
(a, b,K), different voice signals (realizations) can be generated because they are related to stochastic process {K(t)}t.
The strategy adopted is then to generate a group of signals related to each triplet (a, b,K). For each voice signal of
this group the parameters JitRel, JitAbs, and the mean value of the fundamental frequency, denoted by F0 are obtained.
Then, mean values of these parameters are evaluated for all the group and these mean values are associated with each
triplet (a, b,K).

In this work, the variations of the parameters that are considered are as follows: a varies from 0 up to 240,
with a step of 30; b varies from 800 000 up to 1 200 000, with a step of 50 000; and K varies from 2 000 000 up to
6 000 000, with a step of 200 000 . With these values, the measures obtained from the voice signal have the following
variations: the mean value of the random variable associated with the fundamental frequency varies from 103.34 Hz
up to 180.89 Hz, the absolute jitter varies from 0 up to 3.4389 × 10−4, and the relative jitter varies from 0 up to
4.1370 %.
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5.2. Methodology and configuration of the ANN used
A sensitivity analysis of the network target data with respect to the network input data has been performed for

the databases. Figure 6 shows a classical estimate of the matrix of the correlation coefficients between each of the
parameters a, b and K and each of the observed Jitrel, Jitabs and F0 . generated by the computational model.

Figure 6: Matrix of correlation coefficients between input and output parameters.

It can be observed that parameter a is highly correlated with the values of jitter and the mean value of the stiffness
is highly correlated with the values of the mean of the fundamental frequency. The parameter b has very small
correlation with the values of jitter and also with the mean value of the fundamental frequency. All these observations
are expected.

To solve the inverse problem, a multilayer feed forward static neural network is used with three neurons in the
input layer, corresponding to the values of a, b, and K, and three neurons in the output layer, corresponding to the
values of absolute jitter (Jitabs), relative jitter (Jitrel), and the mean value of the fundamental frequency (F0). Several
ANN configurations have been tested, in relation to the number of hidden layers and the number of the neurons in each
one of them. Sigmoid hidden neurons are used in the hidden layers, while linear output neurons are used in the output
layer. The input vectors and target vectors have been randomly divided into three distinct sets for training, validation,
and testing, with 70% of the complete dataset assigned to the training set, 15% to the validation set, and 15% to the test
set. The values of the input and target vectors were preprocessed and mapped into the normalized range [−1, 1] before
presenting to the neural network for training. After training, the network output vectors are then transformed back to
the original scale (units) of the network target vectors. The performances of the trained neural networks have been
also evaluated by computing the normalized mean-square error between the network outputs and the corresponding
targets. The values of the relative jitter, the absolute jitter, and the mean value of the fundamental frequency are used
as inputs, and the values of parameters a, b, and K are used as outputs. Several hidden layers have been considered, by
starting with one hidden layer. However, the differences for the mean-square error (MSE) have not been so significant
when more hidden layers or more neurons in each hidden layer have been used. Then, the ANN considered has only
one hidden layer containing four neurons. The performance is illustrated in Fig. perfinverseproblem: As expected, the
best identification corresponds to parameters a and K. For parameter b, the identification is not very good due to the
fact that its correlation with the inputs are not so high. However, its value does not need to be very precise because
this parameter is directly related to the convergence of the solution for the Itô equation and some differences in its
identified values will not modify significantly the corresponding voice signals.

5.3. First example: solving the inverse stochastic problem with a real voice signal without pathological characteris-
tics

Now, an experimental signal is considered. It is an utterance of a vowel /e/ produced by a man with the following
extracted parameters: absolute jitter = 2.5131×10−5, relative jitter = 0.3091%, and the mean value of the fundamental
frequency = 123.1086 Hz. The experimental voice used in this case is called expnormalused and can be accessed in
the link:

www.dropbox.com/sh/eu7xvwd84dvadbv/AACqHVQ6rdkmap6pG8Uqcy17a?dl=0 .
Solving the inverse problem, through the trained ANN, the values obtained are: a = 119.37, b = 1.01 × 106, and
K = 2.83 × 106 N/m. Using these values in the computational model yields: absolute jitter= 2.0750 × 10−5, relative
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Figure 7: Performance for the ANN considered in the inverse problem.

jitter = 0.2932%, and the mean value of the fundamental frequency = 123.7539 Hz. It can be noted that these values
are very near from the obtained with the ANN.

5.4. Second example: solving the inverse stochastic problem with a real voice signal with a pathology in the vocal
folds

In this case, the utterance of a vowel /e/ is produced by a man with nodulus in the vocal folds and the following
parameters were extracted: absolute jitter = 1.2323 × 10−4, relative jitter = 2.1897%, and the mean value of the
fundamental frequency = 178.62 Hz. The experimental voice used in this case is called exppathologyused and can
be accessed in the link:

www.dropbox.com/sh/eu7xvwd84dvadbv/AACqHVQ6rdkmap6pG8Uqcy17a?dl=0 .
Solving the inverse problem, through the trained ANN, the values obtained were: a = 238.47, b = 8.8928 × 105, and
K = 5.9591 × 106 N/m. If these values are the inputs of the mathematical model used for the direct problem, the
values obtained for the outputs are: absolute jitter= 1.5890×10−4, relative jitter = 2.9208%, and the mean value of the
fundamental frequency 171.2046 Hz. The values obtained with the experimental signal are near from those obtained
with the computational model.

6. Conclusions

A neural network-based identification method has been presented for solving the statistical inverse problem related
to the identification of parameters of a stochastic model for producing voice. A database has been generated using the
simulations of the proposed stochastic model. A sensitivity analysis of the target data with respect to the input data
has been performed. Different configurations of multilayer feedforward neural networks have been tested and the one
that has given the minimum value of the mean square error (MSE) has been selected. Two experimental examples
have been used to identify the parameters of the model through the defined ANN. One of them corresponding to a
healthy voice and other one corresponding to a voice from a patient with nodulus in the vocal folds.

The results obtained showed that it is possible to use an artificial neural network to solve the problem with a small
computational cost instead of using the stochastic optimization problem that we had previously been used. In this
first essay to solve the inverse problem, it was considered a simpler mathematical model, which does not consider the
coupling between the vocal tract and the vocal folds. Only three input parameters of the model have been considered
for three measures from the voice signals.

It should be highlighted that only two voice signals were used to validate the model and the only parameter
considered was jitter. The initial idea was to show that the consideration about the modelling for the stochastic
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process associated to the stiffness of the vocal folds was coherent and could generate jitter. In addition, parameters
were identified, showing that it is possible to generate stochastic process corresponding to experimental voices. Not
only normal voices but also with pathological characteristics.

It is important to note that the main objective of this research is to identify pathologies through the voice and then
it is important to have a low computational cost because the application should be used in real time.
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