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Kuhn’s Equivalence Theorem

for Games in Product Form

Benjamin Heymann∗, Michel De Lara†, Jean-Philippe Chancelier†

July 12, 2022

Abstract

We propose an alternative to the tree representation of extensive form games.
Games in product form represent information with σ-fields over a product set, and
do not require an explicit description of the play temporal ordering, as opposed to
extensive form games on trees. This representation encompasses games with contin-
uum of actions and imperfect information. We adapt and prove Kuhn’s theorem —
regarding equivalence between mixed and behavioral strategies under perfect recall —
for games in product form with continuous action sets.

Keywords.Games with information, Kuhn’s equivalence theorem, perfect recall, Witsen-
hausen intrinsic model.

1 Introduction

From the origin, games in extensive form have been formulated on a tree. In his seminal
1953 paper Extensive Games and the Problem of Information [10], Kuhn claimed that “The
use of a geometrical model (. . . ) clarifies the delicate problem of information”. The proper
handling of information was thus a strong motivation for Kuhn’s extensive games. On the
game tree, moves are those vertices that possess alternatives, then moves are partitioned
into players moves, themselves partitioned into information sets (with the constraint that
no two moves in an information set can be on the same play). Kuhn mentions agents, one
agent per information set, to “personalize the interpretation” but the notion is not central
(to the point that his definition of perfect recall “obviates the use of agents”). Then (pure)
strategies of a player are defined as mappings1 from player moves to alternatives, with the
property of being constant on every information set.

∗Criteo, Paris, France
†CERMICS, Ecole des Ponts, Marne-la-Vallée, France
1Adopting usage in mathematics, we follow Serge Lang and use “function” only to refer to mappings in

which the codomain is numerical — that is, a set of numbers (i.e. a subset of R or C, or their possible
extensions with ±∞) — and reserve the term “mapping” for more general codomains.
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By contrast, agents play a central role in the so-called Witsenhausen’s intrinsic model
[15, 16], although the vocable “agent” does not refer to the same mathematical objects. A
Kuhn agent is identified with one of the information sets in the finite partition of a player. A
Witsenhausen agent is a primitive object whose role is central as a decision maker equipped
with the algebra of his2 information events (and not only a single information event). The
novelty introduced in 1971 by Witsenhausen is the notion of information field (or algebra),
that we summarize as follows: (i) each agent is equipped with a measurable action space
(set and σ-algebra) and so is chance; (ii) the product of those measurable spaces, called
the hybrid space, serves as a unique domain for all the strategies (or policies in a control
theoretic wording); (ii) the hybrid product σ-algebra hosts the agents’ information subfields,
and the (pure) strategies of an agent are required to be measurable with respect to the
agent’s information field. The information field of an agent contains all the “information
events” that the agent can observe before taking a decision.

Witsenhausen’s intrinsic model was elaborated in the control theory setting, to model
how information is distributed among agents and how it impacts their strategies. Although
not explicitly designed for games, Witsenhausen’s intrinsic model had, from the start, the
potential to be adapted to games. Indeed, in [15] Witsenhausen placed his own model in
the context of game theory, as he made references to von Neuman and Morgenstern [14],
Kuhn [10] and Aumann [3]. After Witsenhausen put forward his intrinsic model in 1971,
Harsanyi and Selten proposed, in their 1988 book, the notion of game in standard form
[8, § 2.3], where they advocated for the role of both agents and players in their theory.
However, in the Harsanyi-Selten games in standard form, the primitives are the agents’ choice
sets3, whereas, in Witsenhausen’s intrinsic model, the primitives are information structures,
modeled by measurable spaces, one for each agent and one for chance.

In this paper, we4 introduce a new representation of games that we call games in product
form, or W-games (W- as a reference to Witsenhausen). Game representations play a key
role in the analysis of games (see the illuminating introduction of the book [2]). In the
philosophy of the tree-based extensive form (Kuhn’s view), the temporal ordering is hard-
coded in the tree structure: one goes from the root to the leaves, making decisions at the
moves, contingent on information, chance and strategies. For Kuhn, the chronology (tree)
comes first; information comes second (partition of the move vertices). By contrast, for
Witsenhausen, information comes first; the chronology comes (possibly) second, under a
so-called causality assumption contingent on the information structure [15].

Trees are perfect to follow step by step how a game is played as any strategy profile
induces a unique play: one goes from the root to the leaves, passing from one node to the
next by an edge that depends on the strategy profile. On the other hand, the notion of games

2In the paper, we adopt (except for the Alice and Bob models) the convention that a player is female
(hence using “she” and “her”), whereas an agent is male (“he”, “his”).

3Then, they call pure strategy of a player a collection of choices for her agents. This notion of strategy
differs from the one we use in this paper, where by strategy we mean a mapping (see Footnote 1) with values
in the choice sets.

4The paper uses the convention that the pronoun “we” refers to the authors, or the authors and the
reader in the formal statements.
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in product form does not require an explicit description of the play temporal ordering, and
the product form replaces the tree structure with a product structure.

Games in product form display the following features. By focusing on agents (each
with an action set and an information field), they offer a different way to model strategic
interactions. Having a product structure enables the possibility of decomposition, agent
by agent. Beliefs and transition probabilities can be introduced in a unified framework,
and extended to the ambiguity setting and beyond. To illustrate the potential of games in
product form and the analytic techniques used, we provide a statement and a proof of the
celebrated Kuhn’s equivalence theorem in the case of continuous action sets: we show that
perfect recall implies the equivalence between mixed and behavioral strategies; we also show
the reverse implication.

The paper is organized as follows. In Sect. 2, we present a slightly extended version of
Witsenhausen’s intrinsic model. Then, in Sect. 3, we propose a formal definition of games in
product form (W-games), and define mixed and behavioral strategies. Finally, we derive an
equivalent of Kuhn’s equivalence theorem for games in product form in Sect. 4. The proofs5

are relegated in Sect. 5.

2 Witsenhausen’s intrinsic model

In this paper, we tackle the issue of information in the context of games. For this purpose,
we now present the so-called intrinsic model of Witsenhausen [16, 6]. In §2.1, we introduce
an extended version of Witsenhausen’s intrinsic model, where we highlight the role of the
configuration field that contains the information subfields of all agents. In §2.2, we illustrate,
on a few examples, the ease with which one can model information in strategic contexts, using
subfields of the configuration field. Finally, we present in §2.3 the notion of playability.

2.1 Witsenhausen’s intrinsic model (W-model)

We present an extended version of Witsenhausen’s intrinsic model — introduced some five
decades ago in the control community [15, 16] — that we call W-model (with W- as a
reference to Witsenhausen, as will also be the case with pure W-strategy).

We start with background on σ-fields. Let D be a set. Recall that a σ-field (or σ-algebra
or, shortly, field) over the set D is a subset D ⊂ 2D, containing D, and which is closed under
complementation and under countable union. The trivial field over the set D is the field
{∅,D}. The complete field over the set D is the power set 2D. If D is a σ-field over the set D
and if D′ ⊂ D, then D′ ∩ D = {D′ ∩ D′′ |D′′ ∈ D} is a σ-field over the set D′, called trace
field. Consider two fields D and D′ over the set D. We say that the field D is finer than the

5The proof of Theorem 17 in §5.1 (sufficiency of perfect recall to obtain equivalence between mixed
W-strategies and behavioral strategies) is decomposed into four lemmata and a final proof. The proof of
Theorem 18 in §5.2 (necessity) is decomposed into three lemmata and a final proof. In the published version
of this paper, the proofs of the seven lemmata are not given. They appear however in the online additional
material.

3



field D′ if D ⊃ D′ (notice the reverse inclusion); we also say that D′ is a subfield of D. As an
illustration, the complete field is finer than any field or, equivalently, any field is a subfield
of the complete field. The least upper bound of two fields D and D′, denoted by D ∨D′, is
the smallest field that contains D and D′. The least upper bound of two fields is finer than
any of the two. Consider a family (Di)i∈I , where Di is a field over the set Di, for all i ∈ I.
The product field

⊗
i∈I Di is the smallest field, over the product set

∏
i∈I Di, that contains

all the cylinders.

Definition 1. (adapted from [15, 16])
A W-model is a collection

(
A, (Ω,F), (Ua,Ua)a∈A , (Ia)a∈A

)
, where

• A is a set, whose elements are called agents;

• Ω is a set which represents “chance” or “Nature”; any ω ∈ Ω is called a state of
Nature; F is a σ-field over Ω;

• for any a ∈ A, Ua is a set, the set of actions for agent a; Ua is a σ-field over Ua;

• for any a ∈ A, Ia is a subfield of the following product field

Ia ⊂ F ⊗
⊗

b∈A

Ub , ∀a ∈ A (1)

and is called the information field of the agent a.

In [15, 16], the set A of agents is supposed to be finite, but we have relaxed this assump-
tion. Indeed, there is no formal difficulty in handling a general set of agents, which makes
the W-model possibly relevant for differential or nonatomic games. A finite W-model is a
W-model for which the sets A, Ω and Ua, for all a ∈ A, are finite, and the σ-fields F and Ua,
for all a ∈ A, are the power sets (that is, the complete fields).

The configuration space is the product space (called hybrid space by Witsenhausen, hence
the H notation)

H = Ω×
∏

a∈A

Ua (2a)

equipped with the product configuration field

H = F ⊗
⊗

a∈A

Ua . (2b)

A configuration h ∈ H is denoted by

h = (ω, (ua)a∈A) ⇐⇒ h∅ = ω and ha = ua , ∀a ∈ A . (2c)

Now, we introduce the notion of pure W-strategy.
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Definition 2. ([15, 16]) A pure W-strategy of agent a ∈ A is a mapping

λa : (H,H) → (Ua,Ua) (3a)

from configurations to actions, which is measurable with respect to the information field Ia
of agent a, that is,

λ−1
a (Ua) ⊂ Ia . (3b)

Recall that λ−1
a (Ua) is the σ-field (subfield of H) defined by

λ−1
a (Ua) =

{
λ−1
a (Ua) , Ua ∈ Ua

}
=

{
H ∈ H

∣∣ ∃Ua ∈ Ua , λa(H) = Ua

}
. (3c)

We denote by Λa the set of all pure W-strategies of agent a ∈ A. A pure W-strategies
profile λ is a family

λ = (λa)a∈A ∈
∏

a∈A

Λa (4a)

of pure W-strategies, one per agent a ∈ A. The set of pure W-strategies profiles is

Λ =
∏

a∈A

Λa . (4b)

Condition (3b) expresses the property that any (pure) W-strategy of agent a may only
depend upon the information Ia available to a. Constant mappings like (3a) are W-strategies
as they satisfy λ−1

a (Ua) = {∅,H} ⊂ Ia, hence satisfy (3b).

The following self-explanatory notations (for B ⊂ A) will be useful:

UB =
∏

b∈B

Ub , (5a)

UB =
⊗

b∈B

Ub ⊗
⊗

a6∈B

{∅,Ua} ⊂
⊗

a∈A

Ua , (5b)

HB = F ⊗ UB = F ⊗
⊗

b∈B

Ub ⊗
⊗

a6∈B

{∅,Ua} ⊂ H , (5c)

(
when B 6= ∅

)
hB = (hb)b∈B ∈

∏

b∈B

Ub , ∀h ∈ H , (5d)

(
when B 6= ∅

)
πB : H →

∏

b∈B

Ub , h 7→ hB , (5e)

(
when B 6= ∅

)
λB = (λb)b∈B ∈

∏

b∈B

Λb , ∀λ ∈ Λ . (5f)

In (5b), when B = {a} is a singleton, we will sometimes (abusively) identify U{a} = Ua ⊗⊗
b6=a

{∅,Ub} with Ua.
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2.2 Examples

We illustrate, on a few examples, the ease with which one can model information in strategic
contexts, using subfields of the configuration field. In some examples, there are no chance
moves. As the W-model involves a Nature set Ω, we should consider a (spurious) Nature
set, reduced to a singleton Ω = {ω} for instance. However, to alleviate notation, we do not
mention Ω.

Alice and Bob models. To illustrate the W-formalism presented above in §2.1, we give
here three examples with two agents, Alice and Bob (who can belong either to the same
player or to two different players)6: first, acting simultaneously (Figure 1i); second, one
acting after another (Figure 1ii) ; third acting after the Nature’s move (Figure 1iii).

Bob

L R
Alice

z1

T

z2

B

z3

T

z4

B

(i)

Bob

L R
Alice

z1

T

z2

B

z3

T

z4

B

(ii)

Nature

ω+ ω−

Bob

L R L R
Alice

z3

T
z4

B
z5

T

z6

B

z7

T
z8

B
z1

T

z2

B

(iii)

Figure 1: Alice and Bob examples in the tree model

Alice and Bob as unordered agents (trivial information, Figures 1i and 2). In the simplest
W-model, we consider two agents a (Alice) and b (Bob) having two possible actions each
(top T and bottom B for Alice a, left L and right R for Bob b), that is,

Ua = {uT , uB}, Ub = {uL, uR} . (6a)

We also suppose that Alice and Bob have no information about each other’s actions — see
Figure 2 where the two grey disks represent the (here trivial) atoms (that is, the minimal
elements for the inclusion order) of the finite σ-fields Ia and Ib — that is, Ia = Ib = {∅,Ua}⊗
{∅,Ub}, which can be interpreted as Alice and Bob acting simultaneously. As Nature is
absent, the configuration space consists of four elements

H = Ua × Ub = {uT , uB} × {uL, uR} , (6b)

hence the square in Figure 2.

Alice and Bob as ordered agents (without Nature, Figures 1ii and 3).

6For the Alice and Bob models, we do not follow the convention that a player is female, whereas an agent
is male.
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(uB, uR) (uB, uL)

(uT , uL)(uT , uR)

Ia

•

••

•
(uB, uR) (uB, uL)

(uT , uL)(uT , uR)

Ib

• •

••

Figure 2: Atoms (grey disks) of the information fields of the agents a and b acting simulta-
neously (case of Figure 1i)

As in the previous example, Nature is absent, and there are two agents a (Alice) and b
(Bob), having two possible actions each (see (6a)), so that the configuration space consists of
four elements (see (6b)). Suppose that Bob’s information field is trivial (Bob knows nothing
of Alice’s actions), that is,

Ib =
{
∅, {uT , uB}} ⊗ {∅, {uL, uR}

}

(a trivial field represented by its single atom, a grey disk on the right hand side of Figure 3),
and that Alice knows what Bob does (Alice can distinguish between uL and uR)

Ia =
{
∅, {uT , uB}} ⊗ {∅, {uL}, {uR}, {uL, uR}

}

(a nontrivial field represented by its two atoms, the two grey vertical ellipses on the left hand
side of Figure 3).

In this example, the agents are naturally ordered: Bob plays first, Alice plays second.
Had the order been inverted, then there would have been a sort of paradox – Alice would
play first, before Bob, and would know Bob’s action that has not been yet taken by him.

(uB, uR) (uB, uL)

(uT , uL)(uT , uR)

Ia

•

••

•
(uB, uR) (uB, uL)

(uT , uL)(uT , uR)

Ib

• •

••

Figure 3: Atoms of the information fields of the ordered agents a and b, without Nature
(case of Figure 1ii)

Alice and Bob as ordered agents (with Nature, Figures 1iii and 4).
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In this example, there are two agents a (Alice) and b (Bob) and two states of Nature
Ω = {ω+, ω−} (say, heads or tails). As in the previous examples, agents have two possible
actions each (see (6a)). Thus, the configuration space consists of eight elements

H = {ω+, ω−} × {uT , uB} × {uL, uR} ,

hence the cube in Figure 4. We consider the following information structure:

Ib =

Bob knows Nature’s move︷ ︸︸ ︷{
∅, {ω+}, {ω−}, {ω+, ω−}

}
⊗

Bob does not know what Alice does︷ ︸︸ ︷{
∅, {uT , uB}

}
⊗{∅,Ub} , (7a)

Ia =
{
∅, {ω+}, {ω−}, {ω+, ω−}

}
︸ ︷︷ ︸

Alice knows Nature’s move

⊗{∅,Ua} ⊗
{
∅, {uL}, {uR}, {uL, uR}

}
︸ ︷︷ ︸

Alice knows what Bob does

. (7b)

Again, here agents are naturally ordered: Bob plays first, Alice plays second.

(ω−,uB,uR) (ω−,uT ,uR)

(ω+,uT ,uR)(ω+,uB,uR)

(ω−,uB,uL) (ω−,uT ,uL)

(ω+,uB,uL) (ω+,uT ,uL)
Ia

•

••

•

• •

• •

(ω−,uB,uR) (ω−,uT ,uR)

(ω+,uT ,uR)(ω+,uB,uR)

(ω−,uB,uL) (ω−,uT ,uL)

(ω+,uB,uL) (ω+,uT ,uL)
Ib

•

••

•

• •

• •

Figure 4: Atoms of the information fields of the ordered agents a and b, with Nature (case
of Figure 1iii)

Sequential decision-making. In this example we illustrate the case of continuous action
sets. Suppose a player takes her decisions (say, an element of Rn) at every discrete time step
in the set7 J0, T−1K, where T ≥ 1 is an integer. The situation will be modeled with (possibly)
Nature set and field (Ω,F), and with T agents in A = J0, T−1K, and their corresponding
sets, Ut = Rn, and fields, Ut = BRn (the Borel σ-field of Rn), for t ∈ A. Then, one
builds up the product set H = Ω ×

∏T−1
t=0 Ut and the product field H = F ⊗

⊗T−1
t=0 Ut.

Every agent t ∈ J0, T−1K is equipped with an information field It ⊂ H. Then, we show
how we can express four information patterns: sequentiality, memory of past information,
memory of past actions, perfect recall. Following the notation (5b), we set U{0,...,t−1} =⊗t−1

s=0Us ⊗
⊗T−1

s=t {∅,Us} for t ∈ J1, T K. The inclusions It ⊂ H{0,...,t−1} = F ⊗ U{0,...,t−1},
for t ∈ J0, T−1K, express that every agent can remember no more than the past actions
of the agents before him (sequentiality); memory of past information is represented by the

7For any integers a ≤ b, Ja, bK denotes the subset {a, a+ 1, . . . , b− 1, b}.
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inclusions It−1 ⊂ It, for t ∈ J1, T−1K; memory of past actions is represented by the inclusions
{∅,Ω} ⊗ U{0,...,t−1} ⊂ It, for t ∈ J1, T−1K; perfect recall is represented by the inclusions
It−1 ∨

(
{∅,Ω} ⊗ U{0,...,t−1}

)
⊂ It, for t ∈ J1, T−1K.

To represent N players — where each player p takes a sequence of decisions, one for each
period t ∈ J0, T p−1K — we use

∏N
p=1 T

p agents, labeled by (p, t) ∈
⋃N

q=1

(
{q}×J0, T q−1K

)
.

With obvious notations, the inclusions I(p,t−1) ⊂ I(p,t) express memory of one’s own past infor-

mation, whereas (with obvious notation) the inclusions
∨N

q=1{∅,Ω}⊗
⊗t−1

s=0U
q
s⊗

⊗T q−1
s=t {∅,Uq

s}
⊂ I(p,t) express memory of all players past actions.

Embedding measurability constraints. We go on with continuous action sets. There
are two agents, A = {a, b}, and Nature is absent, Ω = {0}, F = {∅, {0}}. The action set
of agent a is the unit interval Ua = [0, 1] equipped with its Borel σ-algebra Ua = B[0,1], and
agent a does not know what agent b does, represented by Ia = {∅,Ua}⊗{∅,Ub}. Agent b has
two possible actions — namely Ub = {0, 1}, Ub = 2Ub — and observes the action of agent a,
represented by Ib = B[0,1] ⊗ {∅,Ub}. This models ultimatum bargaining (this example is
taken from [2, p.157]) where agent a chooses an offer x in the unit interval, which agent b
perfectly observes. Then, agent b either accepts the offer (Y ) or rejects it (N).

In the model above, consider A ⊂ [0, 1] and a pure “strategy” (mapping) for agent b
defined by

λAb : x ∈ [0, 1] 7→

{
Y if x ∈ A ,

N if x 6∈ A .

The “strategy” λAb is not a W-strategy when A /∈ B[0,1] (hence the quotes in “strategy”);
indeed, condition (3b) is not satisfied since (λAb )

−1
(
{Y }

)
= A /∈ B[0,1]. Thus, games in

product form can embed measurability constraints to prevent strategies that would lead to
no outcomes when combined with expected utilities. But if one is not interested in using
probability distributions — as is the case for instance when preferences are not measured by
expected utility but by infimal utility (worst-case) — then nothing prevents from choosing
the same model, but with Ua = 2[0,1] and Ib = 2[0,1] ⊗ {∅,Ub}. Then, in this latter case, the
pure “strategy” λAb is a W-strategy.

To stress the point, if one is compelled to use probability distributions over infinite sets,
then perfect information — in the sense of Ib = 2Ua ⊗ {∅,Ub}, where the complete field 2Ua

represents perfect information — has to be ruled out in favor of Ib = B[0,1]⊗{∅,Ub} — where
the Borel field B[0,1] represents “approximate” perfect information.

2.3 Playability

Regarding Kuhn’s tree formulation, Witsenhausen says that “For any combination of policies
one can find the corresponding outcome by following the tree along selected branches, and
this is an explicit procedure” [15]. In the Witsenhausen product formulation, there is no
such explicit procedure as, for any combination of policies, there may be none, one or many
solutions to the (forthcoming) closed-loop equations (10) which express the action of one
agent as the output of his strategy, supplied with Nature outcome and with all agents
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actions. This is why Witsenhausen needs a well-posedness property (that is, the existence
and uniqueness of a solution to a set of equations) that he calls solvability in [15], whereas
Kuhn does not need it as it is hard-coded in the tree structure. From now on, we will no
longer use the terminology of Witsenhausen and we will use playability and playable, where
he used solvability and solvable. We indeed think that such vocabulary is more telling to a
game theory audience.

2.3.1 Playability

Definition 3. ([15, 16]) A W-model (see Definition 1) is playable if, for every pure W-
strategies profile λ = (λa)a∈A ∈

∏
a∈A Λa and every state of Nature ω ∈ Ω, the mapping

λ
(
ω, ·

)
=

(
λa
(
ω, ·

))
a∈A

:
∏

a∈A

Ua →
∏

a∈A

Ua (8)

has a unique fixed point. In this case, we introduce the solution map

Sλ : Ω → H (9)

that associates ω ∈ Ω with the unique h = (ω, u) =
(
ω, (ua)a∈A

)
∈ H solution of the closed-

loop equations
ua = λa

(
ω, (ub)b∈A

)
, ∀a ∈ A . (10)

that is,

Sλ(ω) = h ⇐⇒

{
h∅ = ω

ha = λa(h) , ∀a ∈ A .
(11)

This definition of “playability” is consistent with the term used in [2, p.102]. It corre-
sponds to a well-posedness property, that is, the existence and uniqueness of a solution to
the set of equations (10).

Proposition 4. If a W-model is playable, then

Ia ⊂ HA\{a} = F ⊗
⊗

b∈A\{b}

Ub ⊗ {∅,Ua} , ∀a ∈ A . (12)

The latter property (12) is referred to as absence of self-information [16, p. 325], that
is, that the decision of an agent is not contingent on the decision itself. Technically, it
means that, for any agent a ∈ A, a subset in the field Ia is necessarily a cylinder “in the
direction Ua”, that is, that the a- coordinate of Ia must always be {∅,Ua} for all agents
a ∈ A. In other words, absence of self-information is the property that, for any agent a ∈ A,
for any nonempty subset Ia ∈ Ia, and for any two configurations h′, h′′ ∈ H, we have that

h′ ∈ Ia and h′∅ = h′′∅ and πA\{a}h
′ = πA\{a}h

′′ =⇒ h′′ ∈ Ia , (13a)

10



or, equivalently, by (5e)

h′ ∈ Ia and h′∅ = h′′∅ and h′b = h′′b , ∀b ∈ A \ {a} =⇒ h′′ ∈ Ia . (13b)

To avoid paradoxes, absence of self-information is a clear minimal axiomatic requirement
that one should ask of a W-model.

As Witsenhausen pointed out that playability implied absence of self-information, but
without giving a proof, we provide one below.

Proof. We consider a playable W-model. To prove (12), we use the characterization (13b).
For this purpose, we consider an agent a ∈ A, a nonempty subset Ia ∈ Ia, a configuration
h′ ∈ Ia, and another configuration h′′ ∈ H satisfying h′∅ = h′′∅, h

′
b = h′′b , ∀b ∈ A \ {a} and

h′ 6= h′′. We prove that the configuration h′′ necessarily belongs to the subset Ia.
The proof is by contradiction. Assume that h′′ 6∈ Ia and define the pure W-strategies

profile λ = (λb)b∈A as follows: for any b ∈ A \ {a}, λb(h) = h′b; λa(h) = h′a if h ∈ Ia, and
λa(h) = h′′a if h 6∈ Ia. The mapping λa is Ia-measurable since Ia ∈ Ia; the mapping λb is
Ib-measurable since λb is constant for b ∈ A\{a}. As a consequence, λ = (λb)b∈A is a pure W-
strategies profile (see Definition 2). Now, we observe that the two (distinct) configurations h′

and h′′ are fixed point of the W-strategies profile λ for the same ω = h′∅ = h′′∅. Indeed, first,
for the configuration h′′ we have that, for any b ∈ A \ {a}, λb(h

′′) = h′b = h′′b and as h′′ 6∈ Ia
we have that λa(h

′′) = h′′a. Second, for the configuration h
′ we have that, for any b ∈ A\{a},

λb(h
′) = h′b and, as h

′ ∈ Ia, we have that λa(h
′) = h′a. Thus, the two configurations h′ and

h′′ are fixed point of the W-strategies profile λ for the same ω = h′∅ = h′′∅, which contradicts
uniqueness (as we also have h′ 6= h′′) in the Definition 3 of playability.

Therefore, we have proved (by contradiction) that h′′ ∈ Ia. As a consequence, we have
obtained that Ia ∈ HA\{a} and thus Ia ⊂ HA\{a}. This ends the proof.

We now present some useful properties of playable W-models. The first one states that the
playability property implies a form of partial playability property, by leveraging the fact that
any constant strategy is a W-strategy. Let a W-model be playable, let λ = (λa)a∈A ∈

∏
a∈A

Λa

be a pure W-strategies profile like in (4a), and let B ⊂ A be a nonempty subset of agents.
From (11), we readily get that

πB
(
Sλ(ω)

)
= λB

(
Sλ(ω)

)
, ∀ω ∈ Ω , (14)

where the projection πB is defined in Equation (5e) and λB is defined in Equation (5f).
Now, we examine what happens when we replace some of the W-strategies λa by constant
ones. For this purpose, for any subset B ⊂ A of agents, we introduce the partial solution
map ŜB

λ−B
, defined by

ŜB
λ−B

(ω, uB) = SuB,λ−B
(ω) , ∀ω ∈ Ω , ∀uB ∈ UB , (15)

11



where (uB, λ−B) has to be understood as the pure W-strategies profile made of two subpro-
files, like in (5f), namely constant subprofile with values uB and subprofile λ−B = (λc)c 6∈B ∈∏
c 6∈B

Λc.

We obtain the following result, as a straightforward application of (11)–(14)–(15).

Proposition 5. Let a W-model be playable, as in Definition 3. For any subset B ⊂ A of
agents, the solution map Sλ in (9) and the partial solution map ŜB

λ−B
in (15) are related as

follows:

Sλ(ω) = SλB ,λ−B
(ω) = ŜB

λ−B

(
ω, πB

(
Sλ(ω)

))
= ŜB

λ−B

(
ω, λB

(
Sλ(ω)

))
, ∀ω ∈ Ω . (16)

As a consequence, for any two pure W-strategies profiles λ and λ′ which are such that λ−B =
λ′−B, we have that ŜB

λ−B
= ŜB

λ′
−B

and that

(
πB

(
Sλ(ω)

)
= πB

(
Sλ′(ω)

)
=⇒ Sλ(ω) = Sλ′(ω)

)
, ∀ω ∈ Ω . (17)

Here is a nice application of property (16), that will be useful in the proof of Kuhn’s
equivalence Theorem (Lemma 22).

Proposition 6. Let a W-model be playable, as in Definition 3. Let a ∈ A be an agent, and
Z : (H, Ia) → (Z,Z) be a measurable mapping, where Z is a set8 and where the σ-field Z

contains the singletons. Then, for any pair λ = (λb)b∈A and λ′ = (λ′b)b∈A of W-strategy
profiles such that b 6= a =⇒ λb = λ′b, we have that Z ◦ Sλ = Z ◦ Sλ′.

Proof. The proof is by contradiction. Let λ = (λb)b∈A and λ′ = (λ′b)b∈A be a pair of W-
strategy profiles such that b 6= a =⇒ λb = λ′b, and suppose that there exists ω ∈ Ω such
that Z

(
Sλ(ω)

)
6= Z

(
Sλ′(ω)

)
.

Consider H = Z−1
(
Z
(
Sλ(ω)

))
⊂ H. By definition of the subset H and by the very

defining property of ω ∈ Ω — that is, Z
(
Sλ(ω)

)
6= Z

(
Sλ′(ω)

)
— we get that Sλ(ω) ∈ H

and Sλ′(ω) 6∈ H . Moreover, H ∈ Ia since Z : (H, Ia) → (Z,Z) is a measurable mapping and
the σ-field Z contains the singletons. We define a new W-strategy λ′′a for agent a as follows:

∀h′′ ∈ H , λ′′a(h
′′) =

{
πa
(
Sλ(ω)

)
if h′′ 6∈ H ,

πa
(
Sλ′(ω)

)
if h′′ ∈ H .

(18)

Thus defined, the mapping λ′′a indeed is a W-strategy because, as H ∈ Ia, the mapping
λ′′a : (H, Ia) → (Ua,Ua) is measurable. We define the W-strategies profile λ′′ = (λ′′b )b∈A by
completing λ′′a with λ′′b = λb = λ′b when b 6= a.

We prove that playability fails for the W-strategy profile λ′′ (hence the contradiction). For
this purpose, we consider the following only two possibilities for Sλ′′(ω), depending whether
it belongs to H or not.

8Not to be taken in the sense of the set of relative integers.
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First, we assume that Sλ′′(ω) 6∈ H . Then, we have that

πa
(
Sλ′′(ω)

)
= λ′′a

(
Sλ′′(ω)

)
(by (14))

= πa
(
Sλ(ω)

)
. (by the first case of (18) as Sλ′′(ω) 6∈ H by assumption)

Using Implication (17) with the W-strategies profiles λ′′ and λ and with the subset B = {a},
we get that Sλ′′(ω) = Sλ(ω). Therefore, as Sλ(ω) ∈ H , we deduce that Sλ′′(ω) ∈ H , which
contradicts the assumption that Sλ′′(ω) 6∈ H .

Second, we assume that Sλ′′(ω) ∈ H . Then, we have that

πa
(
Sλ′′(ω)

)
= λ′′a

(
Sλ′′(ω)

)
(by (14))

= πa
(
Sλ′(ω)

)
. (by the second case of (18) as Sλ′′(ω) ∈ H by assumption)

Using Implication (17) with the W-strategies profiles λ′′ and λ′ and with the subset B = {a},
we get that Sλ′′(ω) = Sλ′(ω). Therefore, as Sλ′(ω) 6∈ H , we deduce that Sλ′′(ω) 6∈ H , which
contradicts the assumption that Sλ′′(ω) ∈ H .

We obtain a contradiction and conclude that Z
(
Sλ(ω)

)
= Z

(
Sλ′(ω)

)
.

This ends the proof.

Witsenhausen introduced the notion of solvable (here, playable) measurable (SM) prop-
erty in [15] when the solution map is measurable. We will need a stronger definition.

Definition 7. Let B ⊂ A be a nonempty subset of agents. We say that a W-model is
playable and partially measurable w.r.t.9 B if it is playable and, for any subset B′ ⊂ B, the
partial solution map in (15) is a measurable mapping ŜB′

λ−B′
: (Ω× UB′ ,F ⊗ UB′) → (H,H),

for any pure W-strategies profile λ = (λa)a∈A ∈
∏
a∈A

Λa like in (4a).

Of course, a playable finite W-model is always playable and partially measurable w.r.t. B,
for any nonempty subset B ⊂ A of agents.

2.3.2 An example of a playable non causal game: the clapping hand game

Witsenhausen defines the notion of causality and proves in [15] that causality implies playa-
bility The reverse, however, is not true. In [15, Theorem 2], Witsenhausen exhibits an
example of noncausal W-model that is playable. The construction relies on three agents
with binary action sets –hence A = {a, b, c}, Ua = Ub = Uc = {0, 1}– and Nature does
not play any role – so that H = {0, 1}3. The example (see Figure 5) relies on a choice of
information fields so that (i) no information field is trivial — which means that there is no
first agent — (ii) the W-model is playable though. The triplet of information fields

Ia =
{
∅, {0, 1}3,

{
(0, 1, 0), (1, 1, 0)

}
,
{
(0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)

}}

Ib =
{
∅, {0, 1}3,

{
(0, 1, 1), (0, 0, 1)

}
,
{
(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)

}}

Ic =
{
∅, {0, 1}3,

{
(1, 0, 0), (1, 0, 1)

}
,
{
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)

}}

9with respect to
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— that is, Ia = σ(πb(1 − πc)) , Ib = σ(πc(1 − πa)) , Ic = σ(πa(1 − πb)) (where σ denotes
the σ-field generated by a measurable mapping, here built up from the projections πa, πb,
πc defined in Equation (5e)) — clearly satisfies (i). Let us show that playability holds. First
we observe that the W-strategies can be written as

λa(ua, ub, uc) = λ̃a
(
ub(1− uc)

)
, λb(ua, ub, uc) = λ̃b

(
uc(1− ua)

)
, λc(ua, ub, uc) = λ̃c

(
ua(1− ub)

)
,

where λ̃ : {0, 1} → {0, 1}, hence (λ̃a, λ̃b, λ̃c) ∈ {Id, 1−Id}3 (Id denotes the identity mapping).
From there, we check that playability holds true, with the (constant) solution map given by

S(Id,Id,Id) = (0, 0, 0), S(1−Id,Id,Id) = (1, 0, 1), S(1−Id,1−Id,Id) = (0, 1, 0), S(1−Id,1−Id,1−Id) = (1, 1, 1).

Hence the W-model is noncausal (because there is no first agent) but playable.

(1,0,0) (1,0,1)

(1,1,1)(1,1,0)

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

Ia

•

••

•

• •

• •

(1,0,0) (1,0,1)

(1,1,1)(1,1,0)

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

Ib

•

••

•

• •

• •

(1,0,0) (1,0,1)

(1,1,1)(1,1,0)

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

Ic

•

••

•

• •

• •

Figure 5: Noncausal playable W-model: information partitions of the three agents

This model can be illustrated by the following “clapping hands” story10. Alice, Bob and
Carol are sitting around a circular table, with their eyes closed. Each of them has to decide
either to extend her/his left hand to the left or to extend her/his right hand to the right.
When two hands touch, the remaining player is informed (say, a clap is directly conveyed to
her/his ears); when two hands do not touch, the remaining player is not informed. For each
triplet of strategies — one for each of Alice, Bob and Carol — there is a unique outcome of
extended hands: the game is playable. However, the game cannot start.

Hence a game can be well-posed (playable), but yet miss the crucial feature of being
implementable in practice. Fortunately, Witsenhausen provides in [15] sufficient conditions
(causality) to rule out such (pathological) cases.

Witsenhausen’s intrinsic model deals with agents, information and strategies, but not
with players and preferences. We now turn to extending the Witsenhausen’s intrinsic model
to games.

3 Games in product form

We are now ready to embed Witsenhausen’s intrinsic model into game theory. In §3.1, we
introduce a formal definition of a game in product form (W-game). In §3.2, we define mixed

10We thank Benjamin Jourdain for the idea of the story to illustrate Witsenhausen’s abstract example.
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and behavioral strategies in the spirit of Aumann [3].

3.1 Definition of a game in product form (W-game)

We introduce a formal definition of a game in product form (W-game).

Definition 8. A W-game
((

(Ap)p∈P , (Ω,F), (Ua,Ua, Ia)a∈A
)
, (-p)p∈P

)
, or a game in prod-

uct form, is made of

• a set A of agents with a partition (Ap)p∈P , where P is the set of players; each subset Ap

is interpreted as the subset of executive agents of the player p ∈ P ;

• a W-model (called underlying W-model)
(
A, (Ω,F), (Ua,Ua, Ia)a∈A

)
, as in Definition 1;

• for each player p ∈ P , a preference11 relation -p on ∆(H,H), the set of probability
distributions on H.

Let p ∈ P be a player. A W-game is said to be playable (resp. playable and partially
measurable w.r.t. p), if the underlying W-model is playable as in Definition 3 (resp. playable
and partially measurable w.r.t. Ap as in Definition 7).

A finite W-game is a W-game whose underlying W-model is finite. In a W-game, the
family (Ap)p∈P consists of pairwise disjoint nonempty sets whose union is A =

⋃
p∈P Ap.

When we focus on a specific player p ∈ P , we denote A−p =
⋃

q∈P\{p}A
q. In what follows,

agents appear as lower indices and (most of the time) players as upper indices.
With the above definition, we cover (like in [5]) the most traditional preference rela-

tion -p, which is the numerical expected utility preference. In this latter, each player p ∈ P
is endowed, on the one hand, with a criterion (payoff, objective function), that is, a measur-
able function12 Jp : (H,H) → [−∞,+∞[ (we include −∞ in the codomain of the criterion as
a way to handle constraints) which is bounded above, and, on the other hand, with a belief,
that is, a probability distribution νp : F → [0, 1] over the states of Nature (Ω,F). Then,
given two measurable mappings Si : (Ω,F) → ∆(UA,UA), i = 1, 2, one says that S1 -

p S2 if∫
Ω
νp(dω)

∫
UA

Jp(ω, u)S1(ω, du) ≤
∫
Ω
νp(dω)

∫
UA

Jp(ω, u)S1(ω, du) where both integrals are

well defined in [−∞,+∞[ because the function Jp is supposed to be bounded above.
The preference relation -p need not be over probability distributions. This is the case

in the infimal utility (worst-case) setting, where each player p ∈ P is only endowed with
a criterion Jp : (H,H) → [−∞,+∞], not necessarily a measurable function. Then, given
two mappings Si : Ω → H, i = 1, 2, not necessarily measurable, one says that S1 -p S2 if
infω∈Ω J

p
(
S1(ω)

)
≤ infω∈Ω J

p
(
S2(ω)

)
.

Note also that Definition 8 can encompass Bayesian games, by specifying a product
structure Ω = Ω0×

∏
p∈P Ωp — where one factor Ω0 may represent chance, and the others Ωp

may represent types of players — and a probability on Ω.

11As a matter of fact, we do not need a preference relation for the results in this paper.
12See Footnote 1 regarding why we use the term “function” here as the codomain is numerical.
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3.2 Mixed and behavioral strategies

We define mixed and behavioral strategies in the spirit of Aumann in [3], using the vocable
of A-pure, A-mixed and A-behavioral strategies (with A- as a reference to Aumann).

For this purpose, for any agent a ∈ A, we denote by
(
Wa,Wa

)
a copy of the Borel space(

[0, 1],B[0,1]

)
, by ℓa a copy of the Lebesgue measure on

(
Wa,Wa

)
=

(
[0, 1],B[0,1]

)
, and we

also set
Wp =

∏

a∈Ap

Wa , Wp =
⊗

a∈Ap

Wa , ℓ
p =

⊗

a∈Ap

ℓa , ∀p ∈ P (19a)

and
W =

∏

p∈P

Wp , W =
⊗

p∈P

Wp , ℓ =
⊗

p∈P

ℓp . (19b)

The existence of a product probability space (W,W, ℓ), that is, the existence of a product
space W equipped with a product σ-algebra W and a probability measure ℓ with ℓa as
marginal probability for each agent a ∈ A is developed in [1, §15.6] and is, in the case we
consider, a consequence of the Kolmogorov extension theorem.

Definition 9. For the player p ∈ P , an A-mixed strategy is a family mp = (mp
a)a∈Ap of

measurable mappings

mp
a :

(∏

b∈Ap

Wb ×H,
⊗

b∈Ap

Wb ⊗ Ia
)
→ (Ua,Ua) , ∀a ∈ Ap , (20a)

an A-behavioral strategy is an A-mixed strategy mp = (mp
a)a∈Ap with the property that

(mp
a)

−1(Ua) ⊂
(
Wa ⊗

⊗

b∈Ap\{a}

{∅,Wb}
)
⊗ Ia , ∀a ∈ Ap , (20b)

and an A-pure strategy is an A-mixed strategy mp = (mp
a)a∈Ap with the property that

(mp
a)

−1(Ua) ⊂
⊗

b∈Ap

{∅,Wb} ⊗ Ia , ∀a ∈ Ap . (20c)

An A-mixed strategy profile is a family m = (mp)p∈P of A-mixed strategies.

By definition, A-behavioral strategies form a subset of A-mixed strategies. Equation (20b)
means that, for any agent a and any fixed configuration h ∈ H,mp

a(w
p, h) only depends on the

randomizing component wa. Thus, under the product probability distribution ℓp =
⊗

a∈Ap ℓa
in (19), the random variables (mp

a(·, h))a∈Ap are independent. In other words, an A-behavioral
strategy is an A-mixed strategy in which the randomization is made independently, agent
by agent, for each fixed configuration h ∈ H. An A-pure strategy is an A-mixed strategy
in which there is no randomization, hence can be identified with a pure W-strategy as in
Definition 2.
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The connection between A-mixed strategies profiles and pure W-strategies profiles, as
in (4a), is as follows: if mp = (mp

a)a∈Ap is an A-mixed strategy (20a), then every mapping

mp
a(w

p, ·) : (H, Ia) → (Ua,Ua) , h 7→ mp
a(w

p, h) , ∀wp = (wb)b∈Ap ∈ Wp =
∏

b∈Ap

Wb

belongs to Λa (see (3)), for a ∈ Ap, and thus (mp
a(w

p, ·))a∈Ap ∈ Λp =
∏

a∈Ap Λa. In the
same way, an A-mixed strategy profile m = (mp)p∈P induces, for any w ∈ W, a mapping
m(w, ·) ∈ Λ =

∏
a∈A Λa in (4b).

Consider a playable W-model (see Definition 3), and a profile m = (mp)p∈P of A-mixed
strategies. For any w ∈ W, m(w, ·) is a pure strategy and Sm(w,·)(ω) is well defined by
playability We use the following compact notation for the solution map as in (9):

T ω
m(w) = Sm(w,·)(ω) , ∀ω ∈ Ω , ∀w ∈ W . (21)

As we introduce A-mixed strategies, we need to adapt the definition of solvable measur-
able (SM) property in [15]. To stress the difference, the notion below is for W-games (to
distinguish it from a possible definition for W-models inspired by the SM property in [15]).

Definition 10. We say that a W-game is playable and measurable if, for any profile m =
(mp)p∈P of A-mixed strategies, the following mapping is measurable

Tm : (W× Ω,W⊗ F) → (H,H) , (w, ω) 7→ T ω
m(w) , (22)

where T ω
m(w) is defined in Equation (21). In that case, for any probability ν on (Ω,F), we

denote by

Qν
m = Qν

(mp)p∈P
=

((⊗

p∈P

ℓp
)
⊗ ν

)
◦ (T(mp)p∈P

)−1 = (ℓ⊗ ν) ◦ (Tm)
−1 (23)

the pushforward probability, on the space (H,H), of the product probability distribution ℓ⊗ν =(⊗
p∈P ℓ

p
)
⊗ ν on W× Ω =

(∏
p∈P Wp

)
× Ω by the mapping Tm in (21).

Of course, a playable finite W-game is always playable and measurable.

4 Kuhn’s equivalence theorem

In this section, we provide, for games in product form, a statement and a proof of the
celebrated Kuhn’s equivalence theorem: when a player satisfies perfect recall, for any mixed
W-strategy, there is an equivalent behavioral strategy (and the converse). We start by
adapting, in §4.1, the definition of perfect recall to games in product forms and by illustrating
the soundness of this new definition with Proposition 15. Then, in §4.2, we outline the main
results.
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4.1 Perfect recall in W-games

For any agent a ∈ A, we define the choice field Ca ⊂ H as the least upper bound of the
action13 field Ua and of the information field Ia, namely

Ca = Ua

∨
Ia , ∀a ∈ A . (24)

Thus defined, the choice field of agent a contains both what the agent did (Ua identified
with U{a}) and what he knew (Ia) when taking a decision. As formulated, our definition is
close to the notion of choice in [2, Definition 4.1].

We consider a focus player p ∈ P and we suppose that the set Ap of her executive agents
is finite14 with cardinality |Ap|. For any k ∈ J1, |Ap|K, let Σp

k denote the set of k-orderings of
player p, that is, injective mappings from J1, kK to Ap:

Σp
k =

{
κ : J1, kK → Ap

∣∣κ is an injection
}
. (25a)

We define the set of orderings of player p, shortly set of p-orderings, by

Σp =

|Ap|⋃

k=1

Σp
k . (25b)

The set Σp

|Ap| is the set of total orderings of player p, shortly total p-orderings, of agents in Ap,

that is, bijective mappings from J1, |Ap|K to Ap (in contrast with p-partial orderings in Σp
k

for k < |Ap|). For any k ∈ J1, |Ap|K, any p-ordering κ ∈ Σp
k, and any i ∈ J1, kK, κ|J1,iK ∈ Σp

i

is the restriction of the p-ordering κ to the first i integers. For any k ∈ J1, |Ap|K, there is a
natural mapping

ψk : Σp

|Ap| → Σp
k , ρ 7→ ρ|J1,kK , (26)

which is the restriction of any (total) p-ordering of Ap to J1, kK. For any k ∈ J1, |Ap|K, we
define the range ‖κ‖ of the p-ordering κ ∈ Σp

k as the subset of agents

‖κ‖ =
{
κ(1), . . . , κ(k)

}
⊂ Ap , ∀κ ∈ Σp

k , (27a)

the cardinality |κ| of the p-ordering κ ∈ Σp
k as the integer

|κ| = k ∈ J1, |Ap|K , ∀κ ∈ Σp
k , (27b)

the last element κ⋆ of the p-ordering κ ∈ Σp
k as the agent

κ⋆ = κ(k) ∈ Ap , ∀κ ∈ Σp
k , (27c)

13As indicated after the definition (5b), we (abusively) identify U{a} = Ua ⊗
⊗
b6=a

{∅,Ub} with Ua.

14We make this finiteness assumption because our proof of Kuhn’s equivalence Theorem 17 relies on a
finite induction.
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the first elements κ− as the restriction of the p-ordering κ ∈ Σp
k to the first k−1 elements

κ− = κ|J1,k−1K ∈ Σp
k−1 , ∀κ ∈ Σp

k , (27d)

with the convention that κ− = ∅ ∈ Σp
0 = {∅} when κ ∈ Σp

1. With obvious notation, any
p-ordering κ ∈ Σp can be written as κ = (κ−, κ⋆), with the convention that κ = (κ⋆) when
κ ∈ Σp

1.
The following notion of configuration-ordering is adapted from [15, Property C, p. 153].

Definition 11. We consider a focus player p ∈ P and we suppose that the set Ap of her exec-
utive agents is finite. A p-configuration-ordering is a mapping ϕ : H → Σp

|Ap| from configura-
tions to total p-orderings. With any p-configuration-ordering ϕ, and any p-ordering κ ∈ Σp,
we associate the subset Hϕ

κ ⊂ H of configurations defined by

Hϕ
κ =

{
h ∈ H

∣∣ψ|κ|

(
ϕ(h)

)
= κ

}
, ∀κ ∈ Σp . (28)

By convention, we put Hϕ

∅ = H.

Thus, the set Hϕ
κ is made of configurations along which agents are ordered by κ

The following definition of perfect recall is new.

Definition 12. We say that a player p ∈ P in a W-model satisfies perfect recall if the set Ap

of her executive agents is finite and if there exists a p-configuration-ordering ϕ : H → Σp

|Ap|

such that15

Hϕ
κ ∩H ∈ Iκ⋆

, ∀H ∈ C‖κ−‖ , ∀κ ∈ Σp , (29a)

where the subset Hϕ
κ ⊂ H of configurations has been defined in (28), the last agent κ⋆ in (27c),

the p-ordering κ− in (27d), the set Σp in (25b), and where16

C‖κ−‖ =
∨

a∈‖κ−‖

Ca =
∨

a∈‖κ−‖

Ua ∨ Ia ⊂ H . (29b)

Under perfect recall, we will use the property that Hϕ
κ ∈ Iκ⋆

, by (29) with H = H.
We interpret the above definition as follows. A player satisfies perfect recall if each of

her agents, when called upon to move last at a given ordering, remembers everything that
his predecessors (according to the ordering), who belong to the same player, knew (Ia) and
did (Ua identified with U{a}).

This definition is very close in spirit to the definitions proposed in [11, Definition 203.3],
[3] and [13], that rely on “recording” or “recall” functions (whereas (29) involves σ-fields).
To illustrate the definition, let us revisit Alice and Bob examples in §2.2. If we consider that
Alice and Bob are agents of the same player, then perfect recall is satisfied in the second case
(one acting after another as in Figures 1ii and 3) and third case (acting after the Nature’s

15When κ ∈ Σp
1
, the statement (29a) is void.

16See Footnote 13 for the abuse of notation for Ua.
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move as in Figures 1iii and 4), but not in the first case (acting simultaneously as in Figures 1i
and 2) because neither Alice nor Bob knows which action the other made.

We are going to show, in Proposition 15 to come, that perfect recall implies the existence
of a temporal ordering of the agents of the focus player. For this purpose, we introduce
the following definition of partial causality, inspired by the property of causality in [15,
Property C, p. 153] (and slightly generalized in [16, p. 324]). For any player p ∈ P , we set
the fields

H
p
B = F ⊗

⊗

b∈B

Ub ⊗
⊗

a∈Ap\B

{∅,Ua} ⊗
⊗

c 6∈Ap

Uc ⊂ H , ∀B ⊂ Ap , (30)

which represents the knowledge of the actions of all agents, except those in Ap \B.

Definition 13. We say that a player p ∈ P in a W-model satisfies partial causality if
the set Ap of her executive agents is finite and if there exists a p-configuration-ordering
ϕ : H → Σp

|Ap| such that

Hϕ
κ ∩H ∈ H

p

‖κ−‖ , ∀H ∈ Iκ⋆
, ∀κ ∈ Σp , (31)

where the subset Hϕ
κ ⊂ H of configurations has been defined in (28), the last agent κ⋆ in (27c),

the p-ordering κ− in (27d), the set Σp in (25b), and H
p

‖κ−‖ in (30). When κ ∈ Σp
1, H

p

‖κ−‖ =

H
p

∅ = F ⊗
⊗
a∈Ap

{∅,Ua} ⊗
⊗
c 6∈Ap

Uc = F ⊗ UA−p .

Intuitively, the information of the last agent (in a partial ordering) cannot depend on the
actions of agents with greater order.

The following Lemma 14 will be instrumental in the coming proofs.

Lemma 14. Suppose that player p ∈ P satisfies partial causality with p-configuration-
ordering ϕ : H → Σp. Let κ ∈ Σp be a p-ordering. Then, for any integer j ∈ J1, |κ|K
and for any Iκ(j)-measurable mapping Z : (H,H) → (Z,Z) — where Z is a set17 and where
the σ-field Z contains the singletons — we have the property that

h′ ∈ H , h ∈ H
ϕ

κ(1),...,κ(j−1) , (h∅, hA−p, hκ(1), . . . , hκ(j−1)) = (h′∅, h
′
A−p, h′κ(1), . . . , h

′
κ(j−1))

=⇒ h′ ∈ H
ϕ

κ(1),...,κ(j−1) and Z(h′) = Z(h) , (32a)

which we shortly denote by

Z(h) = Z(h∅, hA−p, hκ(1), . . . , hκ(j−1)) , ∀h ∈ H
ϕ

κ(1),...,κ(j−1) , (32b)

where the right-hand side means the common value Z(h∅, hA−p, hκ(1), . . . , hκ(j−1), h
′
Ap\{κ(1),...,κ(j−1)})

for any h′Ap\{κ(1),...,κ(j−1)}.

Proof. Suppose that player p satisfies partial causality with p-configuration-ordering ϕ :
H → Σp. Let κ ∈ Σp, j ∈ J1, |κ|K and Z : (H,H) → (Z,Z) be a Iκ(j)-measurable mapping.

17See Footnote 8
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For any configuration h ∈ H
ϕ

κ(1),...,κ(j−1), the set Z−1
(
Z(h)

)
contains h and belongs to Iκ(j),

by the measurability assumption on the mapping Z and the assumption that the σ-field Z

contains the singletons. By partial causality (31), we get that Hϕ

κ(1),...,κ(j−1) ∩ Z
−1
(
Z(h)

)
∈

H
p

κ(1),...,κ(j−1). By definition (30) of this latter field, the set H
ϕ

κ(1),...,κ(j−1) ∩ Z−1
(
Z(h)

)
is a

cylinder such that, if h′ ∈ H and (h∅, hA−p, hκ(1), . . . , hκ(j−1)) = (h′∅, h
′
A−p, h′κ(1), . . . , h

′
κ(j−1)),

then h′ ∈ H
ϕ

κ(1),...,κ(j−1) ∩ Z
−1
(
Z(h)

)
. Therefore, we have gotten (32a).

Now, we show that perfect recall implies the existence of a temporal ordering of the
agents of the focus player.

Proposition 15. In a playable W-model, if a player satisfies perfect recall with some confi-
guration-ordering, then she satisfies partial causality with the same configuration-ordering.

Proof. The proof is by contradiction. We will show that, if a player satisfies perfect recall
with some configuration-ordering and that she does not satisfy partial causality with the
same configuration-ordering, then necessarily there would exist an agent b ∈ Ap such that
Ib 6⊂ HA\{b} (see Equation (5c)). Now, as proved in Proposition 4, in a playable W-model, all
agents satisfy absence of self-information, namely any agent a ∈ A is such that Ia ⊂ HA\{a}.
Therefore, we will obtain a contradiction as it is assumed that the W-model is playable.

We now give the details. Using Definition 12 of perfect recall, there exists a configuration-
ordering ϕ : H → Σp such that (29) holds true. We suppose that player p is not partially
causal for this very configuration-ordering ϕ. Then, it follows from Equation (31) that there
exists κ ∈ Σp and H ∈ Iκ⋆

such that Hϕ
κ ∩H 6∈ H

p

‖κ−‖. Now, by definitions (30) and (5c), we

have that Hp

‖κ−‖ =
⋂

b∈Ap\‖κ−‖HA\{b}, where the set A
p \‖κ−‖ is not empty as it contains κ⋆.

As a consequence, there exists b ∈ Ap \ ‖κ−‖ such that Hϕ
κ ∩ H 6∈ HA\{b}. By absence of

self-information, itself a consequence of the W-model being playable (see Proposition 4), we
have that Iκ⋆

⊂ HA\{κ⋆}, hence that Hϕ
κ ∩ H ∈ Iκ⋆

⊂ HA\{κ⋆}. As Hϕ
κ ∩ H 6∈ HA\{b}, we

deduce that b 6= κ⋆. Then, we denote by Σp
b the subset of Σp of all p-orderings κ′ ∈ Σp such

that |κ′| > |κ| and ψ|κ|(κ
′) = κ, where ψ|κ| has been defined in (26), and such that κ′⋆ = b. As

b ∈ Ap \ ‖κ−‖, we get that b 6∈ ‖κ−‖. Therefore, it readily follows from the definition (25b)
of Σp that ⋃

κ′∈Σp

b

H
ϕ
κ′ = Hϕ

κ , (33)

as, with any h ∈ Hϕ
ρ , we associate the total p-ordering ρ = ϕ(h) ∈ Σp

|Ap| and that b ∈

{ρ(|κ|+1), . . . , ρ(|Ap|)}, because b ∈ Ap \ ‖κ−‖ and b 6= κ⋆. From there, we get that

Hϕ
κ ∩H =

( ⋃

κ′∈Σp
b

H
ϕ
κ′

)
∩H (by (33))

=
⋃

κ′∈Σp
b

(
H

ϕ
κ′ ∩H

)
(by developing)

=

( ⋃

κ′∈Σp
b

(
H

ϕ
κ′ ∩H

)
︸ ︷︷ ︸

∈Ib

)
∈ Ib ,

21



as the set Σp
b is finite and for all κ′ ∈ Σp

b we have that H
ϕ
κ′ ∩ H ∈ Ib by the perfect recall

property (29) of agent b for the subset H ∈ Iκ⋆
⊂ C‖κ′

−‖ =
∨

a∈‖κ′
−‖

Ua ∨ Ia, where the

last inclusion comes from ψ|κ|(κ
′) = κ, |κ′| > |κ| and κ′⋆ = b 6= κ⋆ which imply that

κ⋆ ∈ ‖κ‖ ⊂ ‖κ′‖ \ {b} = ‖κ′‖ \ {κ′⋆} = ‖κ′−‖.
As a conclusion, we have therefore obtained that Hϕ

κ ∩ H ∈ Ib and Hϕ
κ ∩ H 6∈ HA\{b}

and therefore Ib 6⊂ HA\{b}. Now, this contradicts the absence of self information for agent b,
hence contradicts playability (see Proposition 4).

This ends the proof.

The statement of Proposition 15 resembles the one by Ritzberger in [12] on the fact
“that present past and future have an unambiguous meaning” when the player satisfies
perfect recall.

4.2 Main results

We can now state the main results of the paper. The proofs18 are provided in Sect. 5.

4.2.1 Sufficiency of perfect recall for behavioral strategies to be as powerful as
mixed strategies

It happens that, for the proof of the first main theorem, we resort to regular conditional
distributions, and that these objects display nice properties when defined on Borel spaces,
and when the conditioning is with respect to measurable mappings (and not general σ-fields).
This is why we introduce the following notion that information fields are generated by Borel
measurable mappings.

Definition 16. We say that player p ∈ P in a W-game satisfies the Borel measurable
functional information assumption if there exists a family ((Za,Za))a∈Ap of Borel spaces and
a family (Za)a∈Ap of measurable mappings Za : (H,H) → (Za,Za) such that Z−1

a (Za) = Ia,
for all a ∈ Ap.

Of course, a player in a finite W-game always satisfies the Borel measurable functional
information assumption.

We now state the first main theorem, namely sufficiency of perfect recall for behavioral
strategies to be as powerful as mixed strategies.

Theorem 17 (Kuhn’s theorem). We consider a playable and measurable W-game (see Def-
inition 10). Let p ∈ P be a given player. We suppose that the W-game is playable and
partially measurable w.r.t. p (see Definition 8), that player p satisfies the Borel measurable
functional information assumption (see Definition 16), that Ap is a finite set, that (Ua,Ua)
is a Borel space, for all a ∈ Ap, and that (Ω,F) is a Borel space.

Suppose that the player p satisfies perfect recall, as in Definition 12. Then, for any
probability ν on (Ω,F), for any A-mixed strategy m−p = (m−p

a )a∈A−p of the other players

18See Footnote 5.
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and for any A-mixed strategy mp = (mp
a)a∈Ap, of the player p, there exists an A-behavioral

strategy m′p = (m′p
a )a∈Ap of the player p such that

Qν
(m−p,mp) = Qν

(m−p ,m′p) , (34)

where the pushforward probability Qν
(m−p,mp) has been defined in (23).

As a particular result, Theorem 17 applies to the special case where the focus player
(the one satisfying perfect recall) chooses her actions from finite sets, so that we cover the
original result in [10]. Regarding the case where the focus player decides among infinitely
many alternatives, the only result that we know of is [3] (to the best of our knowledge, see
the discussion at the end of §6.4 in [2, p. 159]). We emphasize proximities and differences.
In [3], the focus player takes her decisions in Borel sets, and plays a countable number of
times where the order of actions is fixed in advance. In our result, the focus player also takes
her decisions in Borel sets and the order of actions is not fixed in advance, but she plays a
finite number of times.

4.2.2 Necessity of perfect recall for behavioral strategies to be as powerful as
mixed strategies

After stating the second main theorem, namely necessity of perfect recall for behavioral
strategies to be as powerful as mixed strategies, we will comment on our formulation.

Theorem 18. We consider a playable and measurable W-game (see Definition 10). Let
p ∈ P be a given player. We suppose that player p satisfies the Borel measurable functional
information assumption (see Definition 16) and partial causality (see Definition 13), that Ap

is a finite set, and that Ua contains at least two distinct elements, for all a ∈ Ap.
Suppose that, for the p-configuration-ordering ϕ : H → Σp given by partial causality,

there exists a p-ordering κ ∈ Σp such that

∃h+, h− ∈ Hϕ
κ , Zκ⋆

(h+) = Zκ⋆
(h−) ,

(
Za(h

+), h+a
)
a∈‖κ−‖

6=
(
Za(h

−), h−a
)
a∈‖κ−‖

. (35)

Then, there exists an A-mixed strategy m−p = (m−p
a )a∈A−p of the other players, an A-mixed

strategy mp = (mp
a)a∈Ap of the player p, and a probability distribution ν on Ω such that,

for any A-behavioral strategy m′p = (m′p
a )a∈Ap of the player p, we have that Qν

(m−p,mp) 6=

Qν
(m−p,m′p) where the pushforward probability Qν

(m−p,mp) has been defined in (23).

In case of a finite W-game, the condition (35) is the negation of the perfect recall prop-
erty (29) (characterize the condition (29) in terms of atoms, and then express the negation
using the property that the mappings Za are constant on suitable atoms). For more general
W-games, we could formally define a weaker notion of perfect recall than (29): a functional
version of perfect recall would replace the σ-fields inclusions in (29) by functional constraints
of the form19 (Za(h), ha)a∈‖κ−‖ = φκ

(
Zκ⋆

(h)
)
, for all h ∈ Hϕ

κ , where the mappings φκ would

19The mappings φκ correspond to the “recall” functions in [3, 13].
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not be supposed to be measurable. We do not pursue this formal path and we prefer to rec-
ognize that there is a technical difficulty in negating a σ-fields inclusion — or, equivalently,
by Doob functional theorem [7, Chap. 1, p. 18], in negating the existence of a measurable
functional constraint. By doing so, we follow [13] who also had to negate a weaker version
of perfect recall and who had to invoke the weaker notion of R-games to prove the necessity
of perfect recall.

As a particular result, Theorem 18 applies to the special case where the focus player
chooses her actions from finite sets, so that we cover the original result in [10]. Regarding
the case where the focus player decides among infinitely many alternatives, the only result
that we know of is [13] (to the best of our knowledge, see the discussion at the end of §6.4
in [2, p. 159]). We emphasize proximities and differences. In [13], the focus player takes her
decisions in Borel sets, and plays a countable number of times where the order of actions is
fixed in advance. In our result, the focus player also takes her decisions in any measurable
set with at least two elements, and the order of actions is not fixed in advance, but she plays
a finite number of times.

5 Proofs of the main results

We give the proofs20 of Theorem 17 in §5.1 (sufficiency of perfect recall to obtain equivalence
between mixed W-strategies and behavioral strategies) and of Theorem 18 in §5.2 (necessity).

5.1 Proof of Theorem 17

We will need the notion of stochastic kernel. Let (X,X) and (Y,Y) be two measurable
spaces. A stochastic kernel from (X,X) to (Y,Y) is a mapping Γ : X× Y → [0, 1] such that
for any Y ∈ Y, Γ(·, Y ) : X → [0, 1] is X-measurable and, for any x ∈ X, Γ(x, ·) : Y → [0, 1] is
a probability measure on Y.

The proof of Theorem 17 is decomposed into four lemmata and a final proof. The overall
logic is as follows:

1. in Lemma 19, we obtain key technical “disintegration” formulas21 for stochastic kernels
on the action spaces,

2. in Lemma 20, we identify the candidate behavioral strategy,

3. in Lemma 21, we show that one step substitution (ordered agent by ordered agent)
between behavioral and mixed strategies is possible,

4. we apply the substitution procedure between the first and last agent of the player
and obtain, in the substitution Lemma 22, a kind of Kuhn’s Theorem, but on the
randomizing device space W instead of the configuration space H,

20See Footnote 5.
21The term comes from the so-called “disintegration theorem” in measure theory.
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5. we conclude the proof of Kuhn’s Theorem 17 (sufficiency) on the configuration space H,
by enabling the use of Lemma 22 with the pushforward probability formula (23).

We start with the technical Lemma 19 on stochastic kernels on the action spaces.

Lemma 19 (Disintegration). Suppose that the assumptions of Theorem 17 are satisfied,
hence, in particular, that the player p ∈ P satisfies perfect recall, as in Definition 12. We
consider a probability ν on (Ω,F), an A-mixed strategy mp = (mp

a)a∈Ap , of the player p and
an A-mixed strategy m−p = (m−p

a )a∈A−p of the other players.
As (W× Ω,W⊗ F) is a Borel space, as the mapping Za is measurable by the Borel

measurable functional information assumption (see Definition 16), and as the mapping Tm
in (22) is measurable by assumption that the W-game is playable and measurable, we denote
by (ℓ⊗ ν)|Za◦Tm [ dw dω | z] the regular conditional distribution on the probability space (W×Ω,
W⊗ F, ℓ⊗ ν) given the random variable Za ◦ Tm : (W× Ω,W⊗ F) → (Za,Za).

Then, there exists

• a family (Γκ)κ∈Σp of stochastic kernels, where Γκ : U‖κ‖ ×Hϕ
κ → [0, 1] is a (Hϕ

κ ∩ Iκ⋆
)-

measurable stochastic kernel, such that

Γκ[ duκ | h] =
(
(ℓ⊗ ν)|Zκ⋆◦Tm [· |Zκ⋆

(h)] ◦mp
κ(·, h)

−1
)
(duκ) , ∀h ∈ Hϕ

κ , (36)

where we use the shorthand notation mp
κ = (mp

a)a∈‖κ‖, and that

Γκ[ duκ | h] = 1{u‖κ‖=h‖κ‖}Γκ[ duκ | h] = 1{u‖κ−‖=h‖κ−‖}Γκ[ duκ | h] , ∀h ∈ Hϕ
κ , (37)

• a family (Γκ−
κ )κ∈Σp of stochastic kernels where Γκ−

κ : U‖κ−‖ ×Hϕ
κ → [0, 1], such that

Γκ−
κ [ duκ− | h] =

(
ℓ|Zκ⋆◦T

ω
m
[
·
∣∣Zκ⋆

(h)
]
◦mp

κ−
(·, h)−1

)
(duκ−) , ∀h ∈ Hϕ

κ , (38)

• a family (Γκ⋆
κ )κ∈Σp of stochastic kernels, where22 Γκ⋆

κ : Uκ⋆
×

(
U‖κ−‖ ×Hϕ

κ

)
→ [0, 1] is

a U‖κ−‖ ⊗ (Hϕ
κ ∩ Iκ⋆

)-measurable stochastic kernel, such that

Γκ[ duκ | h] = Γκ[ duκ− duκ⋆
| h] = Γκ⋆

κ [ duκ⋆
| uκ−, h]⊗Γκ−

κ [ duκ− | h] , ∀h ∈ Hϕ
κ . (39)

Proof. We consider a p-ordering κ ∈ Σp. We are going to prove the following prelimi-
nary result: the mapping23 mp

κ = (mp
a)a∈‖κ‖ :

(
W×Hϕ

κ ,W⊗ (Hϕ
κ ∩ Iκ⋆

)
)
→ (U‖κ‖,U‖κ‖)

is measurable, by studying each component mp
a :

(
W×Hϕ

κ ,W⊗ (Hϕ
κ ∩ Iκ⋆

)
)
→ (Ua,Ua)

for a ∈ ‖κ‖. Indeed, on the one hand, as the mapping mp
κ⋆

is W ⊗ Iκ⋆
-measurable by

definition (20a) of an A-mixed strategy, we deduce that the (restriction) mapping mp
κ⋆

:(
W×Hϕ

κ ,W⊗ (Hϕ
κ ∩ Iκ⋆

)
)

→ (Uκ⋆
,Uκ⋆

) is measurable (by definition of the trace field
Hϕ

κ ∩ Iκ⋆
). On the other hand, for any a ∈ ‖κ−‖, the mapping mp

a is W⊗ Ia-measurable by

22If ‖κ−‖ = ∅,
(
U‖κ

−
‖ ×Hϕ

κ

)
= Hϕ

κ and U‖κ
−
‖ ⊗ (Hϕ

κ ∩ Ia) = (Hϕ
κ ∩ Ia).

23By abuse of notation, we use the same symbol to denote a mapping and the restriction of this mapping
to a subset of the domain.
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definition (20a) of an A-mixed strategy, where Hϕ
κ∩Ia ⊂ Iκ⋆

by perfect recall (29); we deduce
that the (restriction) mapping mp

a :
(
W×Hϕ

κ ,W⊗ (Hϕ
κ ∩ Iκ⋆

)
)
→ (Ua,Ua) is measurable.

We define Γκ by (36), that is, for any U‖κ‖ ∈ U‖κ‖ and h ∈ Hϕ
κ :

Γκ[U‖κ‖ | h] =

∫

W×Ω

(ℓ⊗ ν)|Zκ⋆◦Tm [· |Zκ⋆
(h)]1{mp

κ(w,h)∈U‖κ‖}
.

The function Hϕ
κ ∋ h 7→ Γκ[U‖κ‖ | h] is (Hϕ

κ ∩ Iκ⋆
)-measurable because the stochastic ker-

nel (ℓ⊗ ν)|Zκ⋆◦Tm is Iκ⋆
-measurable by its very definition, and the function Hϕ

κ ∋ h 7→
1{mp

κ(w,h)∈U‖κ‖}
is measurable, from our preliminary result. As a consequence, Γκ : U‖κ‖ ×

Hϕ
κ → [0, 1] is a (Hϕ

κ ∩ Iκ⋆
)-measurable stochastic kernel. As 1{mp

κ(w,Tω
m(w))=π‖κ‖(Tω

m(w))} =

1{mp
κ−

(w,Tω
m(w))=π‖κ−‖(Tω

m(w))} = 1 by the playability property (14) and by definition (21) of

T ω
m(w), we get (37).

By parametric disintegration [4, p. 135] — which holds true because (Ua,Ua) is a Borel
space, for all a ∈ Ap, by assumption of Theorem 17 — there exists a stochastic kernel
Γκ⋆
κ : Uκ⋆

×
(
U‖κ−‖ ×Hϕ

κ

)
→ [0, 1], which is U‖κ−‖ ⊗ (Hϕ

κ ∩ Iκ⋆
)-measurable, and a stochastic

kernel Γκ
κ−

: U‖κ−‖ ×Hϕ
κ → [0, 1], which is (Hϕ

κ ∩ Iκ⋆
)-measurable, such that (39) holds true.

By taking marginal distributions, we get (38).

This ends the proof.

Lemma 19 is particularly useful to prove the next result, which provides us with a can-
didate behavioral strategy.

Lemma 20 (Candidate behavioral strategy for equivalence). Suppose that the assumptions
of Theorem 17 are satisfied, hence, in particular, that the player p ∈ P satisfies perfect
recall, as in Definition 12. We consider a probability ν on (Ω,F), an A-mixed strategy
mp = (mp

a)a∈Ap , of the player p and an A-mixed strategy m−p = (m−p
a )a∈A−p of the other

players.
Then, there exists an A-behavioral strategy m′p = (m′p

a )a∈Ap of the player p such that, for
any agent a ∈ Ap, and any p-ordering κ ∈ Σp, we have that

κ⋆ = a =⇒
(
ℓa ◦m

′p
a (·, h)

−1
)
(dua) = Γa

κ[ dua | h‖κ−‖, h] = Γκ⋆

κ [ duκ⋆
| h‖κ−‖, h] ,

∀h ∈ Hϕ
κ .

(40)

Proof. We consider an agent a ∈ Ap and we define, for any p-ordering κ ∈ Σp such that
κ⋆ = a,

βκ
a [Ua | h] = Γa

κ[Ua | h‖κ−‖, h] , ∀Ua ∈ Ua , ∀h ∈ Hϕ
κ .

Thus defined, the function βκ
a : Ua ×Hϕ

κ → [0, 1] is a (Hϕ
κ ∩ Ia)-measurable stochastic kernel

because, for any Ua ∈ Ua, the function h 7→ βκ
a [Uκ | h] is obtained by composition

(Hϕ
κ ,H

ϕ
κ ∩ Ia) →

(
U‖κ−‖ ×Hϕ

κ ,U‖κ‖ ⊗ (Hϕ
κ ∩ Ia)

)
→ [0, 1]

h 7→ (h‖κ−‖, h) 7→ Γκ
a[Ua | h‖κ−‖,h] .
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In this composition, the second mapping is measurable since Γκ
a is a (Hϕ

κ ∩ Ia)-measurable
stochastic kernel by Lemma 19, and since the first mapping h 7→ h‖κ−‖ is (Hϕ

κ ∩ U‖κ−‖)-
measurable, hence (Hϕ

κ ∩ Ia)-measurable by perfect recall (29).
The family (Hϕ

κ)κ∈Σp,κ⋆=a consists of pairwise disjoint (possibly empty) sets whose union
is H. Indeed, for any h ∈ H, we consider the total p-ordering ρ = ϕ(h), we denote by k ∈ N∗

the index such that ρ(k) = a, we set the restriction κ = ψk(ρ) ∈ Σp, where ψk has been
defined in (26) for k ∈ J1, |Ap|K, and we get h ∈ Hϕ

κ with κ⋆ = a. What is more, for every
subset of the family (Hϕ

κ)κ∈Σp,κ⋆=a, we have that H
ϕ
κ ∈ Iκ⋆

= Ia, by (29a) with H = H. Then,
for any Ua ∈ Ua, we define βa[Ua | h] =

∑
κ∈Σp,κ⋆=a 1H

ϕ
κ
(h)βκ

a [Ua | h], for any h ∈ H. As we
have established that the function h 7→ βκ

a [Uκ | h] is Ia-measurable and that the subsets in
the family (Hϕ

κ)κ∈Σp,κ⋆=a belong to Ia, we conclude that the function βa : Ua ×H → [0, 1] is
a Ia-measurable stochastic kernel.

By [9, Lemma 3.22] (realization lemma), the Ia-measurable stochastic kernel βa can
be realized as the pushforward of the Lebesgue measure ℓa by a measurable random vari-
able m′′

a(·, h), Ia-measurably in h. More precisely, there exists a measurable mapping m′′
a :(

Wa ×H,Wa ⊗ Ia
)
→ (Ua,Ua) such that

(
ℓa ◦m

′′
a(·, h)

−1
)
(dua) = βa[ dua | h] .

We easily extend the mapping m′′
a from the domain Wa to the domain W in (19), by setting

m′p
a :

(∏
b∈Ap Wb ×H,Wa ⊗ Ia

)
→ (Ua,Ua) defined by m′p

a

(
(wb)b∈Ap

)
= m′′

a(wa). Thus, we
get (40).

This ends the proof.

The next Lemma 21 concentrates much of the technical difficulty. It provides us with
a way to replace the A-mixed strategy mp by the A-behavioral strategy m′p in an integral
expression, which gives us a clear path toward Kuhn’s theorem. It combines Lemma 20
with results from probability theory, in particular Doob functional theorem and properties
of regular conditional distributions.

Lemma 21 (One step mixed/behavioral substitution). Suppose that the assumptions of
Theorem 17 are satisfied, hence, in particular, that the player p ∈ P satisfies perfect recall, as
in Definition 12. We consider a probability ν on (Ω,F), an A-mixed strategy mp = (mp

a)a∈Ap ,
of the player p and an A-mixed strategy m−p = (m−p

a )a∈A−p of the other players.
Then, the A-behavioral strategy m′p = (m′p

a )a∈Ap of Lemma 20 has the property that, for
any p-ordering κ ∈ Σp and for any bounded measurable function Φ : U‖κ‖ → R, we have that

∫

W

ℓ( dw)1H
ϕ
κ
(T ω

m(w))Φ
(
mp

κ

(
wp, T ω

m(w)
))

=

∫

W

ℓ( dw)1H
ϕ
κ
(T ω

m(w))

∫

Wκ⋆

ℓκ⋆
( dw′

κ⋆
)Φ

(
mp

κ−

(
wp, T ω

m(w)
)
, m′p

κ⋆

(
w′

κ⋆
, T ω

m(w)
))

, (41)

where we use the shorthand notation mp
κ = (mp

a)a∈‖κ‖.
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Proof. Let κ ∈ Σp and Φ : U‖κ‖ → R be a bounded measurable function. As a preliminary
result, we show that there exists a measurable function Ψ : (W× Zκ⋆

,W⊗ Zκ⋆
) → (R,BR)

such that
Ψ
(
w,Zκ⋆

(h)
)
= 1H

ϕ
κ
(h)Φ

(
mp

κ(w
p, h)

)
, ∀h ∈ H . (42)

Indeed, the function W × H ∋ (w, h) 7→ 1H
ϕ
κ
(h)Φ

(
mp

κ(w
p, h)

)
is measurable with respect to

W⊗
(
Hϕ

κ ∩ ( ∨
a∈‖κ‖

Ia)
)
by definition (20a) of an A-mixed strategy and by definition of the trace

field Hϕ
κ ∩ ( ∨

a∈‖κ‖
Ia), hence with respect to W ⊗

(
Hϕ

κ ∩ (C‖κ−‖ ∨ Iκ⋆
)
)
by definition (29b) of

C‖κ−‖, hence with respect to W⊗
(
Iκ⋆

∨ (Hϕ
κ ∩ Iκ⋆

)
)
by perfect recall (29), hence with respect

to W ⊗ Iκ⋆
as Hϕ

κ ∈ Iκ⋆
by (29) with H = H. As a consequence, as Z−1

κ⋆
(Zκ⋆

) = Iκ⋆
by as-

sumption, by Doob functional theorem [7, Chap. 1, p. 18], there exists a measurable function
Ψ : (W× Zκ⋆

,W⊗ Zκ⋆
) → (R,BR) such that (42) holds true, because (W× Zκ⋆

,W⊗ Zκ⋆
)

is a product of Borel spaces, hence itself a Borel space.
We have that∫

W×Ω

ℓ( dw)ν( dω)1H
ϕ
κ
(T ω

m(w))Φ
(
mp

κ

(
wp, T ω

m(w)
))

(where w = (wp, w−p))

=

∫

W×Ω

ℓ( dw)ν( dω)Ψ
(
w,Zκ⋆

(T ω
m(w))

)
(by property (42) of the function Ψ)

=

∫

W×Ω

ℓ( dw)ν( dω)
[∫

W×Ω

(ℓ⊗ ν)|Zκ⋆◦Tm [ dw′ dω′ | z]Ψ
(
w′, z

)]
|z=Zκ⋆◦T

ω
m(w)

by property of regular conditional distributions [9, Th. 6.4]

=

∫

W×Ω

ℓ( dw)ν( dω)
[∫

W×Ω

(ℓ⊗ ν)|Zκ⋆◦Tm [ dw′ dω′ |Zκ⋆
(h)]Ψ

(
w′, Zκ⋆

(h)
)]

|h=Tω
m(w)

(by the change of variables z = Zκ⋆
(h), h = T ω

m(w))

=

∫

W×Ω

ℓ( dw)ν( dω)
[ ∫

W×Ω

(ℓ⊗ ν)|Zκ⋆◦Tm [ dw′ dω′ |Zκ⋆
(h)]

1H
ϕ
κ
(h)Φ

(
mp

κ(w
′p, h)

)]
|h=Tω

m(w)

(by property (42) of the function Ψ)

=

∫

W×Ω

ℓ( dw)ν( dω)
[
1H

ϕ
κ
(h)

∫

W×Ω

(ℓ⊗ ν)|Zκ⋆◦Tm [ dw′ dω′ |Zκ⋆
(h)]Φ

(
mp

κ(w
′p, h)

)]
|h=Tω

m(w)

where the inner integral (the last one inside the brackets) is given by
∫

W×Ω

(ℓ⊗ ν)|Zκ⋆◦Tm [ dw′ dω′ |Zκ⋆
(h)]Φ

(
mp

κ(w
′p, h)

)

=

∫

U‖κ‖

Φ(uκ)Γκ[ duκ | h] (by definition (36) of the stochastic kernel Γκ)

=

∫

U‖κ‖

Φ(uκ−, uκ⋆
)1{uκ−=h‖κ−‖}Γ

κ⋆

κ [ duκ⋆
| uκ−, h]⊗ Γκ−

κ [ duκ− | h]
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by change of variables uκ = (uκ−, uκ⋆
), by property (37) and by disintegration formula (39)

for the stochastic kernel Γκ

=

∫

U‖κ−‖

Γκ−
κ [ duκ− | h]1{uκ−=h‖κ−‖}

∫

Uκ⋆

Φ(uκ−, uκ⋆
)Γκ⋆

κ [ duκ⋆
| h‖κ−‖,h]

by Fubini’s Theorem and by substitution uκ− = h‖κ−‖ in the term Γκ⋆
κ [ duκ⋆

| uκ−, h]

=

∫

U‖κ‖

Γκ−
κ [ duκ− | h]

∫

U‖κ‖

Φ(uκ−, uκ⋆
)Γκ⋆

κ [ duκ⋆
| h‖κ−‖,h]

(by property (37) for the stochastic kernel Γκ)

=

∫

U‖κ‖

Γκ−
κ [ duκ− | h]

∫

Wκ⋆

ℓκ⋆
( dw′

κ⋆
)Φ(uκ−, m

′p
κ⋆
(w′

κ⋆
, h))

(by property (40) of the mapping m′p
κ⋆
)

=

∫

W×Ω

(ℓ⊗ ν)|Zκ⋆◦Tm [ dw′′ dω′′ |Zκ⋆
(h)]

∫

Wκ⋆

ℓκ⋆
( dw′

κ⋆
)Φ(mp

κ−
(w′′p, h), m′p

κ⋆
(w′

κ⋆
, h)) .

(by property (38) for the stochastic kernel Γκ)

Now, we show that there exists a measurable function Ψ′ : (W× Zκ⋆
,W⊗ Zκ⋆

) →
(R,BR) such that

Ψ′
(
w′′, Zκ⋆

(h)
)
= 1H

ϕ
κ
(h)

∫

Wκ⋆

ℓκ⋆
( dw′

κ⋆
)Φ(mp

κ−
(w′′p, h), m′p

κ⋆
(w′

κ⋆
, h)) ,

∀(w′′, h) ∈ W×H .

(43)

Indeed, the function Wp × Wκ⋆
× H ∋ (w′′, w′

κ⋆
, h) 7→ 1H

ϕ
κ
(h)Φ(mp

κ−
(w′′p, h), m′p

κ⋆
(w′

κ⋆
, h))

is measurable with respect to Wp ⊗ Wκ⋆
⊗

(
Hϕ

κ ∩ ( ∨
a∈‖κ‖

Ia)
)
by definition (20a) of an A-

mixed strategy and by definition of the trace field Hϕ
κ ∩ ( ∨

a∈‖κ‖
Ia), hence with respect

to Wp ⊗ Wκ⋆
⊗

(
Hϕ

κ ∩ (C‖κ−‖ ∨ Iκ⋆
)
)
by definition (29b) of C‖κ−‖, hence with respect to

Wp ⊗Wκ⋆
⊗ (Iκ⋆

∨ (Hϕ
κ ∩ Iκ⋆

)) by perfect recall (29), hence to Wp ⊗Wκ⋆
⊗ Iκ⋆

as Hϕ
κ ∈ Iκ⋆

by (29) with H = H. By Fubini’s Theorem, we deduce that the function W×H ∋ (w, h) 7→
1H

ϕ
κ
(h)

∫
Wκ⋆

ℓκ⋆
( dw′

κ⋆
) Φ(mp

κ−
(w′′p, h), m′p

κ⋆
(w′

κ⋆
, h)) is measurable with respect to W ⊗ Iκ⋆

.

As a consequence, as Z−1
κ⋆

(Zκ⋆
) = Iκ⋆

by the Borel measurable functional information as-
sumption (see Definition 16), by Doob functional theorem [7, Chap. 1, p. 18], there exists a
measurable function Ψ′ : (W× Zκ⋆

,W⊗ Zκ⋆
) → (R,BR) such that (43) holds true, because

(W× Zκ⋆
,W⊗ Zκ⋆

) is a product of Borel spaces, hence itself a Borel space.
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We conclude that
∫

W×Ω

ℓ( dw)ν( dω)1H
ϕ
κ
(T ω

m(w))Φ
(
mp

κ

(
wp, T ω

m(w)
))

=

∫

W×Ω

ℓ( dw)ν( dω)
[ ∫

W×Ω

1H
ϕ
κ
(h)(ℓ⊗ ν)|Zκ⋆◦Tmp [ dw′′ dω′′ |Zκ⋆

(h)]

∫

Wκ⋆

ℓκ⋆
( dw′

κ⋆
)Φ(mp

κ−
(w′′p, h), m′p

κ⋆
(w′

κ⋆
, h))

]
|h=Tω

m(w)

(by substitution of the inner integral expression)

=

∫

W×Ω

ℓ( dw)ν( dω)
[∫

W×Ω

(ℓ⊗ ν)|Zκ⋆◦Tm [ dw′′ dω′′ | z]Ψ′(w′′, z)
]
|z=Zκ⋆◦T

ω
m(w)

by property (43) of the function Ψ′

=

∫

W×Ω

ℓ( dw)ν( dω)Ψ′
(
w,Zκ⋆

◦ T ω
m(w)

)

by property of regular conditional distributions [9, Th. 6.4]

=

∫

W×Ω

ℓ( dw)ν( dω)1H
ϕ
κ
(T ω

m(w))

∫

Wκ⋆

ℓκ⋆
( dw′

κ⋆
)Φ

(
wp, mp

κ−

(
wp, T ω

m(w)
)
, m′p

κ⋆

(
w′

κ⋆
, T ω

m(w)
))

by property (43) of the function Ψ′.

This ends the proof.

The next Lemma 22 is a kind of Kuhn’s Theorem, but on the randomizing device spaceW
instead of the configuration space H. The proof combines the previous Lemma 21 with the
playability property of the solution map and an induction.

Lemma 22 (Equivalence on Wp). Suppose that the assumptions of Theorem 17 are satisfied,
hence, in particular, that the player p ∈ P satisfies perfect recall, as in Definition 12. We
consider a probability ν on (Ω,F), an A-mixed strategy mp = (mp

a)a∈Ap , of the player p and
an A-mixed strategy m−p = (m−p

a )a∈A−p of the other players. We let m′p = (m′p
a )a∈Ap denote

the A-behavioral strategy of the player p given by Lemma 20.
Then, for any total p-ordering ρ ∈ Σp

|Ap|, for any bounded measurable function J :

(H,H) → (R,BR), for any ω ∈ Ω and w−p ∈ W−p, we have that
∫

Wp

ℓp( dwp)(1H
ϕ
ρ
J)

(
T ω
(m−p,mp)(w

−p, wp)
)
=

∫

Wp

ℓp( dwp)(1H
ϕ
ρ
J)

(
T ω
(m−p,m′p)(w

−p, wp)
)
. (44)

Proof. For any total p-ordering ρ ∈ Σp

|Ap| and any p-ordering κ ∈ Σp, we say that κ ⊂ ρ if

κ = ψ|κ|ρ where ψ|κ| has been defined in (26). When κ ⊂ ρ, we introduce the tail ordering

30



ρ\κ = (ρ(i))i=|κ|+1,...,|ρ| so that κ ⊂ ρ =⇒ ρ = (κ−, κ⋆, ρ\κ). We also denote wκ = (wa)a∈‖κ‖,

wρ\κ = (wa)a∈‖ρ\κ‖ and Wρ\κ =
∏

a∈‖ρ\κ‖ Wa.

Let ω ∈ Ω and w−p ∈ W−p be fixed. Let ρ ∈ Σp

|Ap| be a total p-ordering of the agents in Ap.
As, by assumption, the W-game is playable and partially measurable w.r.t. p, for any κ ⊂ ρ
and w′p ∈ Wp, we get by (16) the existence of a measurable mapping Ŝ

‖κ‖

(m−p(w−p,·),m′p
ρ\κ

(w′p,·))

such that

S(m−p(w−p,·),mp
κ(wp,·),m′p

ρ\κ
(wp,·))(ω)

= Ŝ
‖κ‖

(m−p(w−p,·),m′p
ρ\κ

(w′p,·))

(
ω,mp

κ

(
wp, S(m−p(w−p,·),mp

κ(wp,·),m′p
ρ\κ

(w′p,·))(ω)
))

,

where we have used the shorthand notation mp
κ = (mp

a)a∈‖κ‖ and m′p
ρ\κ = (m′p)a∈ρ\κ.

As m′p is an A-behavioral strategy, Equation (20b) implies that m′p
ρ\κ(w

′p, ·) only depends

on the randomizing component w′
ρ\κ ∈ Wρ\κ and, going back to the original definition (15)

we can denote Ŝ
‖κ‖

(m−p(w−p,·),m′p
ρ\κ

(w′p,·))
= Ŝ

‖κ‖

(m−p(w−p,·),m′p
ρ\κ

(w′
ρ\κ,·))

, obtaining thus that

S(m−p(w−p,·),mp
κ(wp,·),m′p

ρ\κ
(w′

ρ\κ,·))
(ω)

= Ŝ
‖κ‖

(m−p(w−p,·),m′p
ρ\κ

(w′
ρ\κ,·))

(
ω,mp

κ

(
wp, S(m−p(w−p,·),mp

κ(wp,·),m′p
ρ\κ

(w′
ρ\κ,·))

(ω)
))

. (45)

For any p-ordering κ ∈ Σp such that κ ⊂ ρ, we prove that the following quantity

θ(κ) =

∫

Wρ\κ

ℓρ\κ( dw
′
ρ\κ)

∫

Wp

ℓp( dwp)(1H
ϕ
ρ
J)

(
S(m−p(w−p,·),mp

κ(wp,·)),m′p
ρ\κ

(w′
ρ\κ,·)

(ω)
)

(46)

is equal to θ(κ−). This proves the desired result as

θ(ρ) =

∫

Wp

ℓp( dwp)(1H
ϕ
ρ
J)

(
T ω
(m−p,mp)(w

−p, wp)
)
,

θ(∅) =

∫

Wp

ℓp( dwp)(1H
ϕ
ρ
J)

(
T ω
(m−p,m′p)(w

−p, wp)
)
,

where the notation ∅ in θ(∅) refers to the convention that κ− = ∅ ∈ Σp
0 = {∅} when κ ∈ Σp

1.
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First, we focus on the inner integral in (46): for fixed w′
ρ\κ ∈ Wρ\κ, we have that

∫

Wp

ℓp( dwp)(1H
ϕ
ρ
J)

(
S(m−p(w−p,·),mp

κ(wp,·),m′p
ρ\κ

(w′
ρ\κ,·))

(ω)
)

=

∫

Wp

ℓp( dwp)

[
(1H

ϕ
ρ
J)

(
Ŝ
‖κ‖

(m−p(w−p,·),m′p
ρ\κ

(w′
ρ\κ,·))

(
ω,mp

κ(w
p, h)

))]

h=

S(m−p(w−p,·),mp
κ(wp,·),m′p

ρ\κ
(w′

ρ\κ,·))
(ω) (by (45))

=

∫

Wp

ℓp( dwp)

[
(1H

ϕ
ρ
J)

(
Ŝ
‖κ‖

(m−p(w−p,·),m′p
ρ\κ

(w′
ρ\κ,·))

(
ω,mp

κ−
(wp, h), mp

κ⋆
(wp, h)

))]

h=

S(m−p(w−p,·),mp
κ−

(wp,·),mp
κ⋆ (w

p,·),m′p
ρ\κ

(w′
ρ\κ,·))

(ω)

(by using the decomposition mp
κ = (mp

κ−
, mp

κ⋆
))

=

∫

Wp

ℓp( dwp)
[
1H

ϕ
κ
(h)Φ

(
mp

κ−
(wp, h), mp

κ⋆
(wp, h)

)]
h=

S(m−p(w−p,·),mp
κ−

(wp,·),mp
κ⋆ (w

p,·),m′p
ρ\κ

(w′
ρ\κ,·))

(ω)

where we have used the property 1H
ϕ
κ
1H

ϕ
ρ
= 1H

ϕ
ρ
since Hϕ

ρ ⊂ Hϕ
κ as κ ⊂ ρ, and where we

have dropped the variables ω, w−p, w′
ρ\κ that do not contribute to the integration (to the

difference of wp) inside the notation

Φ(uκ−, uκ⋆
) = (1H

ϕ
ρ
J)

(
Ŝ
‖κ‖

(m−p(w−p,·),m′p
ρ\κ

(w′
ρ\κ,·))

(
ω, (uκ−, uκ⋆

)
))

,

where the function Φ : U‖κ‖ → R is bounded measurable — as 1H
ϕ
ρ
is measurable by (29a), as

the function J is bounded measurable by assumption, and as the mapping Ŝ
‖κ‖

(m−p(w−p,·),m′p
ρ\κ

(w′
ρ\κ,·))

is measurable by assumption that the W-game is playable and partially measurable w.r.t. p

=

∫

Wp

ℓp( dwp)

∫

Wκ⋆

ℓκ⋆
( dw′

κ⋆
)

[
1H

ϕ
κ
(h)Φ

(
mp

κ−
(wp, h), m′p

κ⋆
(w′

κ⋆
, h)

)]
h=

S(m−p(w−p,·),mp
κ−

(wp,·),mp
κ⋆ (w

p,·),m′p
ρ\κ

(w′
ρ\κ,·))

(ω)

by using Lemma 21 making possible the substitution (41) where the term mp
κ⋆

(
wp, h

)
has

been replaced by m′p
κ⋆
(w′

κ⋆
, h) inside a new integral

=

∫

Wp

ℓp( dwp)

∫

Wκ⋆

ℓκ⋆
( dw′

κ⋆
)

[
1H

ϕ
κ
(h)Φ

(
mp

κ−
(wp, h), m′p

κ⋆
(w′

κ⋆
, h)

)]
h=

S(m−p(w−p,·),mp
κ−

(wp,·),m′p
κ⋆ (w

′
κ⋆

,·),m′p
ρ\κ

(w′
ρ\κ,·))

(ω)
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where, in the expression h = S(m−p(w−p,·),mp
κ−

(wp,·),m′p
κ⋆(w

′
κ⋆

,·),m′p
ρ\κ

(w′
ρ\κ,·))

(ω), the term mp
κ⋆
(wp, ·)

has been substituted for m′p
κ⋆
(w′

κ⋆
, ·) by Proposition 6 because the function H ∋ h 7→

1H
ϕ
κ
(h)Φ

(
mp

κ−

(
wp, h

)
, m′p

κ⋆

(
w′

κ⋆
, h

))
is Iκ⋆

-measurable; indeed, the function is measurable
with respect to Hϕ

κ ∩ ( ∨
a∈‖κ‖

Ia) by definition (20a) of an A-mixed strategy (recall that

m′p
κ⋆

(
w′

κ⋆
, ·
)
is Iκ⋆

-measurable by Lemma 20) and by definition of the trace field Hϕ
κ∩( ∨

a∈‖κ‖
Ia),

hence with respect to Hϕ
κ ∩ (C‖κ−‖ ∨ Iκ⋆

) by definition (29b) of C‖κ−‖, hence with respect to
Iκ⋆

∨ (Hϕ
κ ∩ Iκ⋆

) by perfect recall (29), hence with respect to Iκ⋆
as Hϕ

κ ∈ Iκ⋆
by (29) with

H = H

=

∫

Wp

ℓp( dwp)

∫

Wκ⋆

ℓκ⋆
( dw′

κ⋆
)
[
(1H

ϕ
ρ
J)

(
Ŝ
‖κ‖

(m−p(w−p,·),m′p
ρ\κ

(w′
ρ\κ,·))

(
ω,mp

κ−
(wp, h), m′p

κ⋆
(w′

κ⋆
, h)

))]

h=

S(m−p(w−p,·),mp
κ−

(wp,·),m′p
κ⋆ (w

′
κ⋆

,·),m′p
ρ\κ

(w′
ρ\κ,·))

(ω)

(by definition of the function Φ)

=

∫

Wp

ℓp( dwp)

∫

Wκ⋆

ℓκ⋆
( dw′

κ⋆
)(1H

ϕ
ρ
J)

(
S(m−p(w−p,·),mp

κ−
(wp,·),m′p

κ⋆(w
′
κ⋆

,·),m′p
ρ\κ

(w′
ρ\κ,·))

(ω)
)

by formula (45), but with
(
m−p(w−p, ·), mp

κ(w
p, ·), m′p

ρ\κ(w
′
ρ\κ,·)

)
replaced by(

m−p(w−p, ·), mp
κ−
(wp, ·), m′p

κ⋆
(w′

κ⋆
, ·), m′p

ρ\κ(w
′
ρ\κ,·)

)
.

Thus, inserting this last expression in the right-hand side of Equation (46), we conclude
that

θ(κ) =

∫

Wρ\κ

ℓρ\κ( dw
′
ρ\κ)

∫

Wp

ℓp( dwp)

∫

Wκ⋆

ℓκ⋆
( dw′

κ⋆
)(1H

ϕ
ρ
J)

(
S(m−p(w−p,·),mp

κ−
(wp,·),m′p

κ⋆ (w
′
κ⋆

,·),m′p
ρ\κ

(w′
ρ\κ,·))

(ω)
)

=

∫

Wκ⋆

ℓκ⋆
( dw′

κ⋆
)

∫

Wρ\κ

ℓρ\κ( dw
′
ρ\κ)

∫

Wp

ℓp( dwp)

(1H
ϕ
ρ
J)

(
S(m−p(w−p,·),mp

κ−
(wp,·),m′p

κ⋆ (w
′
κ⋆

,·),m′p
ρ\κ

(w′
ρ\κ,·))

(ω)
)

(by Fubini’s Theorem)

=

∫

Wκ⋆×Wρ\κ

(ℓκ⋆
⊗ ℓρ\κ)( dw

′
κ⋆
dw′

ρ\κ)

∫

Wp

ℓp( dwp)

(1H
ϕ
ρ
J)

(
S(m−p(w−p,·),mp

κ−
(wp,·),m′p

κ⋆ (w
′
κ⋆

,·),m′p
ρ\κ

(w′
ρ\κ,·))

(ω)
)

by Fubini’s Theorem and by definition of the product probability ℓκ⋆
⊗ ℓρ\κ

=

∫

Wρ\κ−

ℓρ\κ−( dw
′
ρ\κ−

)

∫

Wp

ℓp( dwp)(1H
ϕ
ρ
J)

(
S(m−p(w−p,·),mp

κ−
(wp,·),m′p

ρ\κ−
(w′

ρ\κ−,·))
(ω)

)
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by changes of variables (w′
κ⋆
, w′

ρ\κ−) = w′
ρ\κ−

and ρ\κ− = (κ⋆, ρ\κ)

= θ(κ−) .

This ends the proof.

Proof of Theorem 17.

Proof. To prove (34), we consider a bounded measurable function J : (H,H) → (R,BR),
and we proceed with

∫

H

J(h)Qν
(m−p,mp)( dh)

=

∫

Ω

dν(ω)

∫

W−p×Wp

ℓ−p( dw−p)⊗ ℓp( dwp)J
(
T ω
(m−p ,mp)(w

−p, wp)
)

by the pushforward probability formula (23) and by detailing the product structures of W
and ℓ in (19)

=

∫

Ω

dν(ω)

∫

W−p

ℓ−p( dw−p)
[∫

Wp

ℓp( dwp)J
(
T ω
(m−p,mp)(w

−p, wp)
)]

(by Fubini’s Theorem)

=

∫

Ω

dν(ω)

∫

W−p

ℓ−p( dw−p)
∑

ρ∈Σp

|Ap|

[∫

Wp

ℓp( dwp)(1H
ϕ
ρ
J)

(
T ω
(m−p,mp)(w

−p, wp)
)]
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since the subsets Hϕ
ρ in (28) are pairwise disjoint when the total ordering ρ varies in Σp

|Ap|,
and their union is H

=

∫

Ω

dν(ω)

∫

W−p

ℓ−p( dw−p)
∑

ρ∈Σp

|Ap|

[∫

Wp

ℓp( dw′p)

∫

Wp

ℓp( dwp)(1H
ϕ
ρ
J)

(
T ω
(m−p,m′p)(w

−p, w′p)
)]

(by (44) in the substitution Lemma 22)

=

∫

Ω

dν(ω)

∫

Wp

ℓp( dw′p)

∫

W−p

ℓ−p( dw−p)
∑

ρ∈Σp

|Ap|

[∫

Wp

ℓp( dwp)(1H
ϕ
ρ
J)

(
T ω
(m−p,m′p)(w

−p, w′p)
)]

(by Fubini’s Theorem)

=

∫

Ω

dν(ω)

∫

Wp

ℓp( dw′p)

∫

W−p

ℓ−p( dw−p)

∫

Wp

ℓp( dwp)J
(
T ω
(m−p ,m′p)(w

−p, w′p)
)

=

∫

Ω

dν(ω)

∫

Wp

ℓp( dw′p)

∫

W−p

ℓ−p( dw−p)J
(
T ω
(m−p,m′p)(w

−p, w′p)
)

=

∫

Ω

dν(ω)

∫

W−p×Wp

ℓ−p( dw−p)⊗ ℓp( dw′p)J
(
T ω
(m−p,m′p)(w

−p, w′p)
)

(by Fubini’s Theorem)

=

∫

Ω

dν(ω)

∫

W

dℓ(w)J
(
T ω
(m−p,m′p)(w)

)
(as ℓ = ℓ−p ⊗ ℓp and W = W−p ×Wp by (19))

=

∫

H

J(h)Qν
(m−p ,m′p)( dh) . (by the pushforward probability formula (23))

This ends the proof.

5.2 Proof of Theorem 18

We start with Lemma 23, which gives constraints on the marginals of the pushforward
probability induced by any A-behavioral strategym′p of the player p satisfying Equation (34).

Lemma 23. We consider a playable and measurable W-game (see Definition 8). We focus
on the player p ∈ P and we suppose that Ap is a finite set. Let be given a probability ν
on (Ω,F), an A-mixed strategy m−p = (ma)a∈A−p of the other players, an A-mixed strategy
mp = (mp

a)a∈Ap , of the player p, and an A-behavioral strategy m′p = (m′p
a )a∈Ap of the player p.

We set
W′

a[h] =
{
wa ∈ Wa

∣∣m′p
a

(
wa, h

)
= ha

}
, ∀a ∈ Ap , ∀h ∈ H . (47)

Then, we have the following implication, for any h ∈ H,

Qν
(m−p,mp) = Qν

(m−p ,m′p) and Qν
(m−p,mp)({h}) > 0 =⇒ ℓa

(
W′

a[h]
)
> 0 , ∀a ∈ Ap . (48)

Proof. Let a configuration h ∈ H be given. Then, we have that

Qν
(m−p,m′p)({h}) = (ℓ−p ⊗

⊗

a∈Ap

ℓa ⊗ ν)
({

(w, ω) ∈ W−p ×
∏

a∈Ap

Wa × Ω
∣∣T ω

m′p(w) = h
})
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by definition (23) of the pushforward probability Qν
(m−p ,m′p) and by (19)

= (ℓ−p ⊗
⊗

a∈Ap

ℓa ⊗ ν) ( {(w, ω) ∈ W−p ×
∏

a∈Ap

Wa × Ω | ω = h∅ ,

mAq(wq, h) = hAq , ∀q ∈ P \ {p} , m′p
a (wa, h) = ha , ∀a ∈ Ap} )

by the solution map property (11) and by definition (21) of T ω
m′p(w)

= ν
(
{h∅}

)
×

∏

q∈P\{p}

ℓq
({
wq ∈ Wq

∣∣mAq(wq, h) = hAq

})

×
∏

a∈Ap

ℓa

({
wa ∈ Wa

∣∣m′p
a (wa, h) = ha

})

(by definition of a product probability)

= ν
(
{h∅}

)
×

∏

q∈P\{p}

ℓq
({
wq ∈ Wq

∣∣mAq(wq, h) = hAq

})
×

∏

a∈Ap

ℓa
(
W′

a[h]
)
.

(by definition of W′
a[h] in (47))

As a consequence, if Qν
(m−p ,mp) = Qν

(m−p ,m′p) and Qν
(m−p,mp)({h}) > 0, we deduce that the

nonnegative quantity ℓa
(
W′

a[h]
)
must be positive for all a ∈ Ap.

We have proven (48) and this ends the proof.

Proof of Theorem 18.

Proof. We consider a playable and measurable W-game (see Definition 8). We focus on the
player p ∈ P and we suppose that she satisfies the Borel measurable functional information
assumption (see Definition 16) and partial causality (see Definition 13), that Ap is a finite
set, and that Ua contains at least two distinct elements, for all a ∈ Ap.

By assumption (see Equation (35)), we have that, for the p-configuration-ordering ϕ :
H → Σp given by Definition 13, there exists a p-ordering κ ∈ Σp such that

∃h+, h− ∈ Hϕ
κ , Zκ⋆

(h+) = Zκ⋆
(h−) ,

(
Za(h

+), h+a
)
a∈‖κ−‖

6=
(
Za(h

−), h−a
)
a∈‖κ−‖

.

Therefore, setting jc = |κ| ≥ 2 (because the case |κ| = 1 is void) and c = κ(jc) = κ⋆, we
deduce that one of the following two mutually exclusive and exhaustive cases holds true:

1. (two distinct configurations give the same information) either there exists h+, h− ∈ Hϕ
κ

such that Zc(h
+) = Zc(h

−), and there exists an agent b ∈ ‖κ−‖ such that h+b 6= h−b ,

2. (two distinct configurations do not give the same information) or Zc(h) = Zc(h
′) =⇒

ha = h′a, for all h, h′ ∈ Hϕ
κ and for all a ∈ ‖κ−‖, and there exists h+, h− ∈ Hϕ

κ such
that Zc(h

+) = Zc(h
−), and there exists an agent b ∈ ‖κ−‖ such that Zb(h

+) 6= Zb(h
−).
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In both cases, we denote h+ = (ω+, u+) and h− = (ω−, u−). For any mixed strategym′p
c of

the agent c, we have that m′p
c

(
wc, h

+
)
= m′p

c

(
wc, h

−
)
since the mapping H ∋ h 7→ m′p

c

(
wc, h

)

is Ic-measurable, as Z−1
c (Zc) = Ic and Zc(h

+) = Zc(h
−). Without loss of generality, we can

suppose that h+c = u+c 6= u−c = h−c . Indeed, as the player p satisfies partial causality, we have
that Hϕ

κ ∩
{
h ∈ H

∣∣Zc(h) = Zc(h
−)
}
∈ H

p

‖κ−‖ by (31), so that Zc((h
−
c , uc)) = Zc(h

−) for any

uc ∈ Uc, and we choose uc 6= u+c .
In both cases above, the structure of the proof is as follows: design an A-mixed strategy

(m−p, mp) (making use of the two configurations h+ and h−) such that, for any A-behavioral
strategy m′p = (m′p

a )a∈Ap of the player p, one has that Qν
(m−p,mp) 6= Qν

(m−p ,m′p).

For this purpose, we set P̃ = P \ {p} and, in both cases above, we consider the same
A-mixed strategy m−p = (mq)q∈P̃ for the other players than player p. We introduce, for any

player q ∈ P̃ , a partition W+
q and W−

q of Wq with ℓq(W+
q ) = ℓq(W−

q ) = 1/2, and we define
the A-mixed strategy mq = (mq

a)a∈Aq by

mq
a

(
wq, h

)
= hǫa , ∀q ∈ P̃ , ∀a ∈ Aq , ∀ǫ ∈ {+,−} , ∀wq ∈ Wǫ

q , ∀h ∈ H . (49)

Notice that the above definition is valid even if h+a = h−a , and that, for any fixed wq ∈ Wǫ
q,

the pure strategy profile mq(wq, ·) is a constant mapping with value (hǫa)a∈Aq .

In the first case (two distinct configurations give the same information), Lemma 24 below
exhibits an A-mixed strategy (m−p, mp) such that, for any A-behavioral strategy m′p =
(m′p

a )a∈Ap of the player p, one has that Qν
(m−p,mp) 6= Qν

(m−p,m′p). In the second case (two

distinct configurations do not give the same information), Lemma 25 below does the same.

This ends the proof.

Lemma 24. We consider the first case (two distinct configurations give the same informa-
tion) where there exists an agent b ∈ ‖κ−‖ such that h+b 6= h−b . We can always suppose
that b = κ(jb) where jb = inf{j ∈ J1, jc − 1K | h+

κ(j) 6= h−
κ(j)} so that h+

κ(j) = h−
κ(j), for all

j ∈ J1, jb − 1K (the empty set if jb = 1). We define the A-mixed strategy mp = (mp
a)a∈Ap of

player p in the same way than for the other players: we introduce a partition W+
p and W−

p

of Wp with ℓp(W+
p ) = ℓp(W−

p ) = 1/2, and we define

mp
a

(
wp, h

)
= hǫa , ∀a ∈ Ap , ∀ǫ ∈ {+,−} , ∀wp ∈ Wǫ

p , ∀h ∈ H . (50)

We consider any probability distribution ν on Ω such that ν
(
{ω+}

)
> 0, ν

(
{ω−}

)
> 0 and

ν
(
{ω+, ω−}

)
= 1, thus covering both cases where ω+ = ω− or ω+ 6= ω−.

Then, it holds that, for any A-behavioral strategy m′p = (m′p
a )a∈Ap of the player p, one

has that Qν
(m−p,mp) 6= Qν

(m−p ,m′p).

Proof. The proof proceeds by contradiction. We will consider any A-behavioral strategy
m′p = (m′p

a )a∈Ap of the player p, suppose that Qν
(m−p ,mp) = Qν

(m−p ,m′p), and then arrive at a
contradiction.

Notice that, by (49) and (50), the probability distribution Qν
(m−p ,mp) does not have mass

outside of {h+, h−}.
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On the one hand, as, for any player q ∈ P and for any wq ∈ W+
q (resp. wq ∈ W−

q ) the
pure strategy profile mq(wq, ·) takes the constant value (h+a )a∈Aq (resp. (h−a )a∈Aq) by (49)–
(50), we readily get — by definition (21) of T ωǫ

(m−p,mp)(w) and by characterization (11) of the
solution map — that

w ∈
∏

q∈P

W+
q =⇒ T ω+

(m−p,mp)(w) = (ω+, u+) = h+ ,

w ∈
∏

q∈P

W−
q =⇒ T ω−

(m−p,mp)(w) = (ω−, u−) = h− ,

hence, as ν
(
{ωǫ}

)
> 0 and

∏
q∈P ℓ

q(Wǫ
q) = 1/2|P | > 0 for ǫ ∈ {+,−}, that

Qν
(m−p,mp)

(
{h+}

)
> 0 and Qν

(m−p ,mp)

(
{h−}

)
> 0 . (51a)

On the other hand, we also readily get, in the same way but focusing on (50), that

Qν
(m−p ,mp)

(
{h}

)
> 0 =⇒ either hAp = h+Ap or hAp = h−Ap . (51b)

The proof is by contradiction and we suppose that there exists an A-behavioral strategy
m′p = (m′p

a )a∈Ap of the player p such that Qν
(m−p,mp) = Qν

(m−p ,m′p). Applying Lemma 23 to h+

and h−, we obtain that ℓa(W
′
a[h

+]) > 0 and ℓa(W
′
a[h

−]) > 0 , ∀a ∈ Ap. As a consequence,
the following set

W± =
∏

q∈P̃

W+
q ×

∏

a∈Ap\{c}

W′
a[h

+]×W′
c[h

−] (52)

has positive probability and, for any w ∈ W±, we are going to show that the configuration
h = T ω+

(m−p ,m′p)(w) contradicts (51b). First, we observe that the configuration h is such that

hA−p = h+
A−p because, for any player q ∈ P̃ , the pure strategy profile mq(wq, ·) takes the

constant value (h+a )a∈Aq when w ∈ W± by definition (52) of W±. Second, we prove by
induction on j ∈ J1, jc − 1K (where jc = |κ| ≥ 2, hence jc − 1 ≥ 1) that hκ(j) = h+

κ(j) and

that h ∈ H
ϕ

κ(1),...,κ(j−1). We suppose that j ≥ 1 and that hκ(i) = h+
κ(i) for all i ∈ J1, j− 1K and

h ∈ H
ϕ

κ(1),...,κ(j−1) (the special case j = 1 corresponds to the initialization part of the proof

by induction that we cover too). Then, we have that

hκ(j) = m′p
κ(j)(wκ(j), h) (by the solution map property (11) of h = T ω+

(m−p,m′p)(w))

= m′p
κ(j)

(
wκ(j), (ω

+, hA−p, hκ(1), . . . , hκ(j−1))
)

by the partial causality property (32a) and short notation (32b), using Lemma 14 as h∅ = ω+

and h ∈ H
ϕ

κ(1),...,κ(j−1) by the induction assumption (remaining true in the special case j = 1

because hA−p = h+
A−p and h ∈ H

ϕ

∅ = H)

= m′p
κ(j)

(
wκ(j), (ω

+, h+
A−p, h

+
κ(1), . . . , h

+
κ(j−1))

)
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as we have seen that hA−p = h+
A−p, and as (hκ(1), . . . , hκ(j−1)) = (h+

κ(1), . . . , h
+
κ(j−1)) by the

induction assumption

= m′p
κ(j)

(
wκ(j), h

+
)

(by using again partial causality, but with h+ this time)

= h+
κ(j)

as w ∈ W±, hence wκ(j) ∈ W′
κ(j)[h

+] by definition (52) of the set W±, and by defini-

tion (47) of the set W′
κ(j)[h

+]. From h ∈ H
ϕ

κ(1),...,κ(j−1), hA−p = h+
A−p and (hκ(1), . . . , hκ(j)) =

(h+
κ(1), . . . , h

+
κ(j)), we deduce that h ∈ H

ϕ

κ(1),...,κ(j) by the partial causality property (32a),

using Lemma 14 as h+ ∈ Hϕ
κ ⊂ H

ϕ

κ(1),...,κ(j) by definition (28) of Hϕ
κ . Thus, the induction

is completed and we obtain that h‖κ−‖ = (hκ(1), . . . , hκ(jc−1)) = (h+
κ(1), . . . , h

+
κ(jc−1)) = h+‖κ−‖,

and that h ∈ Hϕ
κ−

= H
ϕ

κ(1),...,κ(jc−1).
Third, we compute

hc = m′p
c (wc, h) (by the solution map property (11) of h = T ω+

(m−p,m′p)(w))

= m′p
c

(
wc, (ω

+, hA−p, hκ(1), . . . , hκ(jc−1))
)

by the partial causality property (32a), and short notation (32b), using Lemma 14 as h+ ∈
Hϕ

κ ⊂ Hϕ
κ−

by definition (28) of Hϕ
κ , and as c = κ(jc) = κ⋆

= m′p
c

(
wc, (ω

+, h+
A−p, h

+
κ(1), . . . , h

+
κ(jc−1))

)

as hA−p = h+
A−p and as (hκ(1), . . . , hκ(jc−1)) = (h+

κ(1), . . . , h
+
κ(jc−1)) as proved above by induction

= m′p
c

(
wc, h

+
)

(by using again partial causality, but with h+ ∈ Hϕ
κ this time)

= h−c

as w ∈ W±, hence wc ∈ W′
c[h

−] by definition (52) of the set W±, and by definition (47) of
the set W′

c[h
−]. As the set W± has positive probability, we conclude that

Qν
(m−p,m′p)

{
h ∈ H

∣∣hb = h+b , hc = h−c
}
> 0 .

Since Qν
(m−p,mp) = Qν

(m−p ,m′p) by assumption, we deduce that

Qν
(m−p,mp)

{
h ∈ H

∣∣hb = h+b , hc = h−c
}
> 0 .

But this contradicts (51b) because h+b 6= h−b and h+c 6= h−c .

This ends the proof.

Lemma 25. We consider the second case (two distinct configurations do not give the same
information) where Zc(h) = Zc(h

′) =⇒ ha = h′a, for all h, h′ ∈ Hϕ
κ and for all a ∈ ‖κ−‖,

and there exists h+, h− ∈ Hϕ
κ such that Zc(h

+) = Zc(h
−), and there exists an agent b ∈ ‖κ−‖
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such that Zb(h
+) 6= Zb(h

−). Thus, from Zc(h
+) = Zc(h

−), we deduce that h+a = h−a , for all
a ∈ ‖κ−‖, that is, h

+
‖κ−‖ = h−‖κ−‖. There exists an element h̄b 6= h+b by assumption (action

sets have at least two distinct elements). We introduce a partition W+
p and W−

p of Wp with
ℓp(W+

p ) = ℓp(W−
p ) = 1/2, and we define the A-mixed strategy mp = (mp

a)a∈Ap by

mp
a

(
wp, h

)
= h+a , ∀a ∈ Ap \ {b, c} , ∀wp ∈ Wp , ∀h ∈ H , (53a)

mp
b

(
wp, h

)
=





h+b if Zb(h) = Zb(h
+) and wp ∈ W+

p ,

h̄b if Zb(h) 6= Zb(h
+) and wp ∈ W+

p ,

h̄b if Zb(h) = Zb(h
+) and wp ∈ W−

p ,

h+b if Zb(h) 6= Zb(h
+) and wp ∈ W−

p ,

(53b)

and finally

mp
c

(
wp, h

)
=

{
h−c if Zc(h) = Zc(h

+) and wp ∈ W−
p ,

h+c else.
(53c)

We consider any probability distribution ν on Ω such that ν
(
{ω+}

)
> 0, ν

(
{ω−}

)
> 0 and

ν
(
{ω+, ω−}

)
= 1, thus covering both cases where ω+ = ω− or ω+ 6= ω−.

Then, it holds that, for any A-behavioral strategy m′p = (m′p
a )a∈Ap of the player p, one

has that Qν
(m−p,mp) 6= Qν

(m−p ,m′p).

Proof. The proof proceeds by contradiction. We will consider any A-behavioral strategy
m′p = (m′p

a )a∈Ap of the player p, suppose that Qν
(m−p ,mp) = Qν

(m−p ,m′p), and then arrive at a
contradiction.

Notice that, by (49) and (53), the probability distribution Qν
(m−p ,mp) does not have mass

outside of a finite set of configurations.
For any agent a ∈ Ap \ {b, c}, the mapping mp

a

(
wp, ·

)
is Ia-measurable as it is constant

by (53a). The mapping mp
b

(
wp, ·

)
is Ib-measurable as it is measurably expressed in (53b) as

a function of the Ib-measurable mapping Zb. The same holds true for mp
c

(
wp, ·

)
in (53c).

As a preliminary result, we prove that

Qν
(m−p ,mp)

{
h ∈ H

∣∣h ∈ Hϕ
κ , Zb(h) = Zb(h

+) , hc = h−c
}
= 0 . (54)

Indeed, by (53c), any h = T ω
(m−p,mp)(w) ∈ Hϕ

κ such that hc = h−c must be such that both

Zc(h) = Zc(h
+) and wp ∈ W−

p . But, as Zc(h
′) = Zc(h

′′) =⇒ h′a = h′′a, for all h
′, h′′ ∈ Hϕ

κ

and for all a ∈ ‖κ−‖, we deduce that hb = h+b . As w
p ∈ W−

p , we get by (53b) that necessarily
Zb(h) 6= Zb(h

+). Thus, we have proven (54), and we will now show that any A-behavioral
strategy contradicts (54).

First, we get that

w ∈
∏

q∈P̃

W+
q ×W+

p =⇒ T ω+

(m−p,mp)(w) = (ω+, h+
A−p, h

+
Ap\{b,c}, h

+
b , h

+
c ) = h+
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because, for any player q ∈ P̃ and for any wq ∈ W+
q the pure strategy profile mq(wq, ·) takes

the constant value (h+a )a∈Aq , and by the expressions (53a)–(53b)–(53c) of mp(wp, ·) when
wp ∈ W+

p . Now, we have that ν
(
{ω+}

)
> 0 and

∏
q∈P̃ ℓ

q(W+
q )× ℓp(W+

p ) = 1/2|P | > 0. Thus,

we get that Qν
(m−p,mp)

(
{h+}

)
> 0 and, using Lemma 23 as in the first case, we obtain that

ℓa(W
′
a[h

+]) > 0, for any a ∈ Ap.
Second, we set

h∓ = (ω−, h−
A−p, h

+
Ap\{b,c}, h

+
b , h

−
c ) , (55)

and we show that Qν
(m−p ,mp)

(
{h∓}

)
> 0.

For this purpose, we first establish that

Zb(h
∓) = Zb(ω

−, h∓
A−p, h

∓
κ(1), . . . , h

∓
κ(jb−1))

by the partial causality property (32a), and short notation (32b), using Lemma 14 as h∓ ∈
H

ϕ

κ(1),...,κ(jb−1) since h
∓
A−p = h−

A−p and h∓‖κ−‖ = h−‖κ−‖ — by definition (55) of h∓, using that

h+‖κ−‖ = h−‖κ−‖ — and as h− ∈ Hϕ
κ ⊂ H

ϕ

κ(1),...,κ(jb−1) by definition (28) of Hϕ
κ

= Zb(ω
−, h−

A−p, h
+
κ(1), . . . , h

+
κ(jb−1)) (by definition (55) of h∓)

= Zb(ω
−, h−

A−p, h
−
κ(1), . . . , h

−
κ(jb−1))

(as h+a = h−a , for all a ∈ ‖κ−‖ ⊃ {κ(1), . . . , κ(jb−1)})

= Zb(ω
−, h−

A−p, h
−
Ap)

again by the partial causality property (32a), but with h− ∈ Hϕ
κ this time, and as b = κ(jb)

= Zb(h
−) . (as h− = (ω−, h−

A−p, h
−
Ap))

Then, we get that

w ∈
∏

q∈P̃

W−
q ×W−

p =⇒ T ω−

(m−p,mp)(w) = (ω−, h−
A−p, h

+
Ap\{b,c}, h

+
b , h

−
c ) = h∓ ,

because, for any player q ∈ P̃ and for any wq ∈ W−
q the pure strategy profile mq(wq, ·) takes

the constant value (h−a )a∈Aq , and by the expressions (53a)–(53b)–(53c) of mp(wp, ·) when
wp ∈ W+

p using that Zb(h
∓) = Zb(h

−) 6= Zb(h
+). Now, as ν

(
{ω−}

)
> 0 and

∏
q∈P ℓ

q(W−
q ) =

1/2|P | > 0 we obtain that Qν
(m−p ,mp)

(
{h∓}

)
> 0.

Third, using Lemma 23, we deduce that ℓa
(
W′

a[h
∓]
)
> 0 for any a ∈ Ap hence, in

particular, that ℓc
(
W′

c[h
∓]
)
> 0. Now, we prove that ℓc(W

′
c[h

−]) > 0, where the set W′
c[h

−]
has been defined in (47), by showing that W′

c[h
∓] ⊂ W′

c[h
−]. Indeed, for wc ∈ W′

c[h
∓], we

have that

m′p
c

(
wc, h

−
)
= m′p

c

(
wc, (ω

−, h−
A−p, h

−
κ(1), . . . , h

−
κ(jc−1))

)
(by partial causality)

= m′p
c

(
wc, (ω

−, h−
A−p, h

+
κ(1), . . . , h

+
κ(jc−1))

)
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as h+a = h−a , for all a ∈ ‖κ−‖ ⊃ κ(1), . . . , κ(jc−1)

= m′p
c

(
wc, (ω

−, h∓
A−p, h

∓
κ(1), . . . , h

∓
κ(jc−1))

)
(by definition (55) of h∓)

= m′p
c (wc, h

∓) (by partial causality)

= h∓c (by definition of W′
c[h

∓] in (47))

= h−c . (by definition (55) of h∓)

We have shown thatW′
c[h

∓] ⊂ W′
c[h

−], hence we deduce that ℓc(W
′
c[h

−]) ≥ ℓc(W
′
c[h

∓]) > 0.
Thus, the set W± in (52) has positive probability and, for any w ∈ W±, we are going to
show that the configuration h = T ω+

(m−p,m′p)(w) contradicts (54). Indeed, the configuration h

is such that hA−p = h+
A−p because, for any player q ∈ P̃ , the pure strategy profile mq(wq, ·)

takes the constant value (h+a )a∈Aq when w ∈ W± by definition (52) of W±. Then, we get
that

Zb(h
+) = Zb(ω

+, h+
A−p, h

+
κ(1), . . . , h

+
κ(jb−1))

by the partial causality property (32a), and short notation (32b), using Lemma 14 as h+ ∈
Hϕ

κ , and as b = κ(jb)

= Zb(ω
+, hA−p, hκ(1), . . . , hκ(jb−1))

as we have just established that hA−p = h+
A−p , and as (hκ(1), . . . , hκ(jb−1)) = (h+

κ(1), . . . , h
+
κ(jb−1))

by definition (53a) of mp
a

(
wp, h

)
= h+a for any a ∈ Aq \ {b, c}

= Zb(h)

by the partial causality property (32a), and short notation (32b), using Lemma 14 as
h+ ∈ Hϕ

κ , hA−p = h+
A−p , (hκ(1), . . . , hκ(jb−1)) = (h+

κ(1), . . . , h
+
κ(jb−1)) and b = κ(jb). Now,

by definition (52) of W±, we have that hc = h−c . As the set W± has positive probability, we
conclude that

Qν
(m−p ,m′p)

{
h ∈ H

∣∣h ∈ Hϕ
κ , Zb(h) = Zb(h

+) , hc = h−c
}
> 0 ,

but this contradicts (54) since Qν
(m−p,mp) = Qν

(m−p ,m′p) by assumption.

This ends the proof.

6 Discussion

In this paper, we have introduced an alternative representation of games, namely games in
product form. For this, we have adapted Witsenhausen’s intrinsic model to games, and the
definition of perfect recall to this setting. Then, we have provided a statement and a proof
of the celebrated Kuhn’s equivalence theorem: when a player satisfies perfect recall, for any
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A-mixed strategy, there is an equivalent A-behavioral strategy (and the converse). A next
step would be to characterize, or at least to give sufficient conditions, for playability of games
in product form in terms of the primitives.
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