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Abstract

Parallel Graphics Processing Unit (GPU) implementations of GP have appeared in the lit-
erature using three main methodologies: (i) compilation, which generates the individuals in
GPU code and requires compilation; (ii) pseudo-assembly, which generates the individuals
in an intermediary assembly code and also requires compilation; and (iii) interpretation,
which interprets the codes. This paper proposes a new methodology that uses the concepts
of quantum computing and directly handles the GPU machine code instructions. Our
methodology utilizes a probabilistic representation of an individual to improve the global
search capability. In addition, the evolution in machine code eliminates both the overhead
of compiling the code and the cost of parsing the program during evaluation. We obtained
up to 2.74 trillion GP operations per second for the 20-bit Boolean Multiplexer benchmark.
We also compared our approach with the other three GPU-based acceleration methodolo-
gies implemented for quantum-inspired linear GP. Significant gains in performance were
obtained.
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1. Introduction

Genetic programming (GP) is a metaheuristic method to automatically generate computer
programs or key subcomponents (Banzhaf et al., 1997; Koza, 1992; Poli et al., 2008). Its
functionality is based on the Darwinian principle of natural selection, in which a popula-
tion of computer programs, or individuals, is maintained and modified based on genetic
variation. The individuals are then evaluated according to a fitness function to reach a
better solution. GP has been successfully applied to a variety of problems, such as auto-
matic design, pattern recognition, robotic control, data mining, and image analysis (Koza,
1992, 1994; Tackett, 1993; Busch et al., 2002; Harding and Banzhaf, 2008; Langdon, 2010a).
However, the evaluation process is time consuming. The computational power required by
GP is enormous, and high-performance techniques have been used to reduce the computa-
tion time (Andre and Koza, 1996; Salhi et al., 1998). GP parallelism can be exploited on
two levels: multiple individuals can be evaluated simultaneously, or multiple fitness cases
for one individual can be evaluated in parallel. These approaches have been implemented
in multiprocessor machines and computer clusters (Page et al., 1999; Turton et al., 1996;
Bennett III et al., 1999).

The recent emergence of general-purpose computing on Graphics Processing Units (GPUs)
has provided the opportunity to significantly accelerate the execution of many costly algo-
rithms, such as GP algorithms. GPUs have become popular as accelerators due to their
high computational power, low cost, impressive floating-point capabilities, and high mem-
ory bandwidth. These characteristics make them attractive platforms to accelerate GP
computations, as GP has a fine-grained parallelism that is suitable for GPU computation.

The power of the GPU to accelerate GP has been exploited in previous studies. We di-
vide these efforts into three main methodologies: (i) compilation (Chitty, 2007; Harding and
Banzhaf, 2007, 2009; Langdon and Harman, 2010); (ii) pseudo-assembly (Cupertino et al.,
2011; Pospichal et al., 2011; Lewis and Magoulas, 2011); and (iii) interpretation (Lang-
don and Banzhaf, 2008a; Langdon and Harrison, 2008; Robilliard et al., 2009; Wilson and
Banzhaf, 2008). In the compilation methodology, each evolved program, or GP individual,
is compiled for the GPU machine code and then evaluated in parallel on the GPU. In the
pseudo-assembly methodology, the individuals are generated in the pseudo-assembly code
of the GPU, and a just-in-time (JIT) compilation is performed for each individual to gen-
erate the GPU machine code, which is evaluated in parallel on the GPU. In the interpreter
methodology, an interpreter that can run programs immediately is used. The individuals
are evaluated in parallel on the GPU.

These methodologies have been used with varying levels of success, and they have differ-
ent advantages and disadvantages. In the compilation methodology, the GPU’s fine-grain
parallelism can be exploited by evaluating multiple individuals and multiple fitness cases
simultaneously. However, the time spent compiling each GP individual influences the per-
formance results considerably, making the GPU compiler decidedly slow. The compilation
process in a GPU involves a series of steps. When GP needs to evaluate millions of pro-
grams, spending a few seconds to compile a single CUDA program becomes a large obstacle
to producing a solution within a reasonable period of time. The pseudo-assembly methodol-
ogy can also exploit multiple individuals and multiple fitness case evaluations in parallel. A
pseudo-assembly code can be compiled several hundred times faster than an original GPU
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code, allowing large data sets to be considered. Nevertheless, the programs still need to
be compiled, and the compilation time must be considered as part of the overall GP pro-
cess. The interpreter methodology differs from the compilation methodology in that the
interpreter is compiled once and reused millions of times. This approach eliminates the
compilation overhead but includes the cost of parsing the evolved program. The interpreter
methodology typically works well for shorter programs and smaller training cases.

In this work, we propose a new methodology for using GPUs in the GP evolution process.
We used a quantum-inspired evolutionary algorithm (QEA) that handles the instructions
of the GPU machine code directly. QEAs represent one of the most recent advances in
evolutionary computation (Zhang, 2011). QEAs are based on quantum mechanics, particu-
larly the concepts of the quantum bit and the superposition of states. QEAs can represent
diverse individuals in a probabilistic manner. By this mechanism, QEAs offer an evolu-
tionary mechanism that is different and, in some situations, more effective than traditional
evolutionary algorithms. The quantum probabilistic representation reduces the number
of chromosomes required to guarantee adequate search diversity. In addition, the use of
quantum interference provides an effective approach to achieve fast convergence to the best
solution due to the inclusion of an individual’s past history. It offers a guide for the popu-
lation of individuals that helps to exploit the current solution’s neighborhood.

Our methodology is called GPU machine code genetic programming, GMGP, and is
based on linear genetic programming (LGP) (Nordin, 1998; Brameier and Banzhaf, 2007;
Oltean et al., 2009). In LGP, each program is a linear sequence of instructions. LGP is the
most appropriate for machine code programs, as computer architectures require programs
to be provided as linear sequences. Computers do not naturally run tree-shaped programs.
Tree-based GP must employ compilers or interpreters (Poli et al., 2008).

GMGP performs the evolution by modifying the GPU machine code, thus eliminating
the time spent compiling the individuals while also avoiding the interpretation overhead.
The individuals are generated on the CPU, and the individuals are evaluated in parallel on
the GPU. The evaluation process is performed with a high level of parallelism: individuals
are processed in parallel, and the fitness cases are simultaneously evaluated in parallel.
Figure 1 illustrates the GPU-accelerated GP methodologies.

We compared our quantum-inspired methodology with the previous attempts to ac-
celerate GP using GPUs. Our comparison considered the compilation, pseudo-assembly,
and interpretation methodologies. We implemented these three methodologies to conform
with linear GP and quantum-inspired algorithms, and to provide fair comparisons. GMGP
outperformed all of these methodologies. The gains over compilation and pseudo-assembly
originated from the elimination of the compilation time. The gains over interpretation orig-
inated from two sources. The first was the lack of the on-the-fly interpretation overhead.
The second was the high number of comparison and jump instructions required by the
interpreter, which produces serialization in the GPU execution. The main obstacle faced
by GMGP was that the GPU machine code is proprietary, and the GPU’s manufacturers
do not provide any documentation for it. To solve this problem, we had to use reverse
engineering to disassemble a series of GPU binary codes and determine the opcodes of the
relevant instructions.
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Figure 1: The different GP methodologies for GPU, considering the Nvidia technology. In
the compilation methodology, a CUDA kernel is generated from each individual.
The kernels are compiled in two main steps using the nvcc and ptxas compilers. In
the pseudo-assembly methodology, pseudo-assembly codes (PTX) are generated
from each individual and compiled using the ptxas compiler. In the interpreter
methodology, each individual’s information is used by the interpreter to execute
the program. The proposed machine code methodology generates a machine code
program directly from each individual.

2. Related Work

Several approaches to accelerate GP on GPUs have been proposed in the literature. Harding
and Banzhaf (2007) and Chitty (2007) were the first to present GP implementations on
a GPU. Both works proposed compiler methodologies using tree-based GP. They obtained
modest performance gains when small fitness cases were tested due to the overhead of
transferring data to the GPU. Considerable performance gains were obtained for larger
problems and when the compiled GP program was run many times.

Langdon and Banzhaf (2008a) were the first to propose an interpreter methodology.
Their methodology used a tree-based GP and evaluated the entire population at once.
Parallelism was exploited at the individual level, whereas the fitness cases were processed
sequentially. Their technique was called the SIMD interpreter for GP, and they used con-
ditional instructions to select opcodes, which can increase the overhead with the size of
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the function set. The experimental results indicated moderate speedups but demonstrated
performance gains even for very small programs. The same GPU SIMD interpreter was
used by Langdon and Harrison (2008), who successfully applied GP to predict the breast
cancer survival rate beyond ten years.

Robilliard et al. (2009) also studied the interpreter methodology, with a focus on avoiding
the overhead of conditional instructions when interpreting the entire population at once.
They proposed an interpreter that evaluates each GP individual on a different thread block.
Each thread block was mapped to a different GPU multiprocessor during execution, avoiding
branches. Inside the thread block, all threads executed the same instruction over different
data subsets. Their results indicated performance gains compared to the methodology
proposed by Langdon and Banzhaf (2008a).

Harding and Banzhaf (2009) studied the compilation methodology. A cluster of GPUs
was used to alleviate the program compilation overhead. The focus was on processing
very large data sets by using the cluster nodes to compile the GPU code and execute the
programs. Different combinations of compilation and execution nodes could be used. The
project was developed to run on a multi-platform Windows/Linux cluster and used low-end
GPUs. Speedups were obtained for very large data sets. However, the use of high-end
GPUs did not necessarily lead to better results, as the primary bottleneck remained in the
compilation phase.

Langdon and Harman (2010) used the compilation methodology to automatically create
an Nvidia CUDA kernel. Numerous simplifications were employed, such as not evolving
the shared memory and threading information. The best evolved parallel individual was
capable of correct calculations, proving that it was possible to elaborate a methodology
to evolve parallel code. However, it was not possible to automatically verify the speedup
obtained compared to the sequential CPU version, and the compilation still remained the
bottleneck.

Wilson and Banzhaf (2008) implemented an LGP for GPU using the interpreter method-
ology on a video game console. In a previous work (Cupertino et al., 2011), we proposed
a pseudo-assembly methodology, a modified LGP for GPU, called quantum-inspired lin-
ear genetic programming on a general-purpose graphics processing unit (QILGP3U). The
individual was created in the Nvidia pseudo-assembly code, PTX, and compiled for evalu-
ation through JIT. Dynamic or JIT compilation is performed in runtime and transformed
the assembly code to machine code during the execution of the program. Several compi-
lation phases were eliminated, and significant speedups were achieved for large data sets.
Pospichal et al. (2011) also proposed a pseudo-assembly methodology with the evolution of
PTX code using a grammar-based GP that ran entirely on the GPU.

The compilation time issue was addressed in a different manner by Lewis and Magoulas
(2011). All population individuals were pre-processed to identify their similarities, and all
of these similarities were grouped together. In this manner, repetitive compilation was
eliminated, thus reducing the compilation time by a factor of up to 4.8.

To our knowledge, no prior work has evolved GPU programs by directly handling the
GPU machine code itself.
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3. Quantum Computing and Quantum-Inspired Algorithms

In a classical computer, a bit is the smallest information unit and can take a value of 0 or
1. In a quantum computer, the basic information unit is the quantum bit, called the qubit.
A qubit can take the states |0〉 or |1〉 or a superposition of the two. This superposition of
the two states is a linear combination of the states |0〉 and |1〉 and can be represented as
follows:

|ψ〉 = α |0〉+ β |1〉 , (1)

where |ψ〉 is the qubit state , α and β are complex numbers, and |α|2 and |β|2 are the
probabilities that the qubit collapses to state 0 or 1, respectively, based on its observation
(i.e., measurement). The unitary normalization guarantees the following:

|α|2 + |β|2 = 1 | {α,β} ∈ C. (2)

The superposition of states provides quantum computers with an incomparable degree
of parallelism. This parallelism, when properly exploited, allows computers to perform tasks
that are unfeasible in classical computers due to the prohibitive computational time.

Although quantum computing is promising in terms of processing capacity, there is still
no technology for the actual implementation of a quantum computer, and there are only a
few complex quantum algorithms.

Moore and Narayanan (1995) proposed a new approach to exploit the quantum comput-
ing concepts. Instead of developing new algorithms for quantum computers or attempting
to make their use feasible, they proposed the idea of quantum-inspired computing. This
new approach aims to create classical algorithms (i.e., running on classical computers) that
utilize quantum mechanics paradigms to improve their problem-solving performance. In
particular, quantum-inspired evolutionary algorithms (QEAs) have recently become a sub-
ject of special interest in evolutionary computation. The linear superposition of states
represented in a qubit allows QEA to represent diverse individuals probabilistically. QEAs
belong to the class of estimation of distribution algorithms (EDAs) (Platel et al., 2009). The
probabilistic mechanism provides QEAs with an evolutionary mechanism that has several
advantages, such as global search capability and faster convergence and smaller population
size than those of traditional evolutionary algorithms. These algorithms have already been
successfully used to solve various problems, such as the knapsack problem (Han and Kim,
2002), ordering combinatorial optimization problems (Silveira et al., 2012), engineering op-
timization problems (Alfares and Esat, 2006), image segmentation (Talbi et al., 2007), and
image registration (Draa et al., 2004). See Zhang (2011) for more examples of QEAs and
their applications.

3.1 Multilevel Quantum Systems

Most quantum computing approaches use qubits encoded in two-level quantum systems.
However, the candidate systems for encoding quantum information often have a more com-
plex physical structure, with several directly accessible degrees of freedom (e.g., atoms,
ions, photons). Quantum systems of d levels were recently studied, where the qudit is the
quantum information unit, which may take any of d values or a superposition of d states
(Lanyon et al., 2008).
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4. Quantum-Inspired Linear Genetic Programming

The proposed quantum-inspired GP methodology for GPUs is based on the quantum-
inspired linear genetic programming (QILGP) algorithm proposed by Dias and Pacheco
(2013). QILGP evolves machine code programs for the Intel x86 platform. It uses floating
point instructions and works with data from the main memory (m) and/or eight FPU regis-
ters (ST (i) | i ∈ [0 .. 7]). The function set consists of addition, subtraction, multiplication,
division, data transfer, trigonometric, and other arithmetic instructions. QILGP generates
variable-sized programs by adding the NOP instruction to the instruction set. The code
generation ignores any gene in which a NOP is present. Table 1 provides an example of a
function set.

Each individual is represented by a linear sequence of machine code instructions. Each
instruction can use one or zero arguments. The evaluation of a program requires the input
data to be read from the main memory, which consists of the input variables of the problem
and some optional constants supplied by the user. The input data are represented by a
vector, such as

I = (V [0], V [1], 1, 2, 3) , (3)

where V [0] and V [1] have the two input values of the problem (i.e., a fitness case) and 1, 2,
and 3 are the three constant values.

The instructions are represented in QILGP by two tokens: the function token (FT),
which represents the function, and the terminal token (TT), which represents the argument
of the function. Each function has a single terminal. When a function has no terminal,
its corresponding token value is ignored. Each token is an integer value that represents an
index to the function set or terminal set.

4.1 Representation

QILGP is based on the following entities: the quantum individual, which represents the su-
perposition of all possible programs for the defined search space, and the classical individual
(or individual), which represents the machine code program coded in the token values. A
classical individual represents an individual of a traditional linear GP. In the observation
phase of QILGP, each quantum individual is observed to generate one classical individual.

4.2 Observation

The chromosome of a quantum individual is represented by a list of structures called quan-
tum genes. The observation of a quantum individual comprises the observations of all of
its chromosome genes. The observation process consists of randomly generating a value r
{r ∈ R | 0 ≤ r ≤ 1} and searching for the interval in which r belongs in all possible states
that the individual can represent. For example, the process of observing a quantum gene

679



Silva, Dias, Bentes, Pacheco, and Cupertino

Instruction Operation Arg.

NOP No operation -
FADD m ST (0 )← ST (0 ) +m m
FADD ST(0), ST(i) ST (0 )← ST (0 ) + ST (i) i
FADD ST(i), ST(0) ST (i)← ST (i) + ST (0 ) i
FSUB m ST (0 )← ST (0 )−m m
FSUB ST(0), ST(i) ST (0 )← ST (0 )− ST (i) i
FSUB ST(i), ST(0) ST (i)← ST (i)− ST (0 ) i
FMUL m ST (0 )← ST (0 )×m m
FMUL ST(0), ST(i) ST (0 )← ST (0 )× ST (i) i
FMUL ST(i), ST(0) ST (i)← ST (i)× ST (0 ) i
FXCH ST(i) ST (0 ) � ST (i) (swap) i
FDIV m ST (0 )← ST (0 )÷m m
FDIV ST(0), ST(i) ST (0 )← ST (0 )÷ ST (i) i
FDIV ST(i), ST(0) ST (i)← ST (i)÷ ST (0 ) i
FABS ST (0 )← |ST (0 )| -

FSQRT ST (0 )←
√

ST (0 ) -
FSIN ST (0 )← sin ST (0 ) -
FCOS ST (0 )← cos ST (0 ) -

Table 1: Functional description of the instructions. The first column presents the Intel x86
instructions. The second column presents the operations performed. The third
column presents the argument of the instructions (m indexes memory positions,
and i selects a register).

represented by 10 different states follows the function

T (r) =



0 if 0 ≤ r < p′0
1 if p′0 ≤ r < p′1
2 if p′1 ≤ r < p′2
...

...

9 if p′8 ≤ r ≤ p′9,

(4)

where {r ∈ R | 0 ≤ r ≤ 1} is the randomly generated value with a uniform distribution and
T (r) returns the observed value for the token.

The observation process plays an important role in the quantum-inspired evolutionary
algorithm. The quantum-inspired representation of a gene implies that the creation of
each instruction follows a probabilistic distribution, where it is possible to represent the
instructions that are more likely to be observed. Furthermore, the evolutionary algorithm
can be fed with the results of the individual evaluations, and the superposition of states
allows the probability values to be improved iteratively. The best classical individuals
contribute to improving the probability values of the quantum individuals. This mechanism
enables the algorithm to achieve better solutions with fewer evaluations.
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Figure 2: Illustration of a qudit implementation that represents Equation (6). Each state
has an associated probability value and a token value. The observation process
generates a random number r and selects one token based on the probability
interval in which r fits.

QILGP is inspired by multilevel quantum systems (Lanyon et al., 2008), and uses the
qudit as the basic information unit. This information can be described by a state vector of
d levels, where d is the number of states in which the qudit can be measured. Accordingly,
d represents the cardinality of the token. The state of a qudit is a linear superposition of d
states and may be represented as follows:

|ψ〉 =
d−1∑
i=0

αi |i〉 , (5)

where |αi|2 is the probability that the qudit collapses to state i when observed.

For example, suppose that each instruction in Table 1 has a unique token value in
T = {0,1,2,3,...}. Equation (6) provides the state of a function qudit (FQ) whose state is
given as follows:

|ψ〉 =
1√
5
|0〉+

1√
4
|1〉+

1√
10
|2〉+

1√
8
|3〉+ . . . (6)

The probability of measuring the NOP instruction (state |0〉) is (1/
√
5)2 = 0.200, for FADD m

(state |1〉) is (1/
√
4)2 = 0.250, for FADD ST(0),ST(i) (state |2〉) is (1/

√
10)2 = 0.100, and so

on. The qudit state of this example is implemented in a data structure as shown in Figure
2.

Figure 3 illustrates the creation of a classical gene by the observation of a quantum gene
from an example based on Table 1 and the input vector I = (V [0], V [1], 1, 2, 3) (Equation
3). This process can be explained by three basic steps, indicated by the numbered circles
in Figure 3:

1. The FQ is observed, and the resulting value (e.g., 7) is assigned to the FT of this
gene.

2. The FT value determines the terminal qudit (TQ) to be observed, as each instruction
requires a different type of terminal: register or memory.

3. The TQ defined by the FT value is observed, and the resulting value (e.g., 1) is
assigned to the TT of this gene.

681



Silva, Dias, Bentes, Pacheco, and Cupertino

value

observed

Terminal token

value

observed

FT TT

7 1

Gene

Observed instruction:
FMUL V[1]

1

p
0

p
1

p
2

p
3

4

p
5

6

p
7

p
8

p
9

p

p

0

1

2

3

4

F
u

n
ct

io
n

 q
u

d
it

 (
F

Q
)

2

Function token

Select
TQ

TQ

3

ObserveObserve
FQ

Quantum gene

T
er

m
in

al
 q

u
d

it
s 

(T
Q

)

register

memory

p
4

pp
0

p
3

p
21

pp
0

p
3

p
21

5

7

8

9

6

0

1

2

3

4

Figure 3: The creation of a classical gene from the observation of a quantum gene. The FQ
is observed, and the token value selected is 7. The memory qudit is selected in the
TQ. The TQ is observed, and the TT value selected is 1. The observed instruction
in this example is FMUL V[1], as ‘7’ is the FT value for this instruction (Table
1), and ‘1’ is the TT value that represents V [1] in the input vector I defined by
Equation (3).

4.3 Evaluation of a Classical Individual

This process begins with the generation of a machine code program from the classical
individual under evaluation, where its chromosome is sequentially traversed, gene by gene
and token by token (both FTs and TTs), to serially generate the program body machine
code related to the classical individual. Then, the program is executed for all fitness cases
of the problem (i.e., samples of the training data set).

For each fitness case, the value assigned as the result of the fitness case is zero (V [0]← 0)
when the instructions FDIV require division by zero or the instructions FSQRT require the
calculation of the square root of a negative number.

4.4 Quantum Operator

The quantum operator of QILGP manipulates the probability pi of a qudit, satisfying the
normalization condition

∑d−1
i=0 |αi|2 = 1, where d is the qudit cardinality and |αi|2 = pi.

Operator P works in two main steps. First, it increases the given probability of a qudit as
follows:

pi ← pi + s× (1− pi), (7)

where s is a parameter called step size, which can assume any real value between 0 and
1. The second step is to adjust the values of all of the probabilities of that qudit to
satisfy the normalization condition. Thus, the operator modifies the state of a qudit by
increasing pi of a value that is directly proportional to s. The asymptotic behavior of pi in
Equation (7) indicates that the probability never reaches the unit value. This avoidance of
unit probabilities is an important feature of this operator, as it avoids letting a probability
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Figure 4: The four basic steps that characterize a generation of QILGP. With a population
size of 4, the quantum individuals are observed and generate classical individuals.
The classical individuals are sorted by their evaluations. The operator P is applied
to each quantum individual, using the classical individual as the reference. The
best classical individual evaluated thus far is kept in CB.

cause the qudit to collapse, which could cause a premature convergence of the evolutionary
search process.

QILGP has a hybrid population composed of a quantum population and classical pop-
ulation, both of which comprise M individuals. QILGP also has M auxiliary classical
individuals Cobs

i , which result from observations of the quantum individuals Qi, where
1 ≤ i ≤M .

4.5 Evolutionary Algorithm

Figure 4 illustrates the four basic steps that characterize a generation of QILGP, with a
population size M = 4. The algorithm works as follows:

1. Each of M quantum individuals is observed once, resulting in M classical individuals
Cobs
i .

2. The individuals of the classical population and the observed individuals (auxiliary)
are jointly sorted by their evaluations, ordered from best to worst, from C0 to CM−1.

3. The operator P is applied to each quantum individual Qi, taking their corresponding
individual Ci in the classical population as a reference. Thus, at every new generation,
the application of this operator increases the probability that the observations of the
quantum individuals generate classical individuals more similar to the best individuals
found thus far.

4. If any classical individual evaluated in the current generation is better than the best
classical individual evaluated previously, a copy is stored in CB, which keeps the best
classical individual found by the algorithm thus far.
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5. GPU Architecture

GPUs are highly parallel, many-core processors typically used as accelerators for a host
system. They provide tremendous computational power and have proven to be successful
for general-purpose parallel computing in a variety of application areas. Although different
manufacturers have developed GPUs in recent years, we have opted for GPUs from Nvidia
due to their flexibility and availability.

An Nvidia GPU consists of a set of streaming multiprocessors (SMs), each consisting
of a set of GPU cores. The memory in the GPU is organized as follows: a large global
memory with high latency; a very fast, low-latency on-chip shared memory for each SM;
and a private local memory for each thread. Data communication between the GPU and
CPU is conducted via the PCIe bus. The CPU and GPU have separate memory spaces,
referred to as the host memory and device memory, and the GPU-CPU transfer time is
limited by the speed of the PCIe bus.

5.1 Programming Model

The Nvidia programming model is CUDA (Computer Unified Device Architecture) (Nvidia,
2013). CUDA is a C-based development environment that allows the programmer to de-
fine special C functions, called kernels, which execute in parallel on the GPU by different
threads. The GPU supports a large number of fine-grain threads. The threads are orga-
nized into a hierarchy of thread grouping. The threads are divided into a two- or three-
dimensional grid of thread blocks. Each thread block is a two- or three-dimensional thread
array. Thread blocks are executed on the GPU by assigning a number of blocks to be exe-
cuted on a SM. Each thread in a thread block has a unique identifier, given by the built-in
variables threadIdx.x, threadIdx.y, and threadIdx.z. Each thread block has an iden-
tifier that distinguishes its position in the grid, given by the built-in variables blockIdx.x,
blockIdx.y, and blockIdx.z. The dimensions of the thread and thread block are specified
at the time when the kernel is launched through the identifiers blockDim and gridDim,
respectively.

All threads in a block are assigned to execute in the same SM. Hence, threads within
one block can cooperate among themselves using synchronization primitives and shared
memory. However, the number of threads within one block can exceed the number of cores
in an SM, which requires a scheduling mechanism. The scheduling mechanism divides the
block into warps. Each warp contains a fixed number of threads grouped by consecutive
thread identifiers. The warp is executed on an SM in an implicit SIMD fashion, called SIMT
(single instruction, multiple threads). Each core of an SM executes the same instruction
simultaneously but on different data elements. However, the threads may logically follow a
different control flow path and are free to branch. If some of the parallel threads choose a
different execution path, called code divergence, their execution is serialized. In this case,
the warp must be issued multiple times, one for each group of divergent threads. Thus, full
efficiency is accomplished only when all of the threads in the warp follow the same execution
path; otherwise, parallel efficiency can degrade significantly.
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5.2 Compilation

The compilation of a CUDA program is performed through the following stages. First, the
CUDA front end, cudafe, divides the program into the C/C++ host code and GPU device
code. The host code is compiled with a regular C compiler, such as gcc. The device code is
compiled using the CUDA compiler, nvcc, generating an intermediate code in an assembly
language called PTX (Parallel Thread Execution). PTX is a human-readable, assembly-
like low-level programming language for Nvidia GPUs that is compiled and hides many of
the machine details. PTX has been fully documented by Nvidia. The PTX code is then
translated to the GPU binary code, CUBIN, using the ptxas compiler.

Unlike the PTX language, whose documentation has been made public, the CUBIN
format is proprietary, and no information has been made available by Nvidia. All of the
work performed with CUBIN requires reverse engineering. In addition, the manufacturer
provides only the most basic elements of the underlying hardware architecture, and there
are apparently no plans to make more information public in the future.

6. GPU Machine Code Genetic Programming

Our GP methodology for GPUs is called GPU Machine Code Genetic Programming GMGP.
It is a quantum-inspired LGP, based on QILGP, that evaluates the individuals on the GPU.
The concept is to exploit the probabilistic representation of the individuals to achieve fast
convergence and to parallelize the evaluation using the GPU machine code directly.

Before the evolution begins, the entire data set is transferred to the GPU global memory.
In the first step, all of the classical individuals of one generation are created in the CPU in
the same manner as in QILGP. Each classical individual is composed of tokens representing
the instructions and arguments. For each individual, GMGP creates a GPU machine code
kernel. These programs are then loaded to the GPU program memory and executed in
parallel. The evaluation process in GMGP is performed with a high level of parallelism.
We exploit the parallelism as follows: individuals are processed in parallel in different
thread blocks, and data parallelism is exploited within each thread block, where each thread
evaluates a different fitness case.

When the number of fitness cases is smaller than the number of threads in the block,
we map one individual per block. For fitness cases greater than the number of threads per
block, a two-dimensional grid is used, and each individual is mapped on multiple blocks. The
individual is identified by the blockIdx.y, and the fitness case is identified by (blockIdx.x

* blockDim.x + threadIdx.x). To maintain all of the individual codes in a single GPU
kernel, we use a set of IF statements to distinguish each individual. However, these IF
statements do not introduce divergence in the kernel because all of the threads in each
block follow the same execution path.

This methodology allows for the rapid evaluation of individuals. The GPU binary code
is directly modified, thus avoiding the need to compile individuals. Regarding the machine
code, our implementation is based on the Nvidia CUBIN code for the current Nvidia GPU
architectures. Future Nvidia GPU machine code could be evolved using our methodology
as long as the opcodes are known.
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6.1 Function Set

GMGP is capable of evolving linear sequences of single precision floating point operations
or linear sequences of Boolean operations. The function set of floating point operations
is composed of addition, subtraction, multiplication, division, data transfer, trigonometric,
and arithmetic instructions. The function set of Boolean operations is composed of AND,
OR, NAND, NOR, and NOT. Table 2 provides the instruction set of the floating point
operations, and Table 3 provides the instruction set of the Boolean operations. Each of
these instructions has an opcode and one or two arguments. The argument can be a register
or memory position. When it is a register, it varies from R0 to R7. When it is a memory
position, it can be used to load input data or a constant value. The maximum number of
inputs in GMGP is 256, and the maximum number of predefined constant values is 128. As
an example, in Table 4, we present the CUBIN add instruction with all of the variations
of its memory positions (X) and the eight auxiliary FPU registers (Ri | i ∈ [0 .. 7]). Each
CUBIN instruction variation with its arguments (constants or registers) has a different
hexadecimal.

GMGP addresses only floating point and Boolean operations. Loops and jumps are not
handled, as they are not common in the benchmark problems that we consider. However,
GMGP could be extended to consider such problems, including mechanisms to restrict
jumping to invalid positions and to avoid infinite loops.

Each evolved CUBIN program consists of three segments: header, body, and footer. The
header and footer are the same for all individuals throughout the evolutionary process.
They are optimized in the same manner as by the Nvidia compiler. These segments contain
the following:

• Header – Loads the evaluation patterns from global memory to registers on the GPU
and initializes eight registers with zero.

• Body – The evolved CUBIN code itself.

• Footer – Transfers R0 contents to the global memory, which is the default output of
evolved programs, and then executes the exit instruction to terminate the program
and return to the evolutionary algorithm main flow.

For each individual, the body of the program is assembled by stacking the hexadecimal
code in the same order as the GP tokens have been read. There is no need for comparisons
and branches within an individual code because the instructions are executed sequentially.
Avoiding comparisons and branches is an important feature of GMGP. As explained before,
GPUs are particularly sensitive to conditional branches.

We aggregate all program bodies of the same population into a single GPU kernel. The
kernel has only one header and one footer, reducing the size of the population and thus
decreasing the time to transfer the program to the GPU memory through the PCIe bus.

6.2 Machine Code Acquisition

We developed a semi-automatic procedure to acquire the GPU machine code instructions.
Nvidia does not provide any documentation for its machine code.
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CUDA PTX Description A

No operation -

R0+=Xj ; add.f32 R0, R0, Xj ; R(0)← R(0) +X(j) j

R0+=Ri ; add.f32 R0, R0, Ri ; R(0)← R(0) +R(i) i

Ri+=R0 ; add.f32 Ri, Ri, R0 ; R(i)← R(i) +R(0) i

R0-=Xj ; sub.f32 R0, R0, Xj ; R(0)← R(0)−X(j) j

R0-=Ri ; sub.f32 R0, R0, Ri ; R(0)← R(0)−R(i) i

Ri-=R0 ; sub.f32 Ri, Ri, R0 ; R(i)← R(i)−R(0) i

R0*=Xj ; mul.f32 R0, R0, Xj ; R(0)← R(0)×X(j) j

R0*=Ri ; mul.f32 R0, R0, Ri ; R(0)← R(0)×R(i) i

Ri*=R0 ; mul.f32 Ri, Ri, R0 ; R(i)← R(i)×R(0) i

R0/=Xj ; div.full.f32 R0, R0, Xj ; R(0)← R(0)÷X(j) j

R0/=Ri ; div.full.f32 R0, R0, Ri ; R(0)← R(0)÷R(i) i

Ri/=R0 ; div.full.f32 Ri, Ri, R0 ; R(i)← R(i)÷R(0) i

R8=R0;R0=Ri;Ri=R8; mov.f32 R8, R0 ; R(0) ←→ R(i) (swap) i

mov.f32 R0, Ri ;

mov.f32 Ri, R8 ;

R0=abs(R0) ; abs.f32 R0, R0 ; R(0)← |R(0)| -

R0=sqrt(R0) ; sqrt.approx.f32 R0, R0 ; R(0)←
√
R(0) -

R0= sinf(R0) ; sin.approx.f32 R0, R0 ; R(0)← sinR(0) -

R0= cosf(R0) ; cos.approx.f32 R0, R0 ; R(0)← cosR(0) -

Table 2: Functional description of the single precision floating point instructions. The first
column presents the CUDA command; the second presents the PTX instruction;
the third describes the action performed; and the fourth column presents the
argument for the instruction (j indexes memory positions, and i selects a register).
The last two instructions, sinf and cosf, are fast math instructions, which are
less accurate but faster versions of sinf and cosf.

Our procedure creates a PTX program containing all of the PTX instructions listed
in Tables 2 or 3. In this program, each instruction is embodied inside a loop, where the
iteration count at the start of the loop is unknown, which prevents the ptxas compiler from
removing instructions.

The PTX program is compiled, and the Nvidia cuobjdump tool is used to disassemble
the binary code. The disassembled code contains the machine code of all instructions of
the PTX program. The challenge is to remove the instructions that belong to each loop
control, which is achieved by finding a pattern that repeats along the code. Once the loop
controls are removed, each instruction of our instruction set is acquired.

The header and footer are obtained using the xxd tool from Linux, which converts binary
programs into hex code and transforms the entire program into hexadecimal representation.
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CUDA PTX Description A

No operation -

R0=R0 & Xj ; and.b32 R0, R0, Xj ; R(0)← R(0) ∧X(j) j

R0=R0 & Ri ; and.b32 R0, R0, Ri ; R(0)← R(0) ∧R(i) i

Ri=Ri & R0 ; and.b32 Ri, Ri, R0 ; R(i)← R(i) ∧R(0) i

R0=R0 — Xj ; or.b32 R0, R0, Xj ; R(0)← R(0) ∨X(j) j

R0=R0 — Ri ; or.b32 R0, R0, Ri ; R(0)← R(0) ∨R(i) i

Ri=Ri — R0 ; or.b32 Ri, Ri, R0 ; R(i)← R(i) ∨R(0) i

R0= ∼ (R0 & Xj) ; and.b32 R0, R0, Xj ; R(0)← R(0) ∧X(j) j

not.b32 R0, R0 ;

R0= ∼ (R0 & Ri) ; and.b32 R0, R0, Ri ; R(0)← R(0) ∧R(i) i

not.b32 R0, R0 ;

Ri= ∼ (Ri & R0) ; and.b32 Ri, Ri, R0 ; R(i)← R(i) ∧R(0) i

not.b32 Ri, Ri ;

R0= ∼ (R0 — Xj) ; or.b32 R0, R0, Xj ; R(0)← R(0) ∨X(j) j

not.b32 R0, R0 ;

R0= ∼ (R0 — Ri) ; or.b32 R0, R0, Ri ; R(0)← R(0) ∨R(i) i

not.b32 R0, R0 ;

Ri= ∼ (Ri — R0) ; or.b32 Ri, Ri, R0 ; R(i)← R(i) ∨R(0) i

not.b32 Ri, Ri ;

R0= ∼ R0 ; not.b32 R0, R0 ; R(0)← R(0) -

Table 3: Functional description of the Boolean instructions. The first column presents the
CUDA command; the second presents the PTX instruction; the third describes the
action performed; and the fourth column presents the argument for the instruction
(j indexes memory positions, and i selects a register).

The header is the code that comes before the first instruction found, and the footer is the
remaining code after the last instruction found.

With the header and footer, our procedure generates a different program to test each
instruction acquired. This program contains a header, a footer, and one instruction. The
program is executed, and the result is compared to an expected result that was previously
computed on the CPU.

6.3 Evaluation Process

The GMGP methodology was explicitly designed to exploit the highly parallel capabilities
of the GPU architecture. Because GMGP evaluates the entire population at once using
two levels of parallelism, i.e., at the individual level and at the fitness case level, we expect
our methodology to readily exploit future GPU architectures that are likely to have more
processing cores than the recent releases. GMGP utilizes the independence of the fitness
case execution and the ability to evaluate the individuals in parallel. In addition, this
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CUBIN (hexadecimal representation) Description A

0x7e, 0x7c, 0x1c, 0x9, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x1c, 0xa, 0x0, 0x80, 0xc0, 0xe2,

0x7d, 0x7c, 0x1c, 0x0, 0xfc, 0x81, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x0, 0x0, 0x82, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x0, 0x2, 0x82, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x0, 0x4, 0x82, 0xc0, 0xc2, R(0)← R(0) +X(j) j

0x7d, 0x7c, 0x1c, 0x0, 0x5, 0x82, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x0, 0x6, 0x82, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x0, 0x7, 0x82, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x0, 0x8, 0x82, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x80, 0x8, 0x82, 0xc0, 0xc2,

0x7e, 0x7c, 0x9c, 0x0f, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x1c, 0x0, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x1c, 0x3, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x9c, 0x3, 0x0, 0x80, 0xc0, 0xe2, R(0)← R(0) +R(i) i

0x7e, 0x7c, 0x1c, 0x4, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x9c, 0x4, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x1c, 0x5, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x9c, 0x5, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x9c, 0x0f, 0x0, 0x80, 0xc0, 0xe2,

0x2, 0x7c, 0x1c, 0x0, 0x0, 0x80, 0xc0, 0xe2,

0x1a, 0x7c, 0x1c, 0x3, 0x0, 0x80, 0xc0, 0xe2,

0x1e, 0x7c, 0x9c, 0x3, 0x0, 0x80, 0xc0, 0xe2, R(i)← R(i) +R(0) i

0x22, 0x7c, 0x1c, 0x4, 0x0, 0x80, 0xc0, 0xe2,

0x26, 0x7c, 0x9c, 0x4, 0x0, 0x80, 0xc0, 0xe2,

0x2a, 0x7c, 0x1c, 0x5, 0x0, 0x80, 0xc0, 0xe2,

0x2e, 0x7c, 0x9c, 0x5, 0x0, 0x80, 0xc0, 0xe2,

Table 4: Hexadecimal representation of the add GPU machine code instruction.

parallelization scheme avoids code divergence, as each thread in a block executes the same
instruction over a different fitness case, and different individuals are executed by different
thread blocks. Therefore, we are employing as much parallelism as possible for a population.

The evaluation process addresses the problems caused by execution errors, such as divi-
sions by zero or square roots of negative numbers, which directly affect the fitness value of
an evolved program. In both cases, the value assigned as the result is zero (Ri← 0), which
is the same approach adopted by the QILGP implementation (Dias and Pacheco, 2009).
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7. Experiments and Results

In this section, we analyze the performance of GMGP compared with the other GP method-
ologies for GPUs. We describe the environment setup, the implementation of the other GP
methodologies, the benchmarks, and the analysis of the results obtained from our experi-
ments.

7.1 Environment Setup

The GPU used in our experiments was the GeForce GTX TITAN. This processor has 2,688
CUDA cores (at 837 MHz) and 6 GB of RAM (no ECC) with a memory bandwidth of 288.4
GB/s through a 384-bit data bus. The GTX TITAN GPU is based on the Nvidia Kepler
architecture, and its theoretical peak performance is characterized by the use of the fused
multiply-add (FMA) operations. The GTX TITAN can achieve single precision theoretical
peak performance of 4.5 TFLOPs.

GMGP creates the individuals on CPU using a single-threaded code running on a single
core of an Intel Xeon CPU X5690 processor, with 32 KB of L1 data cache, 1.5 M of L2
cache, 12 MB of L3 cache, and 24 GB of RAM, running at 3.46 GHz.

The GP methodologies were implemented in C, CUDA 5.5, and PTX 3.2. The compilers
used were gcc 4.4.7, nvcc release 5.5, V5.5.0, and ptxas release 5.5, V5.5.0. We had to be
careful in setting the compiler optimization level. It is common for the programmer to use
a more advanced optimization level to produce a more optimized and faster code. However,
the compilation time is a bottleneck for the GP methodologies that require individuals to
be compiled. The code generated by the -O2, -O3, and -O4 optimization levels is more opti-
mized and executes faster, but more time is spent in the compilation process. Experiments
were performed to determine the best optimization level. These experiments indicated that
the lowest optimization level, -O0, provided the best results. There were millions of in-
dividuals to be compiled, and each individual was executed only once. Accelerating the
execution phase was not sufficient to compensate for the time spent optimizing the code
during the compilation phase.

We used five widely used GP benchmarks: two symbolic regression problems, Mexican
Hat and Salutowicz; one time-series forecasting problem, Mackey-Glass; one image pro-
cessing problem, Sobel filter; and one Boolean regression problem, 20-bit Multiplexer. The
first four benchmarks were used to evaluate the single precision floating point instructions,
whereas the last benchmark was used to evaluate the Boolean instructions. The Mackey-
Glass, Boolean Multiplexer, and Sobel filter benchmarks were also used in previous works on
GP accelerated by GPUs (Robilliard et al., 2009; Langdon and Banzhaf, 2008c; Langdon,
2010b; Harding and Banzhaf, 2008, 2009). Nevertheless, it is not possible to perform a direct
comparison, as they used a different GP model (tree-based GP) and different hardware.

Each result in the experiments was obtained by repeating the experiment 10 times and
averaging the timing results. The standard deviations of the times obtained for all the data
sets were less than 5% of the average execution times. We present our timing results in both
seconds and GP operations per second (GPops), which has been widely used in previous
GP works. Although the focus of the paper is on the actual execution speeds of the GP
evaluation, we briefly discuss the quality of the results produced by GMGP and the other
methodologies studied.
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We used 256 threads per block in our experiments. The block grid is two-dimensional
and depends on the number of individuals and the number of fitness cases. For an experi-
ment with (number fitness cases, number individuals) the grid is (number fitness cases/256,
number individuals).

7.2 GP Implementations

To put the GMGP results in perspective, we compare the performance of GMGP with
the other GP methodologies for GPUs: compilation, pseudo-assembly, and interpretation.
However, the GP methodologies for GPUs taken from the literature are not based on LGP or
quantum-inspired algorithms. For this reason, we had to implement an LGP and quantum-
inspired approach corresponding to each methodology to make them directly comparable
with GMGP. Nevertheless, these implementations are based on the algorithms described in
the literature.

The compilation approach is based on the work by Harding and Banzhaf (2009) and is
called Compiler here. The pseudo-assembly approach is based on our previous work (Cu-
pertino et al., 2011), and is called Pseudo-Assembly here. The interpretation approach
is based on the work by Langdon and Banzhaf (2008a) and is called Interpreter here.

The Compiler and Pseudo-Assembly methodologies use a similar program assembly to
the GMGP methodology. The individuals are created by the CPU and sent to the GPU
to be computed. The main difference is the assembly of the body of the programs. In
Compiler, the bodies are created using CUDA language instructions. When the popula-
tion is complete, it is compiled using the nvcc compiler to generate the GPU binary code.
In Pseudo-Assembly, the bodies are created using the PTX pseudo-assembly language in-
structions. When the population is complete, the code can be compiled with ptxas or the
cuModuleLoad C function provided by Nvidia, both of which generate GPU binary code.
The Pseudo-Assembly methodology reduces the compilation overhead using the JIT com-
pilation.

In the Interpreter methodology, the interpreter was written in the PTX language, rather
than in RapidMind, as proposed by Langdon and Banzhaf (2008a). The interpreter is au-
tomatically built once, at the beginning of the GP evolution, and is reused to evaluate all
individuals. Algorithm 1 presents a high-level description of the interpreter process. As
the pseudo-assembly language does not have a switch-case statement, we used a combina-
tion of the instruction setp.eq.s32 (comparisons) and bra (branches) to obtain the same
functionality. These comparisons and branches represent one of the weaknesses of the In-
terpreter methodology. The interpreter must execute more instructions than the actual GP
operations. For each GP instruction, we have at least one comparison, to identify the GP
operation, and one jump to the beginning of the loop. In addition, comparisons can be
made to identify the instruction arguments.

The GP methodologies implemented employ an equivalent function set and use the same
number of registers. In QILGP (Dias and Pacheco, 2013), the function set has an atomic
exchange instruction (FXCH ST(i)) that the GPU does not have. To maintain the function
set compatibility with QILGP in the experiments, we created the exchange operation in the
GPU using three move operations. An exchange between Ri and R0 uses an intermediary
register R8 and becomes R8 = R0; R0 = Ri; Ri = R8, as shown in Table 2.
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1: TBX← X dimension of the Thread Block identification
2: TBY← Y dimension of the Thread Block identification
3: INDIV← individual number (TBY)
4: N← program length (INDIV)
5: THREAD← GPU Thread identification
6: X0← input variable 1 (THREAD + TBX * Number of threads in a block)
7: X1← input variable 2 (THREAD + TBX * Number of threads in a block)
8: for k ← 1 to N do
9: INSTRUCT← instruction number (k) (INDIV)

10: ARG← argument number (k) (INDIV)
11: switch (INSTRUCT)
12: case 0:
13: no operation
14: case 1:
15: switch (ARG) % Description: R(0)← R(0) + X(j)
16: case 0:
17: add.f32 R0, R0, X0
18: case 1:
19: add.f32 R0, R0, X1
20: → Here, we have more similar cases for all inputs and constant registers (X).
21: end switch
22: case 2:
23: switch (ARG) % Description: R(0)← R(0) + R(i)
24: case 0:
25: add.f32 R0, R0, R0
26: case 1:
27: add.f32 R0, R0, R1
28: → Here, we have more similar cases for all eight auxiliary FPU registers (Ri).
29: end switch
30: case 3:
31: switch (ARG) % Description: R(i)← R(i) + R(0)
32: case 0:
33: add.f32 Ri, R0, R0
34: case 1:
35: add.f32 Ri, R1, R0
36: → Here, we have more similar cases for all eight auxiliary FPU registers (Ri).
37: end switch
38: → Here, we have more similar cases for all other instructions, such as subtraction, multiplication,

division, data transfer, trigonometric, and arithmetic operations.
39: default:
40: exit
41: end switch
42: → Write result back to global memory.
43: end for

Algorithm 1: Pseudo-code for the GP interpreter for a GPU based on quantum-inspired
LGP.
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7.3 Symbolic Regression Benchmarks

Symbolic regression is a typical problem used to assess GP performance. We used two
well-known benchmarks: the Mexican Hat and Salutowicz. These benchmarks allow us to
evaluate GMGP over different fitness case sizes.

The Mexican Hat benchmark (Brameier and Banzhaf, 2007) is represented by a two-
dimensional function given by Equation (8):

f(x,y) =

(
1− x2

4
− y2

4

)
× e(−x2−y2)/8. (8)

The Salutowicz benchmark (Vladislavleva et al., 2009) is represented by Equation (9).
We used the two-dimensional version of this benchmark.

f(x,y) = (y − 5)× e−x × x3 × cos (x)× sin (x)×
[
cos (x)× sin (x)2 − 1

]
. (9)

For the Mexican Hat benchmark, the x and y variables are uniformly sampled in the
range [−4,4]. For the Salutowicz benchmark, they are uniformly sampled in the range
[0,10]. This sampling generates the training, validation, and testing data sets. The number
of subdivisions of each variable can be 16, 32, 64, 128, 256, and 512, which is called the
number of samples, N . At each time, both variables use the same value of N , producing a
grid. When N = 16, there is a 16×16 grid, which represents 256 fitness cases. Accordingly,
the number of fitness cases varies in the set S = {256, 1024, 4096, 16K, 64K, 256K}.

These two benchmarks represent two different surfaces, and GP has the task of recon-
structing these surfaces from a given set of points. The fitness value of an individual is its
mean absolute error (MAE) over the training cases, as given by Equation (10):

MAE =
1

n

n∑
i=1

|ti − V [0]i|, (10)

where ti is the target value for the ith case and V [0]i is the individual output value for the
same case.

7.3.1 Parameter Settings

Table 5 presents the parameters used when executing the Mexican Hat and Salutowicz
benchmarks. We used a small population size, which is a typical characteristic of QEAs.
The evolution status of QEAs is represented by a probability distribution, and there is no
need to include many individuals. The superposition of states provides a good global search
ability due to the diversity provided by the probabilistic representation.

7.3.2 Preliminary Experiments for the Compiler Methodology

Table 6 presents the execution time breakdown of all GPU methodologies for the Mexican
Hat benchmark when the fitness case is 16K. The execution time is broken down into the
following categories: nvcc represents the time spent with the nvcc compiler to generate the
PTX code from the CUDA source code; upload represents the time spent compiling the PTX
code to the GPU binary code (in our methodology, upload means the time spent loading
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Parameter Settings
Mexican Hat Salutowicz

Number of generations 400,000 400,000
Population size 36 36
NOP initial probability (α0,0) 0.9 0.9
Step size (s) 0.0003 0.002
Maximum program length 128 128
Function set Table 2 Table 2
Set of constants {1,2,3,4,5,6,7,8,9} {1,2,3,4,5,6,7,8,9}

Table 5: Parameter settings for the Mexican Hat and Salutowicz benchmarks. The values
of number of generations, population size, initial probability of NOP, and step size
were obtained from previous experiments.

Methodology Total nvcc upload evaluation interpret download CPU

GMGP 292.6 – 73.2 76.9 – 5.13 137.2

Interpreter 636.8 – 3.14 – 542.4 4.35 86.8

Pseudo-Assembly 40,777 – 40,414 118.8 – 6.13 238.8

Compiler 242,186.7 135,027.5 106,458 283.6 – 6.74 410.9

Table 6: Execution time breakdown of all GPU methodologies (in seconds). The table
presents the times for: Total, the total execution; nvcc, the compilation in the
nvcc compiler; upload, the compilation of the PTX code (Compiler and Pseudo-
Assembly), or loading the GPU binaries to the GPU memory (GMGP), or transfer-
ring the tokens through the PCIe bus (Interpreter); evaluation, the computation
of the fitness cases; interpret, the interpretation; download, the copy of the fit-
ness result from GPU to the CPU; and CPU, the GP methodology is executed on
the CPU.

the GPU binaries to the graphic card before execution); in the interpreter methodology,
upload is the time necessary to transfer the tokens through the PCIe bus; evaluation

represents the time spent computing the fitness cases; interpret is the interpretation time
for Interpreter; download is the time spent in copying the fitness result from GPU to the
CPU; and CPU represents the remainder of the execution time, including the time necessary
to execute the GP methodology on the CPU.

As can be observed in Table 6, the Compiler methodology is the only one that spends
time on the nvcc compiler. The time spent on the nvcc compiler is enormous when compared
to all other times, and Compiler becomes three orders of magnitude slower than GMGP and
Interpreter. Although some previous works have reported results for the Compiler method-
ology for GP in GPUs (Harding and Banzhaf, 2007; Chitty, 2007; Harding and Banzhaf,
2009; Langdon and Harman, 2010), they are not comparable with our results. Harding and
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Banzhaf (2007) and Chitty (2007) did not use CUDA and could therefore avoid the nvcc
overhead. Harding and Banzhaf (2009) used CUDA but handled the compilation overhead
by using a cluster to compile the population. Langdon and Harman (2010) also used CUDA,
but the total compilation time for our experiment is greater than their compilation time
for two reasons. First, the small population size of a quantum-inspired approach requires
more compiler calls. Second, the total number of individuals we are evaluating (number
of generations × population size) is at least one order of magnitude greater than in their
experiments.

Because the other methodologies solved the same problem considerably faster, we dis-
carded the Compiler methodology for the remaining experiments.

The download time is almost the same for all implementations because the same data set
was used in all approaches. Accordingly, the results to be copied through the PCIe bus are
the same. The CPU time for Interpreter is slightly smaller than for GMGP, Compiler, and
Pseudo-Assembly because Interpreter does not have to assemble the individuals in the CPU
before transferring to the GPU. Instead, the tokens are copied directly. The evaluation

time is almost the same for Compiler and Pseudo-Assembly, but GMGP presents a slightly
smaller evaluation time because the header and footer are optimized. The interpret

time is approximately one order of magnitude slower than the GMGP evaluation time
because it has to perform many additional instructions, such as comparisons and jumps.
The upload time for GMGP is approximately three orders of magnitude faster than the
upload time for Compiler and Pseudo-Assembly because GMGP directly assembles the
GPU binaries without calling the PTX compiler. The time necessary to transfer the tokens
through the PCIe bus in the Interpreter methodology is smaller than the time necessary to
load the GPU binary code in the GMGP.

7.3.3 Performance Analysis

We compare the execution times of the methodologies as the number of fitness cases varies in
the set: S = {256, 1024, 4096, 16K, 64K, 256K}. The total execution times of the Mexican
Hat and Salutowicz benchmarks for the Pseudo-Assembly, Interpreter, and GMGP method-
ologies are presented in Figure 5. The curves are plotted in log-scale. The Pseudo-Assembly
methodology execution time remains almost constant as the problem size increases in both
cases studied because Pseudo-Assembly spends most of the time compiling the individual
population code, and the compilation time does not depend on the problem size. The total
execution times of the Interpreter and GMGP methodologies increase almost linearly as
the number of fitness cases increases from 256 to 256K. For the largest data set, 256K,
the Pseudo-Assembly execution time approaches the execution time of Interpreter. How-
ever, the Pseudo-Assembly methodology performs much worse than the other methodologies
when only a few fitness cases are considered.

In Table 7, we present the performance of the three methodologies for a 256K data
set, using the GP operations per second (GPops) metric, which is widely employed in the
GP literature. Considering the total evolution, GMGP performs 2.29e+014 GP operations
on 1.17e+003 seconds, obtaining 194.4 billion GPops for Mexican Hat. Similarly, GMGP
obtained 200.5 billion GPops for Salutowicz. The Interpreter methodology took 26.6 billion
GPops for Mexican Hat and 27.5 billion GPops for Salutowicz. The Pseudo-Assembly
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Benchmark Methodology GP evolution (GPops) Best Individual (GPops)

Mexican Hat GMGP 194.4 billion 245.5 billion
Interpreter 26.6 billion 29.9 billion
Pseudo-Assembly 5.3 billion 161.0 billion

Salutowicz GMGP 200.5 billion 240.2 billion
Interpreter 27.5 billion 27.0 billion
Pseudo-Assembly 4.9 billion 158.4 billion

Table 7: Performance of GMGP, Interpreter, and Pseudo-Assembly for Mexican Hat and
Salutowicz in GPops. The table presents the results for the overall evolution,
including the time spent in the GPU and CPU, and the results for the GPU
computation of the best individual after the evolution is complete.

Figure 5: Execution time (in seconds) of Pseudo-Assembly, Interpreter, and GMGP
methodologies for the Mexican Hat and Salutowicz benchmarks with an increasing
number of fitness cases.

methodology had the smallest values, 5.3 billion GPops for Mexican Hat and 4.9 billion
GPops for Salutowicz. Table 7 also presents the GPops for the evaluation in the GPU of the
best individual found after the evolution is completed. The best individual GPops results
are greater than the GP evolution results because the evaluation of the best individual takes
considerably less time than the whole GP evolution. In addition, the GP evolution includes
the overheads of creating the individuals and transferring the data to/from the GPU. For
Pseudo-Assembly, the evaluation of the best individual does not consider the compilation
overhead, and the GPops value obtained for the best individual is similar to that obtained
by GMGP.

Figure 6 presents the speedups obtained with the Interpreter and GMGP methodologies
compared to the Pseudo-Assembly methodology for the Mexican Hat and Salutowicz bench-
marks. For the two benchmarks, the smallest data set generated the greatest speedups. For
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Figure 6: Speedup of Interpreter and GMGP compared to Pseudo-Assembly for the Mexican
Hat and Salutowicz benchmarks with an increasing number of fitness cases.

Mexican Hat, Interpreter runs 371 times faster than Pseudo-Assembly, whereas GMGP
runs 193 times faster than Pseudo-Assembly. The gains are similar for Salutowicz: In-
terpreter runs 363 times faster than Pseudo-Assembly, and GMGP runs 199 times faster
than Pseudo-Assembly. As the problem size increases, the speedups compared to Pseudo-
Assembly become smaller for both benchmarks. We will compare only Interpreter and
GMGP in the remainder of this analysis.

Figure 7 presents the speedup obtained with GMGP compared to Interpreter for Mexican
Hat and Salutowicz. GMGP performs better for larger data sets for both benchmarks.
For the small data sets, in GMGP, the number of fitness cases used is not sufficient to
compensate for the overhead of uploading the individuals, and the Interpreter methodology
is faster. GMGP outperforms Interpreter for fitness case sizes exceeding 4,096. GMGP is
7.3 times faster than Interpreter for Mexican Hat and a fitness case size of 256K. Similar
results were obtained for Salutowicz. As expected, GMGP is promising for applications
with large data sets.

To explain why GMGP outperforms Interpreter for large data sets, we analyze the
execution time breakdown for each approach in detail. Figures 8 and 9 present the execution
breakdown of GMGP and Interpreter for the Mexican Hat and Salutowicz benchmarks
with an increasing number of fitness cases. The execution time was broken into the same
components as described in Table 6.

A comparison of GMGP’s upload time from Figure 8 with Interpreter’s upload time
from Figure 9 indicates that it is more costly to load the GPU binary to the graphics card
than to transfer the tokens through the PCIe bus. However, these times remain constant
as the problem size increases. The download times for GMGP and Interpreter are almost
the same, but both times increase with increasing problem size. This result is expected, as
the two approaches use exactly the same data set, and the computations produce the same
number of results to be copied through the PCIe bus. The result of each thread execution is
one float value. The results of the threads in one block are reduced to one result in the global
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Figure 7: Speedup of GMGP compared to Interpreter for the Mexican Hat and Salutowicz
benchmarks with an increasing number of fitness cases.
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Figure 8: Execution time breakdown of GMGP. The graph presents the time broken down
as follows: upload, the time spent loading the GPU binaries to the GPU memory;
evaluation, the time spent computing the fitness cases; download, the time spent
copying the fitness result from the GPU to the CPU; and CPU, the time during
which the GP methodology is executed on the CPU.

memory. Then, the block results are reduced to one value for each individual in the CPU.
The number of results transferred depends on the number of blocks used to compute all of
the fitness cases. The CPU overhead has a similar behavior because the time spent running
the GP methodology on the CPU is expected to be the same for GMGP and Interpreter,
as the parallelized portion of the code is the evaluation function. We can compare the
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Figure 9: Execution time breakdown of Interpreter. The graph presents the time broken
into: upload, the time necessary to transfer the tokens through the PCIe bus;
interpret, the interpretation time; download, the time spent copying the fitness
result from the GPU to the CPU; and CPU, the time during which the GP
methodology is executed on the CPU.

evaluation function times for GMGP and Interpreter by comparing the evaluation time of
Figure 8 with the interpret time of Figure 9. For small data sets, the evaluation time
of GMGP is smaller than the interpret time of Interpreter, but the difference is small.
However, as the problem size increases, the interpret time increases significantly because
the Interpreter methodology must execute an excessive amount of additional instructions,
such as comparisons and branches. For GMGP, the evaluation time increases slightly
because it executes only the necessary GP instructions. Thus, the total time difference
between GMGP and Interpreter increases for larger data sets.

7.3.4 Quality of Results

To compare the quality of the results of the Compiler, Pseudo-Assembly, Interpreter, and
GMGP methodologies on the GPU, we used the same random seed at the beginning of the
first experiment of each approach. We compared the intermediate and final results. All
GPU approaches produced identical results, comparing all available precision digits. The
only difference among them was the execution time.

In Table 8, we analyze the results for 10 different executions of Compiler, Pseudo-
Assembly, Interpreter, and GMGP. Table 8 presents the best individuals’ average and stan-
dard deviation (σ) for the training, validation, and testing data sets for the Mexican Hat
and Salutowicz benchmarks considering 16K fitness cases. Because each experiment was
repeated 10 times, the standard deviations of all cases are relatively low for the number of
executions used.
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Benchmark Methodology Training Validation Test
Average σ Average σ Average σ

Mexican Hat GMGP 0.046 0.007 0.048 0.008 0.053 0.008
Interpreter 0.046 0.007 0.048 0.008 0.053 0.008
Pseudo-Assembly 0.046 0.007 0.048 0.008 0.053 0.008
Compiler 0.046 0.007 0.048 0.008 0.053 0.008

Salutowicz GMGP 0.17 0.10 0.19 0.12 0.15 0.08
Interpreter 0.17 0.10 0.19 0.12 0.15 0.08
Pseudo-Assembly 0.17 0.10 0.19 0.12 0.15 0.08
Compiler 0.17 0.10 0.19 0.12 0.15 0.08

Table 8: Mean Absolute Errors (MAEs) in GPU evolution for the Mexican Hat and Salu-
towicz benchmarks. The table presents the best individuals’ average and standard
deviation (σ) for the training, validation, and testing data sets for 16K fitness
cases, with a precision of 10−3.

7.4 Mackey-Glass Benchmark

The Mackey-Glass benchmark (Jang and Sun, 1993) is a chaotic time-series prediction
benchmark, and the Mackey-Glass chaotic system is given by the non-linear time delay
differential Equation (11).

dx(t)

dt
=

0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t) (11)

The Mackey-Glass system has been used as a GP benchmark in various works (Langdon
and Banzhaf, 2008b,c). In our experiments, the time series consists of 1,200 data points,
and GP has the task of predicting the next value when historical data are provided. The
GP inputs are eight earlier values from the series, at 1, 2, 4, 8, 16, 32, 64, and 128 time
steps ago.

7.4.1 Parameter Settings

The parameters used for the GP evolution in the Mackey-Glass benchmark are presented in
Table 9. We used a small population size and a large number of generations, as previously
explained. The number of generations was defined according to the number of individuals
proposed by Langdon and Banzhaf (2008c).

7.4.2 Performance Analysis

We analyze the performance of GMGP for the Mackey-Glass benchmark using the GPops
metric. Table 10 presents the number of GPops obtained by GMGP. We present the GPops
for the GP evolution in the GPU considering the operations spent in executing the eval-
uation function for all individuals and counting all non-NOP operations. GMGP obtained
77.7 billion GPops. When we consider the GP evaluation combined with the load of the
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Parameter Settings

Number of generations 512,000
Population size 20
NOP initial probability (α0,0) 0.9
Step size (s) 0.004
Maximum program length 128
Function set Table 2
Set of constants {0, 0.01, 0.02, ..., 1.27}

Table 9: Parameter settings for the Mackey-Glass benchmark. The number of individuals
(number of population x number of generations) was defined according to the
literature. The initial probability of NOP and step size were obtained in previous
experiments.

GPops

GP evolution 77.7 billion
+ loading data 8.85 billion
+ results transfer 8.4 billion

Total computation 3.59 billion

Best individual 8.6 billion

Table 10: Results of GMGP running the Mackey-Glass benchmark in GPops. The table
presents the number of GPops spent in the GP evolution in the GPU, progres-
sively including the overhead of loading the individuals code into GPU and trans-
ferring the results back to the CPU. At the end, we provide the results for the
entire computation, including the overhead of CPU computation, and the results
for the execution of the best individual.

individual code into the GPU memory, GMGP obtained 8.85 billion GPops. The load of
data into the GPU memory does not include any GP operation and requires a substantial
time in the evolution process. The load time is fixed regardless of the size of the data set.
The idea is to amortize this cost by the faster execution of a larger data set. However, the
Mackey-Glass benchmark has a small number of fitness cases.

For the measures that consider the transfer of the results to the CPU memory, the
GPops value decreased to 8.4 billion. When the entire computation is considered, including
the overhead of the CPU computation, GMGP achieved 3.59 billion GPops. At the end of
the evolution, the best individual was executed, and the performance of the best individual
execution was 8.6 billion GPops.
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Figure 10: The three gray-scale images used for training. The image resolutions are 512×
512 pixels.

7.4.3 Quality of the Results

The quality of the results produced by GMGP was analyzed using 10 GP executions. We
computed the RMS error and standard deviation. The average error was 0.0077, and the
standard deviation was 0.0021. The error is lower than the errors presented in the literature
due to the difference in the GP models used. The results presented in the literature used
a tree-based GP with a tree size limited to 15 and depth limited to 4. In contrast, GMGP
can evolve individuals with at most 128 linear instructions. Accordingly, it was possible to
find an individual that better addressed this benchmark problem.

7.5 Sobel filter

The Sobel filter is a widely used edge detection filter. Edges characterize boundaries and
are therefore considered crucial in image processing. The detection of edges can assist
in image segmentation, data compression, and image reconstruction. The Sobel operator
calculates the approximate image gradient of each pixel by convolving the image with a
pair of 3 × 3 filters. These filters estimate the gradients in the horizontal (x) and vertical
(y) directions, and the magnitude of the gradient is the sum of these gradients. All edges
in the original image are greatly enhanced in the resulting image, and the slowly varying
contrast is suppressed.

The evolution of an image filter uses a reverse-engineering approach, where the problem
is to find the mapping between the original image and resulting image after the filter is
applied (Harding and Banzhaf, 2008, 2009). The GP task is to discover the operations
that transformed the input image into the filtered image. In our experiments, we used six
512×512 images taken from the USC-SIPI image repository (Weber, 1997). The gray-scale
versions of all 6 images and the resulting images after the Sobel filter were computed using
the GIMP image processing tool (GIMP, 2008). Figure 10 presents the three gray-scale
images used for training. Figure 11 shows the two images used for validation. Figure 12
shows, for the same image, the original image in gray scale, the resulting image after the
Sobel filter is applied by the GIMP tool, and the output image produced by the GMGP
evolved filter.
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Figure 11: The two gray-scale images used for validation. The image resolutions are 512×
512 pixels.

Figure 12: Results of evolving the filter for one test image. The leftmost image is the
original gray-scale test image. The center image is the output image produced
by applying the GIMP Sobel filter. The rightmost image is the output image
produced by the GMGP evolved filter.

7.5.1 Parameter Settings

The parameters used for the GP evolution of the Sobel filter are presented in Table 11. The
population size also employs a low number of individuals for the reasons explained before.
The number of generations, NOP initial probability, step size, and maximum program length
were obtained from previous experiments.

7.5.2 Performance Analysis

The performance of the Sobel filter in GPops is presented in Table 12. Considering only the
GPU evaluation of all non-NOP instructions, GMGP achieved 287.3 billion GPops. When the
overhead of uploading the GPU binaries is included, the GPops are reduced to 274.2 billion.
The reduction in GPops was less pronounced because this problem has a larger data set that
compensates for the initial overhead of loading the program. When we include the overhead
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Parameter Settings

Number of generations 400,000
Population size 20
NOP initial probability (α0,0) 0.9
Step size (s) 0.001
Maximum program length 128
Function set Table 2
Set of constants {1,2,3,4,5,6,7,8,9}

Table 11: Parameter settings for the Sobel filter. The values of the number of generations,
population size, initial probability of NOP, and step size were obtained in previous
experiments.

GPops

GP evolution 287.3 billion
+ loading data 274.2 billion
+ results transfer 268.6 billion

Total computation 249.9 billion

Best individual 295.8 billion

Table 12: Results of GMGP running the Sobel filter in GPops. The table presents the
number of GPops spent in the GP evolution in the GPU, progressively including
the overheads of loading the individual code into the GPU and transferring the
results back to the CPU. At the end, we present the results for the entire com-
putation, including the overhead of CPU computation, and the results for the
execution of the best individual.

of transferring the results back to the CPU through the PCIe bus, GMGP obtained 268.6
billion GPops. When the entire computation is considered, including the overhead of the
CPU computation during the evolution, GMGP obtained 249.9 billion GPops. After the
evolution, the best individual was executed on the GPU, and we calculated a performance
of 295.8 billion GPops for the best individual.

7.5.3 Quality of the Results

The quality of the results produced by GMGP for the Sobel filter was analyzed with 10 GP
runs. We computed the MAE and standard deviation. Table 13 presents both the MAEs
and standard deviations for the training, validation, and testing data sets. The errors
are low compared to those presented in literature because our GP parameters were set to
provide a better-quality evolved filter. The quality of the Sobel filter evolved by GMGP can
also be assessed visually. The image presented at the right of Figure 12 was produced by the
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Training Validation Test
Average σ Average σ Average σ

2.11 0.61 2.21 0.64 2.03 0.599

Table 13: MAEs in GMGP evolution for the Sobel filter. The table presents the average
and standard deviation (σ) of the best individual for the training, validation, and
testing data sets.

best individual of GMGP applied to the test image. This image can be visually compared
to the image in the center of Figure 12, which was obtained using the Sobel filter of GIMP.
A visual comparison of these two images indicates that the evolved filter produced an image
with more prominent horizontal edges without significantly increasing the noise.

7.6 20-bit Boolean Multiplexer

The Boolean instructions of GMGP were evaluated using the 20-bit Boolean Multiplexer
benchmark (Langdon, 2010b, 2011). In the 20-bit Boolean Multiplexer benchmark, there are
1,048,576 possible combinations of 20 arguments of a 20-bit Multiplexer. In our experiments,
we used 1,048,576 fitness cases to evaluate all of the individuals, which is possible because
GMGP evaluates each individual rapidly. This experiment is the first time this benchmark
has been solved in this manner, using all fitness cases. The bit-level parallelism was exploited
by performing bitwise operations over a 32-bit integer that packs 32 Boolean fitness cases.

7.6.1 Parameter Settings

The parameter settings used for the 20-bit Boolean Multiplexer benchmark are presented
in Table 14. More individuals were used in the population than in the previous benchmark
experiments reported in this paper. This problem addresses more input variables and a
larger data set. The number of generations was computed to produce a total number of
individuals similar to the numbers presented in the literature. However, the zero error
solution was found before the maximum number of generations was reached for all 10 GP
executions. The maximum program length was obtained by verifying the minimum length
needed to solve this problem benchmark.

7.6.2 Performance Analysis

Table 15 presents the number of GPops obtained by GMGP for the GP evolution in the
GPU (execution of the evaluation of all individuals considering the non-NOP operations);
the GP evolution including the loading of the individual code into the GPU memory; the
GP evolution, including the loading of the individuals and the transfer of the results to
the CPU memory; the total computation, including the CPU computation; and the best
individual computation.

Table 15 illustrates that GMGP obtained 5.88 trillion GPops when evaluating the indi-
viduals. When the load of the individuals is considered, a value of 5.24 trillion GPops was
obtained. This benchmark has a large data set. The amount of computation is sufficient to
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Parameter Settings

Number of generations First Solution
or 14,000,000

Population size 40
NOP initial probability (α0,0) 0.9
Step size (s) 0.004
Maximum program length 512
Function set Table 3
Set of constants –

Table 14: Parameter settings for the 20-bit Boolean Multiplexer. The values of the number
of generations, population size, initial probability of NOP, and maximum program
length were obtained in previous experiments, where we varied the values until
the problem was solved.

GPops

GP evolution 5.88 trillion
+ loading data 5.24 trillion
+ results transfer 5.19 trillion

Total computation 2.74 trillion

Best individual 4.87 trillion

Table 15: Results of GMGP running the 20-bit Boolean Multiplexer benchmark in GPops.
The table presents the number of GPops spent in the GP evolution in the GPU,
progressively including the overhead of loading the individual code into GPU and
transferring the results back to the CPU. At the end, we present the results for
the entire computation, including the overhead of CPU computation, and the
results for the execution of the best individual.

amortize the load time. Thus, the total number of GPops is not degraded with the inclusion
of the load of individuals. When the results transfer is included, the results remain almost
the same, and GMGP achieves 5.19 trillion GPops. When the CPU overhead is considered,
the performance is reduced to 2.74 trillion GPops. This result suggests that porting the
whole GP evolution algorithm to run in the GPU (not only the evaluation function), could
significantly improve the overall performance. The execution of the GMGP’s best individual
achieved 4.87 trillion GPops.
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Experiment Generation Total Number of Individuals

1 2,413,505 96,540,200
2 1,246,979 49,879,160
3 3,238,394 129,535,760
4 7,802,509 312,100,360
5 8,892,873 355,714,920
6 10,737,990 429,519,600
7 5,255,728 210,229,120
8 2,576,655 103,066,200
9 5,469,381 218,775,240
10 3,395,730 135,829,200

Table 16: Generation at which GMGP solved the 20-bit Boolean Multiplexer and the total
number of individuals used in the evolution. The population size is 40 individuals.

7.6.3 Quality of the Results

GMGP was able find the zero solution for the 20-bit Boolean Multiplexer benchmark before
the maximum number of generations was reached for all 10 GP executions. Table 16 presents
the number of generations and total number of individuals needed to find this solution.

8. Discussions

It is difficult to compare our quantum-inspired LGP timings to the timings of the tree-based
implementations of GP in GPU proposed in the literature. They used different individual
representations and different evolutionary algorithms. However, we can compare the GPops
results. For the Mackey-Glass benchmark, on the GTX TITAN, we obtained up to 3.59
billion GPops when considering the entire evaluation (GPU and CPU) and 77.7 billion
GPops when considering only the GPU processing. Langdon and Banzhaf (2008c) obtained
895 million GPops for this benchmark. However, we used a larger individual than Langdon
and Banzhaf (2008c) to achieve a more accurate prediction result (smaller RMS error). We
obtained up to 249.9 billion GPops considering the whole evaluation (GPU and CPU) and
287.3 billion GPops considering only the GPU processing for the Sobel filter benchmark. The
Sobel filter was also evolved, along with other filters, by Harding and Banzhaf (2008).They
obtained an average of 145 million GPops and a peak performance of 324 million GPops.
Harding and Banzhaf (2009) attained on average 4.21 billion GPops when evolving the
same type of filter. They used Cartesian GP and a cluster of 16 workstations to compile
the code. For the 20-bit Boolean Multiplexer benchmark, we obtained up to 2.74 trillion
GPops considering the entire evaluation and 5.88 trillion GPops considering only the GPU
processing. Langdon (2010b) obtained up to 254 billion GPops in the entire evaluation
process (CPU and GPU) for a 37-bit Boolean multiplexer. The literature provides other
results for different benchmarks. Recently, Langdon (2010a) obtained 8.5 billion GPops for
a bioinformatics data mining problem.
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Despite the highly data-parallel nature of the GP problems that we considered, we
could achieve 336.3 GFLOPs of execution in the GTX TITAN, whose peak performance is
4,500 GFLOPs, running the Sobel filter benchmark. The peak performance of the GPU is
measured using the FMA instruction, which is not present in our function set. Furthermore,
it is difficult to reach the peak single precision performance even for embarrassingly parallel
applications, such as SGEMM (Lai and Seznec, 2013). The main obstacles for GMGP
in achieving the peak performance are: (i) it includes more complicated floating-point
operations like divisions, sine, cosine, and square root, that take several cycles to execute;
(ii) it includes a reduction operation that requires synchronization; (iii) the small population
size makes the overhead of uploading the individuals to the GPU memory more significant.

9. Conclusions

In this work, we proposed a new methodology to parallelize the evaluation process on the
GPU called GMGP. Our methodology is inspired by quantum computing and includes the
principles of the quantum bit and the superposition of states, which increases the diversity of
a quantum population. In addition, GMGP is the first methodology to generate individuals
using the GPU machine code instead of compiling or interpreting them. We eliminate
the compilation time overhead without including the parsing of the code and divergence
required for the interpretation. The parallelism is exploited at two levels in the evaluation
process, i.e., at the individual level and at the fitness case level. This parallelization scheme
guarantees adequate scalability as the number of cores in the GPU increases.

To compare GMGP to other GP methodologies for GPUs found in the literature, we
implemented three different LGP-based and quantum-inspired approaches: (i) compilation
(Compiler), which generates the individuals in GPU code and requires compilation; (ii)
pseudo-assembly (Pseudo-Assembly), which generates the individuals in an intermediary
assembly code and also requires compilation; and (iii) interpretation of multiple programs
(Interpreter), which interprets the codes and does not require compilation. Our results
demonstrated that GMGP outperformed all of the previous methodologies for the larger
data sets of the Mexican Hat and Salutowicz benchmarks. The maximum speedups obtained
were 827.7 against Compiler, 199 against Pseudo-Assembly and 7.3 against Interpreter. In
terms of the GPops, for the entire evolution (GPU and CPU), GMGP achieved approxi-
mately 200.5 billion GPops for the Mexican Hat and Salutowicz benchmarks, 3.59 billion
GPops for the Mackey-Glass benchmark, 249.9 billion GPops for the Sobel filter benchmark,
and 2.74 trillion GPops for the 20-bit Boolean Multiplexer benchmark.

These results provide a new perspective on GPU-based implementations of GP. Our
methodology is scalable and introduces the possibility of addressing large problems within
a reasonable period of time. We were the first to evolve the 20-bit Boolean Multiplexer
problem using all of the fitness cases during the evolution. The largest evolved Multiplexer
that used all fitness cases in the evolution used only 11 bits, whereas the others used samples
to evolve larger problems.

In our future work, we intend to develop a GP evolutionary model to run entirely in the
GPU, which would offer two advantages. First, the GP model would run faster after being
parallelized to GPUs. Second, we would eliminate the overhead associated with copying
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the fitness results from the GPU to the CPU through the PCIe bus, yielding considerable
speedups.
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Michaël Defoin Platel, Stefan Schliebs, and Nikola Kasabov. Quantum-inspired evolutionary
algorithm: a multimodel EDA. IEEE Transactions on Evolutionary Computation, 13(6):
1218–1232, 2009.

Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A Field Guide to Genetic
Programming. Published via http://lulu.com, 2008. (contributions by J. R. Koza).

Petr Pospichal, Eoin Murphy, Michael O’Neill, Josef Schwarz, and Jiri Jaros. Acceleration
of grammatical evolution using graphics processing units: computational intelligence on
consumer games and graphics hardware. In Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation, pages 431–438. ACM, 2011.

Denis Robilliard, Virginie Marion, and Cyril Fonlupt. High performance genetic program-
ming on GPU. In Proceedings of the 2009 Workshop on Bio-Inspired Algorithms for
Distributed Systems, BADS ’09, pages 85–94, New York, NY, USA, 2009. ACM.

Abdel Salhi, Hugh Glaser, and David De Roure. Parallel implementation of a genetic-
programming based tool for symbolic regression. Information Processing Letters, 66(6):
299–307, 1998.

Luciano R. Silveira, Ricardo Tanscheit, and Marley Vellasco. Quantum-inspired genetic
algorithms applied to ordering combinatorial optimization problems. In IEEE Congress
on Evolutionary Computation (CEC), pages 1–7, 2012.

Walter A. Tackett. Genetic programming for feature discovery and image discrimination. In
Proceedings of the 5th International Conference on Genetic Algorithms, ICGA-93, pages
303–309, 1993.

Hichem Talbi, Mohamed Batouche, and Amer Draa. A quantum-inspired evolutionary
algorithm for multiobjective image segmentation. International Journal of Mathematical,
Physical and Engineering Science, 1(2):109–114, 2007.

Ian Turton, Stan Openshaw, and Gary Diplock. Some geographic applications of genetic
programming on the Cray T3D supercomputer. In UK Parallel’96, pages 135–150, Uni-
versity of Surrey, 1996. Springer.

Ekaterina J Vladislavleva, Guido F Smits, and Dick Den Hertog. Order of nonlinearity
as a complexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Transactions on Evolutionary Computation, 13(2):333–349, 2009.

Allan G. Weber. The USC-SIPI image database. Technical report, University of Southern
California, Signal and Image Processing Institute, Department of Electrical Engineering,
Los Angeles, CA 90089-2564 USA, 3740 McClintock Ave, October 1997.

Garnett Wilson and Wolfgang Banzhaf. Linear genetic programming GPGPU on Microsoft’s
Xbox 360. In Congress on Evolutionary Computation, pages 378–385, 2008.

Gexiang Zhang. Quantum-inspired evolutionary algorithms: a survey and empirical study.
Journal of Heuristics, 17(3):303–351, June 2011.

712


	Introduction
	Related Work
	Quantum Computing and Quantum-Inspired Algorithms
	Multilevel Quantum Systems

	Quantum-Inspired Linear Genetic Programming
	Representation
	Observation
	Evaluation of a Classical Individual
	Quantum Operator
	Evolutionary Algorithm

	GPU Architecture
	Programming Model
	Compilation

	GPU Machine Code Genetic Programming
	Function Set
	Machine Code Acquisition
	Evaluation Process

	Experiments and Results
	Environment Setup
	GP Implementations
	Symbolic Regression Benchmarks
	Parameter Settings
	Preliminary Experiments for the Compiler Methodology
	Performance Analysis
	Quality of Results

	Mackey-Glass Benchmark
	Parameter Settings
	Performance Analysis
	Quality of the Results

	Sobel filter
	Parameter Settings
	Performance Analysis
	Quality of the Results

	20-bit Boolean Multiplexer
	Parameter Settings
	Performance Analysis
	Quality of the Results


	Discussions
	Conclusions

