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Abstract: This paper presents a Visual Predictive Controller scheme for a differential drive
robot navigating in a cluttered environment. We introduce an analytic model predicting the
future state for this specific system Moreover, constraints guaranteeing the convergence of the
control law, and avoiding occultations and collisions with obstacles are presented. A large set of
results obtained in simulations highlights the interest and efficiency of the approach.
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1. INTRODUCTION

Image-Based Visual Servoing (IBVS), a sub-division of
visual servoing, aims at controlling the motion of a camera
mounted on a robotic system. To do so, the control
law is designed in the image space and relies on the
minimization of an error between the values of some visual
features computed in the current image and their values of
reference, corresponding to the task to achieve Chaumette
and Hutchinson (2006). Thus, there is no need to estimate
the robot localization in a global frame and it is sufficient
to track the visual features in the image. This method is
usually chosen for its reactivity, the absence of localization,
and its large stability margins Chaumette (1998).

When using an IBVS scheme, the control law is com-
puted in the image space, usually leading to an efficient
convergence of the visual features towards the reference
ones. However, the camera pose is not taken into account
by the control law, making the trajectory entirely depen-
dent of the number and types of visual features used to
define the task (points, lines, moments, etc Chaumette
(2004)). It is then difficult to predict the trajectory or to
provide any guarantee regarding the camera pose during
the servoing in order to avoid collisions or occultations.
Moreover, the evolution of the visual features in the image
and the camera trajectory can be incompatible and induce
a failure of IBVS. For example, it is well known that a
classical IBVS controller cannot achieve a pure rotation
around a set of point visual features Chaumette (1998).
In order to overcome these issues, several works propose
to use hybrid methods, such as Malis et al. (1999) or
Corke and Hutchinson (2001), where some of the camera
degrees of freedom are controlled with an IBVS scheme
and the remaining ones with a control law expressed in
the Cartesian space. However, these approaches only allow
dealing with one specific problem at the time and do not

present any global guarantee regarding the camera pose
and trajectory.

Visual Predictive Control (VPC) Allibert et al. (2010) is
the fusion between Image-Based Visual Servoing (IBVS)
Chaumette and Hutchinson (2006) and Nonlinear Model
Predictive Control (NMPC) Grüne and Pannek (2017).
The task to achieve is defined by a cost function expressed
in the image space. It is the sum over a prediction horizon
of the difference between the predicted visual features
and the desired ones. Then, the command is obtained
by minimizing at each iteration the cost function. The
minimization process is performed by a numerical solver
and is usually subject to constraints. The obtained control
scheme thus combines the advantages of IBVS, i.e., reac-
tivity, absence of metric localization, and large stability
margins Chaumette (1998), with the ones of NMPC, i.e.,
ability to explicitly deal with constraints such as feature
visibility, collision with obstacles, or control inputs bound-
aries.

Over the last decade, VPC schemes have mostly been
developed for robotic system made of a camera mounted
on a robotic arm, such as in Allibert et al. (2010), Assa and
Janabi-Sharifi (2014) and Qiu et al. (2019). In Copot et al.
(2012) and Lazar et al. (2012), the proposed VPC schemes
are slightly modified and use image moments as visual fea-
tures. In Wang et al. (2012) and Hajiloo et al. (2016), the
visual servoing system is represented as a polytopic linear
parameter-varying system and offers interesting properties
regarding the robustness of the controller. In Flécher et al.
(2019), the VPC scheme is used to simultaneously control
two robotic arms sharing a same workspace. In addition
to robotic arms, other systems were considered such as
a flying camera in Heshmati-alamdari et al. (2014) and
Mcfadyen et al. (2014), a mobile robot in Ke et al. (2017),
and a fixed-wing aerial vehicle in Lee et al. (2011). These
works focus on the design of the VPC scheme subject



to control inputs and field of view constraints, usually
for small displacements of the camera between the initial
and desired poses, which limits the impact of the predic-
tion errors and the need for a large prediction horizon.
Furthermore, the constraints due to external elements,
which requires accurate prediction models, are not taken
into account. Finally, there is no guarantee regarding the
system convergence given that the feasibility problem and
the terminal constraint are not addressed.

In this work, it is proposed a VPC scheme for a differential
drive robot navigating in a cluttered environment. We
first present the generic VPC framework and the main
parameters, as well as the usual local and global models
Allibert et al. (2010) used to predict the future states. We
then show that it is possible to obtain a more accurate local
model when considering a differential drive robot. Next,
we focus on a set of constraints allowing to successively
and safely navigate in a cluttered environment. The first
constraint is the terminal constraint which allows to check
the feasibility of the problem and that can be used to
guarantee the convergence of the control law. The second
constraint is used to keep the landmark of interest in
the field of view of the camera, and the last one allows
to avoid the obstacles lying in the scene. The last part
of the paper presents a large set of results obtained in
simulations. These results show the impact of the main
parameters of a VPC scheme and the usefulness of the
previously mentioned constraint to deal with a cluttered
environment. We conclude the paper by giving an overview
of what are the main challenges in order to implement an
efficient VPC scheme on a robot.

2. SYSTEM MODELING
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(1.1) Camera pinhole model
(1.2) Differential robot model

Figure 1. System model

In this work, a pinhole camera is controlled via a VPC
scheme. To model the system, an orthonormal frame
Fc(Oc,xc,yc, zc) represents the camera, and the focal
length is denoted by f (see Fig. 1.1). The camera pose χc
is expressed in the world frame Fo(O,xo,yo, zo). Finally,

the camera kinematic screw ΓFc

Oc/Fo
, calculated at point Oc

with respect to F0 and expressed in Fc, can be decomposed
as follows:

ΓFc

Oc/Fo
= Γ =

[
V Fc
xc

V Fc
yc

V Fc
zc

ΩFc
xc

ΩFc
yc

ΩFc
zc

]T
(1)

where V Fc
xc

, V Fc
yc

and V Fc
zc

are respectively the linear
velocities along xc, yc and zc expressed in Fc. Following
the same idea, ΩFc

xc
, ΩFc

yc
and ΩFc

zc
are respectively the

angular velocities along xc, yc and zc expressed in Fc.

The camera is embedded on a differential robot equipped
with a pan-platform. Let define Fr(Or,xr,yr, zr) the

robot frame and Fp(Op,xp,yp, zp) the platform frame (see
Fig. 1.2). Let θr be the direction of the robot with respect
to xo, θp the direction of the pan-platform with respect to
xr, Op the pan-platform center of rotation and ∆rp the

distance between the robot reference point Or and Op.
Moreover, with xr and yr the coordinates of the pointOr in
Fo, one defines a the mobile base state as χr = [xr, yr, θr]

T .
The control input is given by Q = [υ, ωr, ωp]

T , where υ and
ωr are the mobile base linear and angular velocities, and
ωp is the pan-platform angular velocity with respect to
Fr. Thus, it is possible to obtain the following kinematic
model for the mobile base:ẋrẏr

θ̇r

 =

[
υ cos(θr)
υ sin(θr)
ωr

]
(2)

The camera being embedded on a differential robot
equipped with a pan-platform, it only has three degrees of
freedom. For this reason, with xc and yc the coordinates of
the point Oc in Fo and θc = θr + θp, one defines a reduced
camera state and kinematic screw as follows:

χ̄c = [xc, yc, θc]
T (3)

Γ
Fc

Oc/Fo
= Γ =

[
V Fc
yc
, V Fc

zc
,ΩFc

xc

]T
=

ẋcẏc
θ̇c

 =

[
υ cos(θr)− ωr∆rp sin(θr)
υ sin(θr) + ωr∆rp cos(θr)

ωr + ωp

]
(4)

Finally, a VPC scheme relies on a landmark to control
the camera. One assumes that this landmark can be
characterized by Nv interest points which are extracted
by an image processing. Therefore, the visual data are
represented by a 2Nv dimensional vector S. A point
pj , whose coordinates in the camera frame are given by
(xj , yj , zj), is represented by a point Pj whose coordinates
are Sj = (Xj , Yj) in the image plane, with j ∈ [1, ..., Nv]
(see figure 1.1).

3. VISUAL PREDICTIVE CONTROL

In this section, we first recall the VPC framework and the
main parameters impacting the controller behavior. Then,
we present three constraints that have to be taken into
account in the VPC problem in order to guarantee the
convergence of the closed-loop system and the safety of
the robot.

3.1 The VPC scheme

A VPC scheme consists in coupling NMPC with IBVS.
On the one hand, similarly to NMPC, it consists of com-

puting an optimal control sequence Q
∗
(.) that minimizes

a cost function JNp
over a prediction horizon of Np steps

while taking into account a set of user-defined constraints

C(Q
∗
(.)). The optimal control sequence is of length Nc,

which represents the control horizon. In other words, the
N th
c first predictions are computed using independent con-

trol inputs, while the remaining ones are all obtained using

a unique control input equal to the last element of Q
∗
(.).

On the other hand, similarly to IBVS, the task to achieve is
defined as an error in the image space. To do so, one defines
S as the vector containing the coordinates of Nv visual fea-
tures and S∗ as the one containing their reference values.



In this work, one uses points as visual features, and in
this particular case S = [X1, Y1, ..., Xj , Yj , .., XNv

, YNv
]T .

Finally, the cost function to minimize is defined as the
sum of the quadratic error between the visual feature
coordinates vector Ŝ(.) predicted over the horizon Np and
the desired ones S∗. Note that the proposed cost function
is the one traditionally used for VPC schemes, but it does
not represent the only choice.

The VPC problem is then given by:

Q
∗
(.) = min

Q(.)

(
JNp

(S(k),Q(.))
)

(5)

with

JNp
(S(k),Q(.)) =

k+Np∑
p=k+1

[Ŝ(p)− S∗]T [Ŝ(p)− S∗] (6)

subject to

Ŝ(p+ 1) = g(Ŝ(p+ 1),Q(p)) (7a)

Ŝ(k) = S(k) (7b)

C(Q
∗
(.)) ≤ 0 (7c)

where k represents the current iteration at instant tk and
Q(.) = [Q(k), ...,Q(k + Np − 1)]. Equation (7a) gives the

model g(Ŝ(p+1),Q(p)) used to predict the future states. In
the case of VPC, the state is defined by the visual features
and several models are available. We will present some of
them in section 4. Moreover, the predicted visual features
rely on the last measured ones, as stated by equation (7b).
Finally, equation (7c) is used to include the constraints in
the optimization problem via nonlinear inequalities. These
latter will be presented in 3.2.

Thus, solving (5) leads to the optimal sequence of control

inputs Q
∗
(.). As it is usually done, only the first element

Q
∗
(1) is applied to the system. At the next iteration, the

minimization problem is restarted, and a new sequence of
optimal control inputs is computed. This loop is repeated
until the task is achieved.

3.2 Definition of the constraints

The terminal constraint: When using a VPC scheme,
it is necessary to guarantee that the set of control inputs
makes the camera converge towards the desired pose. Due
to the fact that a VPC scheme minimizes the distance
between a set of predicted visual features and the desired
ones, there is no guarantee that the ultimate predicted
features have converged towards the desired ones. More-
over, the prediction horizon might be too short or the
constraints on the control inputs might be too restrictive
to reach the goal Grüne and Pannek (2017). Thus, to
check the feasibility, one adds a terminal constraint in the
optimization problem.

The terminal constraint is defined as the error between
the prediction of the visual feature coordinates Ŝ(k +
Np) obtained at the end of the prediction horizon, and
the desired ones S∗ (see (8) where δtc is a user defined
threshold). If the solver cannot compute a sequence of

control inputs Q
∗
(.) that respects this constraint, then the

problem is not feasible, and there is no guarantee regarding
the system convergence.

||Ŝ(k +Np)− S∗|| − δtc ≤ 0 (8)

where δtc is a user defined threshold. Two remarks can be
made concerning the use of the terminal constraint. First,
none of the works studied during the literature review
proposes to include a terminal constraint, despite its ease
of implementation and utility. Moreover, authors usually
weight the last predicted value based on the distance to
the desired one. This method helps the solver to converge
towards an optimal solution but it does not guarantee
the convergence as the terminal constraint does. Second,
the terminal constraint does not provide an absolute
guarantee of the task realization. Indeed, in the case
the predictions are strongly erroneous, the system cannot
converge towards the real values of the desired states.

The occultation avoidance constraints: Visual servoing
schemes, including IBVS and VPC, rely on visual features
in the image corresponding to landmarks in the scene.
If the landmarks are no more in the field of view of the
camera, it becomes then impossible to extract the visual
features and the servoing fails. It is then mandatory to
guarantee their visibility at any moment of the navigation.
In this work, it is proposed to include a set of constraints
guaranteeing that the visual features obtained over the
prediction horizon stay within the image boundaries. To
achieve this aim, ones define the following set of con-
straints: 

Ŝ(k)− Smax
...

Ŝ(k +Np)− Smax
Smin − Ŝ(k)

...

Smin − Ŝ(k +Np)


≤ 0 (9)

where Smax and Smin are two 2Nv long vectors respec-
tively containing the upper and lower boundaries of the
image space.

The obstacle avoidance constraints: Visual servoing
schemes do not offer any guarantee regarding possible
collisions of the robotic system with elements of the scene.
It is then mandatory to define a constraint managing the
distance between the robotic system and the obstacles
lying in the environment. In this work, it is proposed
to only consider static, non-occulting 1 , and circle-shaped
obstacles. Each of the No obstacles present in the scene
is defined by xom , yom , rom , with xom , yom the coordinates
of the center, rom the radius, and m ∈ [1, ..., No]. The
collision risk is managed thanks to the following constraint:

δs −
√

(x̂(k)− xo1)
2

+ (ŷ(k)− yo1)
2

...

δs −
√

(x̂(k +Np)− xo1)
2

+ (ŷ(k +Np)− yo1)
2

δs −
√(

x̂(k)− xoNo

)2
+
(
ŷ(k)− yoNo

)2
...

δs −
√(

x̂(k +Np)− xoNo

)2
+
(
ŷ(k +Np)− yoNo

)2


≤ 0

(10)

1 Small enough for the camera to perceive the target from any
configuration



with δs = ds + rom + rr, where rr represents the mobile
base radius and ds the safety distance around an obstacle.
The predicted positions of the mobile base x̂(.) and ŷ(.)
are obtained by integrating equation (2).

4. PREDICTION MODELS

A VPC scheme relies on models predicting the future
states based on a given sequence of control inputs. Here,
one presents three models: the two first ones are extracted
from the literature Allibert et al. (2010) whereas the third
one is specifically computed for a differential robot.

4.1 Global model

The global prediction model consists in de-projecting a
point from the initial image to the initial camera frame
(R2 → R3), computes its coordinates in the prediction
camera frame (R3 → R3), and finally projects this point
in the prediction image (R3 → R2). By defining the projec-
tion matrix Hi/c and the homogeneous matrix Hc(t1)/c(t2)

between two camera poses at instants t1 and t2 such as:Xj

Yj
zj
1

 =

f/zj 0 0 0
0 f/zj 0 0
0 0 1 0
0 0 0 1


xjyjzj

1

 = Hi/c

xjyjzj
1

 (11)

Hc(t1)/c(t2) =

[
Rc(t1)/c(t2) Tc(t1)/c(t2)

01×3 1

]
(12)

where Rc(t1)/c(t2) and Tc(t1)/c(t2) are respectively a 3 × 3
rotation matrix and a 3 × 1 translation vector between
Fc(t1) and Fc(t2), one obtains the global prediction model:

Pj(t2) = Hi/c(t2)H
−1
c(t1)/c(t2)

H−1
i/c(t1)

Pj(t1) (13)

4.2 Local model

It relies on the mapping between the visual features evo-
lution and the camera kinematic screw via the interaction
matrix, classically given for a point Pj by Chaumette and
Hutchinson (2006):

Ji =

 −f
zj

0
Xj

zj

XjYj

f −(f +
X2

j

f ) Yj

0 −f
zj

Yj

zj
(f +

X2
j

f )
−XjYj

f Xj

 (14)

The local model is thus given by the integration between
the current instant and the prediction one of the following
equation:

Ṡj = JiΓ (15)

4.3 3 DOF local model

In this paper, it is proposed to predict the visual features
using a local model in the case of a 3 DOF camera. In other
words, equation (15) is modified to include the robotic
system carrying the camera. Let define the robot Jacobian
by Durand-Petiteville (2012):

Jr =

[− sin(θp) ∆rp cos(θp) + cx cx
cos(θp) ∆rp sin(θp)− cy −cy

0 −1 −1

]
(16)

where cx and cy are the coordinates of Oc along axes xp
and yp (see figure 1.1), and the reduced interaction matrix,
i.e., for a 3 DOF camera, by

Ji =

 Xj

zj

XjYj

f −(f +
X2

j

f )

Yj

zj
(f +

X2
j

f )
−XjYj

f

 (17)

It is then possible to rewrite (15) such as:

Ṡj = JiΓ = JiJrQ (18)

The robot is a discrete system whose inputs evolve at
each instant t = kTs, where Ts is the sampling time. By
assuming that the inputs Q(t1) are constant during the
two instants t1 and t2 = t1 +Ts, it is then possible to solve
(18) between t1 and t2. After some computations (see Folio
and Cadenat (2008)), one obtains:

Xj(t2) =
zj(t1)Xj(t1)

zj(t2)

Yj(t2) = f
zj(t2)

{
C1 cos(A)− C2 sin(A)

+∆rp sin(θp(t2)) + υ(t1)
ωr(t1)

cos(θp(t2))− cy
}

zj(t2) = C1 sin(A) + C2 cos(A)

−∆rp cos(θp(t2)) + υ(t1)
ωr(t1)

sin(θp(t2))− cx
(19)

where:
A =

(
ωr(t1) + ωp(t1)

)
Ts

C1 =
Yj(t1)zj(t1)

f
−∆rp sin(θp(t1))− υ(t1)

ωr(t1)
cos(θp(t1)) + cy

C2 = zj(t1) + ∆rp cos(θp(t1))− υ(t1)
ωr(t1)

sin(θp(t1)) + cx

This model is a closed-form expression that can be used
to predict exactly the coordinates of the visual features.
Moreover, it does not require any advanced/complex op-
eration, offering a low computational cost.

Remark: The three models rely on the z coordinate of
the visual features. Thus, to accurately predict the values
of the visual features, it is mandatory to estimate it or
to measure it with a sensor such as a 3D camera. Using
a constant value, which is widely used in classical IBVS
Chaumette and Hutchinson (2006), might lead to large
prediction errors, especially for the navigation problem
where the value of z has huge variations.

5. RESULTS

In this section, we present results obtained simulating a
VPC servoing for a differential drive robot equipped with
a camera. The robotic system and the environment were
implemented using the C++ language. They were tested
on an Intel Core i7-8750H CPU running at 2.20GHz. To
minimize the cost function, we rely on the SQP solver
from the NLopt nonlinear-optimization package Johnson
(2020). Finally, the robot state and visual feature coor-
dinates are simulated using the equations presented in
section 2.

In this work, we consider the depth of the visual features
as known. Moreover, at the first step, the minimization
problem is solved with a control vector equal to zero. For
the next navigation steps, it is initialized with the results
of the previous minimization. Finally, the control variables
are bounded as follows: 0 ≤ υ ≤ 0.4M/s, −0.1rad/s ≤
ωr ≤ 0.1rad/s, and −0.1rad/s ≤ ωp ≤ 0.1rad/s.



In the figures, the current robotic system is represented
in dark blue. A plain orange line represents the path
performed by the mobile base, whereas a dashed orange
one is used for the predicted path of the camera. The
camera pose to reach is symbolized by a red triangle and
the landmark is represented by the red points. Obstacles
are represented by plain green circles and the safety
boundaries by pointed green circles. Finally, in the figures
representing the evolution of the visual features, green dots
are the initial values, red dots the final values, and blue
ones are the desired values.

For the first set of tests presented in figure 2, the environ-
ment is free of obstacles and the terminal constraint is not
used. From its initial pose, the camera has to reach the
desired one, represented by the red triangle in the figures.
Three different configurations are evaluated (see table 1):
Ω1 with Np = 40 and Nc = 1 (figures 2.1, 2.2, 2.3 and
2.4), Ω2 with Np = 40 and Nc = 2 (figures 2.5, 2.6, 2.7
and 2.8), and Ω3 with Np = 40 and Nc = 40 (figures
2.9, 2.10, 2.11 and 2.12). With Ω1, the solver does not
succeed in finding a sequence of control inputs allowing to
reach the desired pose from the initial one (Fig. 2.1). The
robot moves using the obtained control inputs (Fig. 2.2
and 2.3) and ends up in a local minima (Fig. 2.4). With
Ω2, the desired pose is not reached by the predicted state
neither from the initial pose (Fig. 2.5), nor during the first
steps (Fig. 2.6). However, after a couple of steps, the solver
finds a sequence of control inputs reaching the desired pose
(Fig. 2.7), allowing the system to achieve the navigation
task (Fig. 2.8). Finally, with Ω3, the computed sequence
of control inputs allows reaching the desired pose from
the initial pose (Fig. 2.9) and during the whole navigation
(Fig. 2.10 and 2.11). Thus, the camera is driven to the
desired location (Fig. 2.12). For the three configurations,
the prediction horizon Np = 40 is large enough to be able
to reach the desired pose from the initial one. However,
when Nc = 1, the solver has to find the unique sequence
of control inputs achieving the task. In the presence of
local minima, it is very challenging for a local solver such
as SQP to find this unique solution. By increasing Nc, we
increase the number of sequences achieving the task. Thus,
the solver will more likely find one of these sequences.
Another solution consists in changing the initial values of
the control in order to start the minimization close to a
desired minima. This technique is known as warm start
Grüne and Pannek (2017).

For the second set of simulations, a terminal constraint
is included in the VPC scheme. This constraint is used
to check and to guarantee that the control vectors allow
to reach a neighborhood of the desired pose. For the
initial configuration, if the solver cannot find a solution
not violating the terminal constraint, it is then necessary
to modify the controller parameters. In this simulation,
we use the configuration Ω4 with Np = 40, Nc = 20 and
the terminal constraint is activated (see table 1). As it
can be seen in figures 3.1 and 3.2, the predicted states
always end in the neighborhood of the desired pose. Thus,
the visual features converge towards their desired values
(Fig. 3.3) and the control variables stay within the defined
boundaries (Fig. 3.4).

The third set of simulations aims at showing an example
of the occultation constraint use. We consider two con-

figurations (see table 1): Ω5 where Np = Nc = 40 and no
occultation constraint is used, and Ω6 whereNp = Nc = 40
and an occultation constraint is added. Figures 4.1 and
4.2 represent the nominal case without an occultation
constraint. Figures 4.1 and 4.2 show the new behavior of
the robot when an occultation constraint is added. Indeed,
one can see in figure 4.2 that the visual features do not
overpass the boundary represented by the dotted red line.

For the fourth set of simulations, two obstacles are in-
cluded in the environment. The distance between the cen-
ters of the robot and the obstacles is known at any time.
The safety distance ds is setup to 0.1 m. Two different
configurations are evaluated (see table 1): Ω7 with Np = 60
and Nc = 60 (figures 5.1, 5.2, 5.3 and 5.4), and Ω8 with
Np = 10 and Nc = 10 (figures 5.5, 5.6, 5.7 and 5.8).
With Ω7, the prediction horizon is sufficiently large and
the control horizon offers enough flexibility for the solver
to compute a sequence of control inputs reaching the
neighborhood of the desired state from the initial position
(Fig. 5.1) while avoiding the obstacles. During the rest of
the navigation (Fig. 5.2) the robot follows a path similar
to the initial one and finally achieve the task. Indeed, the
visual features converge towards the desired values (Fig.
5.3). With Ω8, the prediction horizon is too short to obtain
predicted states reaching the desired pose from the initial
one (Fig. 5.5). The terminal constraint is violated and the
convergence is not guaranteed. However, the sequence of
control inputs computed by the solver at each iteration al-
lows the robot achieving task while avoiding the obstacles
(Fig. 5.6). The visual features converge towards the desired
values (Fig. 5.7). Because of the shorter prediction horizon
in Ω8 than in Ω7, the robot less anticipates the obstacles.
Indeed, it can be seen in figure 5.8, that the robot has to
stop moving forward a couple of times (around iterations
25, 35 and 50), to orientate itself and avoid the obstacles.
In figure 5.4, it only happens once (around iteration 30),
showing a greater anticipation capacity on the part of the
robot.

For the last set of simulations, the two obstacles remain
but the robot sensing range is limited to 1 meter. Two
different configurations are evaluated (see table 1): Ω9 with
Np = 10 and Nc = 10 (figures 6.1, 6.2, 6.3 and 6.4), and
Ω10 with Np = 40 and Nc = 40 (figures 6.5, 6.6, 6.7 and
6.8). With Ω9, the solver cannot comply with the terminal
constraint from the initial pose and the convergence is
not guaranteed (Fig. 6.1). However, the robot manages
to drive towards the goal while discovering and avoiding
the obstacles. When a new obstacle is detected (Fig. 6.2),
the solver modifies the sequence of control inputs in order
to avoid it (Fig. 6.3). Thus, it successfully achieves the
navigation task 6.4). With Ω10, the solver complies with
the terminal constraint from the initial pose and the
convergence is guaranteed (Fig. 6.5). However, one of the
obstacles is too far to be detected and the predicted path
passes through it. When the robot detects the obstacle
(Fig. 6.6), the predicted path is modified and the robot
avoids the obstacle (Fig. 6.7). Thus, the navigation task
is achieved (Fig. 6.8) while guaranteeing the convergence
and the avoidance of the obstacles.



Configuration Np Nc Terminal constraint Occultation constraint Obstacle constraint Obstacles Sensor range

Ω1 40 1 No No No 0 0

Ω2 40 2 No No No 0 0

Ω3 40 40 No No No 0 0

Ω4 40 20 Yes No No 0 0

Ω5 40 40 Yes No Yes 1 ∞
Ω6 40 40 Yes Yes Yes 1 ∞
Ω7 60 60 Yes No Yes 2 ∞
Ω8 10 10 Yes No Yes 2 ∞
Ω9 10 10 Yes No Yes 2 1

Ω10 40 40 Yes No Yes 2 1

Table 1.

(2.1) Ω1 - Iteration 0 (2.2) Ω1 - Iteration 20 (2.3) Ω1 - Iteration 70 (2.4) Ω1 - Iteration 100

(2.5) Ω2 - Iteration 0 (2.6) Ω2 - Iteration 8 (2.7) Ω2 - Iteration 22 (2.8) Ω2 - Iteration 50

(2.9) Ω3 - Iteration 0 (2.10) Ω3 - Iteration 8 (2.11) Ω3 - Iteration 18 (2.12) Ω3 - Iteration 50

Figure 2. Navigation in a free environment without terminal constraint

6. CONCLUSION

In this work we have presented the Visual Predictive Con-
trol framework for a mobile robot navigating in a cluttered
environment. The control scheme relies on visual servoing
coupled with model predictive control allows driving the
camera towards a given pose while avoiding occultations of
the landmark and collisions with the obstacles. Numerous
results obtained in simulations show the impact of some
of the parameters and highlight the efficiency of the ap-
proach. However, the presented results do not take into
account the time required by the solver to minimize the
cost function. Indeed, among the challenges arising when
relying on a VPC scheme to navigate, the computing time
seems to be a major one. Indeed, using large values for
Np and Nc leads to heavy computations not compatible
with a short sampling time for a real time control in a dy-
namic environment. It seems then mandatory to develop a

method allowing to quickly solve the optimization problem
for large values for Np and Nc.
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Figure 5. Navigation in a cluttered environment with an infinite sensor range
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Figure 6. Navigation in a cluttered environment with a 1 meter sensor range


