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Abstract. This work addresses the problem of simultaneously control-
ling two robotic arms to automatically pick up fruits in an orchard. When
considering such a scenario, the design of the controller has to face several
challenges: (i) the arms share the same workspace, (ii) the presence of
obstacles such as branches and other fruits, and (iii) the system evolves
in a dynamic environment, i.e., the positions of the fruits and branches
change over time. In this paper, it is proposed to control the two robotic
arms relying on a Visual Predictive Control (VPC) scheme. It allows to
control the system in a reactive fashion while taking into account a large
number of constraints. The global and local models of the VPC scheme
as well as constraints dealing with collisions or joint boundaries are pre-
sented. Finally, the efficiency of the proposed approach is highlighted
with numerous simulation results using the PR2 arms model.

Keywords: Agricultural robotics, multi-arms, Non-linear Model Pre-
dictive Control, Image Based Visual Servoing

1 Introduction

To meet the increasing food demands from a growing world population, agricul-
ture will need to double its production by 2050 [11, 14]. This cannot be achieved
by simply doubling the inputs (land, water, seeds, labor, etc.) because of con-
strained resources and environmental concerns. Among the solutions presented
in [11, 14] to increase the global agricultural total factor productivity, robotics
is one with the potential to effect agriculture in a broad, systemic way, and con-
tribute significantly to meeting our future needs. Up to today, the three most
significant impacts robotics and automation have had on agriculture are: (i) Pre-
cision agriculture, i.e., the use of sensors to precisely control when and where to
apply fertilizers or water; (ii) Auto-guidance on field crop machinery, which to-
day can drive down a field with an accuracy unattainable by human drivers; (iii)
Machines that harvest fruits and vegetables for processing (e.g., tomato paste
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and orange juice) [3]. Research is now focused on the next wave of sensing, mo-
bility, and manipulation technologies that promise to increase agriculture output
and productivity.

Over the last years, one has focused on robotic systems performing weed-
ing, spraying, trimming, or harvesting in orchards. In order to achieve any of
these tasks, the following capacities are expected for the robotic system: (i)
autonomously navigate in an orchard; (ii) detect and localize a set of natural
landmarks of interest; (iii) approach the landmarks with some robotic manipula-
tors; (iv) manipulate/interact with the landmarks of interest without damaging
them. After addressing the autonomous navigation problem in [8, 20], the focus
is now on the landmark approach problem when considering numerous robotic
manipulators embedded on a mobile platform. This problem has already been
addressed to design harvesting systems for cucumbers [25] or tomatoes [29]. How-
ever, despite the promising results, the obtained harvesting throughput does not
match with the farmers needs and must be increased [28]. To achieve this aim,
one of the most adopted approach consists of embedding several robotic arms on
the mobile platform, as it is done in [28] for example. However, the throughput
increase is not proportional to the number of manipulators, it also has to do
with their distribution on the machine and their workspace. Indeed, it is pointed
in [26] that fruits are not uniformly distributed on commercial orchards trees.
To maximize the fruits accessibility, growers use specific trees with high fruits
density, thus facilitating the manual harvesting. As a consequence, when design-
ing a harvesting embedding multiple arms, it is also important to consider the
workspace of each arm and the possible overlapping. Thus, even if the arms do
not collaborate to manipulate one single object, they share a common workspace.
It is then possible to use several arms to pick fruits in the same high density
area, which increases the overall throughput.

In this work, it is proposed to design a control scheme for two robotic arms
aiming at positioning their end effector to achieve an agricultural task in an
orchard. When considering performing a task in orchard, it seems relevant to
focus on reactive controllers. Indeed, a tree is a highly dynamic environment
because of the flexibility of the branches and the weight of the fruits: each time
a fruit is harvested, the local distribution of fruits and branches is modified.
Among the available control scheme, it is proposed to use an image based visual
servoing (IBVS) scheme [6]. It requires the use of a camera, and nowadays it is
simple to obtain a camera small enough to be install close to the end-effector
without creating any trouble. Moreover, it seems to be the appropriate sensor
to track the fruit of interest. IBVS consists of computing the error between the
current coordinates of points of interest and a set of desired values. This error is
then minimized via a controller based on the image Jacobian matrix, allowing to
control the displacements of the end effector. Computing the control law directly
in the image space makes this approach robust to modeling errors and reactive
objective modification, however it does not provide any guarantee regarding the
trajectory of the camera in the workspace. This represents a major issue when
considering arms sharing a common workspace.
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Numerous works have been developed in order to modify the camera trajec-
tory in the workspace or to handle issues such as the loss of the visual features,
collisions with obstacles,... For example, the work presented in [12] proposes
to use advanced visual features to obtain more appropriate camera trajecto-
ries. However, they do not guarantee the non-collision with obstacles. Another
approach consists of coupling IBVS with other elementary controllers, and to
switch from one controller to the other based on the current situation (obsta-
cles, occultations, joint boundaries, ...) [4] [9] [7]. This approach requires to
design numerous ad-hoc controllers, and defining the switching rules can happen
to be tenuous. Other works use the robot redundancy to modify the trajectory
in order to satisfy the given constraints [22] [5]. However, this method can only
be used if the main task does not use all the degrees of freedom [21], which might
be the case when using systems with large number of degrees of freedom, such
as humanoid robots. Finally, it has been proposed to couple IBVS with path
planning [24], [18], in order to generate a path free of occultations and collisions.
However, to do so, it is mandatory to have a model of the environment prior to
the task execution, which might be challenging in a dynamic environment.

In this work, it is proposed to rely on a well adopted solution allowing to take
into account constraints on position, velocity, or workspace: the model predictive
control scheme [15]. This approach relies on the minimization of a cost function
made of the predicted states of the system and defining the task to achieve.
Moreover, when minimizing the cost function with a numerical solver, this lat-
ter can handle numerous constraints [15]. Thus, to obtain a reactive controller
dealing with constraints, it is proposed to design an IBVS-based NMPC (Nonlin-
ear Model Predictive Control) controller, also named Visual Predictive Control
(VPC). For this particular case, the cost function is defined as the error between
the image coordinates of the visual features representing the landmark of inter-
est at the current pose and the desired one. To develop a VPC scheme, it is then
mandatory to (i) obtain the prediction models of the system state, (ii) design the
cost function defining the task to achieve, (iii) design the mandatory constraints
to achieve the task, and (iv) select the numerical solver allowing to minimize the
cost function under the given constraints. Thus, this paper addresses the afore-
mentioned points for the specific case of two simultaneously controlled robotic
arms. Moreover, it is an extended version of the work presented in [10] which has
been complemented with an analysis of the related works, a discussion regarding
the terminal constraint and a more comprehensive set of simulation results.

The paper is organized as follows. First, section II is dedicated to an overview
of the existing VPC scheme. Next, in section III, one presents the different used
predictive models, before addressing in section IV the design of the cost function
and of the different constraints. In section V, a set of simulations is presented
to support the proposed approach and highlight its efficiency. Finally, in section
VI, one summarizes and analyses the obtained results before developing the
expectations for the future.
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2 Related Works

As it has been explained, NMPC schemes require to use a model to predict the
future states of the system. In the case of VPC, it consists of predicting the
coordinates of the visual features knowing a sequence of control inputs. Several
works have addressed the design of VPC schemes, and according to [1], they
can be classified into two categories: the local and global models. The first ones
relies on the interaction matrix (or image Jacobian) [6], whereas the second ones
use the camera pose. For both cases, the models are built considering a flying
camera, i.e., the system embedding the camera is not taken into account in the
model. Finally, none of the models proposes an analytic form for the prediction
of the visual features. Thus, the predicted values are obtained using a linear
approximation, or with advanced numerical integration schemes, such as Runge-
Kutta.

Most of the existing works belong to the first category, i.e., relying on local
models. For example, in [2] the authors use a first order approximation to control
a camera embedded on a robotic arm. Similar approaches are presented in [17]
for a flying camera and in [19] for a mobile robot. In [27] and [16], the visual
servoing scheme is represented by a linear parameter varying (LPV) system.
The objectives of these works is to demonstrate the feasibility of VPC subject
to constraints on the camera field of view or command vector. The results show
the relevance of the approach, but are obtained for small displacements between
the initial and desired pose, minimizing the impact of the predictions. On the
opposite, the work presented in [23] proposes to control an UAV while avoiding
other aircraft. In this case, the distance between the vehicles is large enough to
use an approximate value of the depth in place of the real one.

In this work, it is proposed to first perform an evaluation of the accuracy of
the prediction models using the real or approximated depth values. This evalu-
ation is done in the context of a camera embedded on a robotic arm. Following
this evaluation, we then present the design of our VPC scheme to simultaneously
control two robotic arms.

3 Modeling

In this section, one first focuses on the modeling of the system, i.e., the robotic
arms, the cameras and the targets [10]. Then, two models to predict the visual
feature coordinates of a point are presented [1] [10]. One ends with a discussion
regarding the viability of these models for the visual predictive control problem.

3.1 System modeling

The robotic system considered in this work is composed of two identical arms,
each of them containing mq revolute joints. A camera is attached to the end
effector of each arm. To model the system, let us first define a global frame
Fb = (Ob,xb,yb, zb) attached to the system base. Moreover, two frames Fci =
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(Oci ,xci ,yci , zci), with i ∈ [1, 2], are used to represent the pose of the camera
attached to the ith arm.

Let define qij and q̇ij , with j ∈ [1, ...,mq], respectively the angular position
and velocity of the jth joint of the ith arm. Thus, for the ith arm, one obtains
the configuration vector Qi = [qi1, qi2, ..., qimq

]T and the control input vector

Q̇i = [q̇i1, q̇i2, ..., q̇imq ]T . Finally, for the whole system one obtainsQ = [QT1 , Q
T
2 ]T

and Q̇ = [Q̇T1 , Q̇
T
2 ]T .

The cameras mounted on the end effectors are modeled using the pinhole
model. Thus, the projection matrices HIi/ci mapping the 3D coordinates (x, y, z)
of a point in the camera frame Fci to its 2D projection (X,Y ) on the image plan
FIi is defined as follows: 

X
Y
z
1

 =


f/z 0 0 0
0 f/z 0 0
0 0 1 0
0 0 0 1



x
y
z
1

 (1)

In this work, the arms are controlled to make each camera reach a pose de-
fined by the coordinates of point visual features in the image space. To do so, one
uses two landmarks made of four points. When considering the ith camera/target
couple, the coordinates of the projection of each point on the image is denoted
Sil = [Xil, Yil]

T , with i ∈ [1, 2] and l ∈ [1, 2, 3, 4]. Thus, the visual features vector
for each camera is defined as Si = [Si1, Si2, Si3, Si4]T , whereas the system one
is given by S = [ST1 , ..., S

T
na

]T . In the same way, a vector for the visual features
desired coordinates of each camera is defined as S∗i = [S∗i1, S

∗
i2, S

∗
i3, S

∗
i4]T .

3.2 Prediction of the visual features

A visual predictive control scheme requires to be able to predict the values of the
visual features for a given sequence of control inputs. In [1], the authors present
two ways to perform the prediction step for a flying camera: the local and global
approaches. This section is devoted to the presentation of both methods for the
case of a 6 degrees of freedom camera embedded on a robotic arm.

The global model Global models rely on the pose of the camera. It can be
decomposed as follows: from the image coordinates, the location of the visual
features in the current camera frame is calculated (2D to 3D); the visual features
coordinates are then computed in the predicted camera frame (3D to 3D); and
finally the visual features are projected on the predicted image plane (3D to
2D). To do so, the camera pose is generally predicted by integrating the camera
kinematic screw [1]. In this work, one integrates the robotic arm, which allows
to predict the camera pose based one the robot command vector, minimizing the
approximation. To do so, let us consider a discrete time system with a sampling
period Ts, where tk+1 = tk+Ts, and the notation .(k) = .(tk). The configuration
Qi(k + 1) of the ith arm, with i ∈ [1, 2], at the next iteration obtained after
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applying the control inputs Q̇i(k) is given by:

Qi(k + 1) = Qi(k) + Q̇i(k)Ts (2)

Knowing the arm configuration at instants tk and tk+1, it is then possible to
compute the homogeneous transformation matrices between the camera frame
Fci and the base one Fb.

ōFb
(.) = Hb/ci(.)ōFci

(.) (3)

where ō are the homogeneous coordinates of a point feature expressed in the
base or camera frame. Finally, coupling (3) with (1), one obtains a prediction of
the coordinates of a point feature in the image space.

Sil(k + 1) =

HIi/ci(k + 1)H−1b/ci(k + 1)Hb/ci(k)H−1Ii/ci(k)Sil(k)
(4)

The local model Local models rely on the differential equation mapping the
derivative of the visual feature coordinates Ṡil to the robot control input vector
Q̇i. To obtain this equation, one uses the robot’s Jacobian Ji, mapping the
camera kinematic screw Tci and Q̇i (5), and the interaction matrix Lil, mapping
Ṡil to Tci (6).

Tci = JiQ̇i (5)

Ṡil = LilTci (6)

where

Lil =

[
− 1
zl

0 Xl

zl
XlYl −(1 +X2

l ) Yl
0 − 1

zl
Yl

zl
1 + Y 2

l −XlYl Xl

]
(7)

By combining equations (5) and (6), one obtains the following local model for
each arm/camera couple:

Ṡil = Lil Ji Q̇i (8)

Usability of the models When considering using one of the models on an
experimental system, several aspects have to be taken into account. First, both
models require a measure/estimate of the visual feature depth z (see equations
(1) and (7)). However, when using a monocular camera, this value can only
be retrieved by estimation. Another widely adopted option consists of using
a constant value, such as the depth value at the initial or desired pose [6].
The second issue is related to the integration of the local model to obtain the
prediction equation. A first option consists of using an advanced numeric scheme
to accurately compute the integration, whereas a second one relies on a linear
approximation of the model, such as:

Sil(k + 1) = Sil(k) + LilJiQ̇i(k)Ts (9)
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Thus, depending on the user choices regarding these issues, the prediction feature
coordinates will be more or less accurate. In section 5, different configurations
will be evaluated for our specific application in order to select the most appro-
priate and realistic solution.

4 Controller Design

In this section the control of the arms motion to reach their own targets and
compounding necessary constraints are presented. To achieve these goals, NMPC
control has been implemented to find the optimal inputs vector which minimizes
a cost function subject to constraints. To do so, we first present the cost function
to be minimized in order to reach the desired targets. Then, the expression of
each constraint will be defined. A similar approach was presented in [10] for a
multi-arm robotic system.

4.1 Visual Predictive Control

The proposed VPC scheme couples NMPC (Nonlinear Model Predictive Control)
with IBVS (Image-Based Visual Servoing). Thus, similarly to NMPC, it consists

of computing an optimal control sequence ¯̇Q(.) that minimizes a cost function
JNP

over a prediction horizon of NP steps while taking into account a set of user-

defined constraints C( ¯̇Q(.)). Moreover, similarly to IBVS, the task to achieve is
defined as an error in the image space. Thus, the cost function to minimize is the
sum of the quadratic error between the visual feature coordinates Ŝ(.) predicted
over the horizon Np and the desired ones S∗. It then possible to write the VPC
problem as:

¯̇Q(.) = min
Q̇(.)

(
JNP

(S(k), Q̇(.))
)

(10)

with

JNP
(S(k), Q̇(.)) =

k+Np−1∑
p=k+1

[Ŝ(p)− S∗]T [Ŝ(p)− S∗] (11)

subject to

Ŝ(.) = (4) or (8) (12a)

Ŝ(k) = S(k) (12b)

C( ¯̇Q(.)) ≤ 0 (12c)

As mentioned in the previous section, the visual feature coordinates can be pre-
dicted either using the global or local models (equation (12a)). To compute the
prediction, one uses the last measured visual features (equation (12b)). Finally,
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equation (12c) defines the set of constraints to be taken into account when min-
imizing the cost function (11).

Thus, solving equation (10) leads to the optimal sequence of control inputs
¯̇Q(.). In this work, and as it is usually done, only the first element ¯̇Q(1) of
the sequence is applied to the system. At the next iteration, the minimization
problem is restarted, and a new sequence of optimal control inputs is computed.
This loop is repeated until the task is achieved, e.i., the cost function (11) is
vanished.

4.2 Constraints

As seen in the previous section, it is possible to add a set of constraints in the
minimization problem. In this section, one presents the constraints related to
the geometry of the robot, the velocity of the joints, and the field of view of
the camera. One finishes with defining a set of constraints that guarantee the
non-collision of the arms despite sharing a common workspace.

System constraints The joint velocity lower and upper bounds are respectively
denoted Q̇min and Q̇max. They are two NQ̇ long vectors, with NQ̇ = 2mqNp.
They allow to define the lower and upper limits of each joint of each arm over
the prediction horizon. Consequently, the constraint on Q̇(.) is described in the
domain κ = [Q̇min, Q̇max], and the velocity constraint is then written as:[

Q̇− Q̇max
Q̇min − Q̇

]
≤ 0 (13)

Mechanical limits follow the same principle. The lower and upper bounds of
the angular values are denoted Qmin and Qmax. They are two NQ long vectors,
with NQ = 2mqNp. These constraints are then given by:[

Q−Qmax
Qmin −Q

]
≤ 0 (14)

Finally, the visual constraints are defined by the image dimension. One de-
notes the bounds by Smin and Smax. They are two NS long vectors, with
NS = 8naNp. Thus, all the predicted visual features coordinates need to be
kept into this space, and the constraints can then be written as:[

S − Smax
Smin − S

]
≤ 0 (15)

Overlapping workspace constraint Due to the overlapping workspace, it
is mandatory to guarantee the non-collision between the arms. To do so, one
computes the shortest distance di,j|i′,j′ between the jth joint of the ith arm and

the j′th joint of the i′th arm. The closest distance is evaluated as the norm of
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the segment perpendicular to both assessed links as it is illustrated in figure 1.
Finally, in order to avoid collisions, one defines the following constraint:[

dmin − d
]
≤ 0 (16)

where d = [d1,1|2,1, ..., d1,mq|2,mq
] and dmin is a pre-defined safe distance.

Fig. 1. Computation of the shortest distance di,j|i′,j′ between links Lij and Li′j′ .
Source [10]

Terminal constraint When using a NMPC scheme, it is necessary to guarantee
that the set of control inputs makes the camera converge towards the desired
pose. Due to the fact that a NMPC scheme minimizes the distance between a
predicted trajectory and a desired one, there is no guarantee that the ultimate
predicted state has converged towards the desired one. Moreover, the prediction
horizon might be too short or the constraints on the control inputs might be too
restrictive to reach the goal. [15]. Thus, to check the feasibility, one adds a final
constraint in the optimization problem. It is defined as the error between the
prediction of the visual feature coordinates Ŝ(k + Np − 1) obtained at the end
of the prediction horizon, and the desired ones S∗. If the solver cannot compute

a sequence of control inputs ¯̇Q that respects this constraint, then the problem
is not feasible, and there is no guarantee regarding the system convergence.

|Ŝ(k +Np − 1)− S∗| − δtc ≤ 0 (17)

where δtc is a user defined threshold. Two remarks can be made concerning
the use of the terminal constraint. First, none of the works studied during the
literature review proposes to include a terminal constraint, despite its ease of
implementation and utility. Moreover, authors usually weight the last predicted
value based on the distance to the desired one. This method helps the solver to
converge towards an optimal solution but it does not guarantee the convergence
as the terminal constraint does. Second, the terminal constraint guarantees the
convergence of the predicted states towards the desired ones. In the case the
predictions are strongly erroneous, then the real system cannot converge towards
the desired sate. Thus, using a terminal constraint does not provide an absolute
guarantee of the task realization.
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All the constraints are now defined and can be integrated into the non-linear

function C( ¯̇Q(.)):

C( ¯̇Q) ≤ 0⇒



Q̇− Q̇max
Q̇min − Q̇
Q−Qmax
Qmin −Q
S − Smax
Smin − S
D̂min −D

|Ŝ(k +Np − 1)− S∗| − δtc


≤ 0 (18)

Thus, the optimal input must belong to the domain defined by C( ¯̇Q(.)).

5 Simulation

In this section, one presents the results obtained by simulating the control of two
arms with MATLAB software. A 7 DOF model has been selected, based on the
arms embedded on the PR2 robot. In these simulations, the task consists of po-
sitioning each camera with respect to a given target. Each final pose is defined in
the image space by S∗i = [x1∗, y1∗, x2∗, y2∗, x3∗, y3∗, x4∗, y4∗]T , which are the
coordinates of four points representing the corresponding target. Moreover, one
setups the prediction horizon to Np = 5. Regarding the constraints, the angular
velocity limits for the first prediction step are given by κ = [−0.2 0.2] for each
joint, whereas it is extended to κ = [−5 5] for the rest of the prediction step. This
allows to decrease the computation time while guaranteeing a feasible control in-
put for the first step. The size of the image is Smin = [−4 −4] and Smax = [4 4].
The angular constraints on each joint are setup as described in the PR2 docu-
mentation [13]. Moreover, the minimum collision avoidance distance is fixed to
Dmin = 0.1. The initial coordinates of the visual features are computed based on
the initial configuration of the robot given by qinit = [0 π

2 0 0 0 0 0 0 π
2 0 0 0 0 0]T

for every simulation. Finally, one fixes Ts = 50ms.

5.1 Comparison between the different prediction models

The first set of simulation assesses the accuracy of different predictive models
presented in section 3.2. To do so, the two robotics arms are controlled via VPC
from qinit to q∗ = [−π8

π
2 0 0 0 0 0 0 π

2 0 0 0 0 0]T , using the global model and
the real depth values. When simulating a VPC scheme, this configuration can be
considered as the ground truth, as there is no approximation in the calculations.
Next, at each iteration, the optimal sequence of control inputs calculated by the
VPC scheme, is used to compare the different prediction models. To do so, the
predicted values at the end of the prediction horizon using a particular model
are compared with the reference ones.
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In figure 2, one can see the evolution of the quadratic error between the
predicted coordinates of one visual feature and the ground truth. Six models are
presented by combining the global model (solid lines), local Euler approximation
(dashed lines) and local Runge Kutta approximation (dotted lines) with the
depth values real z (black) and desired z∗ (blue). First, it can be seen that the
error decreases over the servoing. Indeed, when the camera is close to the desired
pose, the sequence of optimal control inputs is quite small, as there is no much
distance left to perform. Having small control inputs then reduces the error in
the predicted values. Moreover, at the end of the simulation, z(t) and z∗ are
very similar, which explains the convergence of the blue and black curves for
each model. Next, it can be noticed that the global models and the local Runge
Kutta are significantly more accurate than the local Euler one. Indeed, using
this latter prediction scheme introduces a large error, and might not allow the
system to converge toward the desired configuration. In figure 3, the errors are
summed over the simulation to offer a better view of model performances. When
considering the use of the real depth, the global model is the most accurate.
However, this result is obtained in a simulation, and its use in a real context
would require an estimator of the depth. Thus, one now considers one more
realistic scenario where the depth is approximated with the constant value z∗.
In this case, the local Runge Kutta is the most accurate model. Thus, for the
rest of the simulations the local Runge Kutta model with z∗ is used to evaluate
the performances.

Fig. 2. Quadratic errors of prediction over the simulation - Solid: Global model -
Dashed: Local Euler - Dotted: Local Runge Kutta - Black: z - Blue: z∗. Source [10]

5.2 Collision-free scenario

In this second simulation, the system has to reach the desired configuration
q∗ = [− π

16
3π
8 0 π

4 0 π
8 0 π

16
π
2

π
4

π
8 0 0 0]T from the initial one qinit while
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Fig. 3. Sum of the quadratic errors of prediction for global, local Euler and local
Runge-Kutta methods - Black: z - Blue: z∗. Source [10]

dealing with the previously presented constraints. The VPC scheme relies on
the local model coupled with a Runge Kutta algorithm and the desired depth
z∗. Using this configuration, the VPC scheme achieves to control the robotic
system to converge towards the desired poses, as it can be seen in the different
results presented hereafter. First, the evolution of visual features is displayed in
figure 4 and highlights the achievement of the task for both cameras. Indeed,
the proposed scheme was able to control both arms to make the current visual
features converge towards the desired ones from their initial locations (respec-
tively represented by the red and green crosses in figures 4(a) and 4(b)). To
achieve the task, the arms had to reach the configurations presented in figure 5.
Regarding the constraints, the image limits were never reached and there was no
risk of collision during the servoing. Moreover, it can be seen in figures 6(b) and
6(a) that the joint angular values remain within the defined domain. Similarly,
in figures 6(d) and 6(c), one can see that the the joint velocities were bounded
by the constraints. Indeed, the command inputs stay within the given range
κ = [−0.2 0.2] all along the simulation.

5.3 Auto-collision scenario

This new simulation is setup in order to create a collision between the two
robotic arms. Thus, the system has to reach the desired configuration q∗ =
[ π16

3π
8 0 π

4 0 π
8 0 − π

16
π
2

π
4

π
8 0 0 0]T . Moreover, as previously done, one

uses the Runge Kutta local model coupled with the desired depth values. As it
can be seen in figure 7, one more time the desired visual features are reached
from the initial poses. However, as shown in figure 8, the arms had to cross
each other to reach the desired locations. Thanks to the shared environment
constraint included in the control problem, the collision was avoided. Indeed,
figure 9 shows that the distance between the different links was never smaller
than the given value Dmin = 0.1m. In addition to the auto-collision avoidance,
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(a) Left camera (b) Right camera

Fig. 4. Evolution of the visual features using local Runge-Kutta model and z - Blue
dotted: Trajectories - Red circles: Final locations - Green circles: Initial locations.
Source [10]

Fig. 5. Final poses of the arms - Red dots represent the two targets - Green crosses
are the initial poses of the end effectors. Source [10]

the other constraints on the joints angular values and velocities were respected
(see figures 10 and 11).

5.4 External collision scenario

In this scenario, the goal is to achieve the task while dealing with an obstacle
on the right arm trajectory. First, one defines the desired pose such as q∗ =
[− π

16
3π
8 0 π

4 0 π
8 0 π

16
π
2

π
4

π
8 0 0 0]T . Next, an obstacle is positioned in the



14 Le Flécher E. et al.

(a) Left arm joints angular values (b) Right arm joints angular values

(c) Left arm joints angular velocities (d) Right arm joints angular velocities

Fig. 6. Joint configurations and velocities. Source [10]

(a) Left camera (b) Right camera

Fig. 7. Evolution of the visual features using local Runge-Kutta model and z - Blue
dotted: Trajectories - Red circles: Final locations - Green circles: Initial locations.
Source [10]



Simultaneous Control of Two Robotics Arms via VPC 15

Fig. 8. Final poses of the arms - Red dots represent the two targets - Green crosses
are the initial poses of the end effectors. Source [10]

Fig. 9. Collision distance - Solid: Distances between links - Dotted: Minimal allowed
distance. Source [10]

scene at the coordinates ŌObs|Fb
= (0.79,−0.27,−0.08) (see figure 12). Finally,

the minimal distance is setup to 0.1m.

As it can be seen in figure 13(a), the positioning task is achieved, and the vi-
sual features have reached the desired coordinates. Moreover, the corresponding
trajectory is plotted in figure 12. It should be noticed that the obstacle on the
right arm trajectory has been avoided thanks to the distance constraint. Indeed,
as it can be seen in figure 13(b), the distance between any segment of the arm
and the obstacle is always higher than the defined threshold. Thus, it is possible
to safely achieve the positioning task despite the presence of unknown obstacle.
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(a) q11 (b) q12 (c) q13 (d) q14

(e) q15 (f) q16 (g) q17

Fig. 10. Configuration of the right arm over the simulation - Blue solid: Angular joint
value q1j - Red dashed: Angle boundaries. Source [10]

(a) q̇11 (b) q̇12 (c) q̇13 (d) q̇14

(e) q̇15 (f) q̇16 (g) q̇17

Fig. 11. Right arm joints velocities - Blue solid: Joint velocity value - Red dashed:
Velocity boundaries. Source [10]

5.5 Auto/External-collision scenario

This simulation aims at showing the ability of the system to avoid both a collision
between the arms and with an external obstacle. To do so, one setups qinit =
[−π8

3π
8 0 π

4 0 π
8 0 π

16
π
2
π
4
π
8 0 0 0]T . Moreover, the desired configuration is given

by q∗ = [ π20
π
2 −

π
2
π
6 π π

4 0 − π
20

π
2
π
2
π
6 0 0 0]. The obstacle is positioned at

the coordinates ŌObs Fb
= (0.79,−0.27,−0.08) (see figure 14) and the minimal

distance for both arms and obstacle is set up to 0.1m.

One more time, the task is successfully achieved as it can be seen in figure 15.
Indeed, the visual features manage to converge towards the desired values despite
the presence of an obstacle and the possible auto-collision. The corresponding
trajectory is plotted in figure 14. This trajectory is obtained by taking into
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Fig. 12. Final configurations of the robotic arms

(a) Evolution of the visual features in the
right camera - Blue dotted: Trajectories -
Red circles: Final locations - Green circles:
Initial locations

(b) Distance between the obstacle and the
different links of the right arm - Solid: Dis-
tances - Dotted: Minimal allowed distance

Fig. 13. Evolution of the visual features and distance between the right arm links and
the obstacle

account both the constraints related to the arms distances and to the obstacle
distance (see figures 16(a) and 16(b)).

6 Conclusion

In this paper, the problem of fruit picking using a dual-arm robot in a commer-
cial orchard has been considered. A strategy based on VPC has been developed
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Fig. 14. Final configurations of the robotic arms

(a) Left camera (b) Right camera

Fig. 15. Evolution of the visual features in the right camera - Blue dotted: Trajectories
- Red circles: Final locations - Green circles: Initial locations

to make its end-effectors reach a desired pose close to the corresponding fruits,
while respecting constraints due to the environment dynamics, the visual manip-
ulation and the shared workspace. This strategy thus allows to benefit from the
advantages of a reactive controller to perform a highly complex task in a strongly
evolutive environment where various constraints must be taken into account. To
validate the approach, a simulation campaign has been conducted. A first step
was to evaluate the different prediction models to select the best one for the
servoing. Then, the VPC strategy itself was tested, considering different scenarii
and using a PR2 model as the considered dual-arm robot. The obtained results
have shown its interest and its efficiency to safely perform various positioning
tasks in a shared workspace.
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(a) Distance between the obstacle and the
different links of the right arm - Solid: Dis-
tances - Dotted: Minimal allowed distance

(b) Collision distance - Solid: Distances
between links - Dotted: Minimal allowed
distance

Fig. 16. Collision distance between the right arm and the obstacle, and between the
arms

For future works, two main leads can be followed. First, these works only
consider a fixed dual-arm system. To go further, it is necessary to mount it on
a mobile base and to coordinate the motions of the complete robotic setup. To
do so, the proposed control strategy will have to be coupled to our previous
works about autonomous navigation in orchards. A second interesting research
axis concerns the realization of experimental tests on a real robotic system.
To achieve this goal, it will be required to speed up the processing time. The
prediction models will have to be selected depending not only on their accuracy
but also on their computational time. In this context, designing new models
specifically adapted to Graphical Processing Units could offer a nice opportunity.
Such aspects are now at the core of our current work in order to perform a
complete fruits picking task in a real environment.
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