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Abstract

We present a reduction from a new logic extending van der Megd
dynamic logic of permission (DLP) into propositional dyrniardogic (PDL),
providing a ZxpPTIME decision procedure and showing that all the machin-
ery for PDL can be reused for reasoning about dynamic pslidds a side-
effect, we establish that DLP BxpPTIME-complete. The logic we introduce
extends the logic DLP so that the policy set can be updateerdiipg on its
current value and such an update corresponds to add/delegitions in the
model, showing similarities with van Benthem’s sabotageahgic.

Key-words: dynamic logic of permissions, logic of programs, deletmm
states/transitions, computational complexity.

1 Introduction

Reasoning about policies. Deontic logic is commonly defined as the logic of
obligation, prohibition and permission. Indeed, reasgrabout ideal and actual
behaviors is useful in many fields of computer science, fstaince to specify de-
sired user behaviors, security policies, and normativagirity constraints, to quote
a few examples [WM94]. From a formal viewpoint, numerousrd@ologics are
modal logics with extra features, some of them being quiigireal. For instance,
in the possible-worlds semantics of such logics, it is commaalistinguish the per-
mitted states from the forbidden ones or alternatively #reitted actions from the
forbidden ones. Moreover, several deontic logics [Mey@B/196, Bro03, PW04]
are variants of propositional dynamic logic (PDL), see,dldKT00], formalism
sometimes used to specify the behavior of finite-state sys{€S91].



Among these logics, van der Meyden’s dynamic logic of pesiois(DLP) [vdM96]
can be defined as an extension of test-free PDL with modabhtgerthat takes into
account that some transitions are permitted (the greer) anésall the other ones
are forbidden (the red ones). In a model, the set of greesitians forms the so-
called policy set and modal operators in the logical languagyve semantics that
distinguish green transitions from red ones. Reasoningtathe permission of
sequential actions has motivated the introduction of DLIM96] in order to im-
prove Meyer's logic [Mey88] which distinguishes permittadtes from forbidden
ones (instead permitted transitions from forbidden oneds &1_P). Hilbert-style
axiomatization of DLP is provided in [vdM96] and arexPTIME upper bound for
the satisfiability problem is established (even though mopexity questions are
explicitly discussed in that paper). In [PWO04], DLP is gangly extended in order
to specify in the logical language the updates of the poktyyg adding or by delet-
ing transitions. This is a very substantial extension of [Add in [PWO04] an ax-
iomatization is provided as well as aExPTIME upper bound (the proofs of these
results are promised for the full version of [PWO04]). Theliabto add or delete
transitions is reminiscent to van Benthem’s sabotage mindgd SML [vB02]
whose satisfiability problem for a variant has been provedtamable in [LRO3]
(when deleting transitions instead of deleting statesg ddstructive dimension of
SML and its ability to quantify over alternative models (@ioied by deleting one
transition/state) seem to be the main reasons for its uddeitity. Hence, the de-
cidability of the logic DLRy,, introduced in [PWO04] is a quite remarkable result. In
order to grasp the different decidability status of SML arldPR,,,, in SML there
is no way to specify anything about which states or transitiare deleted. By
contrast, in DLRy,, the object language can specify the transitions to be eltlet
or added.

Motivations. However, by experience, we know that many logics have belen ab
to be translated into PDL even though they were introducedheir own sake:
epistemic logics [FI87], deontic logics [Bro03], descigptlogics [Sch91, dGL94],
information logics [DGO0O], regular grammar logics [Dem@iid agent dynamic
logics [STHO4]. The list can be easily augmented and the mmaitivation of this
work is to try to translate DL, into standard PDL. Even if at first glance, this bet
does not sound very reasonable because of the features of, D[FRV04], a lot
can be gained. Indeed, the existence of such an hypoths¢igentical translation
would explain why standard proof techniques worked smgdtini dynamic log-
ics of permission [vdM96, PWO04]. More importantly, sevgpabof methods and
theoretical results for PDL, see e.g. [VW86], would applymediately to these
logics.



Our contribution. We embed an extension of DLR,, namerDLngn, into
standard PDL by encoding faithfulllgbLP:{yn semantics and by taking advantage
of various fundamental properties D)‘LPjyn. Roughly speaking, we allow in

DLPj{yn the test operator “?” and the operators for updating thecpalet can be
parameterized by the current policy set, a novelty witheesppo [PWO04]. In spite
of these substantial extensions, the exponential-tinmsskagion fromDLP . into

PDL entails thatDLPz{yn satisfiability is decidable in2xPTIME. As a corollary,
we also get

x theEXPTIME-completeness of DLP satisfiability,

x theEXPTIME-completeness d])LPjyn restricted to formulae of change depth
(to be defined) at mogt, for some fixed: > 0,

which are all new results. It is worth observing that the egien we have intro-
duced is not primarily motivated by the need to increase Mpeessive power of
DLPgyy,, but rather for technical reasons. In general, in the pagefogus our

attention on the reductions rather than on interpretatidriie concepts from the
deontic viewpoint. Such interpretations can be found indhiginal papers, see
e.g. [Mey88, vdM96, PW04].

In [vdM96], a strong motivation to introduce the logic DLPtsreplace the
concept of permitted states from [Mey88] by the concept ofited actions. In
Section 4, we define a variant of Meyer’s logic [Mey88] witle thbility to update
dynamically the interpretation of the violation constantas DLRy,,, [PWO04] is
the dynamic counterpart of DLP [vdM96]. The violation carttvc is defined
as a distinguished propositional variable for which no@tian lead to a state
satisfying it. We show that this new logic also admits a tlaiien into PDL.

All our proofs are semantical in nature and do not rely on &ijglated com-
pleteness proofs as those for PDL-like logics, see e.g. B&INPWO04], which al-
lows us to have quite elementary proofs.

Plan of the paper. In Section 2, we introduce the loglaL.P = extending the
logic DLPg,,, [PWO04], the fragments considered in the paper and we préisent

main difficulties to deal withDLP . In Section 3, we define the translation
from DLP(J{yn into PDL and we show its soundness. Complexity issues ace als
discussed in this section. In Section 4, we introduce a espatt of Meyer’s
logic with update of the set of forbidden bad states. Sedipresents concluding
remarks and open problems.



2 The logics PDL, DLP, DLP;y, and DLPj |

2.1 The logic for dynamic policiesDLP .

dyn

Given aseily = {a; : ¢ > 1} of atomic actions and a SBROP = {p; : i > 1} of
propositional variables, we define the Eeof action expressions and the §dR
of formulae forDLPjyn inductively as follows:

Doa,fu=a; | aUB | a;8 | «* | ¢7

FOR> ¢, i=p; | oA | =¢ | [a]¢ | perm(a)o |
freepern(a)g | grant(b, 1) | revoke(s,u!)o.

As in propositional dynamic logic PDL (see e.g. [HKTOOQ]) wavke an count-
ably infinite supply of atomic actions and propositionalightes, but a given for-
mula/action expression contains only a finite amount of ssygfitactic objects.
Given an action expressian we write L(«) to denote the regular language cof
over the finite alphabet composed of the atomic actions egetith action ex-
pressions of the form? occurring inc.. A DLngn—modeIM is a structure of the
form (W, (Ry)aem,, V, P) where

x W is a non-empty set of states. Each state represents theccordigura-
tion of an application in time.

* (Rq)aerl, IS a family of binary relations ovei’. Elements of?,, are transi-
tions between the states that correspond to the progrelse application.

x V : W — P(PROP) is the meaning function that specifies which atomic
propositions hold true in each state.

x P C W x W is a binary relation representing a policy set, i.e. the et o

permitted transitions.

We say that the formula is satisfied in the modeM by the states (written
M, s |= ¢) if the following conditions are satisfied:

* M,sk=p & peV(s)foreveryp € PROP,

def

x M,sEoNY & M, sE¢andM,s = 9,

def

* M,s = ¢ & notM,s = o,

. A .
x* M,s |= [o]¢ & for all paths of the forms, DA o in M

with AgA; --- A,_1 € L(«) andsy = s, we haveM, s,, = ¢,



e . Ap—
* M,s = perm(a)¢ & there is a path of the formy 4 s1 4 e

Sp In M with AgA; -+ A,—1 € L(a) such thatsy = s, for everyi €
{0,...,n — 1}, A; € Iy implies (s;, si+1) € P, andM,s, = ¢. Such

a path is said to b&-green. AP-green corresponds to a legal sequence of
transitions.

e . An— .
x M, s |= freeperm(a)¢ & there is no pathy DB s in M
such that

— AgAy---A,_1 € L(a) andsg = s,
— forsomei € {0,...,n— 1}, A; € IIp and(s;, s;+1) € P,
- Ma Sn |: ¢

Such a path is said to blé-red. A path is therP-red if one of its transitions
is non-legal.

def

 M,s | grant(v,0)) ¢ & (W, (Ra)acro, V; P U Py}, s |= ¢ where
PUY = {(t,t') e W2 : M,t = ¢ and M, ¢/ = ¢/},

# M, s |= revoke(1), 1) ¢ & (W, (Ra)acry, V; P\ P, 5 = 6.

An intuition explanation of the operatgtant (1, v’)¢ is as follows:¢ holds
(as a norm) under the condition that all+)’-transitions are granted. With this
reading, granting and revoking is not really about 'updgtinthe operators are
more like conditional operators.

We recall that in the above definitioﬂ,ﬂ t'iff t = ¢ and M, t E ¢. We use
the abbreviatior{a)¢ for —[a]—¢. In a model, we writeR,, to denote the binary
relation

An_
{(s,t):soﬂslﬂ--- —1>sn, ApAr - Ap—q € L(w), s = sp,t = sp}.

Asusualg € DLPy is satisfiable iff there is ®LP |, -model M and a state
s in M such thatM, s |= ¢.

perm(a)¢ corresponds t& («, ¢) in [vdM96] andfreeperm(«)¢ corresponds
tow(a, ¢). Hence, we have adopted the notation from [PW04] since veaesis the
operatorgr ant andr evoke from [PWO04] that are not present in [vdM96]. Mo-
tivations and explanations abaBitgreen andP-red paths can be found in [vdM96,
PWO04] whereas numerous examples of deontic propertiegssipte in DLR,,,
(and therefore iMDLP; ) can be found in [PW04].

In Fig. 2.1, we illustrate the semantics on a simple modethéndouble circled
state freeperm(a; d)r does not hold because the unique path labelled bgtart-
ing at the double circled state ;3-red. By contrastgrant(q, r)freeperm(a; d)r



Figure 1: lllustration of the semantics

holds true on that state, because the effegireint(q, ) is to include{q, s} 4,
{r} in the new value of the policy set.

2.2 Known fragments of DLP

The IogicDLPjyn has been designed to contain all the logics we need in the.pape

The logic PDL is equivalent to the fragment DELP:{YH restricted to formulae
without any of the four operators dealing with policies. Thain result of the
paper is to define an exponential-time reduction fﬂthjyn into PDL, providing
not only a ZXPTIME upper bound for the satisfiability problem, but also showing
that our extended IogiEBLP;{yn is not more expressive than PDL. Satisfiability for
PDL is known to beexpTIME-complete [FL79, Pra79].

The logic DLRy,,, [PWO04] is the fragment oDLPjyn restricted to formulae
without the test operator “?” and with tlgg ant andr evoke operators restricted
to propositional formulae in their first two arguments. [PA}y8tates that satis-
fiability for DLPgy, is in NEXPTIME. Unlike DLPg,,,, the change of policy in
DLPQFyn may depend also on the current policy set since there arestrict®ns
on the first two arguments @fr ant andr evoke. Numerous illustrations of the
use of DLRy,, from the deontic viewpoint can be found in [PWO04].

Redefining DLP [vdM96] froerLPj;yn requires a bit more care. The language

of the logic DLP is the language difLPIyn restricted to formulae without the test
operatorgr ant andr evoke. However, as it was defined initially in [vdM96], the
DLP models are also a bit different: the relatidRs are defined in terms of finite
sequences instead of sequences of length Dﬂﬁ’jyn. More precisely, a DLP
modelM is a structure of the formiW, (X,)qer,, V, P) whereW is a non-empty
set,V : W — P(PROP), P C W x W is a binary relation representing a policy



a

set, and X, )qc11, IS @ family of sequences of the forsp — s1 — - -+ — s, € X,
with n > 0 andsg,...,s, € W. This last point is the only difference with
the notion ofDLP  models. The definition of the satisfaction relation is also
modified accordingly:

x M, s = [a]p &£ for all paths of the form

Ag Aq Am

§) = o8P0 s S g,

with s = ), | forevery0 <i < m, AgA; -+ Ap, € L(a) andsf = s, we
have M, sl'm |= ¢.

def

* M, s = perm(a)¢ & thereis a path

Ao Ay Am

§) = o8P0 s S g,

with s7" = 52, for every0 < i < m, AgA;--- Ay € L(a) such that
sy = s, foralli € {0,...,m} andj € {0,...,n; — 1}, A; € IIy implies
(s], 51ty € P, and M, s (= ¢. By imposingng = --- = n,, = 1, we

regain theDLP = semantics.

* M, s |= freeperm(a)¢ £ thereis no path

Ao Ay Am
S0 = = 800 s = S s) — — gm
such that
ni _ 0 .
— 8 =57 for every0 < i < m,
— AoAl'--AmEL(Oé),
- 5825,

— for somei € {0,...,m} andj € {0,...,n; — 1}, A; € Il and
(s],s7) ¢ P,

177

- Ma‘S:?le ):¢

Fortunately, the slight difference in the semantics of Dldé ELP(Tyn does
not affect the satisfiability of DLP formulae.

Lemma 2.1. For any DLP formulap, ¢ is satisfiable with the DLP semantics iff
¢ is satisfiable with thé)LP:{yn semantics.

7



The proof below is purely semantical.
Proof: Obviously¢ is DLP;{yn satisfiable implieg is DLP satisfiable (sequences
of length 1 are particular sequences of arbitrary finite fiejag
Now suppose thap is DLP satisfiable and, ..., by are the atomic actions oc-
curring ing. There is a DLP modeM = (W, (X,)aem,, V, P) andsy € W such
that M, so |= ¢. Let us build aDLP , modelM’ = (W', (Ra)act,, V', P') by
unfolding the modelM in the following way:

x W' defined is the set of finite non-empty sequences of the form

biO bim.
88_)..._)88‘0’...’Sgn_)..._>8?n’m
with s" = 0, for every0 < i < m, bi,...,b;, C {b1,...,by} and

bnew

0 — , . . . .
sy = so. We also addsy — 5o to W’ whereb,,.,, is an atomic action not in

{b1,...,bn}.
*
bio bim
S0 — — 50, 782n - = Sy
/
R,
b’O bim b;
Sgﬁ"'_>Sgo>"'782n_>"'_>Snmm>s9n+1_>"'—>8nmw—l|—+11
foreveryi € {1,..., N} with s} =2 , for0 <i <m,
biO blm
—_——
def
* V() — o =800, 80 — o st 2V (shm),
*
bio bim
So — — 50, 782n - = Sy
Pl
bl() bzm bz
e s o oo
def k k+1
& forevery0 <k <npm1—1, (s, 1,5,1) € P.



bnew

—
One can show thaM, sy = ¢ iff M’, sy — s¢ = ¢ by induction on the structure
of formulae.O

Hence, DLP can be really viewed as a proper fragmemlIon{yn. We write
cd(¢) to denote the change depth of the formaldefined as the maximal imbri-
cation of operators dealing with updates of policiegirFor instance,

cd(revoke(p, grant(qi,q2) p) 1) = 2.

DLP is simply the restriction oDLPz{yn to formulae of change depth 0 and with
no occurrence of the test operator. For the sake of clatitydelefine formally the
change depth of formulae and action expressions:
* cd(p) = 0, cd(=9) = cd(@), cd(d1 A ¢2) = maz(cd(1), cd(2)),
x cd([a)¢) = cd(perm(a) @) = cd(freeperm(a))) = cd(a) + cd(¢),
% cd(revoke(¢,12)¢) = 1 + max(cd(¢n), cd(P2)) + cd(@),
« cd(grant(¢1,12)¢) = cd(revoke (1, 12)0),
x cd(a; f) = cd(a U ) = max(cd(a), cd(B)),
(

d($7) = cd(¢), cd(a) = cd(a).

*
®)

2.3 What makesDLP . difficult to handle

The IogicDLPg ., has various features that make its decidability statuscdiffio
establish and its translation into PDL improbable at firahgk.

2.3.1 Presence of intersection

The semantics of the operatmer mcan be rephrased in PDL by replacisgrm ()
by (t78(«)) wheret"8(«) is obtained fromy by replacing each atomic actiarby
aNap. The operaton is interpreted as the relation intersection andis an action
expression whose interpretation is the policy BetHowever, PDL with intersec-
tion [Dan84] has been proved decidable iex2TIME, see also [Lut05]. At first
glance, it is worth observing that the PDL-like deontic omjitroduced in [Mey88]
has also the intersection operatgrbut not the Kleene star operator

2.3.2 Presence of complement

However, pursuing the encoding into PDL in this way, we nded eomplementa-
tion. Indeed, the semantics of the operdtoeeper mcan be rephrased in PDL by



replacingfreeperm(a) by ~(t (). The intended meaning ¢f7" («)) T is that
there is a path labelled by a wordlirf«) such that at least one transition labelled
by an atomic action does not belongRgi.e. this transition does not belong to the
interpretation ofxp. The mapt™" is defined as follows:

x t7(4?) =L7. Indeed, the witness red transition has to be labelled bitex le
in ITy which is not the case when the transition is labelle@by

* 7 (a1 Uag) = t7"(ay) Ut (),

* t7 (a3 00) = 77 ()5 a0 U a3 677 (2. The red transition is either in the
a-part ofag; ag or in theas-part if not in thea; -part.

x t7(a*) = o*;t7(a); o*. The red transition is in one specifigpart.

* t7(a) = anN —ap.

t7" is intended to enforce the presence of a (red) transitioimét. However,
PDL with complement is undecidable (see e.g. [HKTO00]) and. Rith negation
of atomic programs shown |ExpPTIME in [LWO04] cannot capture both intersection
and negation on atomic programs. An alternative way woultbbencodeper m
andf r eeper mby decomposing each atomic actibas the union action expres-
sionb? U b" (green part union with the red part) such that the followingditions
hold in the models

(PROP1) Rys and Ry are disjoint,

(PROP2) for every(s,ty € W x W, (s,t) € Rps (hence(s,t) is intended to be
in P) implies (s, t) ¢ R,/ for everylt’ € Ij.

Unfortunately, none of these two conditions are modallyrdddie. However, as
we will see, disjointness can be imposed in the PDL modelsowmit changing the
class of satisfiable formulae. Condition (PROP2) is a camsece of the fact that

in the DLP semantics, the policy sEtis defined as a set of pairs of states and not
as a set of triples composed of two states and an atomic action

2.3.3 Change of models

So far, the above points concern the DLP parDéfP,,, . The operatorgr ant
andr evoke introduced in [PWO04] force the interpretation of subforamilin
an alternative model which is reminiscent to the destraectigpect of van Ben-
them’s sabotage modal logic [vB02]. Indeed, sabotage moda (SML) defined
in [vB02] admits formulae of the form

pu=p | 2| GNP | Ob | (=)o
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and the models are Kripke structures of the fokt= (W, R, V') whereV : W —
P(PROP). The only change with respect to standard possible-woddmstics is
the following: M, w |= (—)¢ iff there is aw’ € W such that\’, w = ¢ where
M/ is the restriction ofM to W \ {w'}. The decidability status for the satisfia-
bility problem of SML is open. However, a variant of SML hashentroduced

in [LRO3], we call it SML herein, for which the satisfiability problem has been
proved undecidable [LRO3]. Instead of deleting states énrttodels as in SML,
SML'’ provides the possibility to withdraw transitions, a featatso shared with
DLP&Lyn (but in a different fashion). Formulae of SMare of the form

pu=p | 2d | d1 AP | Cad | (—)ad

whereaq takes its value in a finite alphabEt The models are Kripke structures
of the form M = (W, (R,)qex, V) and the only change with respect to stan-
dard possible-worlds semantics is the following1,w = (—),¢ iff there is
(w',w")y € R, such thatM’,w E ¢ where M’ is obtained fromM by sim-
ply withdrawing(w’, w") from R,. The satisfiability problem for SMLis shown
undecidable in [LRO3] as soon &8| > 2 (another variant is shown undecidable
in [Roh04] in which deletion of the transitions is done Idgab the current state).
In the caseéX| = 1, the decidability status is open. Hence, both SlSI‘:;;tlﬂldDLPjyn
have primitives in the language to withdraw edges. Even wdrd)LPj{yn transi-
tions can also be added to the policy set.

Hence, in view of the above points, it is not surprising tDaIP:{yn is not an

easy logic to study. However, in the following, we shall shtmtDLPjyn can be
translated into PDL by taking advantage of a few fundamepriaberties.

3 A purely semantical reduction

3.1 Fundamental properties ofDLPjyn

In order to define the reduction froﬁnLPj{yn into PDL, some preliminary remarks
are needed that will help hopefully the comprehension ofridueslation.

3.1.1 How the policy set can be restricted

The definition of the satisfaction relation can be modifiedunh a way that for the
semantics ogrant (i1, 2) ¢ andrevoke (i1, 12) ¢, we can restrict ourselves
to the pairs inP’ that belong to atomic relations occurringdn(see Lemma 3.1
below).

11



Lemma 3.1. Let M = (W, (Ry)aem,, V, P) and M’ = (W, (Ry)aem,, V, P’)
be models such tha®’ = P N (U, <,;<n Rs;) for some finite set of atomic ac-
tions {b1,...,by}. Then for every formulap built over the atomic actions in
{b1,...,bn}, foreverys €e W, M, s = ¢ iff M| s = 1.

The proof is by an easy verification (structural inductiongn In the fol-
lowing, whenM, s = ¢ without any loss of generality we can assume tRat
Ry, U---U Ry, Whereby, ..., by are atomic actions occurring if

In Lemma 3.2 below, we show thatdfp is an action expression in PDL inter-
preted byP N (R, U --- U Ry, ), then one can easily built an action expression in

PDL interpreted by P U P}f’/;w/) N (Rp, U---U Ry, ) Wwheny, ¢ are built over the
atomic action9, ..., by. In that way, we can deal with green transitions and red
transitions with no explicit use of intersection and compdat on relations.

Lemma 3.2. LetM = (W, (Rqy)qaem,, V, P) be aDLPjyn-modeI andby,...,by}
be a finite set of atomic actions such that there are actioressnsyp anda_p

verifying
0] Rap =PnN (Rb1 U---u RbN),
() Ra_p=((WxW)\P)N(Ry, U URy).

Then, for all formulae), ¢ built over{b;, ..., bx},
() (PUPLY)YN (Ry U---U Ryy,) = R with
B=apU @by ?) U U[@?by;¢'?)
(V) (W x W)\ (PUPLY)) N (Ryy U--- U Ryy) = Ry with
B = (=) a_pUa_p; (—¢)?

The policy sets from Lemma 3.2(11l) and Lemma 3.2(1V) areitgtly obtained
with the operatorgr ant andr evoke.
Proof: (lll) can be easily shown by taking advantage of the equivadebetween
the propositions below:

7y 7 .
* sw—> 5 =5 s’w—>s’forsomez,

x M,s =1, (s,s') € Ry, for somei, and M, s’ |= 1/,

% (s5,8') € PLY N (Rpy U--- U Ryy).

12



Similarly, (IV) can be easily shown by taking advantage efélquivalence between
the propositions below:

* either(s,s’) € R y)2a_p O (5,8") € Ry i(—yr)7s
* (not (M, s =9 andM, s’ |=1')) and(s,s’) € Ro_,,
% (s,8') € (WxW)\PL¥ and(s,s') € (W x W)\ P)N(Ry, U---URyy),

% (s,8) € (Wx W)\ (PUPLY )N (Ry U---URyy).

Hence, assuming thatp is an action expression interpreted By (Uae¢ R,)
anda_p is an action expression interpreted @y x W\ P) N (U,¢,, Ra), the
program expressiontp U (¥7; Useq; ©'7) is interpreted byP U P’ when dealing
with grant (v, ¢’)¢. Similarly, in case ofrevoke (v, ') ¢, the program expres-
sion(—¢?; a_p) U (a_p;—)'?) is interpreted byP \ P’. This means that the new
policy set (either by revoking or by granting) can be expedss PDL assuming
that its initial value could be interpreted by a program esgion in PDL. In the
forthcoming translation function, one argument is devdtetthe P part and a sec-
ond one is devoted to the complemenfblboth restricted to atomic actions present
in the formula to translate. Observe that in PDL, complemgon of relations is
not present.

3.1.2 Disjointness of atomic actions

In order to encode the initial value d? by an action expression in PDL, we
shall encode every atomic actién occurring in the formulap to be translated
by the unionb! U b} (initial green part and initial red part, respectively). did
tionally, if b1,...,by are the atomic actions presentdn we shall enforce that
by, by, ..., 0%, by are interpreted by disjoint relations which is possible DLP
see Lemma 3.3. Both properties (PROP1) and (PROP2) ariezhiisthat case.
In that way, the initial value ofvp can be represented by the action expression
b{ U--- U b} and its complementap (relatively tol J,., (b9 U b")) by the action
expressiorb] U --- U bYy. By applying a finite amount ofr ant andr evoke,
Lemma 3.2 guarantees that the current valuea ofand —ap are equivalent to
action expressions of the formm?; - - - ;4,?; 685917 - -+ ;97,7 with ¢ € {g,7}
(of course, not the same sets),, - - - , 1y, 91, ¢!, are PDL formulae obtained by
translation and: is not necessarily equal tg.
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3.1.3 Encoding transition relations
It remains to explain how; is treated in the translation process.

+ Whenb; occurs in the immediate context [of], b; is encoded by? U b

«x Whenb; occurs in the immediate context pérm(«), b; is encoded by the
union of the program expressions of the form

D125 0T T s ?
with e € {g, '} occurring inap.

« Similarly, whenb; occurs in the context dfreeperm(«), Some occurrences
of b; are encoded by the union of the program expressions of thm for
Y125 08T - sl T with e € {g, 7} oceurring in—ap.

3.2 Definition of the reduction

Let¢ € DLP  built over the atomic action, ..., by. We define a PDL for-
mula¢’ built over the atomic program@?, b7 : 1 < i < N} where “g” stands for
“green”, “r" stands for “red”, and each pafb/, b}) is interpreted as a disjoint pair
of relations.¢’ is defined from the translation functidn(+, G, R) whereG andR

are finite sets of action expressions of the form
D17 a7 b7 el ?

with n,n’ > 0 andb is an atomic expression i{'bf, by 1 <i < N} Gis afinite
set of action expressions whose union is interpreted asutinerd green part of the
model andR is a finite set of action expressions whose union is integgras its
current red part. The sei8andG are then updated in the recursive calls when
r evoke andgr ant formulae are translated.

The formulay’ is defined as the PDL formulB(¢, G, Rg) where
Go={b):1<i< N}, Ro={bj:1<i<N}.

Along the translation process, the union of the Gedenoted by(lJ ¢ @)
[resp.R denoted by(|J,cr @) ]is interpreted as the restriction éf[resp. —P] to
Ui<i<n(RygURyy). Hence GUR is always interpreted preciselyttg, ., v (R0 U
Ryr). Observe that itvp is equal to({ U, @), then(b) Ub}) Nap is equivalent to

Ut iwn? 080?10, 7 € Gro € {gor) ).

A similar observation holds fofb! U b7) N —ap. We provide below the definition
of T'(-):

14



x T(p,G,R) = pandT is homomorphic for the Boolean operatersA.

* T([a]y,G,R) = [T'(e, G,R)]T (¢, G, R) whereT on actions is defined as
follows:

— T(b;,G,R) = b UL,
— T is homomorphic for the operatofs?, U and*.

* T(perm(a)y, G,R) = (t"9(a, G,R))T (3, G, R) wheret" is defined as fol-
lows:

— t%9 is homomorphic for the operatossU and*,

— 19(b, G, R) = Ut %5 0250050075 107 € G i w € {g, 7}
Since we enforce thdtandb? U " have the same interpretation, for
everya € G of the formyn?;--- ;90,7508 417+ - 54,7, we have
R, C Ryp,. Moreover, for every(s,s’) € R,, (s,s’) is green with
respect to the current value of the policy set. Indeeam(3) holds
true when there is #-green path irl.(3) from the current state that
leads to a state satisfying

— t9(¥?,G,R) =T(¥,G,R)?.

* T(freeperm(a)i, G,R) = ~(t7"(a, G,R))T (¢, G, R) wheret=" is defined
as follows:

~ t7(¥7,GR) =

— ta”(al U as, G, R) = tar(al, G, R) U ta’”(ag, G, R)

— t7(ay;a2,G,R) = (t7 (a1, G, R); T(aa, G,R))U
( (Oél,G R tHT(OéQ,G R))

— t7"(a*,G,R) = T(a*, G,R); t7"(r, G,R); T(a*, G, R),

— t7(b5, G, R) = U{wn?s -+ s n 30854017+ 50,7 e R: e € {g,7}}.
For everya € Rof the formy ?;- - ;4b, 25084175 - -+ 54,7, we have
R, C Ry,. Moreover, for every(s, s’) € R,, (s, s') is red with respect
to the current value of the policy set? is based on the homonymic
map defined in Section 2.3.2.

T(grant (i1, 2) ¥, G,R) = T(, G, R') with
— G =GU{T(¥1,G,R)?;b!; T(1h,G,R)? : 1 <i < N}U

{T(¥1,G,R) ;015 T (¢2,7GZ 7R)? :1<i< N} (see Lemma 3.2(1ll)),
— R ={(-T(¥1,G,R))?; 0 : @ € R} U {e; (-T(¢2,G,R))? : @ € R}
(see Lemma 3.2(1V)).
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x T(revoke(vr,1¥2)1,G,R) = T(¢,G',R’) with

— G ={-"TW1,GR)?;a:a e G} U{a;T(2,G,R)?: a € G} (see
Lemma 3.2(1V)).

— R =RU{T(¢1,G,R)?;bY; T(¢p2,G,R)?: 1 <i < N}U
{T(¢1,G,R)?;al; T(1p2,G,R)?: 1 <i < N} (see Lemma 3.2(lll)).

<y Wi

There is a perfect symmetry between the definition@foke andgr ant by
swappingr with G, andR’ with G'.

3.3 Correctness

Before stating the main soundness lemma, we need to estaldiesma 3.3 be-
low. Although, disjointness is not a modally definable pmypesatisfiability is not
sensitive to this additional assumption.

Lemma 3.3. A formula¢ is DLP, = satisfiable iff¢ is DLPj  satisfiable in a
model such that all the relations for the atomic actions &jeict.

Proof: Suppose thap is DLPj{yn satisfiable andy, . .., by are the atomic actions
occurring ing. There is aDLPjyn modelM = (W, (Rqy)aem,, V, P) ands € W
such thatM, s = ¢. Let M’ = (W', (R))aen,, V', P') be theDLP;{yn model
defined by unfolding\:

. bi bi bin . .
x W' is the set of sequences of the fosn = s; — ... =% s, in M with
bi,
so = sand foreveryj € {1,...,n}, sj_1 = s;in M,
b; b; bin b; b; bin b;
* 80 — S1 — ... = 8, R sg — 81 — ... =5 s — sp41 for every
ie{l,...,N},

b; b; bi
x V'(so =513 ... 5 5,) EV(sn),

>1<30—1>31—2>_._—n>3nP't0£>t1£>__.J—">tn,<d:8;£<3n7tn,>€P_P/|S
denoted byunfolding(P).

By structural induction, one can show that for all subforasub of ¢, for all
b; b, bin b; b; bin .
S0 > 5] = ... B s, €W, M, sg— 51 = ... B s, = iff M,s, = .

This lemma is easy to show for the PDL fragmenbdfPy | sinceM and M’ are
bisimilar [JW96, Theorem 11] and [vB98]. By way of examples tkeat below the
subformulae of the fornfireeperm(«) ¢’ andgrant (v, 12) .

Case 1:¢) = freeperm(a) ¢'.
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Suppose that naM, s,, = 1. By definition of =, there is a patliy A 1 A

n/—1

. — t,7 In M such that
x AgAy---Apy_q € L(a) andty = s,
x forsomei € {0,...,n' — 1}, A; € Iy and(t;, t;11) € P,
* M,tn/ ): 1/}/.

We write A;,, ..., Aj, to denote the elements ofyA; --- A,,_; that belongs to
ITy. By using (IH) (for theA; ¢ II;) and the definition o2’ and P/, there is a path

bil bi2 bln AO An’—l bil bi2 bln bjl bjl
(so =851 —=... Bsp) = ... —— (50 =81 = ... B sy = tj,, i)
* AgAq--- A1 € L(a),
« forsomei € {1,...,1}, (T;, Tiy1) € P, with
T biy big bi, Ajy Ay,
- =80 — 81— ... — Sp — i, — iy
biy biy bin Ajy A.ii+1

— lip1 =50 — 81— ... = 8sp — lji, tjitar

« M, T, = with
bi; big biy, Ajy A5,
Tn/:SO—>81—>...—>Sn—>t]‘1+l '_>tjl+1'

bi, b bi,, . ,
Hence, notM’, sg — s1 —2> ce. = 8 ): 1. In a similar fashion we can show that

b;
if M, s, =1 thenM’, so—>31 = ...—>sn =

Case 2:1) = grant (11, 12) /.
By definition of =, (x) M,s,, | grant(¢q,vs) ¢ iff (W, (Rs)aem,, V, P U
PUIY2) s, = . By (IH), () iff (W7, (R.)actry. V', P’ Unnfolding(P")), so -5

b; bi, biq b; bi
s1 = ... 5 s, B ff (W (R aer, VI, P), 50 = 81 — ... =% s,

grant (¢, 19) ¥'. O

Following the proof of Lemma 3.3, one can show thatP . is closed under

bisimulation and therefore it will not be surprising th\LP:{yn can be encoded
into the modal:-calculus [JW96, Theorem 11], more precisely into its PDdgfr
ment.

Lemma 3.4. ¢is DLP;{yn satisfiable iffT'(¢, Go, Ro) is PDL satisfiable.
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Proof: We show by induction on the structure of subformulaef ¢ that for all
DLPJ  modelsM = (W, (Ra)aer,, V, P) and for alls € W, M, s = ¢ iff
(W, (R],)aem,, V), s = T(¢,G,R) given that
(I) foreveryl <i <N, {R;)?, g;} is a partition ofR;,
(1) Ry, ..., Ry, are pairwise disjoint,

, , , "
(1 {R(UaeG a) R(UaeR a)} is a partition of Ry, U --- U Ry,

_ /
(v)y P= R(Uaec )

Let us first check that it is enough to prove this result. Ssppthate is
DLP:{yn satisfiable. LetM = (W, (Rq)qem,, V, P) be a model and € W such
that M, s = ¢. By Lemma 3.3 and Lemma 3.1, we can assumeMjat. . ., Ry,
are pairwise disjoint an®® C J; ;o Rp,. Let M’ = (W, (R})aem,, V) be
the PDL model such that for evedye {1,...,N}, R;, = Ry, N P and Ry, =
Ry, N —P. ltis easy to check that (I)-(IV) hold true Wit = Gog andR = Ry.
Hence M, s = T'(1, Go, Ro).

Similarly, suppose thal'(v, Gy, Ry) is PDL satisfiable. So there are a model
M = (W, (Rq)aem,, V) ands € W such thatM, s = ¢. By Lemma 3.3, we
can also assume tha'«tbsly,Rbg, e ,Rbg],be are pairwise disjoint. Let\’ =
(W, (R)acmo, V, P') be theDLP; model such that for every € {1,..., N},
R, = Rys U Ry andP = Ryg U--- U Ry . Itis easy to check that (1)-(IV) hold
true withG = Gy andR = Ry. Hence M’ s |= 9.

The proof by induction is immediate for the casgss atomic and when the
outermost operator is eitheror A.
Case L) = [a]).
By definition of =, M, s =[]y’ iff (%) for all paths of the formsy 2% s; 2
A sp In M with AgA; - -+ A,—1 € L(a) andsy = s, we haveM, s,, = 1.
. b? bT
t % ¢ in M iff eithert - # ort - ¢ in M’ and by (IH) for every subformula
" " 2
y" oceurring iny, t Y1 in MUff ¢ TWOGRE 4 i M'. Hence by using the
definition of T on program expressions and the (IH) once more, we obtain

(x) iff for all paths of the formso 2% s; 4% ... 2"=% 5 in A’ with
ApA; - Ap—1 € L(T(a, G,R)) andsg = s,
we haveM’, s, = T(¢', G, R),
iff M’ s = [T(a,G,R)T(',G,R),
Iﬁ M/’ s |: T([a]wa G: R)
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Case 2:¢) = perm(«)?)’.
By definition of =, M, s = perm(a)?)’ iff (x*) there is a path of the form, A

A Anr .
s1 55 ... 224 5 in M such that

x ApAr---Ap—1 € L(w), sp = s, and
« foreveryi € {1,...,N}, A; € Ilp implies(s;, s;y+1) € P,
x M, s, =

Observe that; A si+1 With A; = b; in M and (s;, s;+1) € P is equivalent to
either
b9
* 8; 2 s;41in M’ and
* thereisyn?;--- ;wn?;bg;@bi?--- ;0,7 € GsuchthatM', s =1 A=+ A
Un and/\/l’, Si41 |: wll ARERNA %/,

or

% 8; = si41in M’ and

* thereisyn 7y ;75005907 39,7 € Gsuch thatM’, s; = by A -+ A
Yo and M’ i1 [P A AP

This equivalence holds true because of the satisfactiol) ah@l (11). By (IH) for
every subformula)” occurring iniy, we still havet Y i M ¢ TWLCRY 4
in M’. Hence, {) is equivalent to: there is a path of the forun 4q 51 4

Ano1 . .
<228 g, in M with

x* AgAq1---A,_1 € L(T(Oé, G, R)), So = S, and
« foreveryi € {1,...,N},

A; = b; for somej implies there ig)17; - - - ;4 7; b}ﬂ/}i? Y, 7 E€G,
x M s, ET@,G,R).

It is then not difficult to show that«) is equivalent to there is a path of the form
5029 o AL LAl e MY with AgAs - Ao € L(E%9(a, G, R)), so = 5,
and M’ s, = T(Y',G,R). SoM’, s = (t"9(a, G,R))T (¥, G, R).

Case 3:¢) = grant(¢q, ¢2)'.

M, s |= grant (o1, ¢2) ¢ iff (W, (Ra)actio, Vs P U PLI?) s = of
iff (W, (Ra)acty, Vo, PU P N R), s =1
with R = (U1gz‘§N Ry,)
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iff (W, (Ra)acry, V. PUP), s =" with
Pl ={{t,t') € (Ui<i<n Bo,) Mt |= T(31,G,R) and
MI? t/ ): T(@bg, Gv Rﬁ)}i

iff (W, (Ra)acrny, V, PUPY), s =1 with
Py ={(t,t) e (Ulgz‘gN R;)g U R’:) : Mt =T, G,R), and
M. =TGR}

iff (W, (Ra)aem,, V. PUPY), s =" with
Pél = UlSiSN R/T(wl,G,R)?;bf;T(wz,G,R)? U R,T(Tlﬂl,G,R)?;bf;T(wz,G,R)?

iff M, s =T, Grew, Rnew) With
G,ew IS the union of the two sets below:

GU{T(¢1,G,R)?;:b7; T (12,G,R)?: 1 <i < N}

{T(¥1, G, R) 7675 T(12,G,R)?: 1 <i < N}
Ruew = {(=T(¢1,G,R))?; a0 : @ € R} U{a; (=T (¢02, G,R))? : « € R}.

Observe that
, , . .
* {R(Uaeenew a) R(U%me a)} is a partition of Ry, U --- U Ry,
x P =R/

(Uaetnew @

The cases witlir eeper mandr evoke are analogousa

Corollary 3.5. DLPg, is decidable.

3.4 Complexity upper bounds

The reduction froerLPCTyn into PDL we have defined increases exponentially the

size of formulae. More preciselyT(¢)| is in O(|¢| x 2¢4¥)*) and computing
T(¢) requires also time it (|| x 2¢4(9)), ThereforeDLP | -satisfiability is
in 2EXPTIME, which is a bit worst than th&eEXPTIME upper bound for DLR,,,
from [PW04]. However, our translation allows us to reusdts!theorem proving
machinery for PDL [VW86, Tuo90].

It is reasonable to consider fragments[hn]]&Pz{yn with a fixed change depth.
For such fragments, our translation provides an optimalgexity bound:

Corollary 3.6. Forevery fixedk > 0, theDLP;lLyn—satisfiabiIity problem restricted
to formulae of change depth at mdsis EXPTIME-complete.

Since the casé = 0 corresponds to DLP [vdM96] we obtain the following
consequence.
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Corollary 3.7. DLP-satisfiability isexpTIME-complete.

Hence, we improve theexPTIME upper bound established in [vdM96, PWO04].
EXPTIME-hardness simply holds because the PDL fragment of DLP i&krio be
EXPTIME-hard. It is conjectured in [vdM96, PWO04] that DLP is axPTIME by
adapting Pratt’s proof [Pra79]. Obviously, such an adapsmot completely im-
mediate, but our reduction is a strong witness of the felitibf such an approach.
However, a by-product of our reduction is precisely theTIME upper bound of
DLP satisfiability.

The reduction fronDLP;_ into PDL can be viewed as a logarithmic-space
reduction if the program terms in PDL are encoded as DAGsottumhately, PDL
with program expressions encoded as DAGs4issPACEhard (because the equiv-
alence problem for regular expressions encoded as DAGsdaBIEXPSPACE
hard [MS72]) and it is in 2xPTIME. Still, there is some hope thﬁ):LP;{yn is in
EXPTIME. At least two possibilities to prove this bound: to inventanslation into
PDL with automata, see e.g. [HKTOO], or to show that PDL augiee with the
new operator on prograns(«, 11, ) (with semanticg;7; ) U (a; 127)) is in
EXPTIME.

4 A variant with a violation constant

In [vdM96], the introduction of the logic DLP was motivated thhe need to replace
the concept of permitted states of affairs from [Mey88] by toncept of permitted
actions. In [PW04], the logic DLP is extended, providing thgic DLPgy,,, in
such a way that in the logical language the policy set can bated dynamically
via the operatorgr ant andr evoke. We recall that a policy set in [vdM96] is
simply a set of transitions, a subsetl®f x W when the set of states & whereas
a policy set in [Mey88] is rather a subset Bf (to distinguish the good states
from the bad ones). The way to handle a policy set in [Mey8&]juie simple:
a distinguished propositional variable is introduced (s@yand it represents the
violation constant, i.e. no action can lead to a state satigfuc. From a formal
viewpoint, having a distinguished propositional variallePDL does not cause
any difficulty whereas developments made in [vdM96, PW04] e@ridence that
considering a policy set as a set of transitions is techiyicalich harder.

We define below a variant of Meyer’s logic [Mey88] with the Iilito update
dynamically the interpretation of the violation constantas DLRy,,, [PWO04] is
the dynamic counterpart of DLP [vdM96]. We call this logic BD,,. We shall
show that PDL,,, admits a simple translation into PDL, however it is not clkbat
this newly introduced logic PDl,,, is so interesting from the deontic viewpoint.
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Nevertheless, we include the treatment of such a logic haneirder to emphasize
the difference of difficulty compared with the treatment RiiP ;.

Givenlly = {a; : i > 1} andPROP = {p; : i > 1}, we define the sdil of
action expressions and the $&R of formulae for PDly,, inductively as follows:

Doa,fu=a; | aUB | a;8 | «* | ¢7
FOR > ¢, ¢ u=vc [ pi | ¢AY | ¢ | [a]¢ | grant(¥)¢ | revoke(y)d

wherevcis a distinguished propositional variable not preseIROP. A PDLgy,-
modelM is a structure of the forniV, (R,)qer1,, V, VC) where

x W is a non-empty set of states,

* (Rq)aerr, 1S a family of binary relations ovel/,
x V : W — P(PROP),

x VC C W is the set of forbidden states.

A PDLg4y,-model is a PDL-model over the atomic formulaeddROP U {vc}.
We say that the formula is satisfied in the modeW by the state if the following
conditions are satisfied (obvious clauses are omitted):

f

*M,s}z@c(d:e) seV(C,

* M,s |= grant(¥) ¢ & M',s = ¢ where M’ is obtained fromM by
replacingC by VC U {s € W : M, s = ¢},

def

x M,s |= revoke(y) ¢ & M’ s = ¢ whereM' is obtained fromM by
replacingC by VC \ {s € W : M, s =1 }.

Hence, in the PDL,,, semantics, the operatgr ant enrichesl’C' and the
operatorr evoke impoverishes/C'. Satisfiability and other similar notions are
defined in the obvious way. We define below a two-place tréinsia(-, -) from
PDLg4yy formulae into PDL formulae (augmented with the propostiorariable
vc) such that (¢, ) is the translation of in PDL whenwc is interpreted by s €
W:M,s =}

* t(ve,¥) =, t(p,¥) = p,

* tis homomorphic for- andA,

t([do, v) = [t(e, ¥)]E(¢, ),
t(grant(¢')p, ¢) = (o, ¥ V (¢, 9)),
t(revoke(¢')d, 1) = t(g, ¥ A —t(¢, ¥)),

*

*

*
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* t(a,v) = a andt is homomorphic fotJ, ; and*,
x 1(07,0) = t($, ).

It is not difficult to show that is a polynomial-time reduction. i is a PDL
formula thent(¢, ) is also a PDL formula built over propositional variables in
PROP U {vc}. The major result of this section is the following:

Lemma 4.1. ¢ is PDLyy, satisfiable ifft(¢, vc) is PDL satisfiable.

Proof: By induction on the size af we show the following property:

Let Mo = (W, (Ra)aetty, V, VCo) andM = (W, (Rq)aery, Vs, VC) be PDLgyy-
models such that' C' = {s € W : My, s |= 1} for some PDL formula)
(M variant of My). Then, forevery € W, M, s |= ¢ iff My, s = t(¢, ).

Before showing this property, let us prove that it is enoughdur proof. If
there exist a PD,,-model Mgy = (W, (Rq)acty, V, VCo) ands € W such that
Mo, s = ¢, thenMy, s |= t(¢, ve) sinceVCy = {s' € W : My, s’ = ve}. Con-
versely, if there exista PDL modaky = (W, (Rq)acty, V, VCo) ands € W such
that Mo, s = t(¢, ve), thenMy, s = ¢ sinceVCy = {s' € W : My, s’ = vc}.

The base case whef € PROP U {vc} and the cases when the outermost
connective ofp is eitherA or — are by an easy verification.

Let M = (W, (Rq)aery, V, VC) be a PDlgy,-model variant ofM, such that
VO ={seW: My,s E=v}.
Case 1 ¢ = grant(¢')¢".

M, s = grant(¢/)¢” iff M/, s |E ¢ withVC' =VCU{s' : M,s = ¢'}
(by definition of|=)
iff M',s=¢"withVC'={s e W: Mys =¢}u
{s": Mo, s" = (¢, 4)}
(by assumption and by (IH))
iff Mo, s [=t(¢",9 V¢, ¢)) (by (IH)).

Case 2 ¢ = revoke(¢')¢".

M, s |= revoke(¢')¢" iff M) s = ¢" withVC' =VCO\{s: M,s' = ¢'}
(by definition of|=)
iff M/, sE=¢"withVC' ={s € W: Moy, s E}\
{S/ : Mo, s’ = t(qb/ﬂ/])}
(by assumption and by (IH))
iff Mo, s Et(d", v A—t(d, ).

23



Case 3¢ = [a]¢'.

For any subexpressias? in o, by (IH) forall s’ € W, s’ 2 ¢’ in M iff &' o) o
in M. Since the map is homomorphic fotJ, ; and*, then for alls’, s” € W,
(s',8") € Ro in Miff (s',8") € Ry IN Mo. Itis then easy to show that
M78 |: [Oé]d)/ iff M07 S |: t([a]QS/?w) U

Sincet is a polynomial-time reduction, complexity of PRL, can be now
easily characterized.

Corollary 4.2. Satisfiability for PDlgy,, is EXPTIME-complete.

5 Concluding remarks

In this paper, we have shown that the IoBIEP ], a substantial extension of the
logic DLPyy, (itself extending the logic DLP [vdM96]), can be naturalignslated
in standard PDL. As a consequence, we can reuse severdkrandltechniques
about PDL and we establish new complexity bounds for DLP ahi 0}, .

Even thoughDLPjyn has the ability to withdraw (or add) transitions in the
policy set, this extension remains decidable. This is imghantrast with a variant
of the sabotage modal logic SML which has an undecidablsfediility prob-
lem [LRO3]. This can be explained by the fact thaﬂ)ﬂLPj{yn there is no quan-
tification over all possibilities of withdrawal of transitis/states (as in SML), but
rather that one needs to specify the formulae satisfied bgxtiemity nodes of the
transitions to be withdrawn or added. This is a situationilainto the decidabil-
ity of the guarded fragment of classical logic [ANvB98] wheguantification has
a guarded flavor. Actually, im)Lngn there is no quantification on the different
ways to modify policy sets.

Even if our translation into PDL sheds some new light on thentie logics
DLPg4y, [PWO04] and DLP [vdM96], some interesting problems remaigrom-
cluding

x the characterization of the precise complexitﬂ?dfP:{yn and DLRyy,, (be-
tweenExXPTIME and ZXPTIME),

+ the decidability status oDLPj = with the semantics in which the atomic
actions are interpreted as sets of finite sequences ofticarss{on the model
of the original DLP semantics), see Section 2.2 for moreildetadeed, our
translation technique does not seem to work for this extensi
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