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Laboratoire Sṕecification et V́erification

CNRS & INRIA Futurs projet SECSI & ENS Cachan
61, av. Pdt. Wilson, 94235 Cachan Cedex, France

email:demri@lsv.ens-cachan.fr

June 22, 2005

Abstract

We present a reduction from a new logic extending van der Meyden’s
dynamic logic of permission (DLP) into propositional dynamic logic (PDL),
providing a 2EXPTIME decision procedure and showing that all the machin-
ery for PDL can be reused for reasoning about dynamic policies. As a side-
effect, we establish that DLP isEXPTIME-complete. The logic we introduce
extends the logic DLP so that the policy set can be updated depending on its
current value and such an update corresponds to add/delete transitions in the
model, showing similarities with van Benthem’s sabotage modal logic.

Key-words: dynamic logic of permissions, logic of programs, deletionof
states/transitions, computational complexity.

1 Introduction

Reasoning about policies. Deontic logic is commonly defined as the logic of
obligation, prohibition and permission. Indeed, reasoning about ideal and actual
behaviors is useful in many fields of computer science, for instance to specify de-
sired user behaviors, security policies, and normative integrity constraints, to quote
a few examples [WM94]. From a formal viewpoint, numerous deontic logics are
modal logics with extra features, some of them being quite original. For instance,
in the possible-worlds semantics of such logics, it is common to distinguish the per-
mitted states from the forbidden ones or alternatively the permitted actions from the
forbidden ones. Moreover, several deontic logics [Mey88, vdM96, Bro03, PW04]
are variants of propositional dynamic logic (PDL), see e.g., [HKT00], formalism
sometimes used to specify the behavior of finite-state systems [CS91].
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Among these logics, van der Meyden’s dynamic logic of permission (DLP) [vdM96]
can be defined as an extension of test-free PDL with modal operators that takes into
account that some transitions are permitted (the green ones) and all the other ones
are forbidden (the red ones). In a model, the set of green transitions forms the so-
called policy set and modal operators in the logical language have semantics that
distinguish green transitions from red ones. Reasoning about the permission of
sequential actions has motivated the introduction of DLP [vdM96] in order to im-
prove Meyer’s logic [Mey88] which distinguishes permittedstates from forbidden
ones (instead permitted transitions from forbidden ones asin DLP). Hilbert-style
axiomatization of DLP is provided in [vdM96] and anNEXPTIME upper bound for
the satisfiability problem is established (even though no complexity questions are
explicitly discussed in that paper). In [PW04], DLP is generously extended in order
to specify in the logical language the updates of the policy set by adding or by delet-
ing transitions. This is a very substantial extension of DLPand in [PW04] an ax-
iomatization is provided as well as anNEXPTIME upper bound (the proofs of these
results are promised for the full version of [PW04]). The ability to add or delete
transitions is reminiscent to van Benthem’s sabotage modallogic SML [vB02]
whose satisfiability problem for a variant has been proved undecidable in [LR03]
(when deleting transitions instead of deleting states). The destructive dimension of
SML and its ability to quantify over alternative models (obtained by deleting one
transition/state) seem to be the main reasons for its undecidability. Hence, the de-
cidability of the logic DLPdyn introduced in [PW04] is a quite remarkable result. In
order to grasp the different decidability status of SML and DLPdyn, in SML there
is no way to specify anything about which states or transitions are deleted. By
contrast, in DLPdyn, the object language can specify the transitions to be deleted
or added.

Motivations. However, by experience, we know that many logics have been able
to be translated into PDL even though they were introduced for their own sake:
epistemic logics [FI87], deontic logics [Bro03], description logics [Sch91, dGL94],
information logics [DG00], regular grammar logics [Dem01]and agent dynamic
logics [STH04]. The list can be easily augmented and the mainmotivation of this
work is to try to translate DLPdyn into standard PDL. Even if at first glance, this bet
does not sound very reasonable because of the features of DLPdyn [PW04], a lot
can be gained. Indeed, the existence of such an hypotheticalsemantical translation
would explain why standard proof techniques worked smoothly for dynamic log-
ics of permission [vdM96, PW04]. More importantly, severalproof methods and
theoretical results for PDL, see e.g. [VW86], would apply immediately to these
logics.
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Our contribution. We embed an extension of DLPdyn, namelyDLP+
dyn, into

standard PDL by encoding faithfullyDLP+
dyn semantics and by taking advantage

of various fundamental properties ofDLP+
dyn. Roughly speaking, we allow in

DLP+
dyn the test operator “?” and the operators for updating the policy set can be

parameterized by the current policy set, a novelty with respect to [PW04]. In spite
of these substantial extensions, the exponential-time translation fromDLP+

dyn into

PDL entails thatDLP+
dyn satisfiability is decidable in 2EXPTIME. As a corollary,

we also get

∗ theEXPTIME-completeness of DLP satisfiability,

∗ theEXPTIME-completeness ofDLP+
dyn restricted to formulae of change depth

(to be defined) at mostk, for some fixedk ≥ 0,

which are all new results. It is worth observing that the extension we have intro-
duced is not primarily motivated by the need to increase the expressive power of
DLPdyn, but rather for technical reasons. In general, in the paper we focus our
attention on the reductions rather than on interpretationsof the concepts from the
deontic viewpoint. Such interpretations can be found in theoriginal papers, see
e.g. [Mey88, vdM96, PW04].

In [vdM96], a strong motivation to introduce the logic DLP isto replace the
concept of permitted states from [Mey88] by the concept of permitted actions. In
Section 4, we define a variant of Meyer’s logic [Mey88] with the ability to update
dynamically the interpretation of the violation constantvc as DLPdyn [PW04] is
the dynamic counterpart of DLP [vdM96]. The violation constant vc is defined
as a distinguished propositional variable for which no action can lead to a state
satisfying it. We show that this new logic also admits a translation into PDL.

All our proofs are semantical in nature and do not rely on sophisticated com-
pleteness proofs as those for PDL-like logics, see e.g. [vdM96, PW04], which al-
lows us to have quite elementary proofs.

Plan of the paper. In Section 2, we introduce the logicDLP+
dyn extending the

logic DLPdyn [PW04], the fragments considered in the paper and we presentthe
main difficulties to deal withDLP+

dyn. In Section 3, we define the translation

from DLP+
dyn into PDL and we show its soundness. Complexity issues are also

discussed in this section. In Section 4, we introduce a counterpart of Meyer’s
logic with update of the set of forbidden bad states. Section5 presents concluding
remarks and open problems.
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2 The logics PDL, DLP, DLPdyn and DLP+
dyn

2.1 The logic for dynamic policiesDLP
+
dyn

Given a setΠ0 = {ai : i ≥ 1} of atomic actions and a setPROP = {pi : i ≥ 1} of
propositional variables, we define the setΠ of action expressions and the setFOR
of formulae forDLP+

dyn inductively as follows:

Π 3 α, β ::= ai | α ∪ β | α;β | α∗ | φ?

FOR 3 φ, ψ ::= pi | φ ∧ ψ | ¬φ | [α]φ | perm(α)φ |
freeperm(α)φ | grant(ψ, ψ′)φ | revoke(ψ, ψ′)φ.

As in propositional dynamic logic PDL (see e.g. [HKT00]) we have an count-
ably infinite supply of atomic actions and propositional variables, but a given for-
mula/action expression contains only a finite amount of suchsyntactic objects.
Given an action expressionα, we writeL(α) to denote the regular language ofα
over the finite alphabet composed of the atomic actions together with action ex-
pressions of the formφ? occurring inα. A DLP+

dyn-modelM is a structure of the
form 〈W, (Ra)a∈Π0

, V, P 〉 where

∗ W is a non-empty set of states. Each state represents the current configura-
tion of an application in time.

∗ (Ra)a∈Π0
is a family of binary relations overW . Elements ofRa are transi-

tions between the states that correspond to the progress of the application.

∗ V : W → P(PROP) is the meaning function that specifies which atomic
propositions hold true in each state.

∗ P ⊆ W ×W is a binary relation representing a policy set, i.e. the set of
permitted transitions.

We say that the formulaφ is satisfied in the modelM by the states (written
M, s |= φ) if the following conditions are satisfied:

∗ M, s |= p
def
⇔ p ∈ V (s) for everyp ∈ PROP,

∗ M, s |= φ ∧ ψ
def
⇔ M, s |= φ andM, s |= ψ,

∗ M, s |= ¬φ
def
⇔ notM, s |= φ,

∗ M, s |= [α]φ
def
⇔ for all paths of the forms0

A0−→ s1
A1−→ · · ·

An−1

−−→ sn in M
with A0A1 · · ·An−1 ∈ L(α) ands0 = s, we haveM, sn |= φ,
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∗ M, s |= perm(α)φ
def
⇔ there is a path of the forms0

A0−→ s1
A1−→ · · ·

An−1

−−→
sn in M with A0A1 · · ·An−1 ∈ L(α) such thats0 = s, for every i ∈
{0, . . . , n − 1}, Ai ∈ Π0 implies 〈si, si+1〉 ∈ P , andM, sn |= φ. Such
a path is said to beP -green. AP -green corresponds to a legal sequence of
transitions.

∗ M, s |= freeperm(α)φ
def
⇔ there is no paths0

A0−→ s1
A1−→ · · ·

An−1

−−→ sn in M
such that

− A0A1 · · ·An−1 ∈ L(α) ands0 = s,

− for somei ∈ {0, . . . , n− 1},Ai ∈ Π0 and〈si, si+1〉 6∈ P ,

− M, sn |= φ.

Such a path is said to beP -red. A path is thenP -red if one of its transitions
is non-legal.

∗ M, s |= grant(ψ, ψ′) φ
def
⇔ 〈W, (Ra)a∈Π0

, V, P ∪ P
ψ,ψ′

M 〉, s |= φ where

P
ψ,ψ′

M = {〈t, t′〉 ∈W 2 : M, t |= ψ and M, t′ |= ψ′},

∗ M, s |= revoke(ψ, ψ′) φ
def
⇔ 〈W, (Ra)a∈Π0

, V, P \ Pψ,ψ
′

M 〉, s |= φ.

An intuition explanation of the operatorgrant(ψ, ψ′)φ is as follows:φ holds
(as a norm) under the condition that allψ, ψ′-transitions are granted. With this
reading, granting and revoking is not really about ’updating’. The operators are
more like conditional operators.

We recall that in the above definition,t
φ?
−→ t′ iff t = t′ andM, t |= φ. We use

the abbreviation〈α〉φ for ¬[α]¬φ. In a model, we writeRα to denote the binary
relation

{〈s, t〉 : s0
A0−→ s1

A1−→ · · ·
An−1

−−→ sn, A0A1 · · ·An−1 ∈ L(α), s = s0, t = sn}.

As usual,φ ∈ DLP+
dyn is satisfiable iff there is aDLP+

dyn-modelM and a state
s in M such thatM, s |= φ.

perm(α)φ corresponds to3(α, φ) in [vdM96] andfreeperm(α)φ corresponds
toπ(α, φ). Hence, we have adopted the notation from [PW04] since we also use the
operatorsgrant andrevoke from [PW04] that are not present in [vdM96]. Mo-
tivations and explanations aboutP -green andP -red paths can be found in [vdM96,
PW04] whereas numerous examples of deontic properties expressible in DLPdyn

(and therefore inDLP+
dyn) can be found in [PW04].

In Fig. 2.1, we illustrate the semantics on a simple model. Inthe double circled
state,freeperm(a; d)r does not hold because the unique path labelled bya·d start-
ing at the double circled state isP -red. By contrast,grant(q, r)freeperm(a; d)r
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Transitions in the policy set are in bold.

b

d c

a

Figure 1: Illustration of the semantics

holds true on that state, because the effect ofgrant(q, r) is to include{q, s}
d
−→

{r} in the new value of the policy set.

2.2 Known fragments ofDLP
+
dyn

The logicDLP+
dyn has been designed to contain all the logics we need in the paper.

The logic PDL is equivalent to the fragment ofDLP+
dyn restricted to formulae

without any of the four operators dealing with policies. Themain result of the
paper is to define an exponential-time reduction fromDLP+

dyn into PDL, providing
not only a 2EXPTIME upper bound for the satisfiability problem, but also showing
that our extended logicDLP+

dyn is not more expressive than PDL. Satisfiability for
PDL is known to beEXPTIME-complete [FL79, Pra79].

The logic DLPdyn [PW04] is the fragment ofDLP+
dyn restricted to formulae

without the test operator “?” and with thegrant andrevoke operators restricted
to propositional formulae in their first two arguments. [PW04] states that satis-
fiability for DLPdyn is in NEXPTIME. Unlike DLPdyn, the change of policy in
DLP+

dyn may depend also on the current policy set since there are no restrictions
on the first two arguments ofgrant andrevoke. Numerous illustrations of the
use of DLPdyn from the deontic viewpoint can be found in [PW04].

Redefining DLP [vdM96] fromDLP+
dyn requires a bit more care. The language

of the logic DLP is the language ofDLP+
dyn restricted to formulae without the test

operator,grant andrevoke. However, as it was defined initially in [vdM96], the
DLP models are also a bit different: the relationsRa are defined in terms of finite
sequences instead of sequences of length 1 inDLP+

dyn. More precisely, a DLP
modelM is a structure of the form〈W, (Xa)a∈Π0

, V, P 〉 whereW is a non-empty
set,V : W → P(PROP), P ⊆ W ×W is a binary relation representing a policy
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set, and(Xa)a∈Π0
is a family of sequences of the form

a
︷ ︸︸ ︷

s0 −→ s1 −→ · · · −→ sn ∈ Xa

with n ≥ 0 and s0, . . . , sn ∈ W . This last point is the only difference with
the notion ofDLP+

dyn models. The definition of the satisfaction relation is also
modified accordingly:

∗ M, s |= [α]φ
def
⇔ for all paths of the form

A0
︷ ︸︸ ︷

s00 −→ · · · −→ sn0

0 ,

A1
︷ ︸︸ ︷

s01 −→ · · · −→ sn1

1 , . . . ,

Am
︷ ︸︸ ︷

s0m −→ · · · −→ snm
m

with sni

i = s0i+1 for every0 ≤ i < m,A0A1 · · ·Am ∈ L(α) ands00 = s, we
haveM, snm

m |= φ.

∗ M, s |= perm(α)φ
def
⇔ there is a path

A0
︷ ︸︸ ︷

s00 −→ · · · −→ sn0

0 ,

A1
︷ ︸︸ ︷

s01 −→ · · · −→ sn1

1 , . . . ,

Am
︷ ︸︸ ︷

s0m −→ · · · −→ snm
m

with sni

i = s0i+1 for every0 ≤ i < m, A0A1 · · ·Am ∈ L(α) such that
s00 = s, for all i ∈ {0, . . . ,m} andj ∈ {0, . . . , ni − 1}, Ai ∈ Π0 implies
〈sji , s

j+1
i 〉 ∈ P , andM, snm

m |= φ. By imposingn0 = · · · = nm = 1, we
regain theDLP+

dyn semantics.

∗ M, s |= freeperm(α)φ
def
⇔ there is no path

A0
︷ ︸︸ ︷

s00 −→ · · · −→ sn0

0 ,

A1
︷ ︸︸ ︷

s01 −→ · · · −→ sn1

1 , . . . ,

Am
︷ ︸︸ ︷

s0m −→ · · · −→ snm
m

such that

− sni

i = s0i+1 for every0 ≤ i < m,

− A0A1 · · ·Am ∈ L(α),

− s00 = s,

− for somei ∈ {0, . . . ,m} and j ∈ {0, . . . , ni − 1}, Ai ∈ Π0 and
〈sji , s

j+1
i 〉 6∈ P ,

− M, snm
m |= φ.

Fortunately, the slight difference in the semantics of DLP and DLP+
dyn does

not affect the satisfiability of DLP formulae.

Lemma 2.1. For any DLP formulaφ, φ is satisfiable with the DLP semantics iff
φ is satisfiable with theDLP+

dyn semantics.
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The proof below is purely semantical.
Proof: Obviouslyφ is DLP+

dyn satisfiable impliesφ is DLP satisfiable (sequences
of length 1 are particular sequences of arbitrary finite length).
Now suppose thatφ is DLP satisfiable andb1, . . . , bN are the atomic actions oc-
curring inφ. There is a DLP modelM = 〈W, (Xa)a∈Π0

, V, P 〉 ands0 ∈ W such
thatM, s0 |= φ. Let us build aDLP+

dyn modelM′ = 〈W ′, (Ra)a∈Π0
, V ′, P ′〉 by

unfolding the modelM in the following way:

∗ W ′ defined is the set of finite non-empty sequences of the form

bi0
︷ ︸︸ ︷

s00 −→ · · · −→ sn0

0 , · · · ,

bim
︷ ︸︸ ︷

s0m −→ · · · −→ snm
m

with sni

i = s0i+1 for every0 ≤ i < m, bi0 , . . . , bim ⊆ {b1, . . . , bN} and

s00 = s0. We also add

bnew
︷ ︸︸ ︷

s0 −→ s0 toW ′ wherebnew is an atomic action not in
{b1, . . . , bN}.

∗
bi0

︷ ︸︸ ︷

s00 −→ · · · −→ sn0

0 , . . . ,

bim
︷ ︸︸ ︷

s0m −→ · · · −→ snm
m

R′
bi

bi0
︷ ︸︸ ︷

s00 −→ · · · −→ sn0

0 , . . . ,

bim
︷ ︸︸ ︷

s0m −→ · · · −→ snm
m ,

bi
︷ ︸︸ ︷

s0m+1 −→ · · · −→ s
nm+1

m+1

for everyi ∈ {1, . . . , N} with sni

i = s0i+1 for 0 ≤ i ≤ m,

∗ V ′(

bi0
︷ ︸︸ ︷

s00 −→ · · · −→ sn0

0 , . . . ,

bim
︷ ︸︸ ︷

s0m −→ · · · −→ snm
m )

def
= V (snm

m ),

∗
bi0

︷ ︸︸ ︷

s00 −→ · · · −→ sn0

0 , . . . ,

bim
︷ ︸︸ ︷

s0m −→ · · · −→ snm
m

P ′

bi0
︷ ︸︸ ︷

s00 −→ · · · −→ sn0

0 , . . . ,

bim
︷ ︸︸ ︷

s0m −→ · · · −→ snm
m ,

bi
︷ ︸︸ ︷

s0m+1 −→ · · · −→ s
nm+1

m+1

def
⇔ for every0 ≤ k ≤ nm+1 − 1, 〈skm+1, s

k+1
m+1〉 ∈ P .
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One can show thatM, s0 |= φ iff M′,

bnew
︷ ︸︸ ︷

s0 −→ s0 |= φ by induction on the structure
of formulae.2

Hence, DLP can be really viewed as a proper fragment ofDLP+
dyn. We write

cd(φ) to denote the change depth of the formulaφ defined as the maximal imbri-
cation of operators dealing with updates of policies inφ. For instance,

cd(revoke(p, grant(q1, q2) p) q1) = 2.

DLP is simply the restriction ofDLP+
dyn to formulae of change depth 0 and with

no occurrence of the test operator. For the sake of clarity let us define formally the
change depth of formulae and action expressions:

∗ cd(p) = 0, cd(¬φ) = cd(φ), cd(φ1 ∧ φ2) = max(cd(φ1), cd(φ2)),

∗ cd([α]φ) = cd(perm(α)φ) = cd(freeperm(α)φ)) = cd(α) + cd(φ),

∗ cd(revoke(ψ1, ψ2)φ) = 1 +max(cd(ψ1), cd(ψ2)) + cd(φ),

∗ cd(grant(ψ1, ψ2)φ) = cd(revoke(ψ1, ψ2)φ),

∗ cd(α;β) = cd(α ∪ β) = max(cd(α), cd(β)),

∗ cd(φ?) = cd(φ), cd(α∗) = cd(α).

2.3 What makesDLP
+
dyn difficult to handle

The logicDLP+
dyn has various features that make its decidability status difficult to

establish and its translation into PDL improbable at first glance.

2.3.1 Presence of intersection

The semantics of the operatorperm can be rephrased in PDL by replacingperm(α)
by 〈t∀g(α)〉 wheret∀g(α) is obtained fromα by replacing each atomic actiona by
a∩αP . The operator∩ is interpreted as the relation intersection andαP is an action
expression whose interpretation is the policy setP . However, PDL with intersec-
tion [Dan84] has been proved decidable in 2EXPTIME, see also [Lut05]. At first
glance, it is worth observing that the PDL-like deontic logic introduced in [Mey88]
has also the intersection operator∩, but not the Kleene star operator∗.

2.3.2 Presence of complement

However, pursuing the encoding into PDL in this way, we need also complementa-
tion. Indeed, the semantics of the operatorfreeperm can be rephrased in PDL by
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replacingfreeperm(α) by¬〈t∃r(α)〉. The intended meaning of〈t∃r(α)〉> is that
there is a path labelled by a word inL(α) such that at least one transition labelled
by an atomic action does not belong toP , i.e. this transition does not belong to the
interpretation ofαP . The mapt∃r is defined as follows:

∗ t∃r(φ?) =⊥?. Indeed, the witness red transition has to be labelled by a letter
in Π0 which is not the case when the transition is labelled byφ?.

∗ t∃r(α1 ∪ α2) = t∃r(α1) ∪ t
∃r(α2),

∗ t∃r(α1;α2) = t∃r(α1);α2 ∪ α1; t
∃r(α2). The red transition is either in the

α1-part ofα1;α2 or in theα2-part if not in theα1-part.

∗ t∃r(α∗) = α∗; t∃r(α);α∗. The red transition is in one specificα-part.

∗ t∃r(a) = a ∩ −αP .

t∃r is intended to enforce the presence of a (red) transition notin P . However,
PDL with complement is undecidable (see e.g. [HKT00]) and PDL with negation
of atomic programs shown inEXPTIME in [LW04] cannot capture both intersection
and negation on atomic programs. An alternative way would beto encodeperm
andfreeperm by decomposing each atomic actionb as the union action expres-
sionbg ∪ br (green part union with the red part) such that the following conditions
hold in the models

(PROP1) Rbg andRbr are disjoint,

(PROP2) for every〈s, t〉 ∈ W ×W , 〈s, t〉 ∈ Rbg (hence〈s, t〉 is intended to be
in P ) implies〈s, t〉 6∈ Rb′r for everyb′ ∈ Π0.

Unfortunately, none of these two conditions are modally definable. However, as
we will see, disjointness can be imposed in the PDL models without changing the
class of satisfiable formulae. Condition (PROP2) is a consequence of the fact that
in the DLP semantics, the policy setP is defined as a set of pairs of states and not
as a set of triples composed of two states and an atomic action.

2.3.3 Change of models

So far, the above points concern the DLP part ofDLP+
dyn. The operatorsgrant

and revoke introduced in [PW04] force the interpretation of subformulae in
an alternative model which is reminiscent to the destructive aspect of van Ben-
them’s sabotage modal logic [vB02]. Indeed, sabotage modallogic (SML) defined
in [vB02] admits formulae of the form

φ ::= p | ¬φ | φ1 ∧ φ1 | 3φ | 〈−〉φ

10



and the models are Kripke structures of the formM = 〈W,R, V 〉 whereV : W →
P(PROP). The only change with respect to standard possible-worlds semantics is
the following: M, w |= 〈−〉φ iff there is aw′ ∈ W such thatM′, w |= φ where
M′ is the restriction ofM to W \ {w′}. The decidability status for the satisfia-
bility problem of SML is open. However, a variant of SML has been introduced
in [LR03], we call it SML′ herein, for which the satisfiability problem has been
proved undecidable [LR03]. Instead of deleting states in the models as in SML,
SML′ provides the possibility to withdraw transitions, a feature also shared with
DLP+

dyn (but in a different fashion). Formulae of SML′ are of the form

φ ::= p | ¬φ | φ1 ∧ φ1 | 3aφ | 〈−〉aφ

wherea takes its value in a finite alphabetΣ. The models are Kripke structures
of the formM = 〈W, (Ra)a∈Σ, V 〉 and the only change with respect to stan-
dard possible-worlds semantics is the following:M, w |= 〈−〉aφ iff there is
〈w′, w′′〉 ∈ Ra such thatM′, w |= φ whereM′ is obtained fromM by sim-
ply withdrawing〈w′, w′′〉 fromRa. The satisfiability problem for SML′ is shown
undecidable in [LR03] as soon as|Σ| ≥ 2 (another variant is shown undecidable
in [Roh04] in which deletion of the transitions is done locally to the current state).
In the case|Σ| = 1, the decidability status is open. Hence, both SML′ andDLP+

dyn

have primitives in the language to withdraw edges. Even worse, inDLP+
dyn transi-

tions can also be added to the policy set.
Hence, in view of the above points, it is not surprising thatDLP+

dyn is not an

easy logic to study. However, in the following, we shall showthatDLP+
dyn can be

translated into PDL by taking advantage of a few fundamentalproperties.

3 A purely semantical reduction

3.1 Fundamental properties ofDLP
+
dyn

In order to define the reduction fromDLP+
dyn into PDL, some preliminary remarks

are needed that will help hopefully the comprehension of thetranslation.

3.1.1 How the policy set can be restricted

The definition of the satisfaction relation can be modified insuch a way that for the
semantics ofgrant(ψ1, ψ2) φ andrevoke(ψ1, ψ2) φ, we can restrict ourselves
to the pairs inP ′ that belong to atomic relations occurring inφ (see Lemma 3.1
below).
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Lemma 3.1. Let M = 〈W, (Ra)a∈Π0
, V, P 〉 andM′ = 〈W, (Ra)a∈Π0

, V, P ′〉
be models such thatP ′ = P ∩ (

⋃

1≤i≤N Rbi) for some finite set of atomic ac-
tions {b1, . . . , bN}. Then for every formulaφ built over the atomic actions in
{b1, . . . , bN}, for everys ∈W , M, s |= ψ iff M′, s |= ψ.

The proof is by an easy verification (structural induction onψ). In the fol-
lowing, whenM, s |= φ without any loss of generality we can assume thatP ⊆
Rb1 ∪ · · · ∪RbN whereb1, . . . , bN are atomic actions occurring inφ.

In Lemma 3.2 below, we show that ifαP is an action expression in PDL inter-
preted byP ∩ (Rb1 ∪ · · · ∪RbN ), then one can easily built an action expression in

PDL interpreted by(P ∪Pψ,ψ
′

M )∩ (Rb1 ∪ · · · ∪RbN ) whenψ, ψ′ are built over the
atomic actionsb1, . . . , bN . In that way, we can deal with green transitions and red
transitions with no explicit use of intersection and complement on relations.

Lemma 3.2. LetM = 〈W, (Ra)a∈Π0
, V, P 〉 be aDLP+

dyn-model and{b1, . . . , bN}
be a finite set of atomic actions such that there are action expressionsαP andα−P

verifying

(I) RαP
= P ∩ (Rb1 ∪ · · · ∪RbN ),

(II) Rα−P
= ((W ×W ) \ P ) ∩ (Rb1 ∪ · · · ∪RbN ).

Then, for all formulaeψ, ψ′ built over{b1, . . . , bN},

(III) (P ∪ Pψ,ψ
′

M ) ∩ (Rb1 ∪ · · · ∪RbN ) = Rβ with

β = αP ∪ (ψ?; b1;ψ
′?) ∪ · · · ∪ (ψ?; bN ;ψ′?)

(IV) ((W ×W ) \ (P ∪ Pψ,ψ
′

M )) ∩ (Rb1 ∪ · · · ∪RbN ) = Rβ′ with

β′ = (¬ψ)?;α−P ∪ α−P ; (¬ψ′)?

The policy sets from Lemma 3.2(III) and Lemma 3.2(IV) are typically obtained
with the operatorsgrant andrevoke.
Proof: (III) can be easily shown by taking advantage of the equivalence between
the propositions below:

∗ s
ψ?
−→ s

bi−→ s′
ψ′?
−→ s′ for somei,

∗ M, s |= ψ, 〈s, s′〉 ∈ Rbi for somei, andM, s′ |= ψ′,

∗ 〈s, s′〉 ∈ P
ψ,ψ′

M ∩ (Rb1 ∪ · · · ∪RbN ).
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Similarly, (IV) can be easily shown by taking advantage of the equivalence between
the propositions below:

∗ either〈s, s′〉 ∈ R(¬ψ)?;α−P
or 〈s, s′〉 ∈ Rα−P ;(¬ψ′)?,

∗ (not (M, s |= ψ andM, s′ |= ψ′)) and〈s, s′〉 ∈ Rα−P
,

∗ 〈s, s′〉 ∈ (W×W )\Pψ,ψ
′

M and〈s, s′〉 ∈ ((W×W )\P )∩(Rb1 ∪· · ·∪RbN ),

∗ 〈s, s′〉 ∈ ((W ×W ) \ (P ∪ Pψ,ψ
′

M )) ∩ (Rb1 ∪ · · · ∪RbN ).

2

Hence, assuming thatαP is an action expression interpreted byP ∩(
⋃

a∈φRa)
andα−P is an action expression interpreted by(W ×W \ P ) ∩ (

⋃

a∈φRa), the
program expressionαP ∪ (ψ?;∪a∈φ;ψ

′?) is interpreted byP ∪ P ′ when dealing
with grant(ψ, ψ′)φ. Similarly, in case ofrevoke(ψ, ψ′) φ, the program expres-
sion(¬ψ?;α−P )∪ (α−P ;¬ψ′?) is interpreted byP \P ′. This means that the new
policy set (either by revoking or by granting) can be expressed in PDL assuming
that its initial value could be interpreted by a program expression in PDL. In the
forthcoming translation function, one argument is devotedto theP part and a sec-
ond one is devoted to the complement ofP both restricted to atomic actions present
in the formula to translate. Observe that in PDL, complementation of relations is
not present.

3.1.2 Disjointness of atomic actions

In order to encode the initial value ofP by an action expression in PDL, we
shall encode every atomic actionbi occurring in the formulaφ to be translated
by the unionbgi ∪ bri (initial green part and initial red part, respectively). Addi-
tionally, if b1, . . . , bN are the atomic actions present inφ, we shall enforce that
b
g
1, b

r
1, . . . , b

g
N , b

r
N are interpreted by disjoint relations which is possible in PDL,

see Lemma 3.3. Both properties (PROP1) and (PROP2) are satisfied in that case.
In that way, the initial value ofαP can be represented by the action expression
b
g
1 ∪ · · · ∪ bgN and its complement−αP (relatively to

⋃

b∈φ(b
g ∪ br)) by the action

expressionbr1 ∪ · · · ∪ brN . By applying a finite amount ofgrant andrevoke,
Lemma 3.2 guarantees that the current values ofαP and−αP are equivalent to
action expressions of the formψ1?; · · · ;ψn?; b

•
i ;ψ

′
1? · · · ;ψ′

n′? with • ∈ {g, r}
(of course, not the same sets).ψ1, · · · , ψn, ψ

′
1, ψ

′
n′ are PDL formulae obtained by

translation andn is not necessarily equal ton′.

13



3.1.3 Encoding transition relations

It remains to explain howbi is treated in the translation process.

∗ Whenbi occurs in the immediate context of[α], bi is encoded bybgi ∪ b
r
i .

∗ Whenbi occurs in the immediate context ofperm(α), bi is encoded by the
union of the program expressions of the form

ψ1?; · · · ;ψn?; b
•
i ;ψ

′
1? · · · ;ψ′

n′?

with • ∈ {g, r} occurring inαP .

∗ Similarly, whenbi occurs in the context offreeperm(α), some occurrences
of bi are encoded by the union of the program expressions of the form
ψ1?; · · · ;ψn?; b

•
i ;ψ

′
1? · · · ;ψ′

n′? with • ∈ {g, r} occurring in−αP .

3.2 Definition of the reduction

Let φ ∈ DLP+
dyn built over the atomic actionsb1, . . . , bN . We define a PDL for-

mulaφ′ built over the atomic programs{bgi , b
r
i : 1 ≤ i ≤ N} where “g” stands for

“green”, “r” stands for “red”, and each pair〈bgi , b
r
i 〉 is interpreted as a disjoint pair

of relations.φ′ is defined from the translation functionT (ψ,G,R) whereG andR

are finite sets of action expressions of the form

ψ1?; · · · ;ψn?; b;ψ
′
1? · · · ;ψ′

n′?

with n, n′ ≥ 0 andb is an atomic expression in{bgi , b
r
i : 1 ≤ i ≤ N}. G is a finite

set of action expressions whose union is interpreted as the current green part of the
model andR is a finite set of action expressions whose union is interpreted as its
current red part. The setsR andG are then updated in the recursive calls when
revoke andgrant formulae are translated.

The formulaφ′ is defined as the PDL formulaT (φ,G0,R0) where

G0 = {bgi : 1 ≤ i ≤ N}, R0 = {bri : 1 ≤ i ≤ N}.

Along the translation process, the union of the setG denoted by(
⋃

α∈G
α)

[resp.R denoted by(
⋃

α∈R
α) ] is interpreted as the restriction ofP [resp.−P ] to

⋃

1≤i≤N (Rbgi ∪Rb
r
i
). Hence,G∪R is always interpreted precisely to

⋃

1≤i≤N(Rbgi ∪

Rbri ). Observe that ifαP is equal to(
⋃

α∈G
α), then(bgi ∪ b

r
i )∩αP is equivalent to

⋃

{ψ1?; · · · ;ψn?; b
•
i ;ψ

′
1? · · · ;ψ′

n′? ∈ G : • ∈ {g, r}}.

A similar observation holds for(bgi ∪ b
r
i ) ∩ −αP . We provide below the definition

of T (·):
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∗ T (p,G,R) = p andT is homomorphic for the Boolean operators¬, ∧.

∗ T ([α]ψ,G,R) = [T (α,G,R)]T (ψ,G,R) whereT on actions is defined as
follows:

− T (bi,G,R) = b
g
i ∪ b

r
i ,

− T is homomorphic for the operators;, ?, ∪ and∗.

∗ T (perm(α)ψ,G,R) = 〈t∀g(α,G,R)〉T (ψ,G,R) wheret∀g is defined as fol-
lows:

− t∀g is homomorphic for the operators;, ∪ and∗,

− t∀g(bi,G,R) =
⋃
{ψ1?; · · · ;ψn?; b

•
i ;ψ

′
1?; · · · ;ψ′

n′? ∈ G : • ∈ {g, r}}.
Since we enforce thatb andbg ∪ br have the same interpretation, for
everyα ∈ G of the formψ1?; · · · ;ψn?; b

•
i ;ψ

′
1?; · · · ;ψ′

n′?, we have
Rα ⊆ Rbi . Moreover, for every〈s, s′〉 ∈ Rα, 〈s, s′〉 is green with
respect to the current value of the policy set. Indeed,perm(β)ψ holds
true when there is aP -green path inL(β) from the current state that
leads to a state satisfyingψ.

− t∀g(ψ?,G,R) = T (ψ,G,R)?.

∗ T (freeperm(α)ψ,G,R) = ¬〈t∃r(α,G,R)〉T (ψ,G,R) wheret∃r is defined
as follows:

− t∃r(ψ?,G,R) =⊥?,

− t∃r(α1 ∪ α2,G,R) = t∃r(α1,G,R) ∪ t∃r(α2,G,R),

− t∃r(α1;α2,G,R) = (t∃r(α1,G,R);T (α2,G,R))∪
(T (α1,G,R); t∃r(α2,G,R)),

− t∃r(α∗,G,R) = T (α∗,G,R); t∃r(α,G,R);T (α∗,G,R),

− t∃r(bi,G,R) =
⋃
{ψ1?; · · · ;ψn?; b

•
i ;ψ

′
1? · · · ;ψ′

n′? ∈ R : • ∈ {g, r}}.
For everyα ∈ R of the formψ1?; · · · ;ψn?; b

•
i ;ψ

′
1?; · · · ;ψ′

n′?, we have
Rα ⊆ Rbi . Moreover, for every〈s, s′〉 ∈ Rα, 〈s, s′〉 is red with respect
to the current value of the policy set.t∃r is based on the homonymic
map defined in Section 2.3.2.

∗ T (grant(ψ1, ψ2) ψ,G,R) = T (ψ,G′,R′) with

− G′ = G ∪ {T (ψ1,G,R)?; bgi ;T (ψ2,G,R)? : 1 ≤ i ≤ N}∪
{T (ψ1,G,R)?; bri ;T (ψ2,G,R)? : 1 ≤ i ≤ N} (see Lemma 3.2(III)),

− R′ = {(¬T (ψ1,G,R))?;α : α ∈ R} ∪ {α; (¬T (ψ2,G,R))? : α ∈ R}
(see Lemma 3.2(IV)).
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∗ T (revoke(ψ1, ψ2)ψ,G,R) = T (ψ,G′,R′) with

− G′ = {¬T (ψ1,G,R)?;α : α ∈ G} ∪ {α;¬T (ψ2,G,R)? : α ∈ G} (see
Lemma 3.2(IV)).

− R′ = R ∪ {T (ψ1,G,R)?; bgi ;T (ψ2,G,R)? : 1 ≤ i ≤ N}∪
{T (ψ1,G,R)?; ari ;T (ψ2,G,R)? : 1 ≤ i ≤ N} (see Lemma 3.2(III)).

There is a perfect symmetry between the definition ofrevoke andgrant by
swappingR with G, andR′ with G′.

3.3 Correctness

Before stating the main soundness lemma, we need to establish Lemma 3.3 be-
low. Although, disjointness is not a modally definable property, satisfiability is not
sensitive to this additional assumption.

Lemma 3.3. A formulaφ is DLP+
dyn satisfiable iffφ is DLP+

dyn satisfiable in a
model such that all the relations for the atomic actions are disjoint.

Proof: Suppose thatφ is DLP+
dyn satisfiable andb1, . . . , bN are the atomic actions

occurring inφ. There is aDLP+
dyn modelM = 〈W, (Ra)a∈Π0

, V, P 〉 ands ∈ W

such thatM, s |= φ. Let M′ = 〈W ′, (R′
a)a∈Π0

, V ′, P ′〉 be theDLP+
dyn model

defined by unfoldingM:

∗ W ′ is the set of sequences of the forms0
bi1−→ s1

bi2−→ . . .
bin−→ sn in M with

s0 = s and for everyj ∈ {1, . . . , n}, sj−1

bij
−→ sj in M,

∗ s0
bi1−→ s1

bi2−→ . . .
bin−→ sn R

′
bi
s0

bi1−→ s1
bi2−→ . . .

bin−→ sn
bi−→ sn+1 for every

i ∈ {1, . . . , N},

∗ V ′(s0
bi1−→ s1

bi2−→ . . .
bin−→ sn)

def
= V (sn),

∗ s0
bi1−→ s1

bi2−→ . . .
bin−→ sn P

′ t0
bj1−→ t1

bj2−→ . . .
bj

n′

−→ tn′

def
⇔ 〈sn, tn′〉 ∈ P . P ′ is

denoted byunfolding(P ).

By structural induction, one can show that for all subformulaeψ of φ, for all

s0
bi1−→ s1

bi2−→ . . .
bin−→ sn ∈ W ′, M′, s0

bi1−→ s1
bi2−→ . . .

bin−→ sn |= ψ iff M, sn |= ψ.
This lemma is easy to show for the PDL fragment ofDLP+

dyn sinceM andM′ are
bisimilar [JW96, Theorem 11] and [vB98]. By way of example, we treat below the
subformulae of the formfreeperm(α) ψ′ andgrant(ψ1, ψ2) ψ

′.
Case 1:ψ = freeperm(α) ψ′.
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Suppose that notM, sn |= ψ. By definition of |=, there is a patht0
A0−→ t1

A1−→

· · ·
An′−1
−−−→ tn′ in M such that

∗ A0A1 · · ·An′−1 ∈ L(α) andt0 = sn,

∗ for somei ∈ {0, . . . , n′ − 1},Ai ∈ Π0 and〈ti, ti+1〉 6∈ P ,

∗ M, tn′ |= ψ′.

We writeAj1 , . . . , Ajl to denote the elements ofA0A1 · · ·An−1 that belongs to
Π0. By using (IH) (for theAi 6∈ Π0) and the definition ofR′ andP ′, there is a path

(s0
bi1−→ s1

bi2−→ . . .
bin−→ sn)

A0−→ . . .
An′−1

−−−→ (s0
bi1−→ s1

bi2−→ . . .
bin−→ sn

bj1−→ tj1+1
. . .

bjl−→ tjl+1
)

∗ A0A1 · · ·An′−1 ∈ L(α),

∗ for somei ∈ {1, . . . , l}, 〈Ti, Ti+1〉 6∈ P , with

− Ti = s0
bi1−→ s1

bi2−→ . . .
bin−→ sn

Aj1−→ tj1+1
. . .

Aji−→ tji+1
,

− Ti+1 = s0
bi1−→ s1

bi2−→ . . .
bin−→ sn

Aj1−→ tj1+1
. . .

Aji+1

−−−→ tji+2
,

∗ M, Tn′ |= ψ′ with

Tn′ = s0
bi1−→ s1

bi2−→ . . .
bin−→ sn

Aj1−→ tj1+1
. . .

Ajl−→ tjl+1
.

Hence, notM′, s0
bi1−→ s1

bi2−→ . . .
bin−→ sn |= ψ. In a similar fashion we can show that

if M, sn |= ψ thenM′, s0
bi1−→ s1

bi2−→ . . .
bin−→ sn |= ψ.

Case 2:ψ = grant(ψ1, ψ2) ψ
′.

By definition of |=, (?) M, sn |= grant(ψ1, ψ2) ψ
′ iff 〈W, (Ra)a∈Π0

, V, P ∪

P
ψ1,ψ2

M 〉, sn |= ψ′. By (IH), (?) iff 〈W ′, (R′
a)a∈Π0

, V ′, P ′∪unfolding(P ′′)〉, s0
bi1−→

s1
bi2−→ . . .

bin−→ sn |= ψ′ iff 〈W ′, (R′
a)a∈Π0

, V ′, P ′〉, s0
bi1−→ s1

bi2−→ . . .
bin−→ sn |=

grant(ψ1, ψ2) ψ
′. 2

Following the proof of Lemma 3.3, one can show thatDLP+
dyn is closed under

bisimulation and therefore it will not be surprising thatDLP+
dyn can be encoded

into the modalµ-calculus [JW96, Theorem 11], more precisely into its PDL frag-
ment.

Lemma 3.4. φ is DLP+
dyn satisfiable iffT (φ,G0,R0) is PDL satisfiable.
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Proof: We show by induction on the structure of subformulaeψ of φ that for all
DLP+

dyn modelsM = 〈W, (Ra)a∈Π0
, V, P 〉 and for alls ∈ W , M, s |= ψ iff

〈W, (R′
a)a∈Π0

, V 〉, s |= T (ψ,G,R) given that

(I) for every1 ≤ i ≤ N , {R′
b
g
i

, R′
bri
} is a partition ofRbi ,

(II) Rb1 , . . . ,RbN are pairwise disjoint,

(III) {R′
(
S

α∈G
α), R

′
(
S

α∈R
α)} is a partition ofRb1 ∪ · · · ∪RbN ,

(IV) P = R′
(
S

α∈G
α).

Let us first check that it is enough to prove this result. Suppose thatφ is
DLP+

dyn satisfiable. LetM = 〈W, (Ra)a∈Π0
, V, P 〉 be a model ands ∈ W such

thatM, s |= φ. By Lemma 3.3 and Lemma 3.1, we can assume thatRb1 , . . . , RbN
are pairwise disjoint andP ⊆

⋃

1≤i≤N Rbi . Let M′ = 〈W, (R′
a)a∈Π0

, V 〉 be
the PDL model such that for everyi ∈ {1, . . . , N}, R′

b
g
i

= Rbi ∩ P andR′
bri

=

Rbi ∩ −P . It is easy to check that (I)-(IV) hold true withG = G0 andR = R0.
Hence,M′, s |= T (ψ,G0,R0).
Similarly, suppose thatT (ψ,G0,R0) is PDL satisfiable. So there are a model
M = 〈W, (Ra)a∈Π0

, V 〉 ands ∈ W such thatM, s |= φ. By Lemma 3.3, we
can also assume thatRbg

1
, Rbr

1
, . . . , Rbg

N
, Rbr

N
are pairwise disjoint. LetM′ =

〈W, (R′
a)a∈Π0

, V, P ′〉 be theDLP+
dyn model such that for everyi ∈ {1, . . . , N},

R′
bi

= Rbg
i
∪ Rbri andP = Rbg

1
∪ · · · ∪ Rbg

N
. It is easy to check that (I)-(IV) hold

true withG = G0 andR = R0. Hence,M′, s |= ψ.

The proof by induction is immediate for the casesψ is atomic and when the
outermost operator is either¬ or∧.
Case 1:ψ = [α]ψ′.

By definition of |=, M, s |= [α]ψ′ iff ( ?) for all paths of the forms0
A0−→ s1

A1−→

· · ·
An−1

−−→ sn in M with A0A1 · · ·An−1 ∈ L(α) ands0 = s, we haveM, sn |= ψ′.

t
bi−→ t′ in M iff either t

b
g
i−→ t′ or t

bri−→ t′ in M′ and by (IH) for every subformula

ψ′′ occurring inψ, t
ψ′′?
−→ t′ in M iff t

T (ψ′′,G,R)?
−−−−−−→ t′ in M′. Hence by using the

definition ofT on program expressions and the (IH) once more, we obtain

(?) iff for all paths of the forms0
A0−→ s1

A1−→ · · ·
An−1

−−→ sn in M′ with
A0A1 · · ·An−1 ∈ L(T (α,G,R)) ands0 = s,
we haveM′, sn |= T (ψ′,G,R),

iff M′, s |= [T (α,G,R)]T (ψ′,G,R),
iff M′, s |= T ([α]ψ,G,R).
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Case 2:ψ = perm(α)ψ′.

By definition of |=, M, s |= perm(α)ψ′ iff ( ??) there is a path of the forms0
A0−→

s1
A1−→ · · ·

An−1

−−→ sn in M such that

∗ A0A1 · · ·An−1 ∈ L(α), s0 = s, and

∗ for everyi ∈ {1, . . . , N},Ai ∈ Π0 implies〈si, si+1〉 ∈ P ,

∗ M, sn |= ψ′.

Observe thatsi
Ai−→ si+1 with Ai = bj in M and〈si, si+1〉 ∈ P is equivalent to

either

∗ si
b
g
j
−→ si+1 in M′ and

∗ there isψ1?; · · · ;ψn?; b
g
j ;ψ

′
1? · · · ;ψ′

n′? ∈ G such thatM′, si |= ψ1 ∧ · · · ∧
ψn andM′, si+1 |= ψ′

1 ∧ · · · ∧ ψ′
n′ ,

or

∗ si
brj
−→ si+1 in M′ and

∗ there isψ1?; · · · ;ψn?; b
r
j ;ψ

′
1? · · · ;ψ′

n′? ∈ G such thatM′, si |= ψ1 ∧ · · · ∧
ψn andM′, si+1 |= ψ′

1 ∧ · · · ∧ ψ′
n′ .

This equivalence holds true because of the satisfaction of (I) and (II). By (IH) for

every subformulaψ′′ occurring inψ, we still havet
ψ′′?
−→ t′ in M iff t

T (ψ′′,G,R)?
−−−−−−→ t′

in M′. Hence, (??) is equivalent to: there is a path of the forms0
A0−→ s1

A1−→

· · ·
An−1

−−→ sn in M′ with

∗ A0A1 · · ·An−1 ∈ L(T (α,G,R)), s0 = s, and

∗ for everyi ∈ {1, . . . , N},
Ai = bj for somej implies there isψ1?; · · · ;ψn?; b

•
j ;ψ

′
1? · · · ;ψ′

n′? ∈ G,

∗ M′, sn |= T (ψ′,G,R).

It is then not difficult to show that (??) is equivalent to there is a path of the form

s0
A0−→ s1

A1−→ · · ·
An−1

−−→ sn in M′ with A0A1 · · ·An−1 ∈ L(t∀g(α,G,R)), s0 = s,
andM′, sn |= T (ψ′,G,R). SoM′, s |= 〈t∀g(α,G,R)〉T (ψ,G,R).
Case 3:ψ = grant(φ1, φ2)ψ

′.

M, s |= grant(φ1, φ2) ψ
′ iff 〈W, (Ra)a∈Π0

, V, P ∪ P φ1,φ2

M 〉, s |= ψ′

iff 〈W, (Ra)a∈Π0
, V, P ∪ P φ1,φ2

M ∩R〉, s |= ψ′

with R = (
⋃

1≤i≤N Rbi)
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iff 〈W, (Ra)a∈Π0
, V, P ∪ P ′′

1 〉, s |= ψ′ with
P ′′

1 = {〈t, t′〉 ∈ (
⋃

1≤i≤N Rbi) : M′, t |= T (ψ1,G,R) and

M′, t′ |= T (ψ2,G,R)}
iff 〈W, (Ra)a∈Π0

, V, P ∪ P ′′
2 〉, s |= ψ′ with

P ′′
2 = {〈t, t′〉 ∈ (

⋃

1≤i≤N R
′
b
g
i

∪R′
bri

) : M′, t |= T (ψ1,G,R), and

M′, t′ |= T (ψ2,G,R)}
iff 〈W, (Ra)a∈Π0

, V, P ∪ P ′′
3 〉, s |= ψ′ with

P ′′
3 =

⋃

1≤i≤N R
′
T (ψ1,G,R)?;bgi ;T (ψ2,G,R)?

∪R′
T (ψ1,G,R)?;bri ;T (ψ2,G,R)?

iff M, s |= T (ψ′,Gnew,Rnew) with
Gnew is the union of the two sets below:

G ∪ {T (ψ1,G,R)?; bgi ;T (ψ2,G,R)? : 1 ≤ i ≤ N}
{T (ψ1,G,R)?; bri ;T (ψ2,G,R)? : 1 ≤ i ≤ N}

Rnew = {(¬T (ψ1,G,R))?;α : α ∈ R} ∪ {α; (¬T (ψ2,G,R))? : α ∈ R}.

Observe that

∗ {R′
(
S

α∈Gnew
α), R

′
(
S

α∈Rnew
α)} is a partition ofRb1 ∪ · · · ∪RbN ,

∗ P ′′
3 = R′

(
S

α∈Gnew
α).

The cases withfreeperm andrevoke are analogous.2

Corollary 3.5. DLP+
dyn is decidable.

3.4 Complexity upper bounds

The reduction fromDLP+
dyn into PDL we have defined increases exponentially the

size of formulae. More precisely,|T (φ)| is in O(|φ| × 2cd(φ)2) and computing
T (φ) requires also time inO(|φ| × 2cd(φ)2). ThereforeDLP+

dyn-satisfiability is
in 2EXPTIME, which is a bit worst than theNEXPTIME upper bound for DLPdyn

from [PW04]. However, our translation allows us to reuse allthe theorem proving
machinery for PDL [VW86, Tuo90].

It is reasonable to consider fragments ofDLP+
dyn with a fixed change depth.

For such fragments, our translation provides an optimal complexity bound:

Corollary 3.6. For every fixedk ≥ 0, theDLP+
dyn-satisfiability problem restricted

to formulae of change depth at mostk is EXPTIME-complete.

Since the casek = 0 corresponds to DLP [vdM96] we obtain the following
consequence.

20



Corollary 3.7. DLP-satisfiability isEXPTIME-complete.

Hence, we improve theNEXPTIME upper bound established in [vdM96, PW04].
EXPTIME-hardness simply holds because the PDL fragment of DLP is known to be
EXPTIME-hard. It is conjectured in [vdM96, PW04] that DLP is inEXPTIME by
adapting Pratt’s proof [Pra79]. Obviously, such an adaption is not completely im-
mediate, but our reduction is a strong witness of the feasibility of such an approach.
However, a by-product of our reduction is precisely theEXPTIME upper bound of
DLP satisfiability.

The reduction fromDLP+
dyn into PDL can be viewed as a logarithmic-space

reduction if the program terms in PDL are encoded as DAGs. Unfortunately, PDL
with program expressions encoded as DAGs isEXPSPACE-hard (because the equiv-
alence problem for regular expressions encoded as DAGs is alreadyEXPSPACE-
hard [MS72]) and it is in 2EXPTIME. Still, there is some hope thatDLP+

dyn is in
EXPTIME. At least two possibilities to prove this bound: to invent a translation into
PDL with automata, see e.g. [HKT00], or to show that PDL augmented with the
new operator on programs⊕(α, ψ1, ψ2) (with semantics(ψ1?;α)∪ (α;ψ2?)) is in
EXPTIME.

4 A variant with a violation constant

In [vdM96], the introduction of the logic DLP was motivated by the need to replace
the concept of permitted states of affairs from [Mey88] by the concept of permitted
actions. In [PW04], the logic DLP is extended, providing thelogic DLPdyn, in
such a way that in the logical language the policy set can be updated dynamically
via the operatorsgrant andrevoke. We recall that a policy set in [vdM96] is
simply a set of transitions, a subset ofW ×W when the set of states isW whereas
a policy set in [Mey88] is rather a subset ofW (to distinguish the good states
from the bad ones). The way to handle a policy set in [Mey88] isquite simple:
a distinguished propositional variable is introduced (sayvc) and it represents the
violation constant, i.e. no action can lead to a state satisfying vc. From a formal
viewpoint, having a distinguished propositional variablein PDL does not cause
any difficulty whereas developments made in [vdM96, PW04] are evidence that
considering a policy set as a set of transitions is technically much harder.

We define below a variant of Meyer’s logic [Mey88] with the ability to update
dynamically the interpretation of the violation constantvc as DLPdyn [PW04] is
the dynamic counterpart of DLP [vdM96]. We call this logic PDLdyn. We shall
show that PDLdyn admits a simple translation into PDL, however it is not clearthat
this newly introduced logic PDLdyn is so interesting from the deontic viewpoint.
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Nevertheless, we include the treatment of such a logic herein in order to emphasize
the difference of difficulty compared with the treatment forDLP+

dyn.
GivenΠ0 = {ai : i ≥ 1} andPROP = {pi : i ≥ 1}, we define the setΠ of

action expressions and the setFOR of formulae for PDLdyn inductively as follows:

Π 3 α, β ::= ai | α ∪ β | α;β | α∗ | φ?

FOR 3 φ, ψ ::= vc | pi | φ ∧ ψ | ¬φ | [α]φ | grant(ψ)φ | revoke(ψ)φ

wherevc is a distinguished propositional variable not present inPROP. A PDLdyn-
modelM is a structure of the form〈W, (Ra)a∈Π0

, V, V C〉 where

∗ W is a non-empty set of states,

∗ (Ra)a∈Π0
is a family of binary relations overW ,

∗ V : W → P(PROP),

∗ V C ⊆W is the set of forbidden states.

A PDLdyn-model is a PDL-model over the atomic formulae inPROP ∪ {vc}.
We say that the formulaφ is satisfied in the modelM by the states if the following
conditions are satisfied (obvious clauses are omitted):

∗ M, s |= vc
def
⇔ s ∈ V C,

∗ M, s |= grant(ψ) φ
def
⇔ M′, s |= φ whereM′ is obtained fromM by

replacingV C by V C ∪ {s ∈W : M, s |= ψ},

∗ M, s |= revoke(ψ) φ
def
⇔ M′, s |= φ whereM′ is obtained fromM by

replacingV C by V C \ {s ∈W : M, s |= ψ}.

Hence, in the PDLdyn semantics, the operatorgrant enrichesV C and the
operatorrevoke impoverishesV C. Satisfiability and other similar notions are
defined in the obvious way. We define below a two-place translation t(·, ·) from
PDLdyn formulae into PDL formulae (augmented with the propositional variable
vc) such thatt(φ, ψ) is the translation ofφ in PDL whenvc is interpreted by{s ∈
W : M, s |= ψ}.

∗ t(vc, ψ) = ψ, t(p, ψ) = p,

∗ t is homomorphic for¬ and∧,

∗ t([α]φ, ψ) = [t(α, ψ)]t(φ, ψ),

∗ t(grant(φ′)φ, ψ) = t(φ, ψ ∨ t(φ′, ψ)),

∗ t(revoke(φ′)φ, ψ) = t(φ, ψ ∧ ¬t(φ′, ψ)),
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∗ t(a, ψ) = a andt is homomorphic for∪, ; and∗,

∗ t(φ?, ψ) = t(φ, ψ)?.

It is not difficult to show thatt is a polynomial-time reduction. Ifψ is a PDL
formula thent(φ, ψ) is also a PDL formula built over propositional variables in
PROP ∪ {vc}. The major result of this section is the following:

Lemma 4.1. φ is PDLdyn satisfiable ifft(φ, vc) is PDL satisfiable.

Proof: By induction on the size ofφ we show the following property:

LetM0 = 〈W, (Ra)a∈Π0
, V, V C0〉 andM = 〈W, (Ra)a∈Π0

, V, V C〉 be PDLdyn-
models such thatV C = {s ∈ W : M0, s |= ψ} for some PDL formulaψ
(M variant ofM0). Then, for everys ∈W ,M, s |= φ iff M0, s |= t(φ, ψ).

Before showing this property, let us prove that it is enough for our proof. If
there exist a PDLdyn-modelM0 = 〈W, (Ra)a∈Π0

, V, V C0〉 ands ∈ W such that
M0, s |= φ, thenM0, s |= t(φ, vc) sinceV C0 = {s′ ∈ W : M0, s

′ |= vc}. Con-
versely, if there exist a PDL modelM0 = 〈W, (Ra)a∈Π0

, V, V C0〉 ands ∈W such
thatM0, s |= t(φ, vc), thenM0, s |= φ sinceV C0 = {s′ ∈W : M0, s

′ |= vc}.

The base case whenφ ∈ PROP ∪ {vc} and the cases when the outermost
connective ofφ is either∧ or¬ are by an easy verification.

LetM = 〈W, (Ra)a∈Π0
, V, V C〉 be a PDLdyn-model variant ofM0 such that

V C = {s ∈W : M0, s |= ψ}.
Case 1: φ = grant(φ′)φ′′.

M, s |= grant(φ′)φ′′ iff M′, s |= φ′′ with V C ′ = V C ∪ {s′ : M, s′ |= φ′}
(by definition of|=)
iff M′, s |= φ′′ with V C ′ = {s′ ∈W : M0, s

′ |= ψ}∪
{s′ : M0, s

′ |= t(φ′, ψ)}
(by assumption and by (IH))
iff M0, s |= t(φ′′, ψ ∨ t(φ′, ψ)) (by (IH)).

Case 2: φ = revoke(φ′)φ′′.

M, s |= revoke(φ′)φ′′ iff M′, s |= φ′′ with V C ′ = V C \ {s′ : M, s′ |= φ′}
(by definition of|=)
iff M′, s |= φ′′ with V C ′ = {s′ ∈W : M0, s

′ |= ψ}\
{s′ : M0, s

′ |= t(φ′, ψ)}
(by assumption and by (IH))
iff M0, s |= t(φ′′, ψ ∧ ¬t(φ′, ψ)).
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Case 3: φ = [α]φ′.

For any subexpressionϕ? in α, by (IH) for all s′ ∈W , s′
ϕ
−→ s′ in M iff s′

t(ϕ,ψ)
−−−→ s′

in M0. Since the mapt is homomorphic for∪, ; and∗, then for alls′, s′′ ∈ W ,
〈s′, s′′〉 ∈ Rα in M iff 〈s′, s′′〉 ∈ Rt(α,ψ) in M0. It is then easy to show that
M, s |= [α]φ′ iff M0, s |= t([α]φ′, ψ). 2

Since t is a polynomial-time reduction, complexity of PDLdyn can be now
easily characterized.

Corollary 4.2. Satisfiability for PDLdyn is EXPTIME-complete.

5 Concluding remarks

In this paper, we have shown that the logicDLP+
dyn, a substantial extension of the

logic DLPdyn (itself extending the logic DLP [vdM96]), can be naturally translated
in standard PDL. As a consequence, we can reuse several results and techniques
about PDL and we establish new complexity bounds for DLP and DLPdyn.

Even thoughDLP+
dyn has the ability to withdraw (or add) transitions in the

policy set, this extension remains decidable. This is in sharp contrast with a variant
of the sabotage modal logic SML which has an undecidable satisfiability prob-
lem [LR03]. This can be explained by the fact that inDLP+

dyn there is no quan-
tification over all possibilities of withdrawal of transitions/states (as in SML), but
rather that one needs to specify the formulae satisfied by theextremity nodes of the
transitions to be withdrawn or added. This is a situation similar to the decidabil-
ity of the guarded fragment of classical logic [ANvB98] where quantification has
a guarded flavor. Actually, inDLP+

dyn there is no quantification on the different
ways to modify policy sets.

Even if our translation into PDL sheds some new light on the deontic logics
DLPdyn [PW04] and DLP [vdM96], some interesting problems remain open in-
cluding

∗ the characterization of the precise complexity ofDLP+
dyn and DLPdyn (be-

tweenEXPTIME and 2EXPTIME),

∗ the decidability status ofDLP+
dyn with the semantics in which the atomic

actions are interpreted as sets of finite sequences of transitions (on the model
of the original DLP semantics), see Section 2.2 for more details. Indeed, our
translation technique does not seem to work for this extension.
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