
HAL Id: hal-03193309
https://hal.science/hal-03193309

Submitted on 15 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discussion of the application of finite Volterra series for
the modeling of the oscillation behavior of ultrasound

contrast agents
Michal Mleczko, Michiel Postema, Georg Schmitz

To cite this version:
Michal Mleczko, Michiel Postema, Georg Schmitz. Discussion of the application of finite Volterra
series for the modeling of the oscillation behavior of ultrasound contrast agents. Applied Acoustics,
2009, 70 (10), pp.1363-1369. �10.1016/j.apacoust.2008.09.012�. �hal-03193309�

https://hal.science/hal-03193309
https://hal.archives-ouvertes.fr


Discussion of the application of finite Volterra series for the modeling of the

oscillation behaviour of ultrasound contrast agents

Micha l Mleczko ∗

Institute of Medical Engineering, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
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Abstract

Ultrasound contrast agents consist of microbubbles with diameters in the micrometer range. Excited by ultrasound, these bubbles

exhibit highly nonlinear oscillation. This paper evaluates the usage of Volterra series for the modeling of the oscillation behavior

of contrast agent microbubbles. Feasibility is determined by implementation and application of an identification algorithm to

oscillation data obtained from numerical simulations of a free gas bubble with a resting radius r0 = 1 µm. For insonification

pressures up to 100 kPa, a cubic model allowed for a mean-square error of less than -16 dB with respect to the reference signal.

Analysis of the response to narrowband signals showed that the achievable mean-square error is further reduced for the bandwidth

available to typical ultrasound transducers used for clinical diagnostics.
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1. Introduction

Ultrasound contrast agents consist of gas filled microbub-
bles with diameters ranging from 1−10 µm.Since the acous-
tic impedance of these gas cavities differs significantly from
the surrounding liquid and these bubbles are resonant at
frequencies used for diagnostic imaging, microbubbles are
strong scatterers. This enables the quantification of perfu-
sion in small capillaries. The oscillation of the microbubble
is of highly nonlinear nature [1,2], the contrast between the
contrast agent and the surrounding tissue may thus be in-
creased by isolating signal components generated by non-
linear systems. UCA detection modalities used in commer-
cial ultrasound systems [3,4] enable contrast agent imaging
by comparison of responses to insonification pulses with
different amplitudes and polarities. Sound propagation in
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tissue, however, may only be assumed to be linear for low
acoustic pressures and small penetration depths. In medi-
cal ultrasound imaging, the nonlinearity of sound propaga-
tion may not be ignored. The attainable contrast-to-tissue
ratio is thus degraded.

To increase the specifity of contrast agent detection,
knowledge about microbubble oscillation is necessary. A
model is thus needed which enables the description of the
relevant aspects of microbubble oscillation. Starting with
the development of equations for free gas bubbles [5], grey-
box models, based on insight into the physical background
of microbubble oscillation were developed. To account for
the influence of the shell of an encapsulated microbubble,
these models were extended [6,7].

In contrast to the process of understanding nonlinear
oscillation behavior, however, a different description form
may prove helpful for the development of new detection
methods. In linear system theory, this is accomplished by
considering the transfer function or impulse response. Non-
linear system theory also provides well-researched models
which can be applied to the modeling of the oscillation of
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ultrasound contrast agents. Thus, the aim of the work pre-
sented in this paper is to evaluate a black-box nonlinear
model with respect to the nonlinear oscillation of microbub-
bles. The choice for a suitable model was made in favor
of Volterra series. These are characterized by a high ver-
satility, enabling the description of a variety of static and
dynamic nonlinear systems. Furthermore, the parameters
of a Volterra series may be determined using numerically
stable linear estimators.

In this paper, the application of Volterra series to mi-
crobubble oscillation modeling will be presented. Volterra
series will be introduced and an identification algorithm
which allows for a numerically stable estimation of the pa-
rameters of a Volterra series will be presented. The feasi-
bility of Volterra series modeling of oscillating microbub-
bles will be evaluated by determination of the nonlinear
components for a microbubble simulation, implemented by
a modified Rayleigh-Plesset equation. The quality of the
fit achieved by the Volterra series will be compared to the
Rayleigh-Plesset model to evaluate the feasibility of mi-
crobubble oscillation modeling with Volterra series.

2. Volterra series

2.1. Definition

Volterra series were introduced in [8] as a Taylor series
with memory. In discrete time n, for a series length of N +
1, the system output y(n) is characterized by the series
expansion

y(n) = h0 +
N

∑

k1=0

h1(k1)x(n − k1)

+
N

∑

k1=0

N
∑

k2=0

h2(k1, k2)x(n − k1)x(n − k2)

+

N
∑

k1=0

N
∑

k2=0

N
∑

k3=0

h3(k1, k2, k3)

· x(n − k1)x(n − k2)x(n − k3)

+ . . .

(1)

with x(n) denoting the system input and hk(n1, . . . , nk)
denoting the k-dimensional impulse responses, or kernels.
The system output consists of a constant component, de-
termined by the constant kernel h0, a linear component, im-
plemented by a linear convolution of system input and lin-
ear impulse response, and the nonlinear components which
are implemented by k-dimensional convolutions of the re-
spective kernels with the k-th order input

∏

k−1

i=0
x(n− ki).

2.2. Identification of parameters

The coefficients of the Volterra series can be identified
by methods introduced in [9,10]. For the work conducted
in this paper, the method proposed in [10] was chosen, as

it features superior numerical stability. Furthermore, no
assumption as to the structure of the excitation signal is
needed, as long as the input signal is sufficiently rich in
the sense that it is persistently exciting with respect to the
system being identified [11].

Table 1
Corresponding monomials qk(n) and parameters ak when rearrang-
ing the Volterra series as introduced in (1) into the series expansion
shown in Equation (2).

q0(n) = 1 a0 = h0

q1(n) = x(n) a1 = h1(0)

q2(n) = x(n − 1) a2 = h1(1)

...

qN+2(n) = x(n − N) aN+2 = h1(N)

qN+3(n) = x(n) · x(n) aN+3 = h2(0, 0)

qN+4(n) = x(n) · x(n − 1) aN+4 = h2(0, 1)

...

To determine the coefficients of the Volterra series, the
system output, as given in (1) is rewritten as

y(n) =

M−1
∑

k=0

akqk(n). (2)

In this notation form, the kernels hi(k1, . . . , ki) are ar-
ranged into the parameters ak and the input is rearranged
as a list of monomials qk(n). Table 1 displays the rearrange-
ment of the Volterra series into the parameters ak and input
monomials qk(n). For a series length of N + 1 samples, the
total number of unique coefficients can be calculated to be

M =

N
∑

i=0





N + i

i



 (3)

In matrix form, Equation (2) may be written as

y = Xa. (4)

The output vector y consists of the system output

y =
(

y(0) y(1) · · ·
)T

, (5)

with the input matrix X being defined as:

X =











q0(0) q1(0) · · · qM−1(0)

q0(1) q1(1) · · · qM−1(1)

...
...

. . .
...











(6)

while the coefficient vector a contains all kernel coefficients:

a =
(

a0 a1 · · ·
)T

. (7)

This equation may be solved for the parameter vector a

by linear least-squares estimation:

a =
(

XTX
)

−1

XTy. (8)
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To obtain a numerically stable estimate of a, (2) has to
be rewritten as:

XTy = XTXa. (9)

The matrix XTX is positive-semidefinite, thus a Cholesky
decomposition of XTX may be conducted to yield a trian-
gular matrix D such that

XTX = DTD. (10)

The solution for the coefficients a is conducted in two
steps. Initially, an intermediate set of coefficients g is de-
termined by solving

Dg = XTy. (11)

This can be conducted efficiently since D is of upper tri-
angular form and the solution can be obtained by back-
ward substitution. Subsequently, the final solution can be
obtained by solving

DTa = g (12)

for a. As before, the triangular form of DT allows for an
efficient calculation by forward substitution.

3. Determination of the Volterra kernels of

simulated microbubbles

To prove the feasibility of the system identification ap-
proach for contrast agent microbubbles, data obtained from
a microbubble-simulation was subjected to the system iden-
tification procedure outlined in Section 2. As system to be
identified, a free gas bubble with a resting radius r0 = 1 µm
was chosen. The motivation for such a test system was that
a free microbubble with such a diameter has a resonance
frequency which is in the range of diagnostic imaging. Fur-
thermore, an encapsulating shell was not considered to al-
low for the maximum amount of nonlinear oscillation which
would otherwise be damped by the presence of a shell.

The simulation of contrast agent behavior was imple-
mented by numerical solution of a modified Rayleigh-
Plesset equation. The bubble radius r is given by the
differential equation [12]:

ρrr̈ +
3

2
ṙ2 =

(

p0 +
2σ

r0

)

+
(r0

r

)3Γ

−
4µṙ

r

−
2σ

r
− ω2ρr2

ṙ

c
− p0 + pa(t)

(13)

with parameters and their respective values being described
in Table 2. The pressure pa(t) describes the incident exci-
tation pressure.

For the excitation pressure, a discrete-time normally dis-
tributed white-noise process is used. The radius is com-
puted using an explicit Runge-Kutta (4,5) initial value
solver (The Mathworks, Natick, MA). The initial values are
chosen for a resting bubble with the initial radius r0. The
resulting scattered pressure is then determined by taking
into account the pressure field by a radiating point source
[13]. As shown in Figure 1, the computed pressure, along

Table 2
Parameters and values used for simulations of the microbubble move-

ment as calculated from Equation (13).

r0 = 1 µm resting radius

Γ = 1.7 polytropic exponent

c = 1480 ms−1 speed of sound

µ = 10−3 Pa s shear viscosity of surrounding medium

ρ = 998 kg m−3 density of surrounding medium

σ = 0.072 Nm−1 surface tension

p0 = 1.013 · 105 Pa ambient pressure

with the input is used to identify the kernels of a Volterra
series using an implementation of the algorithm outlined
before.

contrast agent
microbubble

acoustic radiation
of spherical source

system
identification

pin
r pout

h0 h1 h2 h3

Fig. 1. Schematic of identification scheme.

4. Results and Discussion

4.1. Obtained kernels

The kernels obtained from an identification for a stan-
dard deviation of the input white noise of 100 kPa are shown
in Figures 2–4. Identification was conducted for a third or-
der model with a maximum series length of 30 samples at
a sampling frequency fs = 40 MHz. The linear kernel, as
shown in Figure 2, as anticipated, exhibits the typical be-
havior of a damped oscillator. It is characterized by a res-
onance frequency fr = 4.6 MHz and a fractional bandwith
of B = 39 %. Similar oscillator characteristics can be seen
in the quadratic and cubic kernels, as shown in Figures 3
and 4.

4.2. MSE vs. filter length and amplitude

An important step necessary for the development of new
detection methods is the determination of the correctmodel
order and length. This enables a sufficiently accurate deter-
mination of bubble movement, without being excessively
complex. For oscillating microbubbles, the identified model
was reviewed by determining the mean-square error accord-
ing to:

MSE =
‖yVolterra − yRPNNP‖2

‖yRPNNP‖2

, (14)
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Fig. 2. Linear kernel h1 of the simulated microbubble.
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Fig. 3. Quadratic kernel h2 of the simulated microbubble.
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Fig. 4. Cubic kernel h3 of the simulated microbubble.

with yVolterra denoting the output for the Volterra series
model and yRPNNP denoting the output obtained from a
numerical integration of the RPNNP equation. The oper-
ator ‖ · ‖2 denotes the l2 norm of the expression. This was
conducted for different excitation amplitudes ranging from
1 kPa to 100 kPa. Furthermore, the identified series length
was varied from 2 to 30 in steps of 2. The results for exci-
tation pressures of 1 kPa, 10 kPa, 50 kPa and 100 kPa are
presented in Figures 5–8.
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Fig. 5. Plot of MSE against filter length for 1 kPa excitation pres-
sure. The achievable MSE decreases with increasing filter length and
attains a minimum value of -36.9 dB at a series length of 30 samples.
No difference in MSE may be attained by considering quadratic and
cubic nonlinearities.

For an excitation pressure of 1 kPa, no difference in the
mean-square error for linear, quadratic and cubic Volterra
series can be seen. It can be thus concluded that at this
excitation pressure, nonlinear effects may be neglected. At
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Fig. 6. Plot of MSE against filter length for 10 kPa excitation pres-
sure. A mean-square-error of -39.4 dB is be attained for a linear
model at a series length of 30 samples. The addition of quadratic
terms improves the MSE by 3.9 dB to -43.3 dB.

higher insonification pressures, however, the nonlinearity
of the microbubble oscillation becomes apparent. This can
be seen in the plot of the MSE for an excitation pressure of
10 kPa. At a series length of 30 samples, an addition of the
quadratic component yields an improvement of the mean-
square error of 3.9 dB versus a linear model. The addition of
cubic components does not yield an improvement in MSE.

These components are increasingly important at insoni-
fication pressures higher than 50 kPa. For this pressure,
with a series length of 30 sample, an improvement of the
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Fig. 7. Plot of MSE against filter length for 50 kPa excitation pres-
sure. The influence of nonlinear effects on bubble oscillation increases.
For a linear model, the best achievable MSE is -19.8 dB. The addi-
tion of quadratic and cubic terms decreases this error to values of
-30.8 dB and -32.2 dB respectively.

MSE of 1.4 dB can be accomplished by adding cubic terms
to the identified Volterra series. The improvement gained
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Fig. 8. Plot of MSE against filter length for 100 kPa excitation
pressure. The dominance of nonlinear effects increases further. A
linear model only enables estimation with a minimum MSE of -9.9
dB. A Quadratic model improves the attainable MSE to -14.9 dB
and the addition of cubic terms reduces the MSE to -16.0 dB.

by adding cubic terms to the series increases with excita-
tion pressure relative to the total mean-square error. For
100 kPa, the addition of cubic terms improves the mean
square error by 1.1 dB to a total of -16 dB.

4.3. Bubble motion for a narrowband excitation

It can be seen, however, that the total achievable mean-
square error increases with excitation pressure. This is due
to the fact that the maximum order of the Volterra series

used was a cubic model. Thus, at most third order effects
are taken into account. The impact of this limitation may be
best evaluated by considering the response of a microbubble
to a narrowband excitation signal. For this, a modulated
Gaussian envelope pulse was used. The center frequency of
the pulse was chosen at f0 = 2.5 MHz and the fractional
bandwidth was chosen to be B = 8 %. The responses of
the RPNNP and Volterra models to the pulse are shown in
Figure 9. It can be seen that, although the general form of
the curve is similar, significant differences can be seen at the
peaks. The reason for this becomes apparent considering
the frequency spectrum of the scattered pressure, shown in
Figure 10.

0 5 10 15
−20

−10

0

10

20

30

40

50

t [µ s ]

p
[P

a
]

 

 

RPNNP
Volterra

7.4 7.6 7.8 8

−10

0

10

20

Fig. 9. Response of RPNNP (solid line) and Volterra series (dashed
line) to a modulated Gauss envelope pulse, peak amplitude 100 kPa,
center frequency f0 = 2.5 MHz, fractional bandwidth B = 8%.
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Fig. 10. Spectral response of RPNNP and Volterra series models to
modulated Gaussian pulse. It can be seen that the estimation by
the Volterra series corresponds very well to the RPNNP model up
to the third harmonic. Higher harmonics than the third cannot be

modeled since the cubic Volterra model used for estimation can at
most produce third harmonics.
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While the fundamental as well as the second and third
harmonics are represented with very high accuracy, higher
harmonics are not considered at all. This is due to the na-
ture of a third order Volterra series which may only cre-
ate up to third harmonic components. This limitation may
be circumvented by identifying also fourth order terms.
Transducers usually used for signal transmission and recep-
tion, however, are inherently band-limited. Furthermore,
sound attenuation in tissue increases exponentially with
frequency. Therefore, effects attributed to higher orders
than the third can often be disregarded in practice. To prove
this point, the response of the RPNNP-equation as well as
the Volterra series is shown after filtering with the impulse
response of a typical transducer used in diagnostic imag-
ing. The transducer is characterized by a center frequency
of f0t = 3.5 MHz and a fractional bandwidth Bt = 65%.
Figures 11 and 12 show the time domain and frequency do-
main responses of the RPNNP as well as the Volterra series
models.
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Fig. 11. Response of RPNNP (solid line) and Volterra series (dashed
line) to a modulated Gauss envelope pulse, peak amplitude 100 kPa,
center frequency f0 = 2.5 MHz, fractional bandwidth B = 8%.
Response was filtered with a transducer impulse response, center
frequency f0t = 3.5 MHz, fractional bandwidth Bt = 65%.

It can be seen that in the time domain, both models
show very good correspondence. This is confirmed by the
frequency domain data, with the signal level of the fourth
and higher order harmonics being more than 60 dB below
the maximum of the spectrum. Thus, for the bubble model
evaluated within the scope of this paper, at sound pressure
levels up to values of 100 kPa, the Volterra model provides
a reasonably good fit to the system movement as deter-
mined by the reference model. To improve the performance
at higher insonification pressures, the Volterra series model
could be extended with higher order terms at the expense
of increasing the complexity of the identification process.
Higher pressures, however, also increase the probability of
destruction of the microbubble by dissolution or inertial
cavitation. Exams are usually conducted at insonification
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Fig. 12. Spectral response of RPNNP and Volterra series models to
modulated Gaussian pulse, filtered by transducer impulse response.
Due to the limiting of the bandwith by the ultrasound transducer,
high order harmonics are suppressed. A third order model is thus
suitable for the modeling of the oscillation characteristics of a mi-
crobubbles at this pressure.

pressures below this range. Thus, because of the band lim-
itation of ultrasound transducers and the limited durabil-
ity of microbubbles under high pressure insonification, the
quality of the fit attained by the Volterra can be considered
sufficient.

4.4. Limitations of proposed model

Additionally to the drawbacks outlined earlier, a limita-
tion is that it is not possible to model subharmonics with
a Volterra series model. This can be easily seen from (1).
For a sinusoidal input, only integer multiples of the insoni-
fication frequency may appear in the output. Mitigations
to this problem exist [14], however, and may be used to
enable the modeling of subharmonics.

5. Conclusions and Outlook

It was shown that for moderate insonification pressures
a Volterra series enables an adequate representation of the
oscillation behavior of ultrasound contrast agents. For the
model evaluated within the scope of this paper, accuracy
was satisfactory up to insonification pressures of up to 100
kPa. For practical purposes, however, this limitation can
be disregarded, since the reception of harmonics of high or-
der is hampered by the limited bandwidth of ultrasound
transducers and the probability of microbubble destruction
through dissolution or inertial cavitation increases with in-
sonification pressure.

In conclusion, although the model presented does not al-
low for the modeling of subharmonics and increases in com-
plexity with increasing insonification pressures, the form of
description of the oscillation behavior may benefit the de-
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velopment of novel detection schemes for ultrasound con-
trast agents. Furthermore, a system identification approach
enables the determination of nonlinear model from acous-
tic measurements, thus enabling the experimental quantifi-
cation of the nonlinear parameters of ultrasound contrast
agent microbubbles.
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