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Dynamic pricing efficiency with strategic retailers and consumers: 

an analytical analysis of short-term market interactions 

Cédric CLASTRES1,2,* and Haikel KHALFALLAH1 

 

Abstract 

Demand response programmes reduce peak-load consumption and could increase off-peak 

demand as a load-shifting effect often exists. In this research we use a three-stage game to 

assess the effectiveness of dynamic pricing regarding load-shifting and its economic 

consequences. We consider a retailer’s strategic supplies on forward or real time markets, 

when demand is uncertain and with consumer disutility incurred from load-shedding or load-

shifting. Our main results show that a retailer could internalize part of demand uncertainty by 

using both markets. A retailer raises the quantities committed to the forward market if energy 

prices or balancing costs are high. If the consumer suffers disutility, then the retailer contracts 

larger volumes on the forward market for peak periods and less off peak, due to a lower load-

shifting effect and lower off-peak energy prices.  
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1. Introduction 

In the transition towards a low carbon economy, deploying renewable energies (RE) and 

improving energy efficiency (EE) take on huge significance. By 2060, in the 2°C scenario of 

the International Energy Agency, RE and EE are expected, respectively, to account for 35% 

and 40% of reductions in greenhouse gas emissions (IEA, 2017). Investing in smart grids 

(Gwerder et al., 2019) is one way to make it easier to achieve these efficiency and 

environmental goals (Clastres, 2011; Bergaentzle et al., 2014). Moreover, retailers will be able 

to offer dynamic pricing to consumers, with retail prices reflecting market constraints (Chao, 

2010). In this new context demand responds to prices when a dynamic tariff is introduced 

(Faruqui et al., 2010a; Faruqui et al., 2010b; Faruqui and wood, 2008; Faruqui and Sergici, 

2010). Moreover implementing Demand Response (DR)2 can yield significant economic and 

environmental gains (Borenstein, 2002; Borenstein et al., 2002; Borenstein, 2005; Chao, 2010; 

Faruqui et al., 2007; Haney et al., 2009; Hogan, 2009). These gains are linked to the decrease 

in peak-load prices and peak generation, and to reshaping of the demand curve to better 

integrate intermittent energy sources (Strbac et al., 2006; Hesser and Succar, 2011). 

Additional benefits could be derived from energy savings and lower bills for consumers (Dahlke 

and Prorok, 2019; Haney et al., 2009), or from reduced transmission and distribution 

investments (Strbac, 2008). However excessive load-shifting increases energy bills in off-peak 

periods (Rious et al., 2012) or creates additional peak periods, simply displacing the critical 

period (Torriti, 2012; Allcott, 2011; Spees and Lave, 2007). So such gains may be modulated 

by rebound and load-shifting effects3, thus increasing consumer disutility due to higher prices 

and efforts to save energy (Clastres and Khalfallah, 2015; Horowitz and Lave, 2014). 

We use a Stackelberg-based model or bi-level programming problem (Zugno et al., 2013) to 

study the impact of dynamic pricing and load-shifting on a retailer’s electricity supply to 

consumer markets. The retailer is a lead player, anticipating consumer response to the retail 

market. The retailer faces demand uncertainty in the day-ahead market, due to uncertain 

weather conditions and unpredictable consumer response to dynamic pricing. First level 

decisions by the retailer concern energy bought on the day-ahead market and the volume of 

balancing energy purchased on the real-time market. The second-level decisions relate to 

consumer response to dynamic pricing on the retail market. So the model can be formulated 

as a mathematical program with equilibrium constraints (MPEC)4, in which the retailer buys 

                                                           
2 The Federal Energy Regulatory Commission, defines Demand Response as “Changes in electric 
usage by end-use customers from their normal consumption patterns in response to changes in the 
price of electricity over time, or to incentive payments designed to induce lower electricity use at times 
of high wholesale market prices or when system reliability is jeopardized.” 
3 Overall demand could be lower, constant or higher, mainly due to rebound or load-shifting effects 
(Greening et al., 2000; Muratori et al., 2014). 
4 For a formal definition of MPEC problems, see Alder et al. 2004. 
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energy on the day-ahead market subject to real-time market equilibrium, once weather 

conditions are known, and to retail market equilibrium when real consumer demand is 

observed. Solutions of the overall game are found by backward induction. The mixed 

complementarity problem (MCP) technique is used to solve the game’s sub-problems, 

calculating equilibrium at each stage (Gabriel and Smeers 2005). Our game can be formulated 

as an MCP problem since all the decision variables are non-negative, which entails 

complementarity between decision variables and their respective first-order conditions. Also 

all the constraints of our mathematical program take the form of inequalities, which define the 

lower or upper bounds on decision variables. The equations associated with the non-negative 

variables, decision variables and dual variables of inequality constraints are called 

complementarity conditions. A complementarity relationship between the model’s constraints 

and their respective dual variables can then be obtained. With this approach the equilibria at 

each stage are defined as a set of prices and quantities which simultaneously satisfies the first 

order optimality conditions and complementarity conditions of the program5.  

We show, through five propositions, that load-shifting and delaying of shifted consumption 

depend on the value consumers assign to their peak and off-peak consumption. In a context 

of high forward-prices retailers adapt their procurement strategies by contracting on the day-

ahead market for off-peak hours. They anticipate substantial load-shifting and the likelihood of 

high balancing costs too. In so doing they minimize procurement costs and reduce retail prices 

for consumers. 

The paper is organized as follows. Section 2 contains a review of the literature and we position 

our research in this context. In Section 3 we present the stochastic model and the equilibrium 

we obtain on the forward, real-time and retail markets. Section 4 analyses our results in terms 

of prices, uncertainty and consumers disutility. Section 5 concludes with the main 

recommendations of our study. 

2. Literature review 

The literature on DR has mainly focused on assessing how consumers respond to dynamic 

pricing. It relies largely on laboratory experiments, data analysis and econometric models 

(Faruqui et al. 2014), estimating short and long-term demand elasticity (Cuddington and 

Dagher 2015, Burke and Abayasekara 2018). Matsukawa et al. (2000) study the introduction 

of a time-of-use (TOU) rate in Japan. In particular their results show how consumers fitted with 

flexible appliances opt to receive an incentive and reduce peak consumption. Di Cosmo et al. 

(2014) also analyse the impact of TOU pricing on consumers by introducing various other 

stimuli (in-home display [IHD], monthly and bi-monthly billing). Their results show that variation 

                                                           
5 More details on this technique are provided in Appendix 1. 
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in consumption does not mirror exactly variation in price, a finding that highlights the need to 

carry on providing frequent information to perpetuate behaviour that reduces demand. 

Eryilmaz et al. (2017) analyse the demand-response strategies of industrial consumers on the 

MISO market. They note that retail industrial consumers could participate in more DR services 

by optimizing the use of their flexible capacity. Frondel and Kussel (2019) use an econometric 

model similar to the one developed by Eryilmaz et al. (2017) to study the demand elasticity of 

consumers receiving information on the characteristics of retail prices. They observe that 

demand responds to marginal prices and recommend that operators sell supply contracts 

based exclusively on the price per kWh. Fenrick et al. (2014) study the experimental 

introduction of TOU, critical peak pricing (CPP) and IHDs in Minesota and South Dakota. They 

demonstrate that there is significant elasticity of substitution and consequently shifting for all 

(urban and rural) consumer categories.  

Some of these articles address the issues of disutility and loss of welfare associated with DR 

and the associated services or dynamic pricing schemes. Rodrigues and Linares (2015) show 

that overall demand falls – in other words loads shed at peak hours are only partly shifted to 

off-peak hours. The slight increase in off-peak prices has only a marginal effect on consumer 

surplus. On the other hand the impact on collective welfare is negative following a reduction in 

upstream profits.  Alberini et al. (2019) study demand elasticity in Ukraine, in a context of 

continuously high prices. Consumers must cope with inclining block rates. The authors show 

that consumers are aware of the pricing structure, but reduction in demand is rare and depends 

on the level of household equipment. Price rises have a negative impact on household surplus 

due to their low level of response. Woo et al. (2017) add to DR literature by using generalized 

Leontief demand analysis, while assuming low elasticity of substitution. They show that 

demand changes depending on the ratio between peak and off-peak prices, off-peak 

consumption displaying substantial growth with this ratio. The authors also assert that savings 

made thanks to DR improve welfare and compensate for the disutility incurred by consumers 

due to the cost of introducing DR. Simshauser and Downer (2016) study efficiency gains and 

inter-and intra-segment wealth transfers arising from existing flat-rate or dynamic tariffs (TOU 

and CPP). They show that consumers only slightly reduce overall consumption, but alter its 

structure by shifting usage from peak to off-peak hours. This effect is even more noticeable 

when network tariffs increase, which reduces the surplus enjoyed by some consumers due to 

a drop in cross-subsidies. Nakada et al. (2016) analyse incentives for households to invest in 

distributed solar-power infrastructure in Japan in order to maintain a constant level of utility 

with TOU pricing. To participate in DR services consumers must change their lifestyle, for 

otherwise their bills increase and their welfare suffers. The authors conclude that consumers 

who are subject to TOU and are well informed are the most likely to purchase solar power 
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technology. In which case they participate in a DR service, reducing peak consumption without 

any loss of comfort, curtailed energy being supplied instead by the photovoltaic system and 

self-consumed. Richter and Pollitt (2018) analyse the form of contracts including smart 

services that consumers are prepared to pay for. The authors show positive willingness to pay 

(WTP) for energy-saving services (technical support, IHD, personal feedback), but negative 

WTP (willingness to accept) for services related to the use of consumption data and control of 

electricity usage. Broberg and Persson (2016) report a choice experiment estimating how 

willing consumers are to pay for demand-side management services. Their results show that 

consumers attach great importance to their comfort and to the disutility incurred from direct-

load control. Furthermore, consumers are less flexible in their (peak) evening usage and load-

shifting entails a cost that must be compensated. Feuerriegel et al. (2016) show that retailers 

offering DR services achieve positive net present value through load-shifting. However an 

increase in the frequency of data-polling – and consequently in infrastructure and information 

technology costs – impacts profits. De Castro and Dutra (2013) focus on investment in smart 

grids to secure the reliability of the electricity system and set up DR. They note that investments 

are sub-optimal because consumers’ willingness to pay for reliability does not match its true 

cost. The regulator must internalize the risk taken by utilities in order to restore optimal 

conditions for investment.  

A third batch of literature studies demand response by modelling several electricity markets 

and the impact of transfers between agents, in particular with the introduction of dynamic 

pricing. Zugno et al. (2013) analyse the procurement strategy of a retailer drawing on two 

markets, the day-ahead market (DAM) and the real-time market (RTM), both subject to price 

uncertainty. The authors conclude that the retailer prefers to adopt a long position when 

negotiating purchases on the DAM. Demand response enables it to reduce the cost of 

purchases, by postponing part of peak consumption, but also to minimize imbalance costs. 

Welfare increases because the retailer’s costs drop, with dynamic pricing, in particular real-

time pricing (RTP), because it results in more DR and load management. Consumer comfort 

intervals are comparable. Damien et al. (2019) set out to estimate how consumers respond to 

DAM and RTM price signals. Their findings show that consumers are more sensitive to DAM 

than to RTM prices. Consumers with prior knowledge of DAM prices have more scope for 

adjustment. The authors also note that few consumers have an incentive to adjust their usage 

in real time, unless such adjustment is automated. Chao (2011) analyses the conditions of DR 

efficiency. The author notes that the customer baseline must be covered by a contract, 

between retailer and consumer, in order to make it efficient, thus overcoming any gaming 

incentive and double payment undermining performance. Crampes and Leautier (2015) also 

conclude that the optimal solution is to compensate retailers for load-management; otherwise, 
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consumers must make a contractual commitment to baseline consumption. Chen and Kleit 

(2016) study the importance of calculating a customer’s baseline (CBL) using data from the 

PJM market. They show that learning effects prompt consumers to manipulate their CBL in 

order to participate in more DR services, in particular through strategic use of air-conditioning. 

Chao (2010) notes that the introduction of real-time pricing is efficient in that it reduces cross-

subsidies between peak and off-peak consumers, thus restoring efficiency in terms of the 

energy consumed at different times and for different price signals. Holland and Mansur (2006) 

report that such pricing must apply to a critical mass of consumers for it to reduce peak load 

but with substantial load-shifting to off-peak periods. On the other hand, many empirical 

experiments on RTP highlight the difficulty achieving a sufficient number of participants to 

really improve system efficiency (Barbose et al., 2005; Navigant Consulting Inc., 2011). 

Furthermore, Leautier (2014) uses an analytical approach to show that the impacts on welfare 

of RTP, through deployment of smart meters, is not economically efficient for all consumers. 

Over a critical number of users, installing smart meters for all consumers reduces welfare, 

marginal gains being lower that the marginal cost of installing smart meters. 

The literature modelling short or long-term electricity market interaction also focuses on the 

optimal strategies for generator with regard to investment, power generation and pricing 

behaviour (Hobbs et al. 2000; Gabriel and Smeers, 2005 and Ritz and Teirila, 2019). The 

strategies of retailers and consumers are generally overlooked, on the assumption that they 

are either passive, or are too inflexible to influence market outcome. Some research, that has 

considered the strategy of retailers, has examined the extent to which their interaction on 

forward and real-time electricity markets would affect their business. It has been demonstrated, 

using analytical and computational models, that retailers have an incentive to contract more 

energy on forward markets to secure uncertain demand (Kamat and Oren, 2004). This 

incentive increases when energy imbalances in real-time markets give rise to penalties 

(Khalfallah and Rious, 2013). However, in a context of dynamic pricing, responsive final 

consumers could alter such forecasts. Their strategies may distort outcomes and overall 

equilibria in forward, real-time and retail markets. In a context of this sort the analytical model 

developed here proposes, to our knowledge, an original methodology for assessing the 

economic impact of dynamic pricing by modelling the short-term strategies of retailers and 

consumers.  

Our paper adds to the literature on modelling three-stage stochastic games which focuses on 

optimal strategies for consumers and retailers in the foreseeable context of dynamic pricing. 

We model the following three market stages: day-ahead, real-time, and retail market. Day-

ahead market decisions are made with an uncertain expectation of future demand, so we 

assume a closed-loop information structure to simulate interactions between players’ 
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decisions. A second originality of this work is that it uses an analytical approach to solve the 

game, hence a more robust, widely applicable solution to assist decisions by policy-makers. 

This contrasts with the literature in which only numerical applications are used to find solutions 

based on parameter specifications (Saguan and Meeus, 2014). To capture consumer disutility, 

our paper also assumes a coefficient. So our research could contribute to understanding 

consumer behaviour, by focusing on their consumption profile. A strong disutility parameter 

could indicate great interest in peak consumption, due to a lack of flexibility or a preference for 

peak-load energy usages.  

3. Model 

We introduce a three-period stochastic model to study how dynamic pricing affects retail 

decisions by consumers and short-term outcomes on electricity markets as a whole. The basic 

idea behind this model is that when moving from a regulated to a dynamic pricing scheme, end 

consumers should be encouraged to adopt more energy-efficient patterns of consumption, 

either by reducing overall usage or at least delaying it. However, the economic impact of such 

energy efficiency in terms of social welfare has rarely been explored. Consumers choose 

between costly energy and the disutility of reducing consumption, or load-shifting. On the other 

hand, the retailer must cope with real-time demand that is not only uncertain but also 

uncontrollable, consumers now being responsive. So the retailer must change their strategy 

on short-term markets. 

3.1. Model assumptions 

The model considers the decisions taken by energy retailers6 in day-ahead and real-time 

markets, and decisions by consumers at two typical times of the day: off-peak and peak hours7. 

We consider uncertainty affecting future demand when the retailer decides to purchase energy 

on the forward market. Such uncertainty is represented by a finite set of scenarios. 

The model consists of three periods (see Figure 1). We assume that, at each period, the 

players observe all the actions of previous periods. They base current decisions on that 

                                                           
6 Only one retailer is modelled in this study. The possibility that consumers switch to a different retailer 
is not considered. This assumption can be justified in three ways. Firstly, the process of switching retailer 
is rather slow compared to the optimization horizon considered here. It is true that competition between 
retailers should have an impact on the dynamic-pricing outcome and on retail prices in general, but this 
impact should be low. It is widely argued that the final electricity price mainly reflects player interaction 
in upstream markets, so the outcomes of day-ahead and real-time markets are sufficient to signal the 
electricity price paid by end-consumers. Finally, the paper analyses the welfare efficiency of dynamic 
pricing by focusing on interaction between the retailer and flexible consumers in their respective 
markets. Competition between retailers can be disregarded without trivializing the scope of the study. 
7 As in Zugno et al. (2013) we make no allowance for network-access tariffs. Positing a risk-neutral 
system operator, as in Simshauser and Downer (2016), leads to higher transmission tariffs under DR. 
This increase may be captured by the resale factor γ which increases sale prices in the retail market. 
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information and on their “correct” rational expectation of the behaviour of all the other players 

in the current period and on the outcomes of subsequent periods. 

We shall now explain the model backward. The third and last period (the retail market) 

represents the consumption period8. The period is divided into two sub-periods, off-peak and 

peak. To analyse how consumers respond to dynamic pricing, we assume a benchmark case 

in which power is supplied at a regulated, flat price. We then analyse how consumers adapt 

their choice under dynamic pricing. In the benchmark case, consumer demand, when known, 

is inelastic for the two sub-periods. Under dynamic pricing, an electricity price function is 

offered to consumers. They decide on the volume required to meet their real needs, but they 

can now reduce or shift consumption from the peak to the off-peak period to avoid paying 

excessive prices. With the roll-out of smart technologies, retailers can offer consumers a 

contract based on dynamic pricing (such as CPP or RTP). In this way, retailers charge 

consumers a price that reflects both the degree of competition on the retail market and 

equilibria on wholesale energy markets. Consumers must adapt their demand to suit these 

new pricing schemes, to avoid higher energy bills and some disutility entailed by dynamic 

pricing. However, we assume that reducing or shifting peak consumption would certainly 

create disutility9. Consumers must spend time, frequently monitoring signals from the retailer, 

smart appliances and other sources of information to adjust their usage in line with market 

conditions (Nakada et al., 2016). These changes take time and consequently incur disutility. 

To maximize utility consumers determine how much they consume at the retailer’s price and 

for each sub-period. They then decide whether to shift or shed loads. The volumes in play will 

depend on wholesale prices and retailer costs.  

In the second period, the real-time market, effective consumer demand is known, which could 

be normal or extreme with regard to prior expectations on the day-ahead market. For 

simplicity’s sake we assume that at this stage the retailer is a passive player10. It has an 

obligation to balance its demand in line with the consumption it really serves. On the other 

hand, the retailer faces two possible market situations. Either it has bought more energy from 

the day-ahead market than justified by the demand it actually serves, or it has bought less. 

The real-time clearing price is then defined by considering that retailers can be penalized 

beyond the marginal price of electricity in real-time if an imbalance is observed11. The argument 

                                                           
8 We assume one representative consumer and that consumers are homogeneous, with the same 
demand (Leautier, 2014) and disutility functions. 
9 For detailed consideration of the causes of disutility following the introduction of DR or dynamic pricing, 
see Nakada et al. (2016). 
10 This assumption is realistic since in real-time markets, with or without balancing schemes, the retailers 
are under a greater obligation to balance their specific demand rather than to act strategically and try to 
manipulate prices. Such behavior is more likely in forward markets.  
11 For instance, a balancing market is applied in France. Imbalance prices reflect the costs of system 
balancing in real time. Imbalances are priced regarding the price of activated energy (positive or 
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underpinning this design is that the retailer has less incentive to rely on real-time market to 

supply the load demanded by its end consumers. The penalty is generally calculated as a 

function of the type of retailer imbalance (positive, due to surplus forward volume in relation to 

load; or negative, volume shortfall in relation to load). To simplify our model, the penalty, 

applied to marginal price, is computed as follows: the negative (or positive) imbalances prices 

are computed explicitly by multiplying (or dividing) the marginal price of electricity in the real-

time market by a constant12.  

Lastly, in the first period (the day-ahead market), we formulate a stochastic problem in order 

to optimize the retailer’s day-ahead commitments13. The formulation is a MPEC in which 

equilibrium constraints are the consumer’s best reply on volume in the subsequent retail 

market, the retailer’s real-time balancing volume, the real-time price paid by the retailer, and 

the retail price paid by the consumer. The retailer buys a day-ahead volume knowing how the 

consumers will optimally respond in the subsequent real-time stage, for each realization of 

expected real-time market demand. At this stage, the retailer faces uncertainty as to the level 

of demand it must serve in the subsequent real-time step.  

 

 

 

 

 

 

Figure 1. Timing of events 
 

3.2. Model notations 

Index: 

� = �, ℎ                         consumption period index: l if off-peak and h if peak 

� = �, �	                   demand uncertainty index: N if normal and up if extreme   

                                                           

negative). A penalty is then added to the average offered price and paid by market participants that do 
not balance their schedules ex-ante in the forward markets (RTE, 2020). In Belgium, imbalance prices 
are however calculated under marginal pricing scheme. See (ENTSO-E, 2017 ) for an overview of 
balancing markets schemes applied un Europe.  
12 Since there is only one retailer in our model, its imbalance corresponds to the system imbalance.  
13 We consider the day-ahead market as the common forward market where market players take 
decisions subject to uncertain demand. However, the study could be extended to include more forward 
contracts with different time maturities. 

Period 1                              Period 2                               Period 3 

Retailer commitment on 

the day-ahead market 

while real demand is 

uncertain 

Demand is known: the 

retailer balances specific 

demand drawing on the 

real-time market 

Consumers respond to 

dynamic pricing in the 

retail market 
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�                      day-ahead market index (first period) 

�                                real-time market index (second period) 

�                        retail market index (third period) 

Decision variables: 

����                          retailer’s commitment on the day-ahead market for real-time period i 

��,���                           retailer’s balancing volume on the real-time market, period i and state w 

��,��                           volume consumed in period i and state w 

����,���                       volume of shifted load from peak to off-peak period in state w 

Parameters 

�����. �                     day-ahead electricity price for consumption period i 

��,����. �                      real-time electricity price function, in period i and state w 

��,�� �. �                      retail dynamic price function, in period i and state w 

������. �                marginal cost function of the marginal producer on the day-ahead market 

and for   period i 

��,��� �. �                      retailer’s profit in real time, period i and state w 

���. �                       expected optimal profit function of retailer in real time 

 ∆!�,�                        variation in consumer utility function with dynamic pricing, in period i and 

state w    

�"���                          maximal electricity demand, expected in next period i  

�"��                          maximal total expected electricity demand  

#                               resale factor14 

$                               retailers’ delivery cost 

%                               penalty factor in real-time 

&, '                          intercept and slope of marginal cost function of marginal unit on the day-

ahead market ���� ↦ ����� = & + ' ∗ ����  
β-                              (dis)utility factor, given the decision to delay consumption in period i 

                                                           
14 The resale factor # may integrate the various costs related to supply and competitive mark-up (retail 
margin).  
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μ-                              binary parameter of load-shifting equal to 1 in peak period (disutility) and 

-1 in off-peak (utility). 

P-0                             regulated retail price before dynamic pricing, in period i 

 

3.3. Model Formulations 

Third period (retail market stage) 

We start by formulating the third-period problem. To analyse consumer response to dynamic 

pricing, we assume a benchmark case in which power is supplied at a regulated, flat rate P-0. 

Nature determines the state of the world. For a given state w, consumer demand, when known, 

is inelastic and can be expressed by Q2 304and Q2504respectively for off-peak and peak periods. 

With dynamic pricing, an electricity price function is offered to consumers. They decide on 

volume (Q-,60 � depending on their real needs, but they can now reduce or shift consumption to 

avoid paying possibly excessive prices (P-,60 �. However, reducing or shifting consumption at 

peak hours certainty entails disutility. Consumers maximize their total utility to determine which 

volumes they consume at the retailer’s price. Volumes will depend on wholesale prices and 

the retailer’s costs. We define the consumer utility function in a period i as: 

max:;,<= ∆S-,6 = ?P-0-P-,60 A . Q-,60 -μ-β-. BQ2 -04-Q-,60 CD
                 (1) 

Subject to, 

∑ Q-,60- ≤ Q204      (λH�                           (2) 

�I,�� ≤ �"I��         �JD�                     

      (3) 

�K,�� ≥ �"K��         �JM�                           (4) 

��,�� ≥ 0                             (5) 

Where, 

J� ≥ 0   Dual variables of the constraints 

��,�� = #. ���� and # > 1                                                                           (6) 

The consumer utility function (1) is defined as the variation in consumer surplus when moving 

from regulated to dynamic pricing. The first term captures the price effect of dynamic pricing 

as consumers now pay the real-time price (P-,60 ). The second term shows the volume effect of 

dynamic pricing. It assumes that consumers incur an opportunity cost from reducing or shifting 
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peak consumption (Q2504 > Q5,60 �. β5 is the disutility factor at peak hours, whereas off-peak 

consumption cannot be lower than the consumption benchmark (Q3,60 ≥ Q2 304�, so shifting the 

load to off-peak hours, would generate an opportunity gain for consumers (β3� without fully 

compensating the disutility of load-shifting (β3 < β5�15. Stated differently, reducing energy 

usage or load-shifting is only possible at peak hours. During off-peak hours, consumers are 

not really affected by dynamic pricing, prices are obviously attractive and they may even 

increase their consumption to compensate for reduced peak demand. We assume a non-linear 

increasing function for the opportunity cost or gain of load-shifting,  ?β-. BQ2 -04-Q-,60 CDA, to allow 

for the increasing marginal impact of load-shifting on consumer welfare, regardless of their 

consumption profile.  

Dynamic pricing schemes are designed to reduce overall consumption. So we assume a set 

of constraints (2-5) expressing the fact that additional peak consumption can only decrease, 

whereas off-peak will increase because of possible load-shifting.  

The assumptions for the previously specified model ensure that (1-6) is a convex programming 

problem, which implies that first order conditions are sufficient for optimality (Gabriel and 

Smeers, 2005). So, to solve the period-3 problem, we can just formulate a MCP program that 

can be solved as discussed in Appendix 1. 

 

 

 

Second period (real-time market stage) 

In real time effective consumer demand is known. The retailer faces two market situations: 

either it has bought more energy on the day-ahead market than the demand it has really 

served; or it has bought less. The real-time clearing price can thus be defined as: 

��,��� = S%. ���� �T ���� < ��,�∗�
HU . ���� �T ���� > ��,�∗�                                                (7) 

The retailer is penalized by paying more than the market price in the event of negative system 

imbalance (Q-VW < Q5,6*0 ) and otherwise by receiving a lower price. It has an obligation to 

balance its demand with regard to the real consumption response function, as determined in 

the previous program. The retailer’s profit can thus be determined as follows: 

                                                           
15 Off-course, the decrease in consumers’ welfare because of load-shedding in peak period could not 
be totally compensated by the load-shifting to off-peak period.  
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��,��� = ∑ B��,�� − $C� ��,�∗� − ∑ ��,���� . ��,�∗��                     (8) 

where, 

��,�∗�� = ��,�∗� − ����                                                          (9)  

is the real-time quantity bought or sold by the retailer to balance the demand it serves. 

First period (day-ahead market stage) 

In the day-ahead market, the retailer schedules its load before the operating day. It faces 

uncertainty as to the level of demand it will serve in the subsequent real-time step. Considering 

these uncertainties, the retailer chooses the quantities Q-VW it needs to buy for each 

consumption sub-period i by maximizing its expected profit with regard to its purchase 

strategies. To do so, we formulate a stochastic problem in order to determine the optimal day-

ahead contracts for the retailer. This formulation takes the form of a MPEC problem in which 

the equilibrium constraints are integrated in the model below: real consumer demand in period 

i and demand state w, Q-,6*0 , the retailer’s real-time balancing volume, period i and demand 

state w, Q-,6*04and the respective real-time price and consumer retail price, ��,��� and ��,��  . In other 

words, in this stage, the retailer buys the volume Q-VW knowing how the consumers will optimally 

respond in the subsequent real-time stage, for each realization of the expected real-time 

market demand. 

Basically, maximizing MPEC problems are constrained by a non-concave region, so it is 

difficult to simply write down the necessary first-order conditions and aggregate them into a 

large problem to be solved directly. Non-concavity would generally lead to multiple local optima 

or the absence of equilibrium (Sauma and Oren, 2006). In our case the first period’s MPEC 

maximization problem is re-arranged and defined as a concave maximization function. The 

retailer, which leads our bi-level programming problem, maximizes a concave expected profit, 

integrating the optimality conditions for the second and third periods. The optimization problem 

thus becomes analytically tractable (Hobbs et al., 2000). Appendix 2 provides details of our 

methodology to explain and justify the resolution of the model below and asserts its tractability.  

The overall retailer optimization problem is described as follows: 

maxZ[\] [����_`T�a� = − ∑ ���� ∗ ����� + ��B∑ ��,����,� C]                            (10) 

Subject to, 

���� ≤ �"���                                                                                              

    (11) 

���� ≥ 0                             (12) 
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and all optimally conditions of period 2 and 3 problems. 

Where, 

P-VW = MC-VW the day-ahead electricity price which corresponds to the marginal cost function of 

the marginal producer. 

The first term in (10) shows the cost of the energy bought by the retailer in the day-ahead 

market. The day-ahead price is assumed to correspond to the marginal cost of generators. 

The strategic behaviour of generators is ignored here and a competitive price is assumed16. 

The second term shows the expected outcome for the retailer from buying or selling energy in 

the subsequent real-time steps and selling energy to consumers in the retail market. The 

retailer faces uncertain real-time demand. So it must buy energy on the forward market subject 

to uncertain demand, only ultimately observed in real-time. We introduce a random variable w 

that indicates possible demand realization in real-time and corresponds to a finite set of 

scenarios.  

As demonstrated in Appendix 2, optimizing the mathematical program (1-12), in which optimal 

best-reply function in real-time and retail markets are integrated, yields the following results: 

e�I∗�� = f.�gD.h.ifjkl.hj                                                                                                                                                    �13�                         �K∗�� = f.igD.h.�fjkl.hj                                                                                                                                                    �14�                           
Where U,V,T and L are expressions that depend on demand uncertainty and parameters of 

price and demand functions (Appendix 2). Considering this equilibrium, we may now compute 

consumer demand on the retail market, the volumes committed to the real-time market and 

load-shifting. 

 

 

4. Theoretical results 

To analyse decisions taken by retailers on the day-ahead market and then overall game 

decisions, the complex solutions shown in Appendix 2 are rearranged to yield more tractable 

and subtle results. Analysis of sensitivity to the model’s main market parameters is undertaken, 

by modifying some of the main parameters, but leaving all the others unchanged. Firstly we 

consider the parameters β , which must strongly impact consumer choices, and hence retailer 

strategies, once dynamic pricing is applied. Then we analyse the parameter  γ , which captures 

                                                           
16 Dynamic pricing should modify patterns of consumption and energy trades in the retail market. The 
model here looks mainly at interaction between consumers and load-serving bodies rather than 
generator strategies in upstream markets. 
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the degree of competition faced by consumers in the retail market and the extent to which 

consumer strategies in this market could be altered by the simultaneous application of dynamic 

pricing and balancing mechanisms. We next consider the parameter  , which indicates how 

sensitive the efficiency of real-time pricing could be to the intensity of the balancing 

mechanism, with α > 1.  We conclude by analysing the results regarding the parameter n which 

expresses a price signal from the market merit order and consequently the specific technology 

mix of a given system. Sensitivity analysis is illustrated by the figures below, which reflect the 

analytical results discussed in Appendix 2.  

Our parameters are intuitively correlated with one another. The penalty for correcting 

imbalances “%” is positively correlated with the slope of the marginal cost of the last unit traded 

on the day-ahead market “n”. When the day-ahead market is under tension it will cost more to 

balance supply and demand than under less tense conditions, given the energy available on 

the balancing market. There is also a positive correlation between disutility “qI − qK” and 

parameter “γ”, allowing for the dynamic pricing it entails and competitive mark-up. Consumers 

are increasingly likely to trim usage when the retail price is high, with a positive impact on their 

disutility. The same reasoning applies to explain the intuitively positive correlation between “n” 

and “qI − qK”. Making allowance for these intuitive correlations amplifies our results, which 

remain valid. 

4.1. Dynamic pricing and consumption efficiency 

Proposition 1: Dynamic pricing encourages load-shifting to off-peak periods. Load-

shifting decreases with consumer disutility. 

Optimizing the problem facing the consumer, as demonstrated in Appendix 1, yields the 

following results: 

�I,�∗� = �"I�� − ∆rstuD.∆"v     (15)       and    �K,�∗� = �"K�� + ∆rstuD.∆"v  (16). 

Where, 

∆"q = qI − qK         Net load-shifting disutility 

∆r��� = �I� − �K�     Price difference between peak and off-peak periods 

The solutions in (15) and (16) show that consumers would shift their consumption from peak 

to off-peak hours17, regardless of climatic conditions, w. The volume shifted, ∆rw<=D.∆"x, depends on 

peak and off-peak retail prices, load-shifting disutility and corresponding compensation, and 

                                                           
17 As demonstrated in Appendix 1, other equilibrium configurations, such as only reducing energy 
consumption at peak hours or reducing energy consumption more or less than load-shifting, are not 
possible. The optimization problem, being linear, only provides solutions at boundary points. 
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the difference between the two. The greater the price differential, the more attractive it is for 

consumers to shelve peak consumption and shift it to off peak period. The analysis of partial 

derivatives confirms this result. Indeed, 
yZz,t∗u

y�∆rw<= � < 0 {'| yZ},t∗u
y�∆rw<= � > 0. However this effect is 

greatly diminished by the intensity of load-shifting disutility, 
H∆"x. Partial derivatives show that 

peak demand decreases with disutility, 
yZz,t∗u
y�∆"v� < 0, rather than off-peak one increases,  

yZ},t∗u
y�∆"v� >

0. For instance, if consumers are less sensitive to environmental concerns, or places a high 

value on comfort to satisfy their energy needs, they will attach more value to the impact of 

shedding energy on their consumption habits and incur greater disutility from load-shifting, i.e. β5 >>> β3. Conversely, load-shifting is more likely to occur when consumers incur a lower 

opportunity cost from load-shifting or register a significant opportunity gain from off-peak 

usage, i.e. β5~β3. Using partial derivatives, we could easily show that the disutility effect is 

greater than the price differential effect if ∆"q < ∆rw<=D .  
Turning now to the retail price, P-,60 . It is defined as a function of the day-ahead price and 

depends on Q-VW. If we replace the retail price in the solutions to Proposition 1, we obtain the 

following optimal load-shifting (Q���,6* ), as a function of the retailer’s day-ahead commitments: 

����,�∗�� = �.�D.∆"v . B�I�� − �K��C                         (17)  

This last result is a reminder of how much load-shifting increases when the compensation gain 

from load-shifting is significant and ∆"β is low, but it also highlights the impact of the resale 

factor γ and energy supply elasticity n . These two parameters can be interpreted as the market 

price signals to consumers: high levels warn consumers that energy is costly, encouraging 

them to shift their load. Lastly, as we assume a linear increase in the energy price function, we 

observe that, as the forward-volume differential rises, the higher peak prices climb, the greater 

the incentive is for consumers to shed demand.     

 

 

 

4.2. Market interactions 

Proposition 2: If the consumer has a lower preference for peak consumption, then the 

retailer can internalize the load-shifting effect, contracting more off-peak volumes on 

the forward market.  
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Figure 2 below illustrates Proposition 2 that agrees with the results of Zugno et al. (2013). 

Consumers incur an opportunity cost β5 when obliged to reduce peak usage. Their preference 

for off-peak usage β3 could be equal to or less than β5. So, if consumers have no preference 

regarding the consumption period, i,e limx�→x� ∆"β = 0, the retailer will anticipate that consumers 

will shift part of their peak demand to an off-peak period, which offers lower prices. The retailer 

will consequently contract greater volumes on the forward market to serve off-peak hours and 

lower volumes for peak periods. However, off-peak prices increase with off-peak demand. 

Consumers have an incentive to shift demand as long as the difference between peak and off-

peak prices compensates for the disutility of reducing peak consumption. Moreover, as the 

literature has shown it (Faruqui et al., 2010a; Faruqui and Wood, 2008), consumers only shift 

part of their peak demand, running some electrical appliances at other times being impossible. 

When limx�→x� ∆"β is positive, consumers face greater disutility (surplus gains in off-peak hours do 

not compensate for surplus losses in peak hours). So the incentives to shift uses diminish. 

With consumers cutting back load-shifting, the retailer would contract much larger volumes for 

peak rather off-peak hours. Load-shifting can create a second form of uncertainty for the 

retailer. Its response might be to adjust forward contracts to allow for consumer behaviour and 

typology. 

Parameters β- could also represent consumer sensitivity to environmental factors. If β3 is close 

to β5, consumers attach importance to off-peak consumption, reducing the environmental 

impact of peak generation (Dahlke and Prorok, 2019; Bergaentzle et al., 2014). In this way, 

consumers will shift as much demand as possible from peak to off-peak hours, in turn affecting 

the retailer’s forward-market procurement strategy. On the other hand, if consumers attach 

little value to the environment (higher values of β5), they will not shift a large share of usages 

because peak-hour consumption creates greater utility than load-shifting. 

Figure 2 shows that Q5*VW could converge towards Q3*VW for low values of ∆"β . This case 

illustrates the equality of peak and off-peak supplies committed on the forward market. On the 

left side of the graph, load-shifting is significant;  ∆"β  driven by parameters n and γ . On the 

right side of the graph, as  ∆"β  increases, the retailer begins to contract greater volumes for 

peak hours, in anticipation of a lower load-shifting effect. This analysis also shows the 

importance of studying consumer behaviour and typology to understand their preferences and 

foreseeable load-profile.  

The uncertainty of demand is due to load-shifting strategies but also to its own characteristics 

(in our two demand scenarios, it could be normal or extreme). Thus, probabilities w also affects 

the volumes committed to the forward market in a very intuitive way. If the likelihood of facing 

extreme demand increases, the volume committed on the forward market will also increase. 
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As we shall see below, this effect is heightened by the level of penalties on the real-time 

market. 

 

 

 

 

 

 

 
 
 
 

 
 
 

Figure 2. Impact of consumer disutility ∆β on forward commitments 
 
 

Proposition 3: Dynamic but high pricing still encourages load-shedding whereas any 

imbalance costs in real-time are easily transferred to consumers.  

Figure 3 below shows a linear increase in volumes bought by the retailer on the day-ahead 

market if γ increases. If the retail price increases in relation to wholesale market prices, due to 

lack of competition or retail market power, the retailer will choose to buy more energy than 

usual on the forward market. The retailer makes a trade-off between day-ahead market 

purchases, which influence the day-ahead price and hence the retail price, and real-time 

market purchases, on which it is only subject to imbalance costs. Any risk of facing penalties 

in the case of positive imbalances is passed on to consumers, thanks to additional retail-market 

revenues, through higher γ .  

It also shows that the expectation of consumer load-shifting from peak to off-peak hours would 

increase with  γ , which is a predictable result given that consumers will face higher tariffs, 

further confirming the merits of load-shifting. Moreover, the shaded area in Figure 3 shows 

that, whereas load-shifting potential is constant (Q5*VW- Q3*VW is constant), insignificant load-

shifting is expected when γ is low, reaching a high point with extreme values of γ . This means 

that the expected response of consumers only slightly affects the retailer’s optimal trade-off 

between the day-ahead and real-time markets. Higher retail tariffs would be sufficient for the 

retailer to cover any price volatility in real-time. 

 

�K∗�� =  �I∗�� 

��∗��
, ����∗��  

∆q 

�K∗�� 

�I∗�� 

����∗�� = #. '2. ∆2q . ��I∗�� − �K∗��� 
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Figure 3. Impact of #  on decisions by the retailer and by consumers 

 

4.3. Balancing design 

Proposition 4: Real-time penalties encourage the retailer to secure demand on the 

day-ahead market but have no impact on the efficiency of dynamic pricing.  

Penalizing real-time imbalances should encourage market players to contract sufficient energy 

on forward markets. The strategy of market players responding to the severity of real-time 

imbalance penalties could change with the switch to dynamic pricing. For instance, with 

increasingly price-sensitive consumer demand, retailers may face greater uncertain real 

demand and a higher likelihood of real-time imbalances. Figure 4 below plots the optimal day-

ahead volumes of retailers as the penalty factor  α  increases. Two main findings are apparent. 

Firstly, when switching from no penalties, % =1, to a penalty scheme, α > 1, the retailer has an 

incentive to make a higher energy commitment on the day-ahead market.  

When comparing this result with the previous one, we conclude that the increase in forward 

volumes, as  α  rises, is less proportional to an increase in  γ . Whereas the increase in  γ  

positively impacts the retail price – yielding higher real-time profits for the retailer and scope 

for covering any penalty incurred by a positive imbalance in real-time – an increase in α is not 

passed onto retail price. The retailer will respond moderately to the expectation of higher 

imbalance prices than previously. However, this is the explanation on why consumer decisions 

on load-shifting are not affected by the level of α . Our model assumes that retail prices only 

depend on day-ahead prices, and are consequently not affected by the level of penalties, at 

least in the short run. This assumption is realistic. In theory, a competitive retail price should 

reflect two components: the energy-supply cost, in other words the merit-order function, and 

# 

�I∗�� 

 

 

 �K∗�� 

����∗�� 

��∗��
, ����∗��  
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short-term demand elasticity, in order to allow for consumer preferences and weather 

conditions. The linear relationship between day-ahead and retail prices reflects these 

constraints. However, real-time imbalance prices are the sole responsibility of retailers and/or 

generators and they must recover their full costs.    

 

 

 

 

 

 

 

 

 

 

Figure 4. Impact of % on decisions by the retailer and by consumers 

 

4.4. Markets competitiveness 

Proposition 5: With costly energy mix or low market competitiveness, the retailer 

significantly increases its forward volumes and transfers the cost of short-term price 

distortion to end consumers. 

This proposition is based on the analysis of the sensitivity of equilibria to parameter n in the 

marginal cost function. This parameter stands for the level of energy prices in each market and 

supply-function elasticity on forward markets. Q5*VW and Q3*VW are increasing functions of n. An 

increase in n entails higher energy prices on all markets we study and with a high level of 

supply elasticity. This relationship prompts several intuitions. Firstly, when energy is cheap 

(low values of n) the retailer will only buy small volumes on the forward market, in line with 

uncertain real-time demand and load-shifting effect it expects. The retailer internalizes part of 

the demand uncertainty, in order to balance its position on the real-time market. Such 

strategies are possible because of low energy prices and remain valid for a wide range of 

penalties on the real-time market, on condition that marginal revenue from sales compensates 

for higher penalties. Nevertheless, when the energy price rises (the gradient of the supply 

function n is higher), it becomes more expensive to reduce the ex-ante value of demand 

uncertainty. Therefore, the retailer would rather increase the volume committed on the forward 

market. Secondly, high energy prices increase the incentive for consumers to shift a larger 
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share of demand, parameter n impacting positively on energy load-shedding. Thirdly, the 

difference between Q5*VW and Q3*VW increases with n (Figure 5). As energy prices are higher at 

peak rather than off-peak hours, the retailer has an incentive to book a large share of its 

supplies at peak hours, because of the additional balancing costs. So the retailer could 

internalize some of the demand uncertainty at off-peak hours, when energy prices are lower, 

and so it could face the imbalance costs in real-time without a huge increase in supply costs.  

 

 

 

 

 

   

 

 

 

 

Figure 5. Impact of generating costs n on forward commitments and load-shifting 

 

5. Conclusion 

Deployment of dynamic pricing offers consumers the opportunity to respond to market 

conditions. Thus, they may adapt consumption in line with market and retail prices. They can 

shift part of their peak demand to cheaper off-peak periods. This behaviour increases 

uncertainty for the retailer as to market demand. Indeed, it must cope with two kinds of 

uncertainty: the forecast level of demand may be normal or extreme; and consumers may shed 

part of their load. 

Using a dynamic stochastic model, we show that the supply strategies a retailer adopts on the 

forward market affect final demand through load-shifting, in so far as such strategies change 

the market price. The retailer may contract larger volumes on the forward market if generating 

costs or penalties on the real-time market are high enough. Its prime objective in such cases 

is to reduce supply costs in order to avoid bigger shifts in retail demand. Moreover, as 

balancing costs are not passed on to consumers, the retailer must reduce them in the event of 

high energy prices (on the forward and retail markets, which induces lower peak demand) or 

higher penalties. The load-shifting effect also depends on the disutility consumers incur from 

shifting consumption from peak to off-peak hours. If they perfectly assess consumption during 

the two periods, or if, for instance, they are environmentally aware, consumers will shift as 

�I∗�� 

�K∗�� 

' 

����∗�� 

��∗��
, ����∗��  
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much demand as they can. To allow for the load-shifting effect, the retailer must therefore 

contract higher off-peak volumes on the forward market and lower peak energy volumes. 

Lastly, the severity of penalties has no impact on load-shedding, balancing costs being borne 

by the retailer. 

The retailer, facing uncertainty as to demand, protects itself on the forward market to minimize 

the impact of load-management and shifting on costs. This conclusion contributes to the 

debate on contractualizing baseline consumption so that consumers or demand-response 

providers shoulder part of the risk that load management poses for balancing. Knowledge of 

consumer preferences regarding electricity usages is a key factor in achieving an optimal 

balance between supply and demand in the face of flexible consumption. On the one hand, 

such knowledge makes it possible to target consumers with a high DR potential; on the other 

hand, it minimizes the impact on their utility of changes in their behaviour. Experiments and 

pilot schemes designed to study the impact of dynamic pricing and DR schemes are needed 

to optimize the positive outcomes of such policies. Network operators will undoubtedly play an 

increasing part in these new, flexible-demand configurations. Ultimately, they will be able to 

issue dynamic price signals based on network constraints. This possibility will give rise to 

further research on the relationship between network operators, retailers and consumers, or 

demand-response providers in order to share out the risk of balancing.    
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Appendix 1: Use of the MCP method to find the equilibrium at the consumer stage 

       At each period i and demand state w, the consumer maximizes its utility (4) subject to 

constraints (5-9). The decision variable is the consumed volume Q-,60 . To state the model as a 

MCP problem we need to reformulate the consumer optimization problem as follows: 

       To calculate the optimality conditions of each program, we first define the Lagrangian 

function of the corresponding optimization problem L-,6: 

��,� = − ?��� − ��,�� A . ��,�� + q�. B�"��� − ��,�� CD − λH. B�"�� − ∑ ��,��� C − λD. B�"I�� − �I,�� C −
λM. B�K,�� − �"K��C              (18) 

       Then, we calculate the gradient of the Lagrangian function with respect to the two 

decision variables Q-,60 : 

�i[,t�Zz,tu = − ?�I� − �I,�� A − 2. qI . �"I�� + 2. qI . �I,�� + λH + λD         (19) 

�i[,t�Z},tu = − ?�K� − �K,�� A + 2. q� . �"K�� − 2. q� . �K,�� + λH − λM         (20) 

Optimality conditions of the consumer are: 

�
��
��
��
��
��
�

�i[,t�Zz,tu ≥ 0 ; �I,�� ≥ 0 {'| �i[,t�Zz,tu . �I,�� = 0
�i[,t�Z},tu ≥ 0 ; �K,�� ≥ 0 {'| �i[,t�Z},tu . �K,�� = 0 B�"�� − ∑ ��,��� C.λH = 0B�"I�� − �I,�� C. λD = 0B�K,�� − �"K��C. λM = 0�K,�� ≥ �"K���I,�� ≤ �"I��∑ ��,��� ≤ �"��

λ� ≥ 0 �
��
��
��
��
��
�

        

This set of equations consists of the first-order conditions multiplied by their corresponding 

decision variables and the inequality constraints multiplied by their corresponding dual 

variables, all equal to zero; next the inequality constraints themselves; and finally, the explicit 

statement of the dual variables. 

       Grouping all these conditions together leads to an MCP problem. Equations (15-16) are 

therefore the solutions to this MCP problem.  

       Existence and uniqueness of the solution: 

       Given that the maximization objective function is concave and continuously differentiable, 

the KKT conditions presented above are necessary and sufficient for optimality since the 

feasible region is polyhedral (Bazara et al., 1993). 
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 Appendix 2: A mathematical program with equilibrium constraints to find the solutions 

to the overall game    

The retailer decides its day-ahead volumes by maximizing its expected profits in the three 

market stages, where consumer best-reply functions are integrated. The stochastic MPEC 

model in Section 3.3 is detailed as following: 

maxZ[\] ����_`T�a� = �� ?∑ ?B��,�� − $C. ��,�∗� − ��,��� . ��,�∗��A�,� A − ∑ ���� ∗ �����                      (21)                        

Subject to, 

���� ≤ �"���   (λl�              (22)  

���� ≥ 0                             

(23) 

And equilibrium constraints are (third stage MCP program):    

       

�I,�∗� = �"I�� − ∆rstuD.∆"v                                                    

(24) 

�K,�∗� = �"K�� + ∆rstuD.∆"v                                                         

(25) 

����,�∗�� = �.�D.∆"v . B�I�� − �K��C                          (26) 

��,�∗�� = ��,�∗� − ����                                      (27) 

As for optimizing the consumer sub-problem, we calculate the gradient of the Lagrangian 

function with respect to two decision variables, Q-VW. Optimality conditions of the retailer are: 

�
���
��

��;�:;�� ≥ 0 ; Q-VW ≥ 0 and ��;�:;�� . Q-VW = 0 BQ2 -0-Q-VWC.λl = 0Q2 -0 ≥ Q-VW
λl ≥ 0equations �24-27� �

���
��

  

To solve this non-linear MCP model, we now develop and rearrange the objective function (21) 

by integrating best-reply quantities for the second and third periods given by equilibrium 

constraints (24-27), we obtain the following new objective function: 

����_`T�a� = £ + �. �I�� + . �K�� + ¤. B��I���D + ��K���DC − ¥. B�I��. �K��C                       (28)    

Where G, V,U,L and T are aggregated parameters and described as follow: 
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£ = ��B�#. �& − �¦'�� − $�. �"��C + �� ?−'. �¦'� . �"��DA                                 

(29) 

¥ = −' ?�.�∆"vAD . B����¦'��C             (30) 

¤ = HD ?�.�∆"vAD − '                            

(31) 

� = &�����¦'�� − 1� + '. #. �"I�� + '. #. ���B�¦'� . �"I��C − �.�∆"v .∆�"���                               

(32) 

 = &�����¦'�� − 1� + '. #. �"I�� + '. #. ���B�¦'� . �"I��C + �.�∆"v .∆�"���                                       

(33) 

�¦'� : Penalty factor, % if real-time negative imbalance and 
HU if positive imbalance. 

The new objective function is quadratic, twice differentiable and concave since we can verify 

that the parameter U < 0. Indeed, the slope of the marginal cost function is usually very 

shallow, close to zero and certainly very low compared to ∆"β  which signals the energy 

consumers’ value differential between peak and off-peak hours. So the first term in U is lower 

than n. 

Grouping the objective function (28) and constraints (22-23) leads to a MCP problem with a 

concave objective function and linear constraints. Its optimal solutions are then obtained: 

e �I��∗ = f.�gD.h.ifjkl.hj                                                                                                                                                  �34�                             �K��∗ = f.igD.h.�fjkl.hj                                                                                                                                                  �35�                             
This equilibrium holds because the non-negativities of the optima are verified since 

 L-V. �©.�gD.ª.4©j-l.ªj � ≥ 0 and  T-V. �©.4gD.ª.�©j-l.ªj � ≥ 0. The second terms of the last conditions are positive 

since V is negative, whereas L and T are positive. However, if Q-VW* > Q2 -04, the optimal solution 

will be Q-VW* = Q2 -04. Therefore, there are interior solutions (34-35) while Q-VW* = Q2 -04 in a specific 

parameters configuration. The sensitivity analysis done in Section 4 gives a more practical 

understanding of the two equilibria offering an overall view of retailer strategy. 

We can now find the solutions to the sub-problems of the game. Optimal retailer’s balancing 

volumes in real-time and real consumer demand served to the retail market are then: 

�I,�∗� = �"I�� − �.�D.∆"v ? �kifgDhA                                       

(36) 
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�K,�∗� = �"K�� + �.�D.∆"v ? �kifgDhA                                       

(37) 

Real-time decisions are given by: 

����,�∗�� = �kifgDh                                                   

(38) 

�I,��� = �"��� − �.�D.∆"v ? �kifgDhA − f.�gD.h.ifjkl.hj                                       

(39)  

�K,��� = �"K�� + �.�D.∆"v ? �kifgDhA − f.igD.h.�fjkl.hj                                         

(40)   



 27

References 

Adler, I., Oren, S., Yao, J. 2004. Computing cournot equilibria in two settlement electricity 
markets with transmission constraints. Proceeding of The 37th HICSS, USA, 20051b. 

Alberini, A., Klymych, O., Scasny, M., 2019. Response to Extreme Energy Price Changes: 
Evidence from Ukraine. The Energy Journal, 40 (1), 189–212. 

Allcott, H., 2011. Rethinking real-time electricity pricing. Resource and Energy Economics, 33, 
820-842. 

Barbose, G., Goldman, C., Bharvirkar, R., Hopper, N., Ting, M., Neenan, B., 2005. Real time 
pricing as a default or optional service for C&I customers: a comparative analysis of eight case 
studies. Lawrence Berkeley National Laboratory-57660. 

Bazaraa, M.S., Sherali, H.D., Shetty, C.M., 1993. Nonlinear Programming: Theory and 
Algorithms. Second Edition, JohnWiley & Sons, NewYork. 

Bergaentzle, C., Clastres, C., Khalfallah, H., 2014. Demand-side management and European 
environmental and energy goals: an optimal complementary approach. Energy Policy, 67, 
April, 858–869. 

Borenstein, S., Jaske, M., Rosenfeld, A., 2002. Dynamic Pricing, Advanced Metering and 
Demand Response in Electricity Markets. Center for the Study of Energy Markets, University 
of California Energy Institute, Berkeley. 

Borenstein, S., 2002. The trouble with electricity markets: understanding California’s 
restructuring disaster. Journal of Economic Perspectives 16 (1), 191–211. 

Borenstein, S., 2005. The long-run efficiency of real-time electricity pricing. The Energy 
Journal, 26 (3), 93–116. 

Broberg, T., Persson, L., 2016. Is our everyday comfort for sale? Preferences for demand 
management on the electricity market. Energy Economics, 54, february, 24–32.  
 
Burke, P.J., Abayasekara, A. 2018. The price elasticity of electricity demand in the United 
States: A three-dimensional analysis. The energy Journal, 39(2). 

Chao, H.P., 2010. Price-Responsive Demand Management for a Smart Grid World. The 
Electricity Journal, 23(1), Jan/Feb, 7-20.  

Chao, H.P., 2011. Demand response in wholesale electricity markets: the choice of customer 
baseline. Journal of Regulatory Economics, 39(1), 68-88.  

Chen, X., Kleit, A.N., 2016. Money for Nothing? Why FERC Order 745 Should have Died. The 
Energy Journal, 37(2), 201-221. 
 
Clastres, C., 2011. Smart grids: Another step towards competition, energy security and climate 
change objectives. Energy Policy, 39(9), 5399-5408.  

Clastres, C., Khalfallah, H., 2015. An analytical approach to activating demand elasticity with 
a demand response mechanism. Energy economics, 52 Part A, December, 195-206. 

Crampes, C., Léautier, T.O., 2015. Demand response in adjustment markets for electricity. 
Journal of Regulatory Economics, 48 (2), 169-193.  



 28

Cuddington, J.T., Dagher, L. 2015. Estimating short and long-run demand elasticities: A primer 
with energy-sector applications. The Energy Journal, 36(1). 

Dahlke, S., Prorok, M., 2019. Consumer Savings, Price, and Emissions Impacts of Increasing 
Demand Response in the Midcontinent Electricity Market. The Energy Journal, 40(3), 243-262. 

Damien, P., Fuentes-Garcia, R., Mena, R.H., Zarnikau, J., 2019. Impacts of day-ahead versus 
real-time market prices on wholesale electricity demand in Texas. Energy Economics, 81, june, 
259–272. 
 
De Castro, L., Dutra, J., 2013. Paying for the smart grid. Energy Economics, 40, Supplement 
1, December, s74–s84.  

Di Cosmo, V., Lyons, S., Nolan, A., 2014. Estimating the Impact of Time-of-Use Pricing on 
Irish Electricity Demand. The Energy Journal, 35(2), 117-136. 
 
ENTSO-E, 2017. Survey on ancillary services procurement, balancing market design. Report 
of the European Network of Transmission System Operators for Electricity, June 2017. 
 
Eryilmaz, D., Smith, T.M., Homans, F.R., 2017. Price Responsiveness in Electricity Markets: 
Implications for Demand Response in the Midwest. The Energy Journal, 38(1), 23-49. 
 
Faruqui, A., Hledik, R., Newell, S., Pfeifenberger, H., 2007. The power of 5 Percent. The 
Electricity Journal, 20 (8), 68–77. 

Faruqui, A.,Wood, L., 2008. Quantifying the Benefits Of Dynamic Pricing In the Mass Market. 
Prepared for Edison Electric Institute. The Brattle Group, Cambridge. 

Faruqui, A., Sergici, S., 2010. Household response to dynamic pricing of electricity: a survey 
of 15 experiments. Journal of Regulatory Economics, 38 (2), 193–225. 

Faruqui, A., Harris, D., Hledik, R., 2010a. Unlocking the €53 billion savings from smart meters 
in the EU: how increasing the adoption of dynamic tariffs could make or break the EU’s smart 
grid investment. Energy Policy 38 (10), 6222–6231. 

Faruqui, A., Sergici, S., Sharif, A., 2010b. The impact of informational feedback on energy 
consumption: a survey of the experimental evidence. Energy 35, 1598–1608. 

Faruqui, A., Sergici, S., Akaba, L. 2014.  The impact of dynamic pricing on residential and 
small commercial and industrial usage : New experimental evidence. The Energy Journal, 
35(1). 

Fenrick, S.A., Getachew, L., Ivanov, C., Smith, J., 2014. Demand Impact of a Critical Peak 
Pricing Program: Opt-in and Opt-out Options, Green Attitudes and Other Customer 
Characteristics. The Energy Journal, 35(3), 1-24. 
 
Feuerriegel, S., Bodenbenner, P., Neumann, D., 2016. Value and granularity of ICT and smart 
meter data in demand response systems. Energy Economics, 54, february, 1–10. 
 
Frondel, M., Kussel, G., 2019. Switching on Electricity Demand Response: Evidence for 
German Households. The Energy Journal, 40(5), 1-16. 
 
Gabriel, S., Smeers, Y., 2005. Complementarity problems in restructured natural gas 
markets. CORE Discussion Papers , 2005/37. 

Greening, A.L., Greene, D.L., Difiglio, C., 2000. Energy efficiency and consumption—the 
rebound effect—a survey. Energy Policy 28 (6–7), 389–401. 



 29

Gwerder, Y. V., Figueiredo N.C., Pereira da Silva, P., 2019. Investing in Smart Grids: 
Assessing the Influence of Regulatory and Market Factors on Investment Level. The Energy 
Journal, 40(4), 25-45.  

Haney, A.B., Jamasb, T., Pollitt, M.G., 2009. Smart Metering and Electricity Demand: 
Technology, Economics and International Experience. Electricity Policy Research Group, 
Cambridge, Working Paper EPRG0903. 

Hesser, T., Succar, S., 2011. Renewables integration through direct load control and demand 
response. In: Sioshansi, F.P. (Ed.), Smart Grid: Integrating Renewable, Distributed & Efficient 
Energy. Academic Press Inc., 209–233. 

Hobbs, B., Metzler, C., Pang, J.S., 2001. Strategic gaming analysis for electric power systems: 
An MPEC approach. IEEE Transactions on Power Systems, 15(2). 

Hogan, W., 2009. Providing Incentives for Efficient demand Response. Prepared for Electric 
Power Supply Association, Comments on PJM Demand Response Proposals, FERC Docket 
No. EL09-68-000. 

Holland, S.P., Mansur, E.T., 2006. The short-run effects of time-varying prices in competitive 
electricity markets. The Energy Journal, 27 (4), 127–156. 

Horowitz, S., Lave, L., 2014. Equity in residential electricity pricing. The Energy Journal, 35 
(2), 1–23. 

IEA, 2017. Energy Technology Perspectives, Catalysing Energy Technology Transformations. 
OECD/IEA, Paris, 2017.  

Kamat, R., Oren, S., 2004. Two Settlements Systems for Electricity Markets under Network 
Uncertainty and Market Power. Journal of Regulatory Economics, 25(1), 5-37. 

Khalfallah, H., 2011. A game theoretic model for generation capacity adequacy: Comparison 
between investment incentive mechanisms in electricity markets. The Energy Journal, 32 (4), 
117-157.  

Khalfallah, H. Rious, V., 2013. A game theoretical analysis of the design options of the real-
time electricity market. Energy Studies Review, 20(1). 

Léautier, T.O., 2014. Is mandating Smart Meters Smart? The Energy Journal, 35(4), 135-157.  

Matsukawa, I., Asano, H., Kakimoto, H., 2000. Household Response to Incentive Payments 
for Load Shifting: A Japanese Time-of-Day Electricity Pricing Experiment. The Energy Journal, 
21 (1), 73-86. 

Muratori, M., Schuelke-Leech, B.-A., Rizzoni, G., 2014. Role of residential demand response 
in modern electricity markets. Renewable and Sustainable Energy Review, 33(may), 546–553. 

Nakada, T., Shin, K., Managi, S., 2016. The effect of demand response on purchase intention 
of distributed generation: Evidence from Japan. Energy Policy, 94, july, 307–316. 

Navigant Consulting Inc., 2011. Evaluation for the Residential Real Time Pricing Program, 
2007–2010, Prepared for Commonwealth Edison Company, Navigant Consulting Inc., June 
20. 

Richter, L-L., Pollitt, M., 2018. Which smart electricity service contracts will consumers accept? 
The demand for compensation in a platform market. Energy Economics, 72, may, 436–450. 
 



 30

Rious, V., Roques, F., Perez, Y., 2012. Which electricity market design to encourage the 
development of demand response? Robert Schuman Centre for Advanced Studies, EUI 
RSCAS Working Paper, 2012/12. 

Rodrigues, R., Linares, P., 2015. Electricity load level detail in computational general 
equilibrium– part II– welfare impacts of a demand response program. Energy Economics, 47, 
juanary, 52–67. 
 
Ritz, R-A., Teirila, J. 2019. Strategic behaviour in a capacity market ? The new Irish electricity 
market design. The energy Journal, 40(SI1). 
 
RTE, 2020. Règles relatives à la Programmation, au Mécanisme d’Ajustement et au 
Recouvrement des charges d’ajustement. Rapport du Réseau de Transport d’Electricité 
Français, juin 2021. 
 
Saguan, M., Meeus, L., 2014. Impact of the regulatory framework for transmission investments 
on the cost of renewable energy in th EU. Energy Economics, 43:185-194. 
 
Sauma, E., Oren, S., 2006. Proactive planning and valuation of transmission investments in 
restructured electricity markets. Journal of Regulatory Economics, 30, 261-290. 

Simshauser, P., Downer, D., 2016. On the Inequity of Flat-rate Electricity Tariffs. The Energy 
Journal, 37 (3), 199-229. 
 
Spees, K., Lave, L.B., 2007. Demand response and electricity market efficiency. The Electricity 
Journal, 20 (3), 69–85. 
 
Strbac, G., Jenkins, N., Green, T., 2006. Future Network Technologies: Report to DTI. April 
2006.  
 
Strbac, G., 2008. Demand side management: benefits and challenges. Energy Policy 36 (12), 
4419–4426. 

Torriti, J., 2012. Price-based demand side management: Assessing the impacts of time-of-use 
tariffs on residential electricity demand and peak shifting in Northern Italy. Energy, 44(1), 576-
583.  

Woo, C.K., Zarnikau, J., Shiu, A., Li, R., 2017. Winter Residential Optional Dynamic Pricing: 
British Columbia, Canada. The Energy Journal, 38 (5), 115-127. 

Zugno, M., Morales, J. M., Pinson, P., Madsen, H., 2013. A bilevel model for electricity retailers' 
participation in a demand response market environment. Energy Economics, 36, march, 182–
197. 

 

 




