
HAL Id: hal-03193419
https://hal.science/hal-03193419

Submitted on 8 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visual Predictive Control Scheme for a Mobile Robot
Navigating in a Cluttered Environment

Adrien Durand-Petiteville, Viviane Cadenat

To cite this version:
Adrien Durand-Petiteville, Viviane Cadenat. Visual Predictive Control Scheme for a Mo-
bile Robot Navigating in a Cluttered Environment. IEEE LARS and SBR (Latin Ameri-
can Robotics Symposium/Brazilian Robotics Symposium), Nov 2020, Natal (Virtual), Brazil.
�10.1109/LARS/SBR/WRE51543.2020.9307090�. �hal-03193419�

https://hal.science/hal-03193419
https://hal.archives-ouvertes.fr

Visual Predictive Control Scheme for a Mobile Robot Navigating in a
Cluttered Environment

Adrien Durand-Petiteville1 and Viviane Cadenat2

Abstract— This work focuses on the use of Visual Predictive
Control to drive a mobile robot in a cluttered environment. To
efficiently and safely achieve the navigation task, one proposes
to modify a classical VPC scheme by (i) relaxing some control
input boundaries to extend the feasibility set and guarantee
the stability, (ii) adding obstacle constraint over the pieces of
trajectory, and (iii) modifying the calculated solution to avoid
local minima. Simulated results highlight the efficiency of the
proposed approach.

I. INTRODUCTION

In this work, it is proposed to use a Visual Predictive Con-
trol (VPC) scheme to make a differential driven mobile robot
navigate in an environment containing a priori unknown
static obstacles. VPC [1] is the fusion between Image-Based
Visual Servoing (IBVS) [2] and Nonlinear Model Predictive
Control (NMPC) [3] [4]. The obtained control scheme thus
combines the advantages of IBVS, i.e., reactivity and absence
of metric localization [5], with the ones of NMPC, i.e.,
ability to explicitly deal with constraints such as collision
with obstacles or control inputs boundaries. Over the last
decade, the interest for VPC-based controllers has grown and
several schemes were designed to control different robotic
systems: a camera mounted on a robotic arm [6] [7], a
flying camera [8] [9], a mobile robot [10] or a fixed-wing
aerial vehicle [11]. More advanced schemes were proposed
such as in [12] where the robotic arm is represented by a
polytopic linear parameter-varying system, in [13] and [14]
where image moment visual features are used, or in [15]
where the prediction scheme used to control a robotic arm is
obtained by integrating the acceleration of the visual features.
Despite the variety of approaches, stability related issues are
not considered. Indeed, it is well established that NMPC
schemes, and therefore VPC, only guarantee a stable closed-
loop when considering an infinite prediction horizon [3].
For solutions relying on a finite prediction horizon, which
is the case for all the mentioned works, two main classes
of approach are identified to guarantee stability. The first
one enforces stability by adding a zero terminal equality
constraint at the end of the prediction horizon [16], [17].
The second one relies on the quasi-infinite horizon method
[18], which consists in adding a terminal penalty term to
the cost function and a terminal region constraint. Both are
determined off-line such that the modified cost function gives
an upper bound on the infinite horizon cost and guarantees a

1Adrien Durand-Petiteville is with the Mechanical Engineering
Department, Federal University of Pernambuco, Recife, Brazil
adrien.durandpetiteville@ufpe.br

2Viviane Cadenat is with LAAS-CNRS and Université Paul Sabatier
Toulouse III, Toulouse, France cadenat@laas.fr

decrease in the cost function. This second class of solution
does not seem to be appropriate to the navigation problem.
Indeed, the obstacles are detected during the navigation
and the constraints related to obstacle avoidance might be
updated at every iteration. It is then impossible to determine a
terminal region at the beginning of the navigation. Moreover,
the quasi-infinite horizon methods requires that there exists a
known control law, local to the terminal region, that stabilizes
the system and satisfies the constraints. One more time, it is
impossible to prove the existence of such a local control law
without knowing the constraints in the terminal region.

In this work, it is then proposed to guarantee the stability
by adding a zero terminal equality constraint. For such an
approach, the size of the feasibility set, set for which there
exists a trajectory reaching the goal while dealing with the
constraints, depends on both the length of the prediction
horizon and the boundaries of the control inputs. Large
prediction horizons leading to large computational times, one
proposes to enlarge the feasibility region by taking action
on the control input boundaries. Thus, in this work one
defines two sets of constraints for the control inputs. The first
constraints correspond to the actual boundaries of the system
and are applied on the first part of the prediction horizon,
whereas the second ones are relaxed and applied to the rest
of the prediction horizon. Thus, the command applied to the
robot, which is in the first part of the prediction horizon,
respects the actuators boundaries, while the feasible region
is enlarged by the use of relaxed boundaries. However, in
order to preserve an efficient and safe navigation system
while relaxing the control input boundaries, it is required
to deal with two issues. First, the constraints applied to the
system, e.g., to avoid collision with obstacles, have to be
checked along the predicted trajectories and not only for the
predicted states as it usually done. Indeed, due to possible
large commands, the predicted trajectory between two states
can be sufficiently large to pass through an obstacle with-
out violating the state-centered collision constraints. Next,
one has to deal with the suboptimality of the computed
solution. Indeed, predictive control schemes of complex
systems usually rely on numerical solvers computing a local
solution, i.e., the computed trajectory is sub-optimal. It will
be shown that the insertion of relaxed constraints increases
the solution suboptimality, and leads to possible navigation
failures in case the robot reaches a local minima. Thus, in
addition to the insertion of relaxed constraints, one presents
in this work two other contributions: (i) a constraint to avoid
collisions along the robot trajectory, and (ii) a method based
on equivalent control vectors [19] to modify the obtained

trajectory and reduce the solution suboptimality.
The paper is organized as follows. First, the robot and

visual features models as well as the equivalent control
vector method are presented. In the next section, the VPC
scheme and the set of constraints are introduced. Next, one
describes our method to modify the obtained trajectory and
improve the solution suboptimality. Finally, simulated results
are presented to illustrate the proposed approach.

II. PRELIMINARIES

In this section, one first presents the robot model, then
the visual features and their prediction model that will be
used in the VPC scheme. Finally, one recalls the equivalent
command vector principle [19] used in section IV.

A. System Modeling

(a) Differential robot model

camera focal length

optical axis

im
a
g
e
 p

la
n
e

(b) Camera pinhole model

Fig. 1: System model

A pinhole camera embedded on a differential robot
equipped with a pan-platform is controlled via a VPC
scheme. Let define the world frame Fo(O,xo,yo, zo),
the robot frame Fr(Or,xr,yr, zr), the platform frame
Fp(Op,xp,yp, zp), and Fc(Oc,xc,yc, zc) the camera frame
(see Fig. 1a). Moreover, the camera focal length is denoted
by f (see Fig. 1b). Let θr be the direction of the robot
with respect to xo, θp the direction of the pan-platform with
respect to xr, and ∆rp the distance between Or and Op.

The camera being embedded on a differential robot
equipped with a pan-platform, it only has three degrees of
freedom. Thus, the control input vector is given by Q =
[υ, ωr, ωp]

T , where υ and ωr are the mobile base linear
and angular velocities, and ωp is the pan-platform angular
velocity with respect to Fr. Moreover, with xc and yc the
coordinates of the point Oc in Fo and θc = θr + θp, one
defines the camera state as:

χc = [xc, yc, θc]
T (1)

B. The Visual Features

A VPC scheme relies on a landmark to control the
camera. One assumes that this landmark can be characterized
by Nv interest points which are extracted by an image
processing. An interest point pj , whose coordinates in the
camera frame are given by (xj , yj , zj), is represented by a
point Pj whose coordinates are Sj = (Xj , Yj) in the image
plane, with j ∈ [1, ..., Nv] (see figure 1b). Therefore, the

visual data are represented by a 2Nv dimensional vector
S = [X1, Y1, ..., XNv

, YNv
]T .

The robot is a sampled system whose inputs evolve at each
instant t = kTs, where Ts is the sampling time. Assuming
that the inputs Q(t1) are constant during the two instants
t1 and t2 = t1 + Ts, the following prediction model of the
visual features between t1 and t2 has been obtained in [20]:

Xj(t2) =
zj(t1)Xj(t1)

zj(t2)

Yj(t2) = f
zj(t2)

{
C1 cos(A)− C2 sin(A)

+∆rp sin(θp(t2)) + υ(t1)
ωr(t1) cos(θp(t2))− cy

}
zj(t2) = C1 sin(A) + C2 cos(A)

−∆rp cos(θp(t2)) + υ(t1)
ωr(t1) sin(θp(t2))− cx

(2)
where:

A =
(
ωr(t1) + ωp(t1)

)
Ts

C1 =
Yj(t1)zj(t1)

f
− ∆rp sin(θp(t1)) − υ(t1)

ωr(t1)
cos(θp(t1)) + cy

C2 = zj(t1) + ∆rp cos(θp(t1)) − υ(t1)
ωr(t1)

sin(θp(t1)) + cx

C. Equivalent Control Vector

In order to modify the solution provided by the solver,
one will use the equivalent control vector method presented
in [19]. It consists in computing the smallest sequence of
control inputs connecting two states of a system, in our
case the camera states. It has been shown in [19] that
the considered robotic system is controllable in one step.
Thus, it exists a constant control input vector Q̃t1|t2 , named
equivalent control vector, allowing to reach in one step
any camera state χc(t2) from χc(t1), with t2 > t1. This
equivalent control vector allows to link two images without
the need of intermediate ones as it is illustrated in Fig. 2.
Defining ∆xc = xc(t2)− xc(t1) and ∆yc = yc(t2)− yc(t1),

L
a
n
d
m
a
rk

Fig. 2: Example of equivalent control vectors

the equations computing each element of Q̃t1|t2 have been
identified as [19]:

υ̃ =

√
ω̃2
r

(
∆2

xc
+∆2

yc

4 sin2(ηC1)
−∆2

rp

)
ω̃r = 2

Ts
arctan (γ)

ω̃p = 1
Ts

[θp(t2)− θp(t1) + θr(t2)− θr(t1) + ω̃rTs]
(3)

with γ = − ∆xc sin(θr(t1))+∆yc cos(θr(t1))
2∆rp+∆xc cos(θr(t1))+∆yc sin(θr(t1)) , ηC1 =

ωr(k)Ts

2 and ηC2 = 2θr(k)+ωr(k)Ts

2 . By using the formulas
(3), it is now possible to obtain the equivalent control vector
Q̃t1|t2 = [υ̃, ω̃r, ω̃p]

T linking the image at instant t2 from
the image at t1.

III. VISUAL PREDICTIVE CONTROL

A. The VPC Scheme

A VPC scheme consists in coupling NMPC with IBVS.
On the one hand, similarly to NMPC, it consists of com-
puting an optimal control sequence Q

∗
(.) that minimizes

a cost function JNp over a prediction horizon of Np steps
while taking into account a set of user-defined constraints
C(Q∗(.)). The optimal control sequence is of length Nc,
which represents the control horizon. In other words, the
N th
c first predictions are computed using independent control

inputs, while the remaining ones are all obtained using a
unique control input equals to the last element of Q∗(.).
On the other hand, similarly to IBVS, the task to achieve
is defined as an error in the image space. To do so, ones
defines S as the vector containing the coordinates of Nv
visual features and S∗ as the one containing their reference
values. In this work, one uses points as visual features, and in
this particular case S = [X1, Y1, ..., Xj , Yj , .., XNv

, YNv
]T .

Finally, the cost function to minimize is defined as the sum
of the quadratic error between the visual feature coordinates
vector Ŝ(.) predicted over the horizon Np and the desired
ones S∗. The optimal problem is then defined as follows:

Q
∗
(.) = min

Q(.)

(
JNp

(S(k),Q(.))
)

(4)

with

JNp
(S(k),Q(.)) =

k+Np∑
p=k+1

[Ŝ(p)− S∗]T [Ŝ(p)− S∗] (5)

subject to

Ŝ(k + 1) = f(Ŝ(k),Q(k)) (6a)

Ŝ(k) = S(k) (6b)

C(Q
∗
(.)) ≤ 0 (6c)

where Q(.) = [Q(k), ...,Q(k + Np − 1)]. The prediction
function f(Ŝ(k),Q(k)) in equation (6a) corresponds to
the prediction model given in equation (2). Moreover, the
predicted visual features rely on the last measured ones, as
stated by equation (6b). Finally, equation (6c) is used to
include the constraints in the optimization problem. The set
of constraints is presented in the following sections.
Remark 1: Solving equation (4) leads to the optimal sequence
Q
∗
(.). As it is usually done, only the first element Q

∗
(1) is

applied to the system. At the next iteration, the minimization
problem is restarted, and a new Q

∗
(.) is computed. This loop

is repeated until the task is achieved.
Remark 2: Numerical solvers require an initial value for the
vector to optimize. In this work, the results of the previous
optimization are used as the initial guess of the current one.

B. The Zero Terminal Equality Constraint

In this work, the stability of the VPC scheme relying
on a finite prediction horizon is achieved by adding a zero
terminal equality constraint. It is defined as the error between

the prediction of the visual feature Ŝ(k + Np) obtained at
the end of the prediction horizon, and the desired ones S∗.

||Ŝ(k +Np)− S∗|| = 0 (7)

The equality constraint (7) being almost impossible to
achieve, one uses the following inequality constraint:

||Ŝ(k +Np)− S∗|| − δtc ≤ 0 (8)

where δtc is a user defined threshold sufficiently small to
impact the optimization process similarly to the equality
while offering an efficient implementation of the constraint.

The respect of this constraint at each iteration guarantees
the recursive feasibility, i.e., there exists a trajectory from
the current state leading to the desired one. If the solver
cannot compute a Q

∗
(.) that fulfills this constraint, then the

prediction horizon is too short and/or the constraints on the
control inputs are too restrictive to reach the goal [4]. This
issue is addressed in the following section.

C. The Input Constraints

The constraints applied to the control input vector are
usually in the form of boundaries. They allow to take into
account the physical limits of the actuators. However, for a
given number of prediction steps Np, they also limit the size
of the feasibility set. To overcome this issue, it is proposed to
divide the set of control input constraints into two subsets. In
the first one, the boundaries correspond to the actual limits of
the actuators and are named tight boundaries. In the second
one, the boundaries are relaxed and do not have any physical
sense. These boundaries are called relaxed or extended. Thus,
one obtains the following inequality constraints:

[
Q(i)−Qu|t
Ql|t −Q(i)

]
≤ 0, if 1 ≤ i ≤ Nc −Nr

[
Q(i)−Qu|r
Ql|r −Q(i)

]
≤ 0, if Nc −Nr < i ≤ Nc

(9)

where i ∈ [1, ..., Nc], Nr is the number of prediction steps
with relaxed boundaries, Ql|t and Qu|t are respectively
the lower and upper tight boundaries corresponding to the
actuators limits, and Ql|r and Qu|r are respectively the lower
and upper relaxed boundaries. Thus, the command applied
to the robot, which belongs to the first part of the prediction
horizon, respects the actuators boundaries, while the feasible
set is enlarged by the use of extended boundaries. Note that,
ideally one would like to set the relaxed constraints to infinity
but the majority of the solvers requires finite boundaries.

D. The Obstacle Avoidance Constraints

To perform a safe navigation, constraints can be used to
avoid collision with the obstacles in the vicinity of the robot.
Traditionally, the avoidance is obtained by guaranteeing
a minimal distance between one or several points of the
obstacles and the centroid of the robot for each predicted
state. When considering small displacements between two

states, this approach is sufficient to avoid collisions. How-
ever, the use of relaxed input boundaries may lead to large
displacements, requiring then to check the risk of collision
along the trajectories, and not only for the predicted states.

In this work, the control inputs are considered constant
between two sampling times. Thus, for the given robotic
system, the pieces of trajectory performed between two
consecutive states are either a segment when ωr = 0 or an
arc of circle when ωr 6= 0. The constraint to avoid collision
consists then in guaranteeing a minimal distance between the
points representing the obstacle and a segment or an arc of
circle. For No points Cm representing the obstacles, with
m ∈ [1, ..., No], the set of constraints can be written as:

δc −∆(Cm, χ̂(n)|χ̂(n+ 1)) ≤ 0 (10)

where n ∈ [1, ..., Np − 1] and ∆(Cm, χ̂(n)|χ̂(n + 1)) is
the shortest distance between Cm and the piece of trajectory
between two consecutive predicted states χ̂(n) and χ̂(n+1).
Finally, δc is a user-defined distance preventing collisions.

IV. OPTIMIZATION OF THE SUB-OPTIMAL SOLUTION

The optimal problem being defined, it is necessary to com-
pute a solution at each iteration, which is usually achieved
by a numerical solver. For complex problems (nonlinear cost
functions and constraints, non convex sets, large control input
vectors), it is challenging to compute the global solution, and
usually the solver provides a local solution.

Fig. 3: Example of trajectories with Nc = 9 and Nr = 2. (a)
Global solution: the first extended command allows reaching
the goal and the second one is null. (b) Local solution: the
two extended commands are used to reach the goal.

For a regulation problem, all the states of a global solution
are as close as possible to the desired values while dealing
with the constraints. Thus, in the case where there are
more prediction steps than required to reach the goal, the
unnecessary steps are the last ones and have null command
values. For the proposed approach, it means that the global
solution minimizes the use of the last steps with the relaxed
constraints. They only allow completing the trajectory and
are null when unnecessary (see figure 3). When only a local
solution can be computed, there is no more guarantee the
pieces of trajectory obtained with the relaxed constraints are
minimal (see figure 3). In the worst case scenario, the first
control inputs are null and the trajectory is only composed
of the steps with the extended control inputs. In such a case,

either the closely similar ones, the first command is null, or
quasi null, and the robot is stuck in a local minima.

To take full advantage of the introduction of the relaxed
constraints while dealing with such issues, one proposes to
modify the obtained trajectory. The objective is to conserve
the overall shape of the trajectory while modifying the
sequence of control inputs to avoid local minima and improve
performances. To achieve this aim, one introduces a new two
steps method. First, using the equivalent control vectors one
tries to merge some of the control inputs. Thus, the null
commands are merged with other ones and local minima are
avoided. Next, to compensate for the merged control inputs
and to conserve the original shape of the trajectory, one
creates new commands by breaking the extended commands
into smaller pieces. These two steps are repeated for each
element of the control input vector to improve the whole
command vector. They are now presented in greater detail.

A. Commands Merging

In order to merge commands, one first computes the Np
equivalent control vectors Q̃k|k+i between the initial camera
pose at instant tk and the Np predicted ones at the predicted
instants tk + i ∗ Ts, with i ∈ [1, ..., Np]. Next, one needs
to find among the Q̃k|k+i respecting the boundaries Ql|t
and Qu|t and the collision constraints, the one providing
the largest piece of trajectory. It corresponds to the Q̃k|k+i

with the highest value for i among the ones dealing with the
constraints. One denotes the highest value of i as Nm and one
defines QM = Q̃k|k+Nm

. When Nm > 1, it means that QM

merges the Nm first control inputs Q(k), ...,Q(k+Nm−1).
Now that a merging command dealing with the constraints

has been computed, it has to be included in the sequence
Q
∗
(.). Let first define Ns as the number of tight commands

that are conserved in the merging process and Nz as the
number of commands that disappear and need to be replaced.

Ns = Nc −Nr −Nm
Nz = Nm − 1

(11)

To include the merging command QM , the control sequence
Q
∗
(.) is modified as follows (see figure 4.b for an example):
• The first element Q

∗
(1) is equal to QM .

• The Ns following elements [Q
∗
(2), ...,Q

∗
(2+Ns−1)]

are equal to [Q(k +Nm), ...,Q(k +Nm +Ns − 1)].
• The Nz following elements [Q

∗
(2 + Ns), ...,Q

∗
(1 +

Ns +Nz)] are null.
• The last Nr elements are not modified.

B. Extraction of New Commands

The merging command being calculated and included, it
is now proposed to extract tight commands from the relaxed
ones to replace the null ones introduced in the previous step.
The approach consists in extracting a piece of the trajectory
obtained with the relaxed commands. One first defines two
indices un ∈ [Nc −Nr−Nz, ..., Nc −Nr] and ue = Nc −
Nr + 1 to respectively iterate over the null commands and
the extended ones. Next, one defines a gain λ to extract from

Fig. 4: Example of trajectory improvement. (a) Initial tra-
jectory with Nc = 9 and Nr = 2. (b) The two first
commands are merged, Nm = 2, Ns = 5, and Nz = 1.
The merging command is included as the first element, the
five remaining tight commands are copied and the seventh
one is null. (c) The null command is replaced by a tight one
extracted from the extended one. The extended command
is updated. (d) Next iteration: the first element is removed
from the merging process. (e) The second element is now the
command merging the second and third commands. A tight
command is included in the seventh element to compensate
the merging one and the first extended command is updated.
At this point the trajectory cannot be improved anymore.

the extended command the longest piece of trajectory lying
within the tight bounds. It is computed as follows:

λ = max

(
τυ
|υ(ue)|

,
τωr

|ωr(ue)|
,

τωp

|ωp(ue)|

)
(12)

where τυ , τωr
, and τωp

are the upper boundaries on υ, ωr,
and ωp. If υ(ue), ωr(ue) and ωp(ue) are null or within the
tight boundaries, then the index ue is incremented by one to
consider the next extended control inputs. λ being calculated,
one obtains the new commands as follows:

QE(un) = λQ(ue) (13)

Finally, after extracting a new tight command from an ex-

Configuration Np Nc Nr TC OC TI
Ω1 15 15 0 No Yes No
Ω2 15 15 5 Yes Yes No
Ω3 15 15 5 Yes Yes Yes

TABLE I: Configuration description - TC: terminal constraint
- OC: obstacle constraint - TI: trajectory improvement

tended one, one updates the extended command to conserve
the original trajectory. To do so, one computes the new state
χ̂c(k + un) obtained with QE(un). It is then possible to
compute the equivalent control vector Q̃k+un|k+ue

between
this new state and the end of the trajectory piece obtained
with the extended command. This equivalent control vector
is used as the updated extended control input (see figure 4.c).

The use of this method guarantees that the first command
is non-null, which prevents local minima. Moreover, the two
steps are repeated to process the whole control sequence. At
each iteration the control sequence is updated by removing
its first element from the merging process (see figure 4.d).
Thus, the whole control sequence is improved. Although only
the first command is applied, providing a modified control
sequence as initial values to the next optimization process
allows improving the next calculated trajectory.

V. RESULTS

In this section, we present the results obtained simulating
a VPC servoing for a differential drive robot equipped with
a camera1. The program was implemented using the C++
language and the cost function minimization was done with
the SQP solver from the NLopt package [21].

In this work, we consider the depth of the visual features as
known. Moreover, at the first step, the minimization problem
is solved with a control vector equal to zero. For the next
navigation steps, it is initialized with the results of the
previous minimization. Finally, the tight boundaries are setup
such as 0 ≤ υ ≤ 0.4m/s, −0.1rad/s ≤ ωr ≤ 0.1rad/s, and
−0.1rad/s ≤ ωp ≤ 0.1rad/s, and the extended ones are ten
times larger. In the figures, the robot is represented in dark
blue, the path of the mobile base by a plain orange line, and
the predicted path of the camera by a dashed orange line.
The desired camera pose is symbolized by a red triangle and
the landmark is represented by red points. The obstacle is
represented by a plain green circle and the safety boundary
by a pointed green circle. In the figures representing the
visual features evolution, green dots are the initial values, red
dots the final values, and blue ones are the desired values.

One considers the three configurations described in table
I. For the first one Ω1, the range covered by the prediction
horizon does not allow reaching the desired state, i.e., the
stability is not guaranteed. The robot drives towards the
obstacle, reaches a local minima and fails to make the visual
features converge the desired ones (fig. 5a and 5b). With the
second configuration Ω2, the range covered by the prediction
horizon allows reaching the desired state and dealing with
the terminal constraint, i.e., stability is guaranteed when the

1A video is also available: https://youtu.be/u9KKZJ-MTXk

https://youtu.be/u9KKZJ-MTXk

(a) Ω1 - Iteration 20 (b) Ω1 - Visual features

(c) Ω2 - Iteration 29 (d) Ω2 - Visual features

(e) Ω3 - Iteration 29 (f) Ω3 - Visual features

Fig. 5: Simulated results for the three configurations

global solution of the optimization problem is calculated.
However, in this example only a local solution is computed
(SQP solver) which is not sufficient to prevent the navigation
failure. Indeed, the robot once again drives towards the
obstacle, reaches a local minima and fails to make the
visual features converge the desired ones (fig. 5c and 5d).
At the state corresponding to the local minimum, the local
solution offers a trajectory reaching the desired state, but
mostly using the steps with extended constraints. The local
minimum is due to the commands with tight constraints being
null or quasi-null, preventing the robot to achieve the task.
Finally, with Ω3 the local minima is avoided by modifying
the obtained trajectory. As it can be seen if figure 5e, the
predicted trajectory is now made of steps with both tight and
extended boundaries. The trajectory optimization efficiently
minimized the use of steps with extended boundaries, which
allowed the robot to achieve the navigation task (figure 5f).

VI. CONCLUSION

In this work, one proposes to guarantee the stability
of a VPC scheme by relaxing some of the control input
boundaries. Moreover, an obstacle avoidance constraint over
the pieces of trajectory is added. Finally, a two steps methods
relying on the equivalent control input method allows to
modify the obtained trajectory and to improve the solution
suboptimality. Thus, the robot can efficiently reach the de-
sired state while dealing with obstacles and without being
stuck in local minima as shown in the result section. It is

now planned to extend the navigation process by adding
constraints dealing with visual feature occultation, and to
implement and test our approach on a robotic system.

REFERENCES

[1] G. Allibert, E. Courtial, and F. Chaumette, “Predictive control for
constrained image-based visual servoing,” IEEE Trans. on Robotics,
vol. 26, no. 5, pp. 933–939, October 2010.

[2] F. Chaumette and S. Hutchinson, “Visual servo control, part 1 : Basic
approaches,” Robotics and Automation Mag., vol. 13, no. 4, 2006.

[3] F. Allgower, R. Findeisen, Z. K. Nagy, et al., “Nonlinear model pre-
dictive control: From theory to application,” Journal-Chinese Institute
Of Chemical Engineers, vol. 35, no. 3, pp. 299–316, 2004.

[4] L. Grüne and J. Pannek, “Nonlinear model predictive control,” in
Nonlinear Model Predictive Control. Springer, 2017, pp. 45–69.

[5] F. Chaumette, “Potential problems of stability and convergence in
image-based and position-based visual servoing,” in The Confluence
of Vision and Control, D. Kriegman, G. . Hager, and A. Morse, Eds.
LNCIS Series, No 237, Springer-Verlag, 1998, pp. 66–78.

[6] A. Assa and F. Janabi-Sharifi, “Robust model predictive control
for visual servoing,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sep. 2014, pp. 2715–2720.

[7] A. Paolillo, T. S. Lembono, and S. Calinon, “A memory of motion
for visual predictive control tasks,” in International Conference on
Robotics and Automation, no. CONF, 2020.

[8] S. Heshmati-alamdari, G. K. Karavas, A. Eqtami, M. Drossakis, and
K. J. Kyriakopoulos, “Robustness analysis of model predictive control
for constrained image-based visual servoing,” in 2014 IEEE Int. Conf.
on Robotics and Automation, May 2014, pp. 4469–4474.

[9] A. Mcfadyen, P. Corke, and L. Mejias, “Visual predictive control of
spiral motion,” IEEE Transactions on Robotics, vol. 30, no. 6, pp.
1441–1454, 2014.

[10] F. Ke, Z. Li, H. Xiao, and X. Zhang, “Visual servoing of constrained
mobile robots based on model predictive control,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1428–
1438, July 2017.

[11] D. Lee, H. Lim, and H. J. Kim, “Obstacle avoidance using image-based
visual servoing integrated with nonlinear model predictive control,” in
2011 50th IEEE Conference on Decision and Control and European
Control Conference. IEEE, 2011, pp. 5689–5694.

[12] A. Hajiloo, M. Keshmiri, W. Xie, and T. Wang, “Robust online model
predictive control for a constrained image-based visual servoing,”
IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2242–
2250, April 2016.

[13] C. Copot, C. Lazar, and A. Burlacu, “Predictive control of nonlinear
visual servoing systems using image moments,” IET control theory &
applications, vol. 6, no. 10, pp. 1486–1496, 2012.

[14] C. Lazar, A. Burlacu, and C. Copot, “Unified point and image
moment features for image based predictive visual servoing systems,”
in 2012 13th International Conference on Optimization of Electrical
and Electronic Equipment (OPTIM). IEEE, 2012, pp. 1458–1464.

[15] F. Fusco, O. Kermorgant, and P. Martinet, “Integrating features accel-
eration in visual predictive control,” IEEE Robotics and Automation
Letters, 2020.

[16] D. Q. Mayne and H. Michalska, “Receding horizon control of nonlin-
ear systems,” in Proceedings of the 27th IEEE Conference on Decision
and Control. IEEE, 1988, pp. 464–465.

[17] S. a. Keerthi and E. G. Gilbert, “Optimal infinite-horizon feedback
laws for a general class of constrained discrete-time systems: Stability
and moving-horizon approximations,” Journal of optimization theory
and applications, vol. 57, no. 2, pp. 265–293, 1988.

[18] H. Chen and F. Allgöwer, “A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability,” Automatica,
vol. 34, no. 10, pp. 1205–1217, 1998.

[19] A. Durand-Petiteville, “Navigation référencée multi-capteurs d’un
robot mobile en environnement encombré,” Ph.D. dissertation, Uni-
versité Paul Sabatier-Toulouse III, 2012.

[20] D. Folio and V. Cadenat, Treating Image Loss by using the Vi-
sion/Motion Link: A Generic Framework. IN-TECH, 2008, ch. 4.

[21] S. G. Johnson, “The nlopt nonlinear-optimization package,” 2020.
[Online]. Available: http://github.com/stevengj/nlopt

http://github.com/stevengj/nlopt

	Introduction
	Preliminaries
	System Modeling
	The Visual Features
	Equivalent Control Vector

	Visual Predictive Control
	The VPC Scheme
	The Zero Terminal Equality Constraint
	The Input Constraints
	The Obstacle Avoidance Constraints

	Optimization of the Sub-Optimal Solution
	Commands Merging
	Extraction of New Commands

	Results
	Conclusion
	References

