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Stéphane Demri

EXTENSIONS OF MODAL LOGIC S5 PRESERVING
NP-COMPLETENESS

Abstract

We present a family of multi-modal logics having NP-complete satisfiability prob-

lems and admitting in the language S5-like modal operators, common knowledge

and distributed knowledge operators. Our motivation is to find out interaction

conditions between the modal operators that a↵ect the computational complexity

of the logics.

Key-words: multi-modal logics, interdependent modal operators,
computational complexity

1. Introduction

In the fields of Artificial Intelligence and Computer Science, the modal logic
S5 (see e.g. [11]) has been used in many ways to define logics modelling
agents’ knowledge (see e.g. [9], [15]). Since such logics often admit in their
language a finite family of modal operators (in that sense they are multi-
modal logics) and since the modal operators can be rather expressive (for
instance the common knowledge operator), it is not surprising that, their
satisfiability problems can be PSPACE-complete, or even EXPTIME-
complete (see e.g. [9]). For instance the satisfiability problem for S5 is
NP-complete [13] and the satisfiability problem for multi-modal logic S5C

n

(n � 2) with the common knowledge operator is EXPTIME-complete [9].
Although in [17], Vardi has defined knowledge logics having NP-

complete satisfiability problems (using Montague and Scott’s semantics),
the problem of finding out conditions between the agents to collapse the
satisfiability problem to NP has been seldom considered. That is why in
this work, we are mainly interested in finding out assumptions about inter-
actions between the agents that a↵ect the complexity of reasoning about
the agents’ knowledge.
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Although the logics introduced in the paper can be viewed as knowl-
edge logics (it is nowadays highly controversial whether logics admitting the
logical onmiscience principle are good candidates to model agents’ knowl-
edge), our work is rather a contribution to multi-modal logic theory (see e.g.
[16]). Hence, in the paper we shall consider the interpretations in terms of
knowledge representation as secondary. In the realm of transfer theorems
for multi-modal logics (see e.g. [5], [18]), join (or independent) union be-
tween uni-modal logics has been the most common way of combining logics
(see also [10], [6]). The di�culty of extending results for uni-modal logics
to multi-modal logics where new interactions appear between the di↵erent
modal operators has thoroughly been described in [2]. This is precisely an
instance of this general problem that we tackle in the present work.

The present paper shows the NP-completeness of non-join unions of
the logic S5 admitting common knowledge and distributed knowledge op-
erators in their language. Indeed, the paper presents a class of multi-
modal logics whose language contains a finite family of modal operators
{2

i

: i 2 {1, . . . , n}}, the common knowledge operators C
X

and the dis-
tributed knowledge operators D

X

for ; 6= X ✓ {1, . . . , n}. C
X

A can be read
as ”it is common knowledge among the agents in X that A holds” whereas
D

X

A can be read as ”the combined knowledge of the members of X implies
A”. The main result of the paper is the NP-completeness of the satisfiabil-
ity problem for such logics although similar existing knowledge logics have
a PSPACE-complete or EXPTIME-complete satisfiability problem (see
e.g. [9]). In order to state such results, we first prove that the logics con-
sidered have the finite model property by using a construction of models
extending the construction in [4].

The rest of the paper is organized as follows. In Section 2, a class of
multi-modal logics is defined. In Section 3, an original model construction
is presented in order to show that every defined logic has the finite model
property. Moreover, su�cient conditions are introduced in order to obtain
decidable validity problem and NP-complete satisfiability problem.

2. The class of *S5

D
C(n)-logics

The (propositional) modal language L (n � 1 is fixed) is determined by three
sets which are supposed to be pairwise disjoint: a countable set F0 of propo-
sitional variables, a set of propositional operators {^,¬}, and a set of modal
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operators OP = {2
i

: i 2 {1, . . . , n}} [ {C
X

, D
X

: ; 6= X ✓ {1, . . . , n}}.
The propositional operators _,),, are used as abbreviations in the stan-
dard way. The set F of L-formulae is the smallest set that satisfies the
following conditions: F0 ✓ F, if � is any k-ary propositional operator and
A1, . . . , Ak

2 F then �(A1, . . . , Ak

) 2 F and if A 2 F and  2 OP then
 A 2 F. We write sub(A) (resp. mw(A)) to denote the set of subformulae of
the formula A (resp. the modal weight of A, i.e. the number of occurrences
of modal operators in A).

As usual, by an L-model we understand a structure (U, (R
i

)
i2{1,...,n}, V )

such that U is a non-empty set of states, for all i 2 {1, . . . , n}, R
i

is a bi-
nary relation on U and V is a mapping F0 ! P(U); as usual P(U) denotes
the power set of U . Let M = (U, (R

i

)
i2{1,...,n}, V ) be an L-model and

; 6= U 0 ✓ U . The model M|U 0 = (U 0, (R0
i

)
i2{1,...,n}, V

0) is said to be a
submodel of M i↵ for all i 2 {1, . . . , n}, R0

i

= R
i

\ U 0 ⇥ U 0 and for all
P 2 F0, V 0(P) = V (P) \ U 0. Let M = (U, (R

i

)
i2{1,...,n}, V ) be an L-model.

As usual, we define “the formula A is satisfied by the state u 2 U in M”
(written M, u |= A) by induction:

• M, u |= P i↵ u 2 V (P), for all P 2 F0,
• M, u |= ¬A i↵ not M, u |= A,
• M, u |= A ^ B i↵ M, u |= A and M, u |= B,
• M, u |= 2

i

A i↵ for all1 v 2 R
i

(u), M, v |= A,
• M, u |= C

X

A i↵ for all v 2 (
S

i2X

R
i

)⇤(u) M, v |= A,
• M, u |= D

X

A i↵ for all v 2 (
T

i2X

R
i

)(u) M, v |= A.

For any binary relation R on U , we write R⇤ to denote the reflexive
and transitive closure of R. A formula A is true in an L-model M (written
M |= A) i↵ for all u 2 U, M, u |= A. In the sequel, by an *S5DC(n)-logic
(n � 1), we understand a triple L = hL,S, |=Li such that

1. S is a non-empty set of L-models closed under submodels
2. for all L-models M = (U, (R

i

)
i2{1,...,n}, V ), if M 2 S then

(a) for all i 2 {1, . . . , n}, R
i

is an equivalence relation and
(b) for all u 2 U , there exists a permutation s

u

on {1, . . . , n} such
that R

su(1)(u) ✓ . . . ✓ R
su(n)(u) (s

u

may not be unique).
3. |=L is the restriction of |= to the sets S and L (satisfiability relation).

1
For any binary relation R on the set U , for all u 2 U , R(u) is equal to {v 2 U :

(u, v) 2 R}.
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The condition 1. is a feature shared by numerous non-classical logics
determined by classes of possible-world structures (see e.g. [12], [18]). The
condition 2(b) expresses that locally the relations of the models can be
linearly ordered. For all models M 2 S, M is said to be a model for L.
An L-formula A is said to be L-valid i↵ A is true in all L-models of S. An L-
formula A is said to be L-satisfiable i↵ there is M = (U, (R

i

)
i2{1,...,n}, V ) 2

S, u 2 U such that M, u |=L A. Observe that for any *S5DC(n)-logic L, for
all i, j 2 {1, . . . , n}, for all ; 6= X ✓ {1, . . . , n},

(1) 2
i

P ^2
j

P, 2
i

2
j

P ^2
j

2
i

P,
(2) C

X

P,
V

i2X

2
i

P and D
X

P,
W

i2X

2
i

P

are L-valid. By the way, none of the interaction axioms presented in [1],
[2] captures the axiom schema (1) above. Moreover, consider the mapping
t : F! F such that:

• t(P) = P for all P 2 F0,
• t(�A) = �t(A) for all � 2 {¬,21, . . . ,2n

},
• t(A ^ B) = t(A) ^ t(B),
• t(C

X

A) =
V

i2X

2
i

t(A),
• t(D

X

A) =
W

i2X

2
i

t(A).

It is easy to show that A , t(A) is L-valid. However t is not poly-
nomial. That is why the NP-completeness of the L-satisfiability problem
might not straightforwardly follow from the possible NP-completeness of
the satisfiability problem restricted to formulae without the operators C

X

and D
X

.

Example 2.1. The set of *S5DC(n)-logics contains the logic L =
hL,S, |=i (resp. L0 = hL,S 0, |=0i) where (U, (R

i

)
i2{1,...,n}, V ) 2 S (resp.

(U, (R
i

)
i2{1,...,n}, V ) 2 S 0) i↵ R1 ✓ . . . ✓ R

n

(resp.2 for all u 2 U and for
all i, j 2 {1, . . . , n}, either R

i

(u) ✓ R
j

(u) or R
j

(u) ✓ R
i

(u)) and the R
i

’s
are equivalence relations.

For any finite sequence of natural numbers �, set(�) (resp. |�|) de-
notes the set of elements occurring in � (resp. the length of �). For example
set((1, 2, 3, 3, 4)) = {1, 3, 2, 4}. As usual �1.�2 denotes the concatenation
of two sequences.

2
This condition is known as the local agreement condition [7]. For instance it has

been used to define semantical structures for information logics [7], [14], [3].
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3. NP-complete satisfiability problems

In this section we shall show that every *S5DC(n)-logic L has the finite
model property. Moreover we shall provide su�cient conditions to establish
decidability and NP-completeness of the L-satisfiability problem.

In the rest of this section L denotes an *S5DC(n)-logic hL,S, |=Li with
n � 2 unless otherwise stated. The case n = 1 is omitted here since it
roughly corresponds to the modal logic S5.

Proposition 3.1. Let M = (U, (R
i

)
i2{1,...,n}, V ) 2 S and let ; 6= U 0 ✓ U .

For all u 2 U 0, for all i, j 2 {1, . . . , n}, if R
i

(u) ✓ R
j

(u) then R0
i

(u) ✓
R0

j

(u) with M|U 0 = (U 0, (R0
i

)
i2{1,...,n}, V

0).

Proof. By an easy verification. Q.E.D.

Proposition 3.2 below states that when the chain of inclusions for the
successors of x is known then the chain for y is partially known when x
and y are R

ik -related for some i
k

2 {1, . . . , n}.

Proposition 3.2. Let M = (U, (R
i

)
i2{1,...,n}, V ) 2 S, x 2 U and

R
i1(x) ✓ . . . ✓ R

in(x) with {1, . . . , n} = {i1, . . . , in}. Assume (x, y) 2 R
ik

for some k 2 {1, . . . , n}. Then,
1. for all k0 2 {k, . . . , n}, R

ik0 (x) = R
ik0 (y)

2. for all k0 2 {1, . . . , k � 1}, R
ik0 (y) ✓ R

ik(y).

Proof. The proof is by an easy verification. Q.E.D.

Figure 1 illustrates Proposition 3.2. In order to prove the finite model
property for L, the standard filtration construction for modal logics (see
e.g. [8]) does not work for the logic L unless additional assumptions are
made. Instead of using the filtration construction, we propose a submodel
construction. Let A be an L-formula, M = (U, (R

i

)
i2{1,...,n}, V ) be a model

for L, w 2 U such that M, w |= A. Assume that R
i1(w) ✓ . . . ✓ R

in(w)
with {1, . . . , n} = {i1, . . . , in}.

We shall construct a set U 0 ✓ U such that
• w 2 U 0,
• U 0 is finite and,
• M|U 0 , w |= A.
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x R
i1(x) ✓ . . . ✓ R

ik�1(x) ✓ R
ik(x) ✓ . . . ✓ R

in(x)

y R
j1(y) ✓ . . . ✓ R

jk�1(y) ✓ R
ik(y) ✓ . . . ✓ R

in(y)

{j1, . . . , jk�1} = {i1, . . . , ik�1}

for s 2 {k, . . . , n}, R
is(x) = R

is(y)R
ik

✓⌘
◆⇣

✓⌘
◆⇣

6

Fig. 1. Illustration of Proposition 3.2

The construction informally described below generalizes the construc-
tion in [3] in order to include the operators C

X

and D
X

. To build such a
set U 0, we first consider the set Nec of necessity formulae 2

i

A0 such that
 A0 2 sub(A) for some  2 OP . Then the construction of U 0 is done re-
cursively, that is U 0 =

S
0iN

U
i

for some 0  N  n where each U
i

is
finite. U0 is initialized to {w} and then U

i+1 is defined from U
i

. Everytime
a formula in Nec is not satisfied at some element of U

i

, we add a witness of
this fact in U

i+1 (M, u 6|=  A0 i↵ there exists u0 such that (u, u0) 2 R and
M, u0 6|= A0 where R is the binary relation attached to the modal operator
 in M). Moreover, assume that for some u 2 U

I

, M, u 6|= 2
i

A0 requires a
witness and R

i

(u) ✓ R
j

(u). There exists u0 2 U
I+1 such that M, u0 6|= A0

and (u, u0) 2 R
i

. We can show that if M, u0 6|= 2
j

A00 for some 2
j

A00 2 Nec,
there is no need to consider a new witness (the set Nec�

x

defined below
contains the necessity formulae that require the introduction of a new wit-
ness generated from the world x and � encodes some information about x
and about some accessibility relations of the model). There exists u00 such
that (u0, u00) 2 R

j

and M, u00 6|= A00. Since R
j

is an equivalence relation,
(u, u00) 2 R

j

and therefore M, u 6|= 2
j

A00. If the set U
I+1 has been properly

built (this point should become clear in the formal definition), there exists
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v 2 U
I+1 such that (u, v) 2 R

j

and M, v 6|= A00. Since (u0, v) 2 R
j

, v is
already a witness for M, u0 6|= 2

j

A00. This observation allows us to find
N  n such that for all u0 2 U

N

, no witness is needed.
We shall give in the sequel the formal definitions. The set Nec is

defined as follows,

Nec = {2
i

A0 :  A0 2 sub(A) for some  2 OP, i 2 {1, . . . , n}}.

For all x 2 U and all sequences � = (j1, . . . , jk

) such that set(�) ✓
{1, . . . , n} and R

j1(x) ✓ . . . ✓ R
jk(x), the set Nec�

x

is defined as follows:

Nec�

x

= {2
jk0A

0 2 Nec : k0 2 {1, . . . , |�|},M, x |= ¬2
jk0A

0, and
if k0 � 2 then M, x |= 2

jk0�1
A0}

Remember the set Nec�

x

allows to reduce the set of witnesses generated
from x. For each natural number i  n, we are defining a set W

i

of 3-tuples
(u0,�, ?) where,

• u0 2 U ,
• � is a sequence of elements of {1, . . . , n} without repetition,
• ? is either the symbol ’⇤’ or some 2

p

A0 2 Nec with p 62 set(�).

The set U
i

shall be later defined as the set {u0 : (u0, (i1, . . . , in), ?) 2
W

i

}. W
i

is an intermediate set that contains some information about the
elements of U

i

. Let W0 = {(w, (i1, . . . , in), ⇤)}. Assume W
i

is defined. We
will now define W

i+1. Initialize W
i+1 to the empty set ;.

For each (w0,�, ?) 2W
i

, for each 2
j

A0 2 Nec�

w

0 ,
choose u 2 U such that (w0, u) 2 R

j

and M, u |= ¬A0.

If � = (j1, . . . , jk

) then we write k0 to denote the element of {1, . . . , k} such
that j

k

0 = j. The existence of k0 is guaranteed by the definition of Nec�

w

0 .
Add the triple (u, (j01, . . . , j0

k

0�1),2j

A0) to W
i+1 such that set((j01, . . . , j0

k

0�1))
= set((j1, . . . , jk

0�1)) and R
j

0
1
(u) ✓ . . . ✓ R

j

0
k0�1

(u) – whenever k0 = 1 the
sequence (j01, . . . , j0

k

0�1) is the empty sequence ⇤. Let W
i+1 be the set

augmented this way. There exists N 2 {0, . . . , n} such that W
N

6= ; and
W

N+1 = ; since the length of the sequences of natural numbers strictly
decreases. Moreover if (w0,�, ?) 2W

i

then the length of � is at most n� i.
Let W and U 0 be the sets defined in the following way:
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W =
N[

i=0

W
i

U 0 =
N[

i=0

U
i

with U
i

= {w0 : (w0,�, ?) 2W
i

}

Proposition 3.3. For all i 2 {1, . . . , N} and all (u
i

, (j1, . . . , jk

),2
p

A0) 2
W

i

,
1. R

j1(ui

) ✓ . . . ✓ R
jk(u

i

), R
jk(u

i

) ✓ R
p

(u
i

), M, u
i

|= ¬A0, and
2. for all j 2 {1, . . . , n} \ set((j1, . . . , jk

)), R
jk(u

i

) ✓ R
j

(u
i

).

Proof. (1) Obvious from the construction of (u
i

, (j1, . . . , jk

),2
p

A0).
(2) By induction on i using Proposition 3.2. Q.E.D.

Observe that3 card(Nec)  n ⇥ mw(A), card(Nec�

x

)  mw(A) and
Nec�

x

= ; when � is the empty sequence ⇤. For all i 2 {0, . . . , N � 1},
card(W

i+1)  card(W
i

)⇥mw(A) and therefore card(U 0)  1+n⇥mw(A)n.
Proposition 3.4 below states that the set U 0 contains enough states.

Proposition 3.4. For all u 2 U 0 and for all 2
j

A0 2 Nec, if M, u 6|= 2
j

A0

then there is u0 2 U 0 such that (u, u0) 2 R
j

and M, u0 6|= A0.

Proof. By induction on i when (u, �, ?) 2 W
i

. Similar to the proof of
Proposition 6 in [3]. Q.E.D.

A polynomial bound can be obtained for the size of some model sat-
isfying A.

Proposition 3.5. An L-formula A is L-satisfiable i↵ A is satisfiable in a
model for L with at most 1 + n⇥mw(A)n states.

Proof. Assume there is a model for L, M = (U, (R
i

)
i2{1,...,n}, V ), w 2 U

such that M, w |= A. Consider the model for L, M0 = M|U 0 . We then
prove that for all states u0 2 U 0 and for all B 2 sub(A), M, u0 |= B i↵
M0, u0 |= B (including A). We proceed by induction on the structure of B.
The only nontrivial cases are when B has the form C

X

B0, D
X

B0 and 2
i

B0.
Only the first case is presented herein. Take u0 2 U 0. If M, u0 |= C

X

B0

then for all v 2 U such that (u0, v) 2 (
S

i2X

R
i

)⇤ we have M, v |= B0.
There is i0 2 X such that R

i0(u0) = (
S

i2X

R
i

)⇤(u0). So for all v 2 U 0

such that (u0, v) 2 R
i0 , we have M, v |= B0. Hence for all v 2 U 0 such that

(u0, v) 2 R0
i0

we haveM, v |= B0. By the induction hypothesis, for all v 2 U 0

such that (u0, v) 2 R0
i0

, M0, v |= B0. So M0, u0 |= 2
i0B
0. By Proposition

3
For any finite set U , card(U) denotes the cardinality of U .
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3.1, M0, u0 |= C
X

B0. Now assume M, u0 6|= C
X

B0. There is i0 2 X such that
M, u0 |= C

X

B0 , 2
i0B
0. From Proposition 3.4, there exists v 2 U 0 such

that (u0, v) 2 R0
i0

and M, v 6|= B0. It follows that (u0, v) 2 R0
i0

and by the
induction hypothesis M0, v 6|= B0. Hence M0, u0 6|= 2

i0B
0. By Proposition

3.1, M0, u0 |= C
X

B0 , 2
i0B
0. Hence M0, u0 6|= C

X

B0. Q.E.D.

Proposition 3.6. Let L = hL,M, |=Li be an *S5DC(n)-logic such that the
problem: ⌧Is the finite L-model (U, (R

i

)
i2{1,...,n}, V ) 2 S?� is decidable.

Then the L-satisfiability problem is decidable.

Proof. Take any formula A for which one wishes to know whether A
is L-satisfiable. By Proposition 3.5, A is L-satisfiable i↵ there exist an
L-model M = (U, (R

i

)
i2{1,...,n}, V ) and u 2 U such that M, u |= A and

card(U)  1+n⇥mw(A)n. So in order to check whether A is L-satisfiable,
enumerate all the L-models M (modulo the isomorphic copies with respect
to A) such that card(U)  1+n⇥mw(A)n and check whether (?) M, u |= A
for some u 2 U and (??)M 2 S. M0 = (U 0, (R0

i

)
i2{1,...,n}, V

0) is isomorphic
to M with respect to A i↵ there is a 1-1 mapping g : U ! U 0 such that
for all i 2 {1, . . . , n}, {(g(x), g(y)) : (x, y) 2 R

i

} = R0
i

and for all the
propositional variables P occurring in A, V 0(P) = {g(x) : x 2 V (P)}. (?)
can be checked in polynomial-time in card(U) and in the size of A (i.e., the
length of the representation of A in any reasonable -unspecified- encoding).
Since the set of L-models M (modulo the isomorphic copies) such that
card(U)  1 + n ⇥mw(A)n is finite and can be easily generated and (??)
is an instance of a decidable problem then the L-satisfiability problem is
decidable. Q.E.D.

Example 3.1. Let ⌃ be a non-empty set of permutations on {1, . . . , n}
and L = hL,S, |=Li be the *S5DC(n)-logic such that for all L-models M =
(U, (R

i

)
i2{1,...,n}, V ), M 2 S i↵

(eq) for all i 2 {1, . . . , n}, R
i

is an equivalence relation and
(la) for all u 2 U , there exists a permutation s

u

2 ⌃ such that R
su(1)(u) ✓

. . . ✓ R
su(n)(u) (s

u

may not be unique).
Let M = (U, (R

i

)
i2{1,...,n}, V ) be a finite L-model. One can easily check

in polynomial-time in card(U) that (eq) holds for M. Moreover whether
(la) holds for M can also be checked in deterministic time o(n!⇥card(U)5)
(which is also polynomial in card(U)). Hence the problem “Is the finite
L-model (U, (R

i

)
i2{1,...,n}, V ) 2 S?” is decidable and the L-satisfiability

problem is decidable.
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Proposition 3.7. Let L = hL,M, |=Li be an *S5DC(n)-logic such that:

For any finite L-model M = (U, (R
i

)
i2{1,...,n}, V ), one can check in

polynomial-time in card(U) whether M 2 S.

Then the L-satisfiability problem is NP-complete.

Proof. This is immediate from the proof of Proposition 3.6 considering
the computational complexity of the following problems:

1. for any finite L-model M = (U, (R
i

)
i2{1,...,n}, V ) 2 S and any A 2

F, deciding whether M, u |= A for some u 2 U can be known in
polynomial-time in card(U) and in the size of A

2. For any finite L-model M = (U, (R
i

)
i2{1,...,n}, V ), one can check in

polynomial-time in card(U) whether M 2 S. Q.E.D.

Corollary 3.8. All the logics L defined in the Example 1 have an NP-
complete L-satisfiability problem.

For the sake of comparison, remember that for all k � 2, the satisfi-
ability problem for the multi-modal logics S5

k

is PSPACE-complete and
for S5C

k

the satisfiability problem is EXPTIME-complete [9].
Let S0 be the set of L-models such that for all L-models M =

(U, (R
i

)
i2{1,...,n}, V ), M 2 S0 i↵ for all i 2 {1, . . . , n}, R

i

is an equiva-
lence relation. Let C be a condition on the families (R

i

)
i2{1,...,n} of binary

relations. We write SC
0 to denote the subset of S0 such that for all L-models

M = (U, (R
i

)
i2{1,...,n}, V ) 2 S0, M 2 SC

0 i↵ (R
i

)
i2{1,...,n} satisfies C. In

Figure 2, we present the complexity class of various logics hL0,SC
0 , |=0i for

some condition C and L0 is either L or L without the operators D
X

(written
L � {D}) or L without the operators D

X

and C
X

(written L � {C, D}). The
conditions are as follows:

C1 := true
C2 := 8i, j 2 {1, . . . , n},8u 2 U R

i

(u) ✓ R
j

(u) or R
j

(u) ✓ R
i

(u)
C3 := R1 ✓ . . . ✓ R

n

C4 := R1 = . . . = R
n

(uni-modal S5).

C1 C2 C3 C4

L� {C, D} PSPACE NP NP NP
L� {D} EXPTIME NP NP NP

L EXPTIME NP NP NP

Fig. 2. Interaction and computational complexity
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In Figure 2, we assume n � 2 and the occurrence of the complexity
class C stands for C-completeness.

The results for C2 and C3 are due to Corollary 3.8 whereas those for
C1 and C4 have been proved in [9], [13]. It is clear that for all i 2 {2, 3, 4},
C

i

entails C
i�1. The properties above remain valid if for some non-empty

set ⌃ of permutations on {1, . . . , n}, C3 is replaced by:

8u 2 U, 9s 2 ⌃ R
s(1)(u) ✓ . . . ✓ R

s(n)(u).

However it would be desirable to strenghen C2 (that is to find a condition C02
such that C2 entails C02) such that the satisfiability problem for hL,SC02

0 , |=i
is still NP-complete.
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