
HAL Id: hal-03193283
https://hal.science/hal-03193283v1

Submitted on 22 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Big Data and Knowledge Management: How to
Implement Conceptual Models in NoSQL Systems?

Fatma Abdelhedi, Amal Aït Brahim, Faten Atigui, Gilles Zurfluh

To cite this version:
Fatma Abdelhedi, Amal Aït Brahim, Faten Atigui, Gilles Zurfluh. Big Data and Knowledge Manage-
ment: How to Implement Conceptual Models in NoSQL Systems?. 8th International Conference on
Knowledge Management and Information Sharing (IC3K 2016), Nov 2016, Porto, Portugal. pp.235-
240, �10.5220/0006082302350240�. �hal-03193283�

https://hal.science/hal-03193283v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Big Data and Knowledge Management: How to Implement
Conceptual Models in NoSQL Systems?

Fatma Abdelhedi2, Amal Ait Brahim1, Faten Atigui3 and Gilles Zurfluh1
1Toulouse Institute of Computer Science Research (IRIT), Toulouse Capitole University, Toulouse, France

2CBI2 – TRIMANE, Paris, France
3CEDRIC-CNAM, Paris, France

Keywords: Big Data, NoSQL, Knowledge, MDA, QVT Transformation.

Abstract: In 2014, Big Data has passed the top of the Gartner Hype Cycle, proving that Big Data technologies and
application start to be mature, becoming more realistic about how Big Data can be useful for organizations.
NoSQL data stores are becoming widely used to handle Big Data; these databases operate on schema-less
data model enabling users to incorporate new data into their applications without using a predefined
schema. But, there is still a need for a conceptual model to define how data will be structured in the
database. In this paper, we show how to store Big Data within NoSQL systems. For this, we use the Model
Driven Architecture (MDA) that provides a framework for models automatic transformation. Starting from
a conceptual model that describes a set of complex objects, we propose transformation rules formalized with
QVT to generate a column-oriented NoSQL model. To ensure efficient automatic transformation, we use a
logical model that limits the impacts related to technical aspects of column-oriented platforms. We provide
experiments of our approach using a case study example taken from the health care domain. The results of
our experiments show that the proposed logical model can be effectively implemented in different column-
oriented systems independently of their specific technical details.

1 INTRODUCTION

The number of digital devices that we use nowadays
produces a huge amount of data that need to be
exploited. The volume of data exceeds many
terabytes and we have different type of data
including factors such as format, structure, and
sources. Furthermore, there is a need for loading and
processing of such a huge amount of heterogeneous
data in real-time or near real-time; these data need to
be used quickly. Volume, Variety and Velocity,
often referred to as the three V’s, capture the real
meaning of Big Data (Chen, 2014). In 2012, Gartner
retrieved and gave a more detailed definition as:
“Big Data are high-volume, high-velocity, and high-
variety information assets that require new forms of
processing to enable enhanced decision making,
insight discovery and process optimization”.

Big Data bring many attractive opportunities to
knowledge management (Fredriksson, 2015).
Simultaneously, to extract knowledge from Big
Data, we have to face a lot of challenges mainly
related to Big Data storage and process; our focus in
this paper is only on Big Data storage. Using

relational databases proves to be inadequate for all
applications, particularly ones involving large
volumes of data (Abello, 2015). As a result, a new
kind of databases has appeared, known as “NoSQL”
data stores, that are able to handle Big Data with
high performance (Angadi, 2013). The key feature
of NoSQL databases is that they are schema-less,
meaning that data can be inserted in the database
without upfront schema definition. This feature
enables applications to quickly and easily modify
data without rewriting tables when new data are
encountered. Nevertheless, there is still a need for a
semantic data model to define how data will be
structured and related in the database (Daniel, 2016);
it is generally accepted that UML meets this
requirement (Abello, 2015). Therefore, the purpose
of this paper is to present how to store Big Data in
NoSQL databases . For this, we propose a MDA-
based approach that transforms an UML conceptual
model describing Big Data into a NoSQL model.
The rest of the paper is structured as follows.
Section 2, we motivate our work using a case study
taken from the healthcare field. Section 3 reviews
previous work on models transformation. Section 4

Abdelhedi, F., Brahim, A., Atigui, F. and Zurfluh, G.
Big Data and Knowledge Management: How to Implement Conceptual Models in NoSQL Systems?.
DOI: 10.5220/0006082302350240
In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2016) - Volume 3: KMIS, pages 235-240
ISBN: 978-989-758-203-5
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

235

shows our MDA-based approach that aims to map
an UML conceptual model into NoSQL model.
Section 5 details our experiments. Finally, section 6
ends up with the conclusion and future work.

2 RESEARCH PROBLEM AND
MOTIVATION

In this paper, our focus is on the implementation of
Big Data described by a conceptual model (UML
class diagram) in a NoSQL system; this involves
transforming the conceptual model into a data model
compatible with NoSQL systems.

To motivate and illustrate our work, we present
here a case study in the healthcare field. The case
study concerns national or international scientific
programs for monitoring patients having serious
diseases. The main goal of this program is (1) to
collect data about the disease development over
time, (2) to study interactions between different
diseases (3) to evaluate the short and medium-term
effects of their treatments. The medical program can
last up to 3 years. Data collected from the
establishments involved in such a program have the
characteristics of Big Data (the 3 V): Volume: The
amount of data collected from all the establishments
in three years can reach several terabytes.Variety:
Data created while monitoring patients come in
different types ; they can be (1) structured like
patient's vital signs (respiratory rate, blood pressure,
temperature, etc.), patient name, diagnosis codes,
etc. (2) unstructured such as patient histories,
consultation summaries, paper prescriptions and
radiology reports, and (3) semi-structured document
such as the package leaflets of medicinal products
that provide a set of comprehensible information
enabling the use of the medicinal product safely and
appropriately. Velocity: Some data are produced in
continuous flow by sensors; it must be processed in
near real time because it can be integrated into time-
sensitive processes (for example, some measure-
ments, like temperature, require an emergency
medical treatment if they cross a given threshold).

3 OBJECTIVE AND RELATED
WORK

3.1 Objective

Our purpose is to implement a conceptual model
describing Big Data into NoSQL database. There are

four basic types of NoSQL databases: key-value,
document-oriented, column-oriented and graph-
oriented. In this paper, we choose to focus on
column-oriented NoSQL model. This model is
considered to be the most efficient in terms of
performance, for multi-criteria access queries
(vertical data organization with columns-families)
(Abadi, 2012).

An overview of our approach is illustrated in
figure 1. Starting from a conceptual model, we
propose a transformation process to automatically
generate a NoSQL logical model. We introduce this
logical-level model between conceptual level
(business description) and physical level (technical
description) to limit the impacts related to technical
details of NoSQL platforms. Indeed, there are many
column-oriented NoSQL databases available, such
as HBase, Cassandra, Accumulo, etc. Each one has
its own technical aspects. For example, for the
medical program, several column-oriented NoSQL
databases can be used in the same inter-
establishment software architecture; each establish-
ment may have a specific column-oriented database.
To overcome this situation, we propose a logical
model independent of a particular NoSQL platform
and can be easily implemented in several column-
oriented databases independently of their specific
technical details.

Figure 1: Overview of our approach.

3.2 Related Work

To the best of our knowledge, there are only few
solutions that have dealt with NoSQL databases
conceptual modeling. Chevalier et al. (Chevalier,
2015) defined a set of rules to map a
multidimensional model into two NoSQL models:
column-oriented and document-oriented. The links
between facts and dimensions have been converted
using imbrications. Although the transformation
process proposed by authors start from a conceptual
level (multidimensional model), this specific model
is different from the UML standard; it contains facts,

KMIS 2016 - 8th International Conference on Knowledge Management and Information Sharing

236

dimensions and one type of links only. Other studies
investigate the process of transforming relational
databases into a NoSQL model. Li (Li, 2010)
proposed an approach for transforming a relational
database into HBase; the relationships between
tables (foreign keys) are converted by adding new
columns-families that contain references. Vajk et al.
(Vajk, 2013) propose a mapping from a relational
model to document-oriented model using
MongoDB. However, the relational model does not
present the semantic richness of UML class diagram
(especially through the several types of relationships
that exist between classes: association, aggregation,
composition, generalization, etc.).

Only few works have presented approaches to
implement UML conceptual models in NoSQL
databases. Li et al. (Li, 2014) propose a MDA-based
approach to transform UML class diagram into
HBase. After building the meta-models of UML
class diagram and HBase, the authors have proposed
mapping rules to realize the transformation from the
conceptual level to the physical level. These rules
are applicable to HBase, only. Gwendal et al.
(Daniel, 2016) describe the mapping between UML
conceptual models and graph databases via an
intermediate graph meta-model. These rules are
specific to graph databases used as a framework for
storing, managing and querying complex data with
many connections. Generally, this kind of NoSQL
databases are used in social networks where data are
highly connected.

4 MDA-BASED
TRANSFORMATION PROCESS

4.1 MDA Formalism

To address the complexity of applications, model-
driven engineering (MDE) approach considers
models as the central artifacts in the software
engineering process. MDA (Model Driven
Architecture) proposed by Object Management
Group (OMG) is a mechanism derived from MDE.
This architecture defines a hierarchy of models from
three points of view: Computation Independent
Model (CIM), Platform Independent Model (PIM),
and Platform Specific Model (PSM) (Bézivin,
2001). Among this proposed models, we use: (1)
PIM: to describe data without showing aspects
which are specific to the implementation platforms.
In this paper, we consider two PIM: conceptual PIM
(UML class diagram) that describes data taking into

account only its own business aspects, and logical
PIM that describes how to organize data (in our
case, we use the column-oriented data organization).
(2) PSM: to represent data taking into account the
characteristics of a particular technical platform. At
this level, we consider two physical models that
correspond to Cassandra and HBase platforms to
show that our approach does not restrict us to one
implementation platform (figure 2). The mapping
between two MDA models provides a succession of
transformation rules translating a source model into
a target model. OMG has defined a standard called
QVT for expressing models transformation.

Note that due to the lack of space, we do not
present the process that transforms the logical PIM
into PSMs. Only the transformation of conceptual
PIM to logical PIM will be presented.

Figure 2: Modeling levels.

4.2 Source: UML Class Diagram

An UML class diagram contains a set of classes {C1,
… ,Cp}. Each class is composed from structural and
behavioral constituents. In this paper, we consider
only the structural part. Since the operations are
linked to the behavior, we will not take them into
account. The schema of each class C is a tuple (N,
A, Ident) where: C.N is the class name; C.A =
{a1,…,aq} is a set of q attributes. The schema of each
attribute is a pair (N:C) where “a.N” is the attribute
name and “a.C” the attribute type; C can be a
predefined class, i.e. a standard data type (String,
Integer, Date ...) or a business class (class defined by
user); C.Ident is an object identifier whose type is
called “Oid”; this identifier is automatically
managed by the system for each class. In an UML
class diagram, there are essentially four types of
relationships between classes: Association,
Aggregation, Composition and Generalization. In
order to represent these concepts, we propose the
following meta-model (figure 3) that is adapted from
the one proposed by OMG (OMG, 2011).

Big Data and Knowledge Management: How to Implement Conceptual Models in NoSQL Systems?

237

Figure 3: Source meta-model.

4.3 Target: Column-Oriented Logical
Model

A column-oriented database consists of a set of
tables. Each table is a container of a collection of
rows with variable length; each row is identified by
a unique identifier called "Row-Key". By default,
we store the database in a single table that we call T.
T is comprised of a set of column-families
{f1,…fp}. The schema of a column-family f is a
tuple (N, COL, Id) where: f.N is the column-family
name; f.COL = {col1,…,colq} is a set of q columns.
The schema of each column is a triplet (N, T, TS)
where “col.N” is the column name, “col.T” the
column type and “col.TS” the TimeStamp. In this
paper, we do not consider the TimeStamp parameter;
F.Id is a unique column-family identifier whose
type is called "Row-Key". We present these concepts
through the meta-model of figure 4.

Figure 4: Target meta-model.

4.4 Transformation Rules

For each transformation rule, we try to justify our
choice based on the features and limits of the
column-oriented storage. Note that at this stage of
our work, we do not take into account the optimized
solutions obtained through analysis queries.
 R1: Package to Table

NoSQL systems are not designed for the purpose of
joining data from multiple tables. Even though, it is
possible to support the join operation in some
NoSQL systems, it’s still a complicated process
(Cattell, 2011). Therefore, we chose to store the
database (the package) in a single target table.
 R2: Class to Column-Family

All the attributes of a class are grouped into the
same column-family. Indeed, all the data in a single
column-family will be stored in the same file on the
disk. That will enable the possibility of processing
large amount of data faster and more cost effectively
(Abadi, 2008). An identifier whose type is “Oid” is
transformed into an identifier whose type is “Row-
Key”. Indeed, each row described by a column-
family represents an instance of the corresponding
class. Therefore, an identifier of type “Oid” used to
identify an instance of a class is transformed into an
identifier of type “Row-Key” used to identify the row
described by the corresponding column-family.
 R3: Association class to Column-Family

Like any other class, each association class is
transformed into a column-family where each
column is either a class attribute or an attribute
whose type is “Oid” used to reference the target
column-families (related classes).
 R4: Association relationship to Column-

Family
This rule transform each n-ary association into a
new column-family composed of n columns, where
each column has the type “Row-Key”: these
columns are used to reference the target columns
families (linked classes). This rule generalizes the
process of transforming association links; it applies
to any association regardless of its degree (binary,
ternary, quaternary, etc.) and cardinalities.
 R5: Composition/aggregation relationship

Composition relationship can be represented as
references or nested data. As the columns oriented
databases don’t support nested data (column
containing other columns), we use references to
tackle this issue. Therefore, each
composition/aggregation relationship is transformed
by creating a new column whose type is called “set
Row-Key” in the column-family corresponding to the
container class; this column is used to reference the

KMIS 2016 - 8th International Conference on Knowledge Management and Information Sharing

238

column-family (ies) corresponding to the contained
class (es). We note that number of values that will be
contained in this new column depends on the
maximum cardinality of composition relationship.
 R6: Generalization relationship

We propose to transform each generalization
relationship by creating a new column which the
type is “Row-Key” in the column-family
corresponding to the subclass; this column is used to
reference the column-family corresponding to the
superclass.

These rules are formalized using QVT. Note that
due to lack of space, we only present in figure 5 the
formalization of the main transformation rule (R1).

Figure 5: QVT transformation of conceptual PIM into
logical PIM.

5 EXPERIMENTS

In this section, we show how to implement an UML
conceptual model in two column-oriented platforms.
First, we provide the implementation of the QVT
transformation process as presented in section 4.
Second, we show that the target logical model can
be effectively implemented in different column-
oriented platforms.

5.1 Experimental Environment

We carry out the experimental assessment using
MDE environment that allows us to implement
models, meta-models and QVT transformations.
Eclipse Modeling Framework (EMF): is a
modeling framework and code generation to support
the development of tools and model driven
applications; Ecore: is a meta-modeling language
that we used to create our meta-models; XML
Metadata Interchange (XMI): is XML based
standard for metadata interchange. We use XMI to

create models as instance of meta-models; Query /
View / Transformation (QVT): is the OMG
standard for model-to-model transformation.

5.2 Conceptual PIM to Logical PIM
Transformation

Before proceeding to the implementation of the
transformation rules, first, we created Ecore meta-
models corresponding to the source (figure 3) and
the target (figure 4).

Figure 6: Source model (excerpt).

Figure 7: Target model (excerpt).

The next step is to create an XMI instance of the
source meta-model (Figure 6). In parallel, we used

Big Data and Knowledge Management: How to Implement Conceptual Models in NoSQL Systems?

239

Operational QVT plugin provided within EMF to
implement the QVT rules. Finally, we tested the
transformation by running the QVT script. The
execution of this script transforms the UML class
diagram (figure 6) into the NoSQL table
corresponding to the logical model (figure 7).

5.3 Logical PIM to PSMs
Transformation

Choosing column-oriented model at logical level
does not imply a specific target platform.
Consequently, several implementation platforms
could be used. In this paper, we choose to consider
two PSMs that correspond to HBase and Cassandra
platforms.
 Cassandra PSM

Cassandra is a columns-oriented database. It consists
of one data container named Keyspace. The
Keyspace is associated to a set of columns families;
each column-family is identified by a PrimaryKey
and contains a set of columns that must be declared
up front at schema definition time. We note that the
concepts of “Table” and “Row-Key” used at the
logical level will be replaced respectively by
“Keyspace” and ‘PrimaryKey”.
 HBase PSM

HBase is a column-oriented database built on top of
Hadoop (Grover, 2015). HBase database consists of
one table named HTable. The HTable is associated
with a set of columns families that must be declared
up front at schema definition time, whereas columns
do not need to be defined at schema time but can be
conjured on the fly. Each row in HTable is identified
by a RowKey.

Based on Cassandra PSM and HBase PSM, we
have created manually Cassandra and HBase
databases.

6 CONCLUSION AND
PERSPECTIVES

In this paper we have presented a MDA-based
approach to implement UML conceptual model
describing Big Data in column-oriented NoSQL
systems. Our approach consists of a chain of
transformations that generate a column-oriented
logical model independent of a particular NoSQL
platform; this independence makes it easier to
implement conceptual models into several column-
oriented databases such as Cassandra and HBase
regardless of their specific technical details.

As future work, we plan to complete our
transformation process and propose a mapping for
OCL expressions defined in the conceptual model;
queries languages provided by NoSQL databases
(such as CQL, HiveQL …) could be used for this.
Another ongoing work concerns the validation of the
proposed transformation process on scientific
medical applications.

REFERENCES

Angadi, A. B., Angadi, A. B., Gull, K. C., 2013. Growth
of New Databases & Analysis of NOSQL Datastores.
International Journal of Advanced Research in
Computer Science and Software Engineering.

Cattell, R., 2011. Scalable SQL and NoSQL data stores.
Acm Sigmod Record.

Abelló, A., 2015. Big data design. In Proceedings of the
ACM DOLAP.

Li, C., 2010. Transforming relational database into HBase:
A case study. In IEEE ICSESS.

Chen, C. P., Zhang, C. Y., 2014. Data-intensive
applications, challenges, techniques and technologies:
A survey on Big Data. Information Sciences.

Bézivin, J., Gerbé, O., 2001. Towards a precise definition
of the OMG/MDA framework. In ASE.

Chevalier, M., El Malki, M., Kopliku, A., Teste, O.,
Tournier, R., 2015. Implementing multidimensional
data warehouses into NoSQL. In ICEIS.

Abadi, D. J., Madden, S. R., Hachem, N., 2008. Column-
stores vs. row-stores: How different are they really?.
In Proceedings of the ACM SIGMOD.

 Li, Y., Gu, P., Zhang, C., 2014. Transforming UML class
diagrams into HBase based on meta-model. In ISEEE.

Grover, M., Malaska, T., Seidman, J., Shapira, G., 2015.
Hadoop application architectures. O'Reilly Media.

 Abadi, D., Boncz, P., Harizopoulos, S., Idreos, S.,
Madden, S., 2013. The design and implementation of
modern column-oriented database systems. Now.

Fredriksson, C., 2015. knowledge management with big
data creating new possibilities for organizations. In
NORKOM.

Daniel, G., Sunyé, G., Cabot, J., 2016. UMLtoGraphDB:
Mapping Conceptual Schemas to Graph Databases. In
ER.

Vajk, T., Fehér, P., Fekete, K., Charaf, H., 2013.
Denormalizing data into schema-free databases. In
CogInfoCom, IEEE

OMG, 2011. MOF 2.0 QVT Specification.

KMIS 2016 - 8th International Conference on Knowledge Management and Information Sharing

240

