Faten Atigui
email: faten.atigui@cnam.fr

Franck Ravat

Jiefu Song

Olivier Teste

Gilles Zurfluh

Facilitate effective decision-making by warehousing reduced data: is it feasible?

Keywords: multidimensional design, data reduction, experimental assessment

Our aim is to provide a solution for multidimensional data warehouse's reduction based on analysts' needs which will specify aggregated schema applicable over a period of time as well as retain only useful data for decision support. Firstly, we describe a conceptual modeling for multidimensional data warehouse. A multidimensional data warehouse's schema is composed of a set of states. Each state is defined as a star schema composed of one fact and its related dimensions. The derivation between states is carried out through combination of reduction operators. Secondly, we present a meta-model which allows managing different states of multidimensional data warehouse. The definition of reduced and unreduced multidimensional data warehouse schema can be carried out by instantiating the meta-model. Finally, we describe our experimental assessments and discuss their results. Evaluating our solution implies executing different queries in various contexts: unreduced single fact table, unreduced relational star schema, reduced star schema and reduced snowflake schema. We show that queries are more efficiently calculated within a reduced star schema.

INTRODUCTION

Nowadays, decision support systems are mostly based on Multidimensional Data Warehouse (MDW). A MDW schema is based on facts (analysis subjects) and dimensions (analysis axis). A fact includes analysis indicators while dimensions contain analysis parameters. The analysis parameters are organized according to their hierarchical level in order to classify the parameters from the lowest granularity to the highest granularity.

In a MDW, data is stored permanently and new data is steadily added. Hence, a MDW stores a huge volume of data in which the analyst may well get lost during her/his analyses. On the other hand, the relevance of MDW data decreases with time: detailed information is generally considered relevant for recent data [START_REF] Skyt | Specification-based data reduction in dimensional data warehouses[END_REF], while more aggregated information can usually satisfy the needs of analysis with older data. For instance, a decisionmaker may have interest in analyzing published news by subthemes for the last four years, but this level of granularity may be proved inappropriate if the analysis was carried out over an older period because most of today's subthemes did not exist before: it is impossible to carry out analyses over published news by subthemes but by a higher granularity level which stays stable over time, such as news' theme.

Facing large volumes of both relevant and irrelevant data, our aim is to increase the performance of query treatment and especially to facilitate the analysts' task by providing only pertinent data over time. Our aim is to provide a multidimensional analysis framework adapted to analysts' needs, allowing them to remove the temporal granularity levels which are irrelevant for their analyses. As detailed data value decreases with time, we implement selective deletions at low levels of granularity. This reduction is achieved mainly through progressive data aggregation: older data is synthesized.

This paper is composed of the following sections: Section 2 describes a state of the art of data reduction. Section 3 defines our conceptual model of multidimensional data based on reductions. Section 4 presents a meta-model for managing MDW composed of states. Section 5 provides experimental assessments to evaluate our solution in various implementation environments.

RELATED WORK

Reducing data allows us both to decrease the quantity of irrelevant data in decision making and to increase future analysis quality [START_REF] Udo | Hybrid Data Reduction Technique for Classification of Transaction Data[END_REF]. In the context of decision support, data reduction is a technique originally used in the field of data mining [START_REF] Okun | Unsupervised data reduction[END_REF][START_REF] Udo | Hybrid Data Reduction Technique for Classification of Transaction Data[END_REF].

In the DW context, [START_REF] Garcia-Molina | Expiring data in a warehouse[END_REF] were the first to define solutions for data deletion. More precisely, they study data expiration in materialized views so that they are not affected and can be maintained after updates with the help of a set of standard predefined views.

In the multidimensional area, [START_REF] Chen | OLAPing Stream Data: Is It Feasible?[END_REF] propose an architecture allowing the integration of data streams into a MDW and reduce the size. The size reducing is predefined and automatically executed by partially aggregating the data cube; it makes sure the detailed information is only available during a time interval. Nevertheless, this work only focuses on the fact table. [START_REF] Skyt | Specification-based data reduction in dimensional data warehouses[END_REF] presents a technique for progressive data aggregation of a fact. This study intends to specify data aggregation criteria of a fact due to higher levels of dimensions. The authors also provide techniques to query reduced multidimensional objects. As mentioned in [START_REF] Iftikhar | A rule-based tool for gradual granular data aggregation[END_REF], this work is highly theoretical but it fails to provide us a concrete example of implementation strategy. In [START_REF] Iftikhar | A rule-based tool for gradual granular data aggregation[END_REF], a gradual data aggregation solution based on conception, implementation and evaluation is proposed. This solution is based on a table containing different temporal granularities: second, minute, hour, month and year.

This previous work only focuses on the fact table. [START_REF] Iftikhar | Using a Time Granularity Table for Gradual Granular Data Aggregation[END_REF], 2011) use a temporal table for gradual data reduction. None of the previous work takes into account analysts' needs. Our goal is more ambitious as it aims to study data reduction of the complete multidimensional schema that depends only on the users' needs. We intend to provide a consistent analysis environment and thus facilitate the analyst's task by limiting the analysis to semantically consistent data.

CONCEPTUAL MODELING

We aim at specifying aggregated schemata over time in order to keep only useful data for decision support. All dimensions and facts may be reduced to different granularity levels according to analyst's needs. The useless information is deleted from MDW in order to provide only relevant data for analyses.

Case Study

The case study shows a multidimensional schema progression that fulfills the analyst's needs. A MDW fed by RSS streams allows decision-makers to analyze the number of published news from her/his favorite websites. A decision-maker expresses her/his needs as followed: (a) during the last four years, news analysis is carried out with reference to lowest levels of granularity: subtheme, city and publication date; (b) in the previous period from 2010 to 2000, analyses are summarized according to news' theme, country mentioned in the news and month of publication, because no daily analysis referring to subtheme and city is required; (c) before 2000, only aggregated information about published news by quarter and by continent makes sense.

The following three figures represent the conceptual multidimensional schemas fulfilling user's needs. Each schema is based on the graphic notation called star schema introduced in (M. [START_REF] Golfarelli | Conceptual design of data warehouses from E/R schemes[END_REF]. A star schema is based on a subject of analysis (fact) related to different dimensions. Each fact contains of one or more indicators. For instance, in figure 1 the fact named "FNews" is composed of two indicators: number of published news (NBN) and a set of key words appeared in news (KeyWords). A dimension models an analysis axis; it reflects information according to which subjects of analysis are to be dealt with. For instance, the "FNews" fact is connected to 3 dimensions: DTheme, DGeography and DTimes. Dimension attributes (also called parameters or levels) are organized according to one or more hierarchies. Hierarchies represent a particular vision (perspective) of a dimension.

Concepts

We define a reduced MDW as a set of star schemas called states. Each state is valid for a certain period and is modeled with a star schema composed of one fact and several dimensions. The current state is the valid state of the MDW at present. Past states correspond to a succession of reduced states over time. Each past state is defined from a previous one with a reduction function.

Let us define N such as N = {n i ,..., n k } is a finite set of names, N ¹AE. Definition 1. A MDW is defined by S = (n S ; E ; Map) where

• n S ÎN is the name of the MDW

• E = {E 1 ;… ; E n } is a set of states composing the MDW • Map: E ® E | Map(E k) = E k+1 is a reduction function defining the state named E k+1
obtained by the reduction of E k .

Let us define F and D such as F = {F 1 ,..., F n } is a finite set of facts, n ³ 1 and D = {D 1 ,..., D m } is a finite set of dimensions, m ³ 2. Definition 2. A state is a star schema defined for a temporal period such as E i = (F i ; D i ; T i) where

• F i ÎF is a fact representing a subject of analysis

• D i = {D TIMES ; D 1 ;… ; D m }ÍD
is a set of dimensions associated to the fact with necessarily a temporal dimension denoted D TIMES

• T i = [; [is a temporal interval defined on the D TIMES dimension and associated to the state E i .

To define T i , we adopt a linear and discrete time model approaching time in granular way through time observation units [START_REF] Wang | Logical design for temporal databases with multiple granularities[END_REF][START_REF] Ravat | A Temporal Object-Oriented Data Warehouse Model[END_REF]. A temporal grain is an integer relative to a time unit; we adopt the standard time units manipulated through functions: Year, Quarter, Month, Day... For instance, Year (1990) defines the instant "1990" for the year time unit.

An instant is a temporal grain. We note T now the current instant which is characterized by its dynamic nature, ie. T now changes constantly as time goes by. A time interval is defined by a couple of instants noted "t start " and "t end ". These instants can be fixed (temporal grains) or dynamic (defined with the instant "T now "). In figure 4, Year(1990) is a fixed instant representing the date when the database was created. In this figure, we can also find time-variant intervals (moving over time) defined by the following instants: Year(T now)-14, Year(T now)-4 and Year(T now). So, next year, Year(T now) = 2015, Year(T now)-4 = 2011 and Year(T now)-14 = 2001. At each change of year, the states denoted E 1 , E 2 and E 3 will be instantly updated. Definition 3. A fact, denoted F i , "iÎ[1..n], is defined by (n Fi , M Fi) where

• n Fi ÎN is the fact name

• M Fi = {m 1 ,..., m pi } is a set of measures or indicators. Definition 4. A dimension, denoted D i , "iÎ[1.
.m], is defined by (n Di , A Di , H Di), where

• n Di ÎN is the dimension name

• A Di = { ,...,
} is the set of the attributes of the dimension

• H Di = { ,..., } is a set of hierarchies.
Hierarchies organize the attributes of a dimension, from the finest graduation (root parameter, ID Di) to the most general graduation (extremity parameter, All Di). Thus, a hierarchy defines the valid navigation paths on an analysis axis. • Weak Hj : P Hj ® is an application that associates to each parameter a set of dimension attributes, called weak attributes (2 N represents the power set of N).

Example. The E 3 state of the figure 3 is composed of one fact and two dimensions and it is valid from 1990 to 2000. The fact table named FNews contains a measure notated NBN. The dimension DGeography contains the hierarchy HGeo on which the parameters are organized according to their granularity level: from the lowest level Continent to the highest level ALL_G. The other dimension is named D TIMES , it is graduated by the attributes Quarter, Year and ALL_T on the hierarchy HTimes.

The formal representation of state E 3 is as follows: E 3 = (F NEWS ; { D GEOGRAPHY ; D TIMES } ; [t 1990 ;t 2000 [) where

• F NEWS = (FNews; { NBN })

• D GEOGRAPHY = (DGEOGRAPHY; {Continent, ALL_G }; {HGeo})

• D TIMES = (DTIMES; {Quarter, Year, ALL_T}; {HTime}).

We take the hierarchy HTimes as an example to illustrate the abstract representation for a hierarchy.

HTimes = (n HTimes , P HTimes , ≺ HTimes , Weak HTimes) where

• n HTimes = HTimes

• P HTimes = {Quarter, Year, ALL_T}

• ≺ HTimes = {(Quarter, Year); (Year, ALL_T)} • WeakHTimes = AE. i D a 1 i i D r a i D H 1 j H p 1 j j H q p j H i D P A \

Reduction Operators

Deriving the reduced schema denoted E k+1 from a schema denoted E k is performed through the composition of reduction operators. We define the set of these operators as O = {RollUp reduce ; Drop reduce ; Add reduce ; Slice reduce } as the minimum core of elementary operators to define a new state. Two categories of operators are available:

• Schema reduction operators (cf. Table 1) allow to delete attributes (parameters, weak attributes and measures), and

• Instance reduction operators (cf. Table 2) reducing value domains of the dimension without modifying its schema.

The RollUp reduce operator provides a new state in which the specified dimension is reduced by removing all the attributes under the parameter that is specified in the operator. If the specified parameter is an extremity parameter like , the dimension is completely removed in the reduced state; if the specified parameter is at the lowest granularity level like , no parameter will be removed from the dimension.

The Drop reduce operator provides a new state in which the fact is reduced by the deletion of a specified measure. On the contrary , the Add reduce operator permits to add a new measure in the fact of a new state.

F k+1 = F k ; D k+1 = D k \ { D rollup } È { D new } (*) with D new = (n Dnew ; A Dnew ; H Dnew) n Dnew = n Dold A Dnew = { a x ÎA Drollup | a x = p rollup Ú "H j ÎH Drollup , p rollup ≺ Hj a x } H Dnew = { H x ÎH Drollup | n Hx = n Hj Ù P Hx = { p y ÎP Hj | p y = p rollup Ú p rollup ≺ Hj p y } Ù ≺ Hx = { (p Hj x1 , p Hj x2)Î≺ Hj | p Hj x1 = p rollup Ú p rollup ≺ Hj p Hj x1 } Ù Weak Hx : = { (p x1 , A Hx x1)ÎWeak Hj | p y ÎP Hj }. T k+1 = [; [Ù = -1 Drop reduce (E k ; m drop ; T k+1) = E k+1 Inputs E k = (F k ; D k ; T k) : initial state ; m drop Î M k is a measure of F k . T k+1 = [; [is the temporal interval of validation for state E k+1 .
Output E k+1 = (F k+1 ; D k+1 ; T k+1) reduced state such as

F k+1 = (n Fk , M Fk \ { m drop }) ; D k+1 = D k . T k+1 = [; [Ù = -1 Add reduce (E k ; m add ; T k+1) = E k+1 Inputs E k = (F k ; D k ; T k) : initial state ; m add Î M k is a measure not presented in F k . T k+1 = [; [is the temporal interval of validation for state E k+1 .
Output E k+1 = (F k+1 ; D k+1 ; T k+1) reduced state such as

F k+1 = (n Fk , M Fk Ù { m add }) ; D k+1 = D k . T k+1 = [; [Ù = -1 (*) If A Dnew = { } then D k+1 = D k \ { D rollup }
The Slice reduce operator provides a reduced state in which the instances of the specified dimension denoted D Slice is reduced. The dimension instances that satisfy the predicate denoted pred slice are kept in the new state.

F k+1 = F k ; D k+1 = D k with dom(D slice) = { v i Îdom(D slice) | pred slice (v i) = TRUE }. T k+1 = [; [Ù = - 1
Example. In the previous example, we defined two reduced states. Each of them is defined by a reduction function. These functions are defined bellow. The first Map function, composed of three RollUp reduce operators and one Drop reduce operator, permits to define the E 2 state. The second Map function composed of two RollUp reduce operators permits to define the E 3 state.

From 2000 to 2010, the analyst would like keep only number of published news (NBN) as measure and summarize his analyses according to news' theme, country and publication month. So firstly we delete the undesired measure KEYWORDS; then we remove all the attributes under the parameter P THEME ; next the parameters under P COUNTRY on dimension D GEOGRAPHY are also removed from the schema; at last we reduce the granularity level of the dimension D TIMES until to the level of parameter P MONTH . We obtain a combination of reduction operators permitting to get the E 2 state as followed: For the period before 2000, the analyst want to keep only some aggregated information about number of published news by quarter and by continent. Therefore first of all we remove the whole dimension D THEME by specifying a removal of granularity until to the extremity parameter ALL_TH; then the dimension D GEOGRAPHY is summarized until to the level of parameter P CONTINENT , while for the other dimension D TIMES we remove all the granularities lower than P QUARTER . We can apply the following reduction function in order to obtain the E 3 state: [Year(1990) ; Year(T now)-14[) = E 3 .

IMPLEMENTATION IN R-OLAP ENVIRONMENT

Based on the conceptual presentation of MDW and its definition, we implement our solution in a relational framework. Firstly we present our implementation architecture in order to visualize the relationships between implementation components. Then we define a conceptual modeling of metamodel permitting to manage MDW composed of states. At last we implement and instantiate our metamodel in DBMS Oracle to obtain a relational modeling.

Architecture of implementation

We have defined a metamodel which aims to concretizing and implementing the concepts previously defined. Our metamodel allows decision-makers to manage and query MDW. As showed in figure 5, both reduced and unreduced MDW can be defined through instantiation of metamodel. Reduced MDW is composed of several states, while unreduced MDW is defined as a particular case of MDW composed of only one state. As we can see from the figure 6, the metamodel embodies all the concepts discussed above. Firstly, as all of the elements possess a name regardless of its type, the name of element along with its identifier are centralized and managed by the class notated Meta_Element. This class is the base of our metamodel, all the rest are considered as specialized classes of Meta_Element.

Secondly the notion of state E i = (F i ; D i ; T i) is represented by the association class Meta_star. This association class possesses a temporal interval between a start date (DateS) and an end date (DateE).

Thirdly, fact and the dimension are embodied respectively by the classes Meta_Fact and Meta_Dimension. Each of these classes possesses a recursive association denoted Derive pointing to itself. This link permits to connect a derived fact or dimension in a state to the original fact or dimension, in this way we implement the reduction function permitting to define a derivate state obtained after the reduction of original MDW.

Fourthly, by definition a fact contains a set of measures while a measure belongs to one and only one fact. This rule is expressed by the relationship notated Contain between the class Meta_mesure and the class Meta_fact.

Last but not the least, the attributes are organized on hierarchies of dimension according to their granularity level: from the finest graduation (root parameter, ID Di) to the most general graduation on hierarchy (ALL Di). The ternary association in our metamodel permits us to materialize the relationships among dimension, hierarchy, level and attributes. What's more, the antisymmetric and transitive binary relation between attributes on a hierarchy is represented by the attributes Pos and Typa in the association class Meta_Level. The position of an attribute at a level shows its granularity level in comparison to the others, while the type shows if the attribute belong to parameter or weak attribute on hierarchy.

Relational modeling of metamodel

We implement the conceptual metamodel in DBMS Oracle and then instantiate it with the MDW proposed in our case study. To better illustrate modeling principles, the following figures and explanations take data instances related to the state E 1 . In order to distinguish state E 1 with the original MDW before reduction, during model implementation we add "_E1" as suffix to the name of dimensions and fact in state E 1 , while the name in original MDW before reduction is not suffixed.

First of all, as we mentioned in the previous section, the class Meta_Element includes all the elements in a MDW. Since each element possessed a unique identifier and a name, these two common attributes are centralized and managed by Meta_Element (cf. the following figure).

Figure 7. Content of Meta_element

Then, the concept of state is implemented with the help of association Meta_star which connects a dimension to a fact with a defined period of validation. As we can see from the figure below, the fact FNEWS_E1 is connected with three dimensions, namely DTIMES_E1, DGEOGRAPHY_E1 and DTHEME_E1. The validation period between fact and dimension defined by a beginning and an ending date corresponds to the temporal interval associated to the state E 1 .

EXPERIMENTAL ASSESSMENTS

Open issues

In the previous sections, we have defined a conceptual modeling supporting data reduction. By implementing our conceptual model in R-OLAP environment along with a generic meta-model, we have shown the feasibility of complete data reduction in MDW. However, the benefits of data reduction for the query execution efficiency still need to be proved through experimental assessments.

Objective

Since one objective of MDW is to accelerate data restitution in the OLAP context (Matteo [START_REF] Golfarelli | Data warehouse design: modern principles and methodologies[END_REF], the execution time is undoubtedly a primordial indicator to evaluate the query execution efficiency. Therefore, our experimental assessments aim at studying if data reduction can improve query execution time, and if it does, to what extent the query execution time can be improved in reduced MDW. The query execution time can be presented in intrinsic format (e.g. elapsed time of each query) or in ratio (e.g. relative gain of execution time). As we aim at measuring relative amelioration or degradation levels of query execution times in reduced MDW, intrinsic indicators are of little use. Thus, the ratio relative gain of execution time is used as the first indicator of our experimental assessments.

Meanwhile, we also compare the execution cost for each query computed in unreduced and reduced MDW. The execution cost is a unitless index provided by EXPLAIN PLAN command of Oracle 11g. It is closely related to the query execution time: the higher the execution cost, the more important the theoretical execution time becomes in a given system. Yet, there is still a different between these two indicators: the execution time is less sensitive than execution cost when it comes to some relatively small datasets. For instance, accessing to a dataset with 100 tuples and another dataset with 5000 tuples could be simultaneous with today's highly powerful machines. As a result the execution time of queries concerning these two datasets will both be 1 which is the minimum value returned by EXPLAIN PLAN command. But the execution cost for accessing to the dataset with 5000 tuples will be far more important than to the dataset with 100 tuples, because the CPU and I/O costs for computing more tuples are higher than computing less tuples. Therefore, the execution cost may be in proportion to execution time for queries computed in relatively large datasets. But for small datasets, it is entirely possible that we obtain the same execution time with very different execution costs. Due to this reason, we use execution cost as a complementary indicator.

Many factors should be taken into account while we compare the execution time and the execution cost.

• The first objective is to study if queries are more efficiently calculated within unreduced than reduced MDW. To do so we use two types of MDW: unreduced MDW and reduced MDW.

• The second objective is to study if the scale factor of MDW brings amelioration or degradation on query execution efficiency. We vary the number of tuples within nontemporal analysis axis. By consequence, different scale factors are defined for each type of implementation mentioned above.

• The third objective aims at understanding influences on query execution efficiency brought about by different implementation strategies. Thus, for each type of MDW we define two different implementations:

o For unreduced R-OLAP databases, an implementation based on one single table and another implementation based on a fact table and different dimension tables are proposed.

o For reduced R-OLAP databases, a denormalized R-OLAP implementation and a normalized R-OLAP implementation are proposed.

• The fourth objective consists in finding out if queries of different types can all benefit from data reduction. To this end, we propose 2 types of queries widely used:

o Queries manipulating all the data of reduced database states (containing only joins and no selection criteria on non-temporal dimensions).

o Queries manipulating a part of data in certain states (containing conditions restrictions on the data).

• The fifth objective lies in finding out if different aggregation and regrouping functions improve or decrease the query execution efficiency in unreduced and reduced MDW. We include five frequently used aggregation functions, namely SUM, MAX, MIN, COUNT and AVG. Meanwhile, influences of classical regrouping function (GROUP BY) and its extensions (GROUP BY ROLLUP and GROUP BY CUBE) are also taken into account during our experimental assessments.

Protocol

The experimental assessment consists in comparing some key indicators of query execution efficiency while applying different types of queries to different types of R-OLAP databases in a given implementation framework. The test protocol details our implementation framework, the choice of key indicators, the data collection for unreduced and reduced MDW and the list of queries to be executed.

Implementation framework

We carry out the experimental assessments with DBMS Oracle 11g in the following framework: OS: Red Hat Enterprise Linux Server release 5.9 (Tikanga), 2 x Intel(R) Xeon(R) E5410 @ 2.33GHz with 4 cores , 5GB of RAM and SAS 10K as disks.

Even though our framework does not provide the best DBMS tuning nowadays, it will not affect the results of experimental assessments neither. That is because our objective is not to see how fast a query can be computed in a particular machine: it aims to find out if different implementations of MDW with and without reduction have influence on query execution efficiency; and if it does, to what extent the efficiency of query execution can be improved within a certain implementation under a given implementation framework. In order to reduce the influence of irrelevant variables, different databases are implemented with the same DBMS (Oracle 11g) and the same DBMS tuning (OS, CPU, RAM, disk drive). To further minimize the influence brought by the implementation framework, we carry out several times the same experimental assessments and then calculate the average of experimental results.

Data Collection

There are several benchmarks designed for MDW nowadays, such as TPC-DS1 . Based on a single predefined MDW, these benchmarks execute a set of queries in order to measure the performance of machine that hosts a MDW [START_REF] Darmont | Benchmarking data warehouses[END_REF]. As part of our experimentations whose aim is to demonstrate the efficiency of reduced multidimensional schema rather than the capacity of a particular machine, a set of multidimensional schema would be more appropriate. Since the existing benchmarks do not permit to evaluate the impact of different modeling solutions to a given system [START_REF] Darmont | Benchmarking data warehouses[END_REF], we have decided to propose our own experiment environment by using synthetic data which turn out to be more adequate to our demonstration.

In order to make experimental assessments, we implement two types of R-OLAP databases with the Oracle DBMS and each type has two different implementations.

Unreduced R-OLAP databases

The first type of MDW corresponds to databases without reduction. Its first implementation is called Global Star, consists in an unreduced R-OLAP implementation based on 4 tables (DTheme, Dgeography, Dtimes and Fnews). The second implementation is called Global Table in which we merge the three analysis axis (dimensions Dtheme, Dgeography and Dtimes) with the fact table (Fnews); consequently this implementation is composed of a single table that encompasses both fact and dimensions.

The population of analysis axes was done as follows:

• The dimension Dtimes contains all dates from 01/01/1990 to 31/12/2013.

• The two other dimensions contain random data defined by generation of synthetic data. In order to avoid the bias, allocation of random data was made so that father attribute of a hierarchy does not have the same number of sons while respecting the integrity constraints of strict hierarchies: any son attribute of a hierarchy has a single father attribute (cf. Table 4).

We have defined various scale factors of non-reduced databases by ranging the tuple numbers of the dimensions Dtheme and Dgeography from 10 to 40 tuples.

The following table describes different values associated to the attributes of non-temporal dimension:

Reduced R-OLAP databases

The second type of MDW corresponds to reduced databases. This type consists of three states according to the case study presented in this article (cf. figure 4). We have defined two implementations of reduced databases: a denormalized implementation and a normalized implementation (cf figure 13). The operations permitting to get the different states of MDW were implemented with the help of triggers in Oracle DBMS.

Query lists

We have defined two types of SQL queries manipulating different tables and different states.

Table 5 contains queries with only joins, while table 6 shows queries containing both joins and restriction predicates on non-temporal dimensions.

The following queries are divided into 3 subgroups: the first subgroup contains queries from Q 1 to Q 8 that manipulate 1, 2 or 3 dimensions in one state; the second subgroup contains queries from Q 9 to Q 12 manipulating 1, 2 or 3 dimensions in two states; the last subgroup contains queries Q 13 and Q 14 . The last two queries manipulate only one or two dimensions in three states because it is impossible to define a query manipulating 3 dimensions in 3 states, by the reason that the state denoted E 3 is only composed of 2 dimensions. Three subgroups are proposed for queries with restriction predicates: the first subgroup includes queries from Q 1 to Q 3 that manipulate one dimension in one state; the second subgroup contains queries from Q 4 to Q 6 manipulating two dimension in two states; the third subgroup concerns queries from Q 7 to Q 9 manipulating one dimension in three states. Number of news per year on the continent Y (the news of continent E 1 ; E 2 ; E 3 DGeography X is three times more than those of continent Y) Q 9

Number of news per year on all the continents E 1 ; E 2 ; E 3 DGeography

Results and discussions

Influence of data reduction

The first objective is to find out if reduced MDW can improve query execution efficiency. We execute queries without restriction predicates in 10x10 MDW. When it comes to a relatively small dataset, the execution cost is a more sensitive indicator than the execution time indicator. Therefore, in this section we compare only the execution cost of each query computed in the 10x10 MDW (the least voluminous MDW).

Figure 14. Execution cost of queries without restriction predicate in 10x10MDW

As we can see from the figure 14, regardless of different implementation strategies, the query execution cost in unreduced MDW (the column with stripe and the gray column in the figures above) is more important than in reduced MDW (the white and black columns in the figures above). We can safely conclude that data reduction does help improving query execution efficiency. However, the problem of querying performance is not so obvious in a small dataset, like the previously used 10x10 MDW. In the next section we increase the volume of MDW to see influence of MDW's scale factor on query execution efficiency.

Influence of MDW's scale factor

We vary the size of the MDW from 10x10 to 40x40. We execute the same 14 queries containing only joins and without restriction predicate. The following figures show the execution cost of each query computed in 20x20, 30x30 and 40x40 MDW. As we can see from the figure 15, queries are always more efficiently computed in reduced MDW than unreduced MDW. Within each version of MDW, the average gain of cost is between 90.86% in the MDW 10x10 and 91.68% in the MDW 40x40. In the figures 16 and 17, we analyze the cardinalities of query results in order to verify if the cardinalities of results is related to query execution cost. Even though we have obtained diverse result cardinalities (cf. ordinate axis), the proportion stays similar from one MDW version to another. In the figure 18, we can see whatever the database volume, the execution time gain is significant: over 97% (cf. red curve with diamond). We should also notice that in spite of the important augmentation of volume of fact tables (cf. smooth green curve) which leads to a slight augmentation of query results' cardinalities (cf. blue curve with dot), the average gains stay practically stable along with the cardinality augmentation: the average gain increases from 96.91% for the size 10 X 10 to 97.09% in size 40 X 40. Thus we can conclude that the more the database volume increases, the more the execution time gain in a reduced MDW is important. shown by the linear line which estimates the gain of execution time, we can notice that the more tables the query manipulates, the more important the gain of execution time becomes, all the while staying proportionally similar. However, by refining our study, we can find the more states the query manipulates, the less important the time earning becomes but it still stays in the same order of magnitude:

• For the queries manipulating a single state (Q1 to Q8), the gains varies from 95.12% (Q7) to 99.99% (Q3) with an average of 98.10%;

• For the queries manipulating two states (Q9 to Q12), the gains varies from 94.90% (Q10) to 99.96% (Q11) with an average of 96.61%;

• For the queries manipulating three states (Q13, Q14), the gains varies from 94.93% (Q7) to 94.94% (Q3) with an average of 94.935%. Snowflake becomes more and more important with the augmentation of MDW's volume (from 7% in 10x10 to 56% in 60x60).

Figure 20. Relative gain of execution time in percentage between Reduced Star and Global

Figure 21. Relative gain of execution time in percentage between Reduced Star and Reduced Snowflake

Influence of query's type

In this section we aim at analyzing the impact of restriction criteria in queries. We focus only on 40 x 40 MDW which is the most voluminous. The queries of this second experimental assessment are defined in the table 6.

The following figures show execution costs and cardinalities of results for the four implementations. Contrary to our expectations, the gains between unreduced and reduced MDW remain in the same proportions whether we apply restriction or not. Indeed, this gain ranges from 95.11% (Q9) to 98.95% (Q4) with an average of 95.87% while the average gain of the queries without restriction predicates was over 97%. Moreover, whatever the scope of the restriction predicates (primary key, attribute containing different values or not), the standard deviation is not very high (0.1).

Figure 22. Execution cost of 9 queries containing restriction predicates

Figure 23. Cardinalities of 9 queries containing restriction predicates

In addition, even if execution costs of Q 7 and Q 8 are similar, we can notice that the cardinality of the result of Q 7 is three times higher than the cardinality of the result of Q8. This is because the DBMS should review all the tuples of the tables before returning the query result. So even if some strict selection criteria exclude lots of data from query result, the execution costs in reduced and unreduced MDW remain proportionally the same and reduced MDW are always more efficient than unreduced MDW.

Influence of aggregation and regrouping functions

This section consists in discussing if different aggregation and regrouping functions have influences on the improvement of query execution efficiency in reduced MDW.

Aggregation functions

The aggregation function we use in the previous experimental assessments is SUM. To see if aggregation functions have an influence on experiment results, we replace SUM with other commonly used aggregation functions in OLAP analysis, such as MAX, MIN, COUNT, AVG, and we rerun the entire experimentations. At last we get exactly the same execution cost, execution time and cardinalities regardless of what aggregation function we apply to the queries. Thus we can conclude that the common aggregation functions have no influence on query execution efficiency. For simplicity, we apply only the SUM function to the next experimental assessments which evaluate the impacts of different regrouping functions.

Regrouping functions

All 14 queries contain the classical SQL regrouping clause, namely GROUP BY. However, for certain queries, extensions of classical SQL regrouping clause are also applicable. For instance, Q12 can sustain the GROUP BY ROLLUP clause if subtotals of published news by city and continent are required. In the same way, extensions like GROUP BY ROLLUP and GROUP BY CUBE are both applicable to Q7 and Q8 to calculate subtotals for all possible combinations. In order to study the impacts of different regrouping functions, we apply GROUP BY ROLLUP and/or GROUP BY CUBE to queries containing more than one analysis axis, namely Q5, Q6, Q7, Q8, Q10, Q11, Q12 and Q14. Before carrying out these tests, our intuition was the execution time between these three aggregation modes would be quite different and thus modify the gains of execution cost. Nevertheless, the execution cost and time of the same query are exactly the same regardless of different regrouping functions. The average gain is always in the same order of magnitude 94.86%.

CONCLUSION

This paper provides a contribution in the context of MDW. Our objective is to specify aggregated schema over time in order to retain only the data useful for decision support according to the needs of users. Firstly, we define a conceptual model that specifies MDW schemata composed of states varying over time. Each state consists of a star schema and is defined with a mapping function, itself defined with reduction operators based on an extension of classical OLAP operators adapted to the reduction context. We defined a minimum core of elementary operators { RollUp reduce ; Drop reduce ; Add reduce; Slice reduce } in order to carry out not only schema reduction operations but also instances reduction operations.

Secondly, an implementation in R-OLAP environment is described. The basis of our implementation is the metamodel allowing the management of reduced and unreduced MDW. The metamodel is presented both at conceptual and relational levels. By instantiating the metamodel, we can obtain reduced MDW composed of a set of states and unreduced traditional MDW.

Finally, we defined experimental assessments. Evaluating our solution consists in executing different queries in various environments: R-OLAP schema without reduction, single fact table schema without reduction as well as star and snowflake schemata with reductions. We use multidimensional databases with different sizes; the fact table size ranges from 840,100 to 13,441,600 tuples. Whatever the data warehouse volume, the execution time gain between unreduced and reduced databases is up to 97%. Moreover, the more the data warehouse volume increases, the more the execution cost and time gain is important. These gains remain in the same proportions when we apply restriction predicates or not on the queries, neither the cardinality of the result affects this gain. Finally, the execution cost is independent of the regrouping SQL clauses.

In the future, we intend to extend our conceptual proposal in order to integrate other operators in the definition of the reduction function. We also intend to propose a graphical tool for querying a MDW with a set of states and presenting the analysis' result through a graphical interface. This extension requires the definition of algebra along with a graphical language suitable for reduced data model. At last we wish to apply the principles of reduction to a reel data case study of analytic domain such as banking or insurance.

Figure 1 .

 1 Figure 1. MDW schema valid from 2010 to 2014

Figure 2 .

 2 Figure 2. MDW schema valid from 2000 to 2010

Example.

 The following figure represents three states of our case study. It illustrates the principle of states derived by the reduction. This MDW is defined as follows: E = {E 1 ; E 2 ; E 3 } with Map = { (E 1 , E 2) ; (E 2 , E 3) } where • E 1 = (F NEWS ;{D THEME ; D TIMES ; D GEOGRAPHY } ; [Year(T now)-4 ; Year(T now)[) • E 2 = (F NEWS ;{D THEME ; D TIMES ; D GEOGRAPHY } ; [Year(T now)-14 ; Year(T now)-4[) • E 3 = (F NEWS ; {D TIMES ; D THEME } ; [Year(1990); Year(T now)-14[).

Figure 4 .

 4 Figure 4. Reduction principle of multidimensional schemas

Figure 5 .

 5 Figure 5. Implementation architecture

Figure 6 .

 6 Figure 6. UML class diagram of the metamodel

Figure 8 .

 8 Figure 8. Content of Meta_star

Figure 9 .

 9 Figure 9. Content of Meta_Dimension

Figure 11 .

 11 Figure 11. Content of Meta_Measure

Figure 12 .

 12 Figure 12. Content of Meta_Level

•

 |Dgeography| = 10, 20, 30, 40 tuples • |Dtheme| = 10, 20, 30, 40 tuples • |Dtime| = 8401 tuples (from 01/01/1990 to 31/12/2013) • |Fnews| = | Dgeography | x | Dtheme | x | Dtime | = 840 100 to 13 441 600 tuples.

Figure 13

 13 Figure 13. R-OLAP schemata of reduced MDW

Figure 15 .

 15 Figure 15. Execution cost in 20x20, 30x30 and 40x40MDW

Figure 16 .

 16 Figure 16. Query results' cardinalities in 10x10 MDW

 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Table 1 .

 1 Reduction operators on schemata.

	Operators	
	RollUp reduce (E k ; D rollup ; p rollup ; T k+1) = E k+1
	Inputs	E k = (F

k ; D k ; T k) : initial state; D rollup Î D k : dimension dedicated to a reduction; p rollup Î A Drollup : reduction parameter of the D rollup dimension; T k+1 = [; [is the temporal interval of validation for state E k+1 . Output E k+1 = (F k+1 ; D k+1 ; T k+1) reduced state such as

Table 2 .

 2 Reduction operators on instances.

	Slice reduce (E k ; D slice ; pred slice ; T k+1) = E k+1
	Inputs	E k = (F T k+1 = [;	[is the temporal interval of validation for state E k+1 .
	Output	E k+1 = (F		

k ; D k ; T k) : initial state ; D slice Î D k : dimension dedicated to a reduction; pred slice : selection predicate on a domain denoted dom(D slice) of D slice . k+1 ; D k+1 ; T k+1) reduced state such as

•

 RollUp reduce (RollUp reduce (RollUp reduce (Drop reduce (E 1 ; KeyWords; [Year(T now)-14 ; Year(t Tow)-4[); D THEME ; P THEME ; [Year(T now)-14 ; Year(T now)-4[) ; D GEOGRAPHY ; P

COUNTRY ; [Year(T now)-14 ; Year(t Tow)-4[);D TIMES ; P MONTH ; [Year(T now)-14 ; Year(t Tow)-4 [)= E 2 ;

•

 RollUp reduce (RollUp reduce (RollUp reduce (E 2 ; D

THEME ; ALL_TH ; [Year(1990)

; Year(T now)-14[) ; D GEOGRAPHY ; P CONTINENT ;

[Year(1990)

; Year(T now)-14[); D TIMES ; P QUARTER ;

Table 3 .

 3 Data dictionary of the metamodel

	Code	Description	Type	Constraints
	datee ending date of a star schema	DATE	
	dates starting date of a star schema	DATE	
	id	identifier of a meta-element	INTEGER	>0
	ida	identifier of a attribute	INTEGER	>0
	idd	identifier of a dimension	INTEGER	>0
	idf	identifier of a fact	INTEGER	>0
	idh	identifier of a hierarchy	INTEGER	>0
	idm identifier of a measure	INTEGER	>0
	name name of a meta-element	VARCHAR	
	pos	position of a parameter or a weak attribute on a hierarchy of a dimension	INTEGER	>0
	typa type of attribute at a level	VARCHAR	'Parameter', Attribute'	'Weak

Table 4 .

 4 Implementation details of the dimensions in Global Star and Global Table. Even though the dimensions Dtheme, Dgeography and Dtimes are integrated in fact table of Global Table, the implementation details of MDW Global Table are the same as MDW Global Star.

	|Dgeography| x |Dtheme|	Contents of the dimension Dgeography	Contents of the dimension Dtheme
	10x10	2 Cities, 2 Countries , 1 Continent	2 Subthemes, 2 Themes
	20x20	4 Cities, 3 Countries, 2 Continent	4 Subthemes, 3 Themes
	30x30	6 Cities, 4 Countries, 2 Continent	6 Subthemes, 4 Themes
	40x40	8 Cities, 5 Countries, 3 Continent	8 Subthemes, 5 Themes

Table 5 .

 5 Queries without restriction predicates on non-temporal dimensions.

		Queries (Aggregation function SUM)	States	Dimension
	Q 1	Number of news for the last three years	E 1	DTime
	Q 2	Number of filtered and un-filtered news in 2008	E 2	DTime
	Q 3	Number of news before 2000	E 3	DTime
	Q 4	Number of news by city from 2010 to 2012	E 1	DTime, DGeography
	Q 5	Number of news by theme in each quarter from 2000 to 2005 E 2	DTime, DTheme
	Q 6	Number of news by continent in each year before 2000	E 3	DTime, DGeography
	Q 7	Number of news by city, country, subtheme and month in	E 1	DTime, DGeography,
		2012		DTheme
	Q 8	Number of news by theme, country and continent from 2000 to	E 2	DTime, DGeography,
		2005		DTheme
	Q 9	Monthly number of news since 2000	E 1 ; E 2	DTime
	Q 10 Annual number of news per theme from 2002 to 2012	E 1 ; E 2	DTime, DTheme
	Q 11 Number of news per year and continent from 1990 to 2009	E 2 ; E 3	DTime, DGeography
	Q 12 Number of news by country, continent and theme from 2002 to	E 1 ; E 2	DTime, DGeography,
		2012		DTheme
	Q 13 Number of news per year	E 1 ; E 2 ; E 3 DTime
	Q 14 Number of news per year by continent	E 1 ; E 2 ; E 3 DTime, DGeography,

Table 6 .

 6 Queries with restriction predicates on non-temporal dimensions.

		Queries (Aggregation function SUM)	States	Dimension
	Q 1	Number of news about the subtheme X from 2010 to 2012	E 1	DTheme
	Q 2	Number of news about the theme X from 2010 to 2012	E 1	DTheme
	Q 3	Number of news about all the themes from 2010 to 2012	E 1	DTheme
	Q 4	Number of news per month about the theme X in the country Y	E 1 , E 2	DGeography, DTheme
		since 2000		
	Q 5	Number of news per month about the theme X in the continent Y	E 1 , E 2	DGeography, DTheme
		since 2000		
	Q 6	Number of news per month about all the themes in the continent Y	E 1 , E 2	DGeography, DTheme
		since 2000		
	Q 7	Number of news per year on the continent X	E 1 ; E 2 ; E 3	DGeography
	Q 8			

Table

 Figure19shows the average execution time of queries computed in each implementation of unreduced and reduced MDW. As we can see from this figure, regardless of the MDW versions, the lowest execution times are always performed in reduced MDW called Reduced Star: MDW's content is reduced and the table number is limited. The highest average execution time for unreduced MDW ranges from 3432 (Global Table database 10 x 10) to 52941 (Global Table database 40 x40) and this average execution time has increased by 1443%. As for Reduced Star MDW, the average execution time ranges from 106 to 1554, and it has increased by 1366%, lower than 77% compared to the unreduced Global Table MDW. Now we focus our study on the most voluminous version of MDW (40x40) in order to analyze the relative gain of execution time between Reduced Star and Global Table (cf. figure 20). As is

	Figure 18. Average gain of execution time for the 4 versions of MDW		
		100,00%	16000000	
		90,00%	14000000	
	Average gain	20,00% 80,00% 30,00% 40,00% 50,00% 60,00% 70,00%	4000000 6000000 8000000 10000000 12000000	Cardinalities
	2000000 reducted snowflake Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Queries global table 10,00% global star reducted star 0 5000000 10000000 15000000 20000000 25000000 30000000 Queries global table global star reduced star reduced snowflake Influence of implementation strategy Cardinalities Cardinalities Figure 19. Average execution time for the different versions of MDW 0,00% 10x10 20x20 30x30 40x40 MDW versions Time saving average Query cardinality Fact cardinality 0 10000 20000 30000 40000 50000 60000 10x10 20x20 30x30 40x40 Execution time MDW versions Comparison between Reduced Star and Global 0 global table global star reduced star reduced snowflake

 Table in 40x40 MDW Comparison between Reduced Star and Reduced SnowflakeWithin a relatively small scale of database volume (i.e. from 10x10 to 40x40 in figures 14 and 15), the difference of execution time between two implementations of reduced MDW (Reduced Star and Reduced Snowflake) is quite low. But when we increase MDW's volume until to 60x60, we find the gain of execution time in Reduced Star becomes more significant: about 56.2% (cf. figure21). Notice that the only difference between these two implementations is in Reduced Star each dimension forms a unique table while in Reduced Snowflake dimensions are normalized so that each hierarchical level forms an independent table. The normalization in Reduced Snowflake regroups data in high granularity levels into new tables in order to avoid information redundancy. By consequence the space required for data storage is reduced in Reduced Snowflake, but the number of joins needed between tables while executing a given query becomes greater. Performing joins is less time-efficient when the database research certain scale factors. That explains why the difference of execution time between Reduced Star and Reduced

		100,00%
		90,00%
	Gain in percentage	60,00% 70,00% 80,00%
		50,00%
		40,00%
		Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
			Queries
		reducted star	Linéaire (reducted star)

http://www.tpc.org/tpcds/