
HAL Id: hal-03193123
https://hal.science/hal-03193123

Submitted on 13 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flexibility of Collaborative Processes using Versions and
Adaptation Patterns

Imen Ben Said, Mohamed Amine Chaâbane, Rafiq Bouaziz, Éric Andonoff

To cite this version:
Imen Ben Said, Mohamed Amine Chaâbane, Rafiq Bouaziz, Éric Andonoff. Flexibility of Collaborative
Processes using Versions and Adaptation Patterns. IEEE 9th International Conference on Research
Challenges in Information Science (RCIS 2015), IEEE, May 2015, Athenes, Greece. pp.440–451,
�10.1109/RCIS.2015.7128901�. �hal-03193123�

https://hal.science/hal-03193123
https://hal.archives-ouvertes.fr


Flexibility of Collaborative Processes using Versions 
and Adaptation Patterns 

I. BEN SAID, MA. CHAABANE, R. BOUAZIZ

MIRACL / Université de Sfax  
Route de l’aéroport, BP 1088, 3018 Sfax, Tunisia 

{Imen.Bensaid, MA.Chaabane, Raf.Bouaziz}@fsegs.rnu.tn 

E. ANDONOFF

Laboratoire IRIT / Université Toulouse 1 
2 rue doyen Gabriel Marty 

31042 Toulouse Cedex, France 
andonoff@univ-tlse1.fr

Abstract— Process aware Information Systems (PaIS) have an 

ever-increasing importance in Enterprise Information Systems 

for supporting both their intra and inter-organizational 

processes. However PaIS still have important issues to address, 

including flexibility of inter-organizational (i.e., collaborative) 

processes before their definitive acceptance and their use in 

companies. This paper addresses this issue advocating (i) the 

modelling of collaborative processes as BPMN collaboration, (ii) 

the use of the version notion to deal with collaborative process 

flexibility and to make process instance migration easier, and (iii) 

the introduction of 6 new adaptation patterns which are high-

level operations for collaborative process schema update.  

Keywords— Collaborative Processes; Flexibility; BPMN; 

Version; Adaptation Pattern 

I. INTRODUCTION 

Process flexibility is an important issue that Process aware 
Information Systems (PaIS) have to address before their 
definitive acceptance and use in companies [1]. Indeed the 
strong competition in which companies are involved often 
lead them to adapt their processes to face new operational, 
organizational, or customer requirements, new regulation 
laws, or to benefit from new collaboration opportunities. This 
challenge is all the more important as the economic 
environment in which companies operate is more and more 
dynamic, open and competitive, and requires flexibility 
capabilities [2]. Thus the economic success of companies is 
closely related to their ability to implement changes happening 
in their environment and to adapt their processes accordingly. 

Flexibility has been deeply investigated, mainly in the 
context of intra-organizational (or internal) processes. Several 
taxonomies to characterize process flexibility have been 
proposed in literature. The more suitable one which will serve 
as a support for related work analysis is given in [3]. This 
taxonomy differentiates between two times for process 
flexibility: flexibility at design-time, which refers to 
foreseeable changes which can be taken into account in 
modelled process schemas, and flexibility at run time, which 
refers to unforeseeable changes occurring during process 
execution. In addition, this taxonomy identifies four needs of 
flexibility [3]:  

• Variability, for representing a process differently,
depending on the context. Each process schema is
represented as a variant: variants share the same core
process whereas the activity execution differs from
variant to variant [4–5]. Note that parameters causing
process variability are mostly known a priori.

• Adaptation, for handling occasional situations or
exceptions which have not been necessarily foreseen
in the process schema [6–7].

• Evolution, for handling changes in processes, which
require occasional or permanent modifications in their
schemas [8–12].

• Looseness, for handling knowledge intensive
processes whose schemas are not known a priori and
which correspond to non-repeatable, unpredictable,
and emergent processes. Such processes require loose
specifications [13–14].

However, process flexibility is still an open issue in the 
context of inter-organizational processes, i.e. Collaborative 
Processes (CPs). In CPs, flexibility may be related to the 
availability of involved processes or to the collaboration 
schema. Research efforts about CP flexibility mainly address 
process availability in the context of dynamic inter-
organizational processes. Dynamic inter-organizational 
processes refer to processes where the different partners 
involved are not necessarily known at design-time, or can 
evolve at run-time (e.g., they become unavailable or their 
quality of service decreases significantly, etc.) [15]. The 
provided solutions support finding new partners offering 
requested services, along with negotiation, contracting and 
service execution (e.g., [14]). On the other hand, flexibility of 
schema collaboration has rather been neglected and the 
following research question has to be addressed: how to 
change collaborations according to process partner schema 
changes and which operations can be performed for 
collaboration schema changes? 

This paper deals with this research question, adopting the 
following approach: (i) BPMN, which is known as the 
standard notation for process modelling, will serve for 
collaborative process modelling within collaboration 
diagrams, (ii) the version notion, which has been recognized 



as a powerful mechanism for process flexibility in intra-
organizational context [10–14], will be used to model versions 
of collaborations, and (iii) specific adaptation patterns will be 
introduced to define high-level primitives for collaborative 
process schema creation and update.  

More precisely, the paper contributions are: (i) BPMN4VC 
(BPMN for Versioning Collaborations), an extension of 
BPMN meta-model for modelling versions of collaborative 
processes within BPMN collaboration diagrams, (ii) a set of 
basic operations for collaborative process version 
management, along with a state chart defining when these 
operations are available, and (iii) a set of 6 adaptation patterns, 
which are high-level primitives making collaborative process 
creation and update easier to perform. The intertwining of 
both versioning operations and adaptation patterns is also an 
interesting contribution to address the flexibility of 
collaborative processes. 

The remainder of the paper is organized as follows. 
Section 2 gives an overview of related works, considering 
process flexibility both in an intra-organizational and in an 
inter-organizational context. It also positions this paper with 
our previous contributions. Section 3 presents BPMV4VC, the 
provided BPMN extension for modelling and handling 
versions of collaborations. This section also introduces the 
provided operations for collaborative process version 
management, along with the state chart defining when these 
operations are available. Section 4 presents the provided 
collaborative process adaptation patterns; it also illustrates 
how to intertwine the performing of both versioning 
operations and collaborative process adaptation patterns. 
Finally Section 5 concludes the paper, summarizing our 
contributions and giving some directions for future work. 

II. RELATED WORKS 

Process flexibility has been highly investigated in the 
context of intra-organizational processes since the end of the 
1990s. In addition to the typologies proposed to feature 
process flexibility and to evaluate the ability of PaIS and 
process models to support process flexibility (e.g., [3]), 
different contributions have been made to deal with this issue, 
and they follow several approaches: activity-driven approach 
[4–13, 16], constraint-driven approach [17–18], data-driven 
approach [19–20], case-driven approach (case handling) [21], 
and more recently, social-driven approach [22]. In this paper, 
we rather focus on activity-driven process flexibility as 
activity-oriented models are used in the majority of (service-
oriented) PaIS.  

Regarding flexibility of activity-driven intra-organizational 
processes, we can mention works supporting the modelling of 
process variants [4–5, 16, 23–24]. These contributions address 
process flexibility and more precisely process variability 
(according to the typology of [3]). A variant is an adjustment 
at run-time of a base process schema according to the context. 
We differentiate between behavioural approaches, which 
define the base process schema as a superset of variants and 
derive a specific process variant by hiding and blocking 
process components of the base process schema, and structural 
approaches which derive a process variant by applying a set of 

changes to a base process schema [25]. Specific notations and 
systems such as C-EPC [4], Provop [5] and vBPMN [23] 
support process variants.  

We can also mention works supporting the modelling of 
process versions for capturing process changes over time. In 
the version-based approach, the significant changes on process 
schema results in the definition of new process versions. 
Several works, including ADEPT [26], advocate this approach 
to deal with process flexibility [8–12, 26]. This is probably the 
most comprehensive version-based contribution. These works 
are interesting since the notion of version has been recognized 
as a key notion to deal with process flexibility and more 
precisely, with process variability, process evolution and 
process adaptation (when adaptation can be defined a priori, 
at design-time) [27]. However, these works have two main 
drawbacks. First, they mainly focus on the behavioural 
dimension of processes, leaving aside their organizational and 
informational dimensions. However, these dimensions have 
also to be considered when dealing with process flexibility, 
since flexibility may be related to the resources involved 
during process execution or to the information being managed 
during process execution. Secondly, each of these 
contributions introduce specific notations, which are not 
standards and are unlikely to be used by process designers 
who are in charge of modelling variability of processes. 
Therefore, we have introduced BPMN4V (BPMN for 
Versions), an extension of BPMN to support intra-
organizational process version modelling, considering both 
behavioural (what, how), organizational (who) and 
informational (when) dimensions of processes [28]. In [29], 
we have extended BPMN4V to model the contextual 
dimension of processes in order to capture the situations in 
which processes are executed and thus to define why version 
of processes are used instead another according to the context.  

 Further addressing activity-driven intra-organizational 
process flexibility, we can mention works in relation to change 
patterns [23, 30]. [30] is a fundamental contribution which 
introduces a set of 14 adaptation patterns to structurally 
change process schemas and a set of 4 change support 
features patterns to allow process actors to add information 
regarding unspecified parts of process schemas at run-time. 
These patterns correspond to high-level primitives making 
process schema update easier. Figure 1 gives an overview of 
the proposed adaptation patterns of [30]. For instance, 
adaptation patterns AP1 and AP2 allow for the insertion (AP1) 
and deletion (AP2) of process fragments in a given process 
schema. In the same way, moving and replacing fragments is 
supported by adaptation patterns AP3 (Move Process 
Fragment), AP4 (Replace Process Fragment) and AP5 (Swap 
Process Fragment). 

Fig. 1. Adaptation Patterns for Intra-Organisational Processes [30] 



In addition to [30], we can also mention [23], which has 
defined variability patterns for variants. More precisely, [23] 
proposed to extend BPMN to address variability of processes 
using process variants, and defined a set of patterns to easily 
derive a specific process variant from a base process schema. 

However, these contributions do not address inter-
organizational process flexibility, which is still an open issue. 
More precisely, in the context of inter-organizational 
processes, i.e. Collaborative Processes (CPs), flexibility may 
be related to the availability of involved processes or to the 
change of collaboration schemas [31]. Research in CP 
flexibility mainly addresses process availability in the context 
of dynamic inter-organizational processes. Dynamic inter-
organizational processes refer to CPs where the different 
partners involved are not necessarily known at design-time, or 
can evolve at run-time (e.g., they become unavailable or their 
quality of service decreases significantly, etc.) [14–15, 32–33]. 
The provided solutions support finding new partners offering 
requested services [14, 32–33], along with negotiation [34], 
contracting and service execution, in separate or 
comprehensive frameworks [35].  

Collaboration schema change has been rather neglected 
even if we found some contributions in the SOA context [36–
40]. Contributions [36] and [37] mainly consider chained 
execution and subcontracting collaborative processes, and they 
provide high level patterns for service adaptation (adding, 
removing, substituting services). These contributions address 
CPs evolution but they do not address CPs variability and 
adaption. Contribution [38] recommends an extension of the 
WS-BPEL language to deal with exceptions in collaborative 
processes. However, the proposed solution is specific since it 
depends on a particular execution language and it only deals 
with CPs adaptation. Finally, contributions [39] and [40] focus 
on the propagation of private process changes towards 
processes of the other partners involved in a collaborative 
process. More precisely, they provide a set of algorithms to 
deal with changes of process schema by adding, deleting, 
replacing or updating process fragments, and they do not 
consider changes that can affect messages (i.e., information) 
exchanged between collaborative process partners. Note also 
that change propagation has been investigated in the context of 
choreographies [41]. 

In this work, we address the collaborative process (i.e., 
collaboration) schema change issue introducing both versions 
of collaboration and high level adaptation patterns. The 
reasons justifying such an approach are the following. 

On the one hand, versions are known to be a powerful 
mechanism to address process flexibility. First, handling 
versions of processes facilitate the migration of instances from 
an initial schema to a final one, allowing, if the migration is 
not possible, two different instances of the same process to run 
according to two different schemas [8–10]. Secondly, the 
notion version has been recognized as a key notion to deal 
with process flexibility and more precisely, with process 
variability, process evolution and process adaptation (when 
adaptation can be defined a priori, at design-time) [27]. 
Therefore the collaborative process flexibility should benefit 
from these advantages. On the other hand, providing 

adaptation patterns, which are high level primitives to make 
collaboration schema update easier, is an interesting 
contribution to address the flexibility of collaborative 
processes. They should be the support for a comparison of 
PaIS with respect to collaborative process flexibility support. 

Note that this work extends our previous contributions on 
BPMN and process versioning ([28–29]). It addresses 
collaborative processes schema flexibility issue using versions 
and introducing adaptation patterns to make BPMN 2.0 
collaboration schema changes easier to perform. 

III. BPMN4VC FOR MODELLING AND HANDLING VERSIONS

OF COLLABORATIVE PROCESSES 

A collaborative process defines a collaboration between 
companies (each one represented by a process) in order to 
carry out a common business target. BPMN2.0 introduces 
collaboration diagrams for modelling such process schemas, 
crossing companies’ boundaries [42]. These diagrams include 
an explicit representation of permanent interactions between 
the partners involved. These interactions are defined as 
message flows, i.e. messages exchanged between partners.  

To address the flexibility of collaborative process schemas, 
we recommend introducing the notion of version in 
collaboration diagrams. Consequently, this section first 
introduces the notion of version and then presents BPMN4VC, 
an extension of BPMN for modelling and handling versions of 
BPMN2.0 collaboration diagrams, considering both static and 
dynamic aspects of collaborative process versions. 

A. Notion of Version

As illustrated in Fig. 2 below, a version corresponds to one
of the significant states (i.e., values) an entity may have during 
its life cycle [43]. In our context, the considered entity is a 
collaborative process schema. 

Fig. 2. Versions to Model Collaborative Process Flexibility 

So, it is possible to describe the changes of a collaborative 
process schema through its different versions. These versions 
are linked by a derivation link; they form a derivation 
hierarchy. When created, a collaborative process is described 
by only one version. The definition of every new version is 
done by derivation from a previous one (except the first level 
versions, which are created directly from the process –e.g., 
CPn.v1, CPn.v7): such versions are called derived versions 
and they capture the evolution of the corresponding process. 
Of course, several versions may be derived from the same 
previous one: these are called alternatives; they capture the 
variability of the corresponding process and they correspond 



to their various variants. The derivation hierarchy looks like a 
tree if only one version is created directly from a collaborative 
process (e.g., CP1), and it looks like a forest if several 
versions are created directly from a collaborative process (e.g., 
CPn).  

Thus, using the notion of version, it becomes possible to 
model collaborative process flexibility and more precisely, 
collaborative process schema variability (through the notion of 
alternative or variant), collaborative process schema 
adaptation which can be modelled a priori in the schema, and 
collaborative process schema evolution [27].  

B. Statics Aspects of BPMN4VC: the BPMN4VC Meta-Model

We extended BPMN2.0 to model versions of collaborative
processes providing extensions to BPMN2.0 collaboration 
meta-model and as well as defining operations for 
collaborative process version management. This section 
(III.B) focuses on the extensions provided to BPMN2.0 meta-
model while the next one (III.C) deals with defined operations. 

More precisely, BPMN4VC meta-model for collaboration 
results from the merging of BPMN2.0 meta-model for 
collaboration and a versioning kit introduced to make classes 
of BPMN2.0 meta-model versionable, i.e. able to handle 
versions. We briefly present these two layers.  

1) Versioning kit. The versioning kit we propose is very
simple: it includes only two classes and two relationships as
illustrated in Fig. 3.

A versionable class is a class for which we would like to 
handle versions: so, versions are stored in a 
Version_of_Versionable class while corresponding entities are 
stored in a Versionable class. The is_version_of relationship 
links a versionable class to its corresponding versions. The 
derived_from relationship allows for building version 
derivation hierarchies (cf. Fig. 2). This latter relationship is 
reflexive and the definition of both relationship sides is the 
following: (i) a version (SV) succeeds another one in the 
derivation hierarchy, and (ii) a version (PV) precedes another 
one in the derivation hierarchy. Regarding properties of a 
Version_of_Versionable class, we introduce the classical 
version properties, i.e. version number, creator name, creation 
date and status [43]. 

Fig. 3. Versioning Kit 

2) Main Concepts of BPMN 2.0 Collaboration. In BPMN2.0,
a collaboration depicts interactions between two or more
processes belonging to business entities [42]. Each one is seen
as a participant that represents a partner entity (e.g., a
company) or a partner role (e.g., a buyer, a seller, or a
manufacturer). A participant is often responsible for the
execution of a process. In a collaboration, only public

processes are provided within tasks, events and the way these 
tasks and events are synchronized using sequence flow and 
gateways. Within a collaboration, participants are prepared to 
send and receive messages within message flows. A message 
flow illustrates the flow of messages between two interaction 
nodes. An interaction node is used to provide a single element 
as the source (send relationship) or the target (receive 
relationship) of a message flow, and therefore of a message. 
An interaction node can be a participant, a task or an event. 
Fig. 4 below gives the main BPMN2.0 concepts for modelling 
collaborations. 

Note that within a collaboration, tasks and events are 
considered as the “touch point” between participants. Only 
those tasks or events that are used to communicate with the 
other participants are included. They define the public part of 
the process. As a consequence, all other internal (i.e., private) 
tasks or events of the process are not shown in a collaboration 
diagram [42].  

Fig. 4. Extract of the BPMN2.0 Collaboration Meta-model  

3) Extending BPMN for Versioning Collaborations. We use
the versioning kit introduced before to make some classes of
BPMN2.0 meta-model versionable. Fig. 5 below presents the
BPMN4VC resulting meta-model.

Fig. 5. BPMN4VC Meta-model for Modelling Versions of Collaborations 

On the one hand, to take collaborative process flexibility 
into account, we recommend handling versions for the 
following five BPMN 2.0 classes: Collaboration, Message, 
Process, Task and Event. In fact, each of these classes 
represents key concepts for collaborations and plays a strong 
role in the definition of a collaborative process. The idea is to 
keep track of changes occurring to components which play a 



part in the description of how the collaboration is carried out. 

Generally speaking, a new version of an element (e.g., 
collaboration) is defined according to changes occurring to it: 
these changes may correspond to the addition of information 
(property or relationship) or to the modification or the deletion 
of existing ones. More precisely, regarding messages, we 
consider that a modification of their property ItemDefinition 
results in the creation of a new version of message. For 
instance, if Report is a message referring to a paper document 
(Itemkind value is physical), and as a result of technical 
changes, if it becomes an electronic document (Itemkind value 
is information) then a new version of Report has to be created. 
However we do not necessarily create a new version of 
message if there is change in the interaction in which the 
message is involved. Indeed an interaction (i.e., a message 
flow) being defined as the triplet (message, send node, receive 
node), where send and receive nodes are interaction nodes 
involved in the message exchange that either correspond to 
versions of task or versions of event, changing the interaction 
does not necessarily leads to create a new message. For 
instance, if a message M is sent from task A to task B, and if a 
new task C is defined after an organizational change and the 
message is no longer sent from A to B but rather from C to B, 
then we do not create a new version of the message M if it 
carries out the same information. Thus we manage M.v1 as a 
message exchanged between A and B, and M.v1 and we also 
manage M.v1 as a message exchanged between C and B.  

Regarding processes, we create new versions when there 
are changes to the involved tasks and/or events or in the way 
they are linked together using sequence flows and gateways. 
In the same way, changes to tasks and events may result in the 
creation of new task and event versions. In addition, we create 
new versions of tasks or events involved in message exchange, 
when there are changes to the exchanged messages. 

Finally, regarding collaborations, new versions may result 
from changes to participants involved. Thus when we add or 
delete a participant, it is necessary to adapt the current 
collaborative process to this change: we have to incorporate 
the added participant or to possibly replace the deleted one. 
New versions of collaborations may also result from changes 
to involved processes or exchanged messages. Exchanged 
messages have an important impact in collaboration flow. 
Thus any change in a sent or a received message affects the 
involved tasks or events, and consequently the involved 
process. So, when we add (or delete) a message, we have to 
add (or to delete) a received and a send activity, which leads to 
changing the process schema. In this case, the other processes 
involved in the collaboration have in turn to be adapted to this 
change to ensure continued collaboration. 

On the other hand, BPMN 2.0 meta-model provides 
extension mechanisms through classes Extension, 
ExtensionDefinition and ExtensionAttributeDefinition, and, as 
suggested in [42], each recommended extension has to be 
assigned to these classes. Therefore, we recommend adding 
the classes VersionExtensionDefinition and VersionExtension 
AttributeDefinition to model the specific attributes which 
versionable classes include (version number, creator name, 
creation date and status). Thus each Version_of_Versionable 

class of BPMN4VC is a sub-class of the abstract class 
VersionExtensionDefinition. 

C. Dynamic Aspects of BPMN4VC: Collaboration Version 

Management 

In this section, we first give an overview of the operations 
available for collaboration version management within a state 
chart, before detailing them. 

1) State Chart. In order to handle versions of collaborations
modelled as instances of BPMN4VC meta-model, we propose
a taxonomy of operations which allows to create, derive,
update, validate and delete collaboration versions.

The UML state chart given in Fig. 6 indicates when these 
operations are available with respect to the version state. Some 
of them are available whatever the state of the version on 
which they are performed, while others are available only in 
some cases. In the state chart, each operation is described 
using the notation Event/Operation whose meaning is “if 
Event appears then Operation is triggered”. 

Fig. 6. UML State Chart for Versions 

When the create order event appears, the create operation 
is carried out to create both a collaboration and its 
corresponding first version. The state of the created version is 
working (W state). In this state, a version is not yet a final one 
and it can be updated using the Update operation. Create and 
update operations can be specified using a set of primitives. 
These primitives change according to the classes in which they 
are defined. However, they share the same general idea that is 
to give values to properties and relationships of the considered 
classes (cf. III.C.2).  

A working version can be deleted (Delete operation) or 
validated (Validate operation). When the Validate operation is 
performed, the corresponding version becomes stable (S 
state). This state indicates that a version is a final one, on 
which no additional updates can be performed. Moreover, 
validation of a version may trigger the validation of other 
versions as illustrated in III.C.3.  

Finally, a stable version can be deleted or can serve as a 
basis for the creation of a new version using the Derive 
operation. The created version is a working version. Before 
being updated, it has the same value as the derived one. 
Moreover, derivation of a version may trigger the derivation 
of other versions, which are linked to the derived one (cf. 
III.C.4).

2) Update Operation. Table 1 below gives the definition of
Update operation, indicating the low-level primitives this
operation includes.



For instance, the update of a collaboration includes low-
level primitives supporting the addition (+) or deletion (-) of 
participants (i.e., their process) involved in the collaboration 
along with their interactions (i.e., message flows between their 
processes). In the same way, the update of an interaction 
includes low-level primitives supporting the addition or 
deletion of messages, and the addition and deletion of message 
flows which are triplet gathering a message sent from a send 
node to a receive node. Finally, the update of a collaboration 
also includes low-level primitives supporting the addition or 
deletion of tasks, events, sequence flows and gateways. 

Table 1. Primitives of the Update Operation 

BPMN4VC Concepts Primitives 

Collaboration 
+/- Participant/Process 
+/- Interaction 

Interaction 
+/- Message 
+/- Message flow 

Participant/Process 

+/- Task 
+/- Event 
+/- Sequence flow 
+/- Gateway 

In order to make update operation easier to perform, we 
recommend a set of 6 adaptation patterns allowing process 
designers to modify collaboration schemas more easily by 
using high-level primitives (e.g., AddInteraction to add an 
interaction into a collaboration) instead of low-level primitives 
(e.g., AddNode, AddMessage, AddMessageFlow). These 
adaptation patterns will be detailed in section 4.  

3) Validate Operation. This operation is performed to make a
working version stable, i.e. when the considered version does
not need additional updates. Validation of a version may
trigger the validation of other versions, which are linked to it.
Fig. 7 illustrates the validation propagation. More precisely,
the black arrows correspond to initial validations while the
grey arrows correspond to propagated validations.

Fig. 7. Validation Propagation 

According to Fig. 7, the validation of a collaboration 
version triggers the validation of processes and messages 
within this collaboration. In the same way, the validation of a 
process version triggers the validation of its versioned 
components, i.e. versions of its tasks and versions of its 
events. 

4) Derive Operation. This operation allows the creation of a
new version from an existing stable one. The created version
is a working version. Before being updated, it has the same
value as the derived one. Moreover, derivation of a version
may trigger the derivation of other versions, which are linked
to the derived one. Fig. 8 illustrates this derivation
propagation. Again, the black arrows correspond to initial
derivations, while the grey ones correspond to propagated
derivations.

Fig. 8. Derivation Propagation 

This propagation is due to the composition relationships 
existing between collaboration, message, process, task and 
event. Therefore, the derivation of a task or event triggers the 
derivation of its corresponding process. In the same way, the 
derivation of a process triggers the derivation of the 
corresponding collaboration. In addition the derivation of a 
message triggers the derivation of its corresponding events or 
tasks (i.e., the events or tasks involved with the message in a 
message flow). 

IV. ADAPTATION PATTERNS FOR COLLABORATION UPDATE

We introduce 6 adaptation patterns to implement the 
update operation previously presented. These patterns focus 
on interaction within collaborations. As indicated before, an 
interaction is a message flowing from a send node to a receive 
node. Therefore, an interaction can be considered as a triplet 
(message, send node, receive node).  

As illustrated in Fig. 9, the recommended patterns are the 
following: AddInteraction, DeleteInteraction, Move 
Interaction, Replace Interaction, SwapInteraction and 
ModifyInteraction. They are used to update a version of 
collaboration, created directly from scratch (first collaboration 
version) or derived from an existing one (derived 
collaboration version). Of course, the state of the collaboration 
version is working (see Fig. 6). In both cases, the patterns 
recommended move the considered collaboration from an 
initial schema IS to a final schema FS, adding, deleting, 
moving, replacing, swapping or modifying interaction 
between the processes involved. This schema update generally 
leads to the definition of derived process versions, derived 
task versions, derived messages and/or derived event versions. 
Thus, version management operations and adaptation patterns 
are both used to update a collaboration. 

Fig. 9. Adaptation Patterns for Collaborative Process 



In the following sub-sections, we present the 
recommended adaptation patterns. For each one, we consider 
the case when a new collaboration derived from an existing 
one moves from an initial schema IS to a final one FS.  

A. AddInteraction Pattern

AddInteraction is a high-level pattern used to add an
interaction, i.e. a message and its send and receive nodes to an 
existing collaboration. This pattern includes the following 
low-level primitives, briefly introduced in Table 1: 

• AddNode (N, P, G, pN, fN, Type). This primitive uses
the AP1 Insert Process Fragment defined in [30] to
add in the process P of the current collaboration the
interaction node N between the flow nodes pN (the
previous node of N) and fN (the following node of N).
The way in which the added node N is coordinated
with the other nodes is indicated by G: it may be
sequence, parallel or conditional. In addition, the type
of added node N is indicated by Type, which can be a
(send or receive) task or event. Note that this primitive
implements the following operations of Table 1: +task
and +event.

• AddMessage(M). This primitive adds the message M
in the current collaboration.

• AddMessageFlow(M, sN, rN). This primitive adds the
message flow (M, sN, rN) into the current
collaboration, where M is a message between sN (the
send node of M) and rN (the receive node of M). Note
that both sN and rN are interaction nodes.

The AddInteraction pattern may be achieved in four 
possible cases: (i) Add a message and the corresponding send 
and receive nodes, (ii) Add a message between existing send 
and receive nodes, (iii) Add a message and the corresponding 
send node, and (iv), Add a message and the corresponding 
receive node.  

1) Case #1: Add a message and the corresponding send and
receive nodes. In this case, the send and receive nodes (i.e.,
tasks or events) of the added message do not exist in the
collaboration. Therefore, the nodes have to be added to the
corresponding processes, and the new message has to be
added into the collaboration. Finally a new message flow
linking the message and the nodes has to be defined.

Depending on the way the nodes are inserted within the 
collaborative processes (sequence, parallel or conditional 
insert), two options have to be considered. Due to a lack of 
space, Fig. 10 illustrates only two of these options, which 
allows (i) the insertion of the first version of the send task Ai 
and receive task Bi respectively in the second version of 
processes A and B and (ii) the definition of the first version of 
message M sent from the first version of Ai to the first version 
of Bi. The first option corresponds to a sequential insert of 
tasks Ai and Bi respectively in processes A and B, while the 
second one corresponds to a parallel insert. To address a 
conditional insert, we only have to have the gateway and use 
the conditional one instead of the parallel one.  

For each option of case#1, we provide the corresponding 

interaction pattern order along with the corresponding low-
level primitives performed when applying it. For instance, in 
possibility #1, we use AddMessage (M.V1) primitive to add the 
first version of message M, AddNode (Ai.V1, A.V2, ‘Sequence’, 
A1.V1, A2.V1, ‘SendTask’) primitive for a sequential insert of the 
first version of the send task Ai in the second version of 
process A, AddNode (Bi.V1, B.V2, ‘Sequence’, B1.V1, B2.V1, 
‘ReceiveTask’) primitive for a sequential insert of the first 
version of the receive task Bi into the second version of 
process B, and finally AddMessageFlow(M.V1, Ai.V1, Bi.V1) 
primitive to define that the first version of message M is sent 
from the first version of Ai to the first version of Bi. These 
modifications, along with sequence flow modifications are 
shown in grey. The modifications which are shown in thick 
lines correspond to version management operation 
modifications. 

Ai.V1

AddMessage(M.v1)

AddNode(Ai.v1, A.v2, ‘Sequence’, A1.v1, A2.v1, ’SendTask’)

AddNode(Bi.v1, B.v2, ’Sequence’, B1.v1, B2.v1, ‘ReceiveTask’)

AddMessageFlow(M.v1, Ai.v1, Bi.v1)

A1.V1

A2.V1

A1.V1 Ai.V1 A2.V1

B1.V1 Bi.V1 B2.V1

C.v2: FS

AddInteraction Pattern

 Case #1: add version of message, version of send node and version of receive node

Bi.V1

B1.V1

B2.V1

Option #1

Option #2

AddMessage(M.v1)

AddNode(Ai.v1, A.v2, ‘Parallel’, A1.v1,  A2.v1, ’SendTask’)

AddNode(Bi.v1, B.v2, ’Parallel’, B1.v1, B2.v1, ‘ReceiveTask’)

AddMessageFlow(M.v1, Ai.v1, Bi.v1)

+

+

A1.V1 A2.V1

B1.V1 B2.V1

C.v2: IS

Update

AddInteraction(M.v1, Ai.v1, A.v2,’Sequence’, A1.v1, A2.v1

     Bi.v1, B.v2, ’Sequence’, B1.v1, B2.v1)

M.v1

AddInteraction(M.v1, Ai.v1, A.v2,’Parallel’, A1.v1, A2.v1

     Bi.v1, B.v2, ’Parallel’, B1.v1, B2.v1)

M.v1

AddMessage(M.v1)

AddMessageFlow(M.v1, A2.v1, B2.v1)

A1.V1 A2.V2

B1.V1 B2.V2

C.v2: FS

 Case #2: add version of message between existing versions of send and receive nodes

A1.V1 A2.V1

B1.V1 B2.V1

C.v2: IS

Update

AddInteraction(M.v1, A2.v2, A.v2, null, null, null, B2.v2, B.v2, null, null, null)

M.v1

+

+

Fig. 10. Case #1 and Case #2 for AddInteraction Pattern 

2) Case #2: Add a message between existing send and
receive nodes. In this case, the send and receive nodes of the 
added message already exist within the collaboration. 
Therefore, a new message has to be added first into the 
collaboration and a new message flow linking the added 
message and the existing nodes has to be defined subsequently 
(cf. Fig. 10). 
More precisely, the primitive AddMessage(M.V1) is used to 

add the first version of message M whereas the primitive 
AddMessageFlow(M.v1, A2.v2, B2.v2) allows for the adding of the 
message flow involving the first version of the message M, the 
second version of task B2, and the second version of task A2.  

3) Case #3: Add a message and the corresponding send
node. In this case, only the send node of the added message
does not exist in the collaboration. Therefore, this node has to
be added first into the corresponding process, and the new



message has to be added into the collaboration subsequently. 
Finally a new message flow linking the added message and 
nodes has to be defined. 

Depending on the way the send node is inserted within a 
process (sequence, parallel or conditional insert), three options 
have to be considered. Fig. 11 illustrates two of these options, 
allowing (i) the insertion of the first version of the send task 
Bi in the first version of process B and (ii) the definition of the 
first version of the message M sent from the first version of 
the task Bi to the second version of task A2. The first option 
corresponds to a sequential insert of Bi in process B, while the 
second and third options correspond to a parallel insert and a 
conditional insert respectively. 

For each option of case#3 and case#4, we provide the 
corresponding interaction pattern order along with the 
corresponding low-level primitives performed when applying 
it. For instance, in option #1 of case #3, we use 
AddMessage(M.V1) primitive to add the first version of message 
M, AddNode (Bi.V1, B.V2, ‘Sequence’, B1.V1, B2.V1, ‘SendTask’) 
primitive for a sequential insert of the first version of the send 
task Bi into the second version of process B and 
AddMessageFlow(M.V1, Bi.V1, A2.V2) primitive to define that the 
first version of message M is sent from the first  

AddMessage(M.v1)

AddNode(Bi.v1, B.v2, ’Sequence’, B1.v1, B2.v1, ‘SendTask’)

AddMessageFlow(M.v1, Bi.v1, A2.v2)

A1.V1 A2.V2

A1.V1 A2.V2

B1.V1 Bi.V1 B2.V1

AddInteraction Pattern

Case #3: add version of message and version of send node

AddInteraction(M.v1, Bi.v1, B.v2, ’Sequence’, B1.v1, B2.v1, A2.v2, A.v2,

     null, null, null)

B2.v1

B1.V1

Bi.V1

Option #1

Option #2

AddMessage(M.v1)

AddNode(Bi.v1, B.v2, ’Parallel’, B1.v1, B2.v1, ‘SendTask’)

AddMessageFlow(M.v1, Bi.v1, A2.v2)

+

A1.V1 A2.V1

B1.V1 B2.V1

C.v2: IS

Update

C.v2: FS

M.v1

M.v1

AddInteraction(M.v1, Bi.v1, B.v2, ’Parallel’, B1.v1, B2.v1, A2.v2, A.v2,

     null, null, null)

AddMessage(M.v1)

AddNode(Bi.v1, B.v2, ’Sequence’, B1.v1, B2.v1, ‘ReceiveTask’)

AddMessageFlow(M.v1, A2.v2, Bi.v1)

A1.V1 A2.V2

A1.V1 A2.V2

B1.V1 Bi.V1 B2.V1

Case #4: add version of message and version of receive node

AddInteraction(M.v1, A2.v2, A.v2, null, null, null,  Bi.v1, B.v2, ’Sequence’,

  B1.v1, B2.v1)

B2.v1

B1.V1

Bi.V1

Option #1

Option #2

AddMessage(M.v1)

AddNode(Bi.v1, B.v2, ’Parallel’, B1.v1, B2.v1, ‘ReceiveTask’)

AddMessageFlow(M.v1, A2.v2, Bi.v1)

+

A1.V1 A2.V1

B1.V1 B2.V1

C.v2: IS

Update

C.v2: FS

M.v1

M.v1

AddInteraction(M.v1, A2.v2, A.v2, null, null, null, Bi.v1, B.v2, ’Parallel’,

  B1.v1, B2.v1)

+

+

Fig. 11. Case #3 and Case #4 for AddInteraction Pattern 

B. DeleteInteraction Pattern

DeleteInteraction is a high-level pattern used to delete a
message and its interaction nodes in an existing collaboration. 
This pattern includes the following low-level primitives, 
briefly introduced in Table 1: 

• DeleteNode(N, P). This primitive uses the AP2 Delete
Process Fragment defined in [30] to remove the
interaction node N from the process P in the current
collaboration. Note that this primitive implements the
following operations of Table 1: -task and -event.

• DeleteMessage(M). This primitive removes the
message M from the current collaboration.

• DeleteMessageFlow(M, sN, rN). This primitive allows
for the removal of the message flow involving the
message M, and the send and receive interaction nodes
sN and rN in the current collaboration.

The DeleteInteraction pattern may be achieved in four 
possible cases: (i) Delete a message and its corresponding 
send and receive nodes, (ii) Delete a message while keeping 
its corresponding send and receive nodes, (iii) Delete a 
message and its corresponding send node and (iv), Delete a 
message and its corresponding receive node.   

1) Case #1: Delete a message and its corresponding send

and receive nodes. In this case, the send and receive nodes of

the deleted message are not part of other message flows of in

the collaboration. So this message and its corresponding send

and receive nodes can be deleted. More precisely, as illustrated

in Fig.12, DeleteMessageFlow(M.V1, A2.V1, B2.V1) allows for the

deletion of the message flow between A2.v1 and B2.v1, while

DeleteNode(A2.V1, A.V2), DeleteNode(B2.V1, B.V2) and

DeleteMessage(M.V1) allow for the deletion of the message and

the nodes involved in the message flow.

2) Case #2: Delete a message and keep its corresponding
send and receive nodes. In this case, the send and receive
nodes of the deleted message are part of other message flows
in the collaboration. Therefore, these nodes have to be kept in
the collaboration. Consequently, only the message and its
corresponding message flow have to be deleted (cf. Fig.12).

3) Case #3 (resp. case #4): Delete a message and its
corresponding send (resp. receive) node. In this case, the send
(resp.receive) node of the deleted message is not part of other
message flows in the collaboration. So the message and its
corresponding send (resp. receive) node have to be deleted,
along with the corresponding message flow (cf. Fig. 12).

C. MoveInteraction Pattern 

MoveInteraction is a high-level pattern used to shift an 
interaction from an initial position to a final one. It can be 
carried out by the combined use of the AddInteraction and 
DeleteInteraction patterns. It can also be defined using the 
following low-level primitives: AddNode, DeleteNode, 
AddMessageFlow and DeleteMessageFlow.  



A
.V

2
B

.V
2

A
.V

1
B

.V
1

A
.V

2
B

.V
2

A
.V

1
B

.V
1

A
.V

2
B

.V
2

A
.V

1
B

.V
1

A
.V

2
B

.V
2

A
.V

1
B

.V
1

Fig. 12. DeleteInteraction Pattern 

The possible options for moving an interaction from an 
initial position to a final one, according to the way the 
interaction is moved are: sequence move, parallel move and 
conditional move. These options are defined both in terms of 
adaptation patterns and low-level primitives. For instance, in 
the first option (sequence move), the following low-level 
primitives are performed: DeleteMessage Flow(M.V1,B1.V1,A1.V1) 
to delete the interaction between tasks B1.v1 and A1.v1, 
DeleteNode(A1.V1,A.V2) and DeleteNode(B1.V1,B.V2) to delete the 
first version of tasks A1 and B1, AddNode(B1.V1, B.V2, 
‘Sequence’, B3.V1, B4.V1, ‘SendTask’) and AddNode(A1.V1, A.V2, 
‘Sequence’, A3.V1, A4.V1, ‘ReceiveTask’) to re-insert B1.v1 and 
A1.v1 into their new positions, and AddMessageFlow(M.V1, 
B1.V1, A1.V1) to re-define the interaction involving M.v1 between 
B1.v1 and A1.v1. Due to a lack of space, Fig. 13 only 
illustrates a sequential move and a parallel move. 

D. ReplaceInteraction Pattern

ReplaceInteraction is a high-level pattern which enables
the replacement of an interaction with another one. Like 
MoveInteraction, this pattern can be carried out by the 
combined use of InsertInteraction and DeleteInteraction 
patterns. In addition, it can also be defined using the following  

Fig. 13. MoveInteraction Pattern 

low-level primitives: AddNode, DeleteNode, AddMessage, 
DeleteMessage, AddMessageFlow and DeleteMessageFlow.  

Fig. 14 hereafter gives an example of the replacement of 
an interaction within a collaboration. In this example, the 
message flow involving M1.v1, A2.v1, and B2.v1 has to be 
replaced with the one involving M2.v1, Y.v1 and X. v1. The 
following low-level primitives are performed: (i) 
DeleteMessageFlow(M1.V1, A2.V1, B2.V1) and Delete 
Message(M1.V1) delete the interaction to be replaced along with 
the first version of the message M1, (ii) DeleteNode(A2.V1, A.V2) 
and DeleteNode(B2.V1, B.V2) delete the first versions of tasks A2 
and B2 respectively from the second version of processes A 
and B, (iii) AddNode(Y.V1, B.V2, ‘Sequence’, B1.V1, B3.V1, 
‘ReceiveTask’) and AddNode(X.V1, A.V2, ‘Sequence’, A1.V1, A3.V1, 
‘SendTask’) insert the first version of tasks X and Y into the 
second version of processes A and B, (iv) AddMessage(M2.v1) 
add the first version of message M2, and finally (v) 
AddMessageFlow(M2.V1, Y.V1, X.V1) define the interaction 
involving M2.v1, Y.v1 and X.v1.  

E. SwapInteraction Pattern

SwapInteraction is a high-level pattern which allows
swapping an interaction for another one. This pattern can be 
defined using MoveInteraction pattern. It can also be defined 
using AddInteraction and DeleteInteraction patterns 
previously introduced, or using the following low-level 
primitives: AddNode, DeleteNode, AddMessageFlow and 
DeleteMessageFlow. 

Fig. 14 gives an example of the SwapInteraction pattern 
allowing the exchange of the interaction involving the 
message M1.v1 sent from B1.v1 to A1.v1 with the interaction 
involving the message M2.v1 sent from B3.v1 to A3.v1. More 
precisely, the following low-level primitives are performed: (i) 
DeleteMessageFlow(M1.V1, B1.V1, A1.V1) and DeleteMessage 
Flow(M2.V1, B3.V1, A3.V1) to delete the message flows from the 
collaboration to swap, (ii) DeleteNode(A1.V1, A.V2), DeleteNode 



Fig. 14. ReplaceInteraction and SwapInteraction Patterns 

(A3.V1, A.V2), DeleteNode(B1.V1, B.V2), and Delete Node(B3.V1, B.V2) 
to delete the nodes involved in this swapping from the 
collaboration, (iii) AddNode(A3.V1, A.V2, ‘Sequence’, null, A2.V1, 
‘ReceiveTask’), AddNode(A1.V1, A.V2, ‘Sequence’, A2.V1, null, 
‘ReceiveTask’), AddNode(B3.V1, B.V2, ‘Sequence’, null, B2.V1, 
‘SendTask’) and AddNode(B1.V1, B.V2, ‘Sequence’, B2.V1, null, 
‘SendTask’) to re-insert the deleted nodes into their new 
positions, and finally (iv) AddMessageFlow(M2.V1, B3.V1, A3.V1) 
and AddMessageFlow(M1.V1, B1.V1, A1.V1) to re-define the 
swapped interactions involving M2.v1, B3.v1 and A3.v1 on 
the one hand and M1.v1, B1.v1 and A1.v1 on the other hand. 

F. ModifyInteraction Pattern

ModifyInteraction is the last adaptation pattern aiming at
updating an interaction by modifying its message and/or its 
interaction nodes. In addition to AddNode and DeleteNode 
primitives previously presented, this pattern includes the 
following low-level primitives: 

• ModifySendNode(M, Ts). This primitive indicates
that the message M is now sent from the interaction
node Ts.

• ModifyReceiveNode(M, Tr).This primitive indicates
that the message M in now received by the interaction
node Tr.

• ModifyMessage (M, Id). This primitive indicates that
the definition of M (property ItemDefinition) is
replaced with Id. Id is the new value defining the
structure and the type of information carried out by M.

Fig. 15 illustrates the different cases for ModifyInteraction, 
enumerating the possible combinations according to the new 
nodes of the interaction: do they already exist or do they have 
to be created? Due to lack of space, we detail only case #1 in 
the following. 

Fig. 15. Cases for ModifyInteraction Pattern 

In case #1, the send node of the updated interaction has to 
be modified. This case may be carried out according to two 
possible sub-cases presented below. 

1) Case #1.1: Replace the send node with an existing one. In
this case, the send node of the updated interaction is replaced
with an existing node. Consequently, it has to be deleted if it is
not part of other message flows (option #1). Otherwise, it has
to be kept (option #2). As illustrated in Fig. 16, the folowing
low-level primitives are performed: Modify SendNode(M.V1,
A1.V2) to specify that M.v1 is now sent from A1.v2 and
DeleteNode(A2.V1, A.V2) to delete the first version of the task A2
into the collaboration.

Fig. 16. Case #1.1 and Case #1.2 for ModifyInteraction Pattern 

2) Case #1.2: Replace the send node with a new one. In this
case, the send node of the updated interaction is replaced with
a new interaction node. Therefore, the new node has first to be
added and the interaction has to be updated subsequently.



Depending on the way the new send node is inserted 
(sequence, parallel or conditional insert), three options have to 
be considered. Due to lack of space, Fig. 16 illustrates two of 
these three options allowing (i) the insertion of the first 
version of the send task Ai in the first version of process A 
and (ii) the insertion of the corresponding message flow 
involving M.v1, Ai.v1 and B2.v1. The first option corresponds 
to a sequential insert of Ai in A, while the second one 
corresponds to a parallel insert. More precisely, if we consider 
a sequential insert, the following low-level primitives are 
performed: (i) AddNode (Ai.V1, A.V2, ‘Sequence’, A1.V1, A2.V1, 
‘SendTask’) for a sequential insert of the first version of the 
task Ai between A1.v1 and A2.v1 and (ii) ModifySendNode 
(M.V1, Ai.V1) for modifying the corresponding message flow and 
defining Ai.v1 as the send task of the message M.v1. 

V. CONCLUSION AND OUTLOOK

This paper has addressed collaborative process flexibility 
issue, which is an important challenge to address in Business 
Process Management area. It has presented BPMN4VC, an 
extension of BPMN using versions to address this issue along 
with a set of 6 adaptation patterns to make the update of 
collaborative process easier.  

More precisely, the paper contributions are the following. 
Firstly, the paper has extended the BPMN2.0 meta-model to 
incorporate version modelling capability and to keep track of 
task, event, message, process and collaboration flexibility. The 
paper has also addressed the dynamic aspects of collaborative 
process version management, defining state charts for process 
versions and corresponding operations (create, update, delete, 
validate and derive operations). Secondly the paper has 
introduced the following collaborative process adaptation 
patterns: AddInteraction, DeleteInteraction, Move Interaction, 
Replace Interaction, SwapInteraction and ModifyInteraction. 
These patterns are high-level primitives used to update 
collaborative process schema considering the organizational, 
informational and behavioural dimensions of collaborative 
processes. They are well-suited for coping with the evolving 
nature of collaborative processes. Thirdly, the paper has 
illustrated the intertwining of the adaptation patterns and the 
versioning operations, taking the state of versions (W: 
working, S: stable) into account. We believe these 
contributions to be a step forward in addressing the flexibility 
of collaborative processes. 

Our future work will take three directions. First, we have 
to evaluate our contributions. To do so, we will implement the 
BPMN4VC-Modeller, a specific tool intended for business 
process designers and which supports the modelling of BPMN 
collaborative process versions and the implementing of the 
dynamic aspects of version management including the 
recommended adaptation patterns. This tool will be used for a 
qualitative and a quantitative evaluation. More precisely, we 
intend to measure the usability (ease of use, 
understandability), and the efficiency (reduce modelling 
efforts) of the BPMN4VC-Modeller to address the 
collaborative process flexibility. A workshop at the University 
of Sfax in Tunisia will be organized for such an evaluation, 
involving graduate and PhD students having knowledge in the 
BPM area. We also intend to verify, from collaborative 

process practical cases, whether the recommended patterns 
cover any changes that may occur. 

Secondly, regarding future works in relation to the notion 
of version, we will incorporate the notion of context in 
BPMN4VC in order to take the explicit definition of 
situations, in which collaborative process versions have to be 
used, into account, as we did for intra-organizational processes 
[29]. In addition, we also have to address the storage of 
versions (taking recommended adaptation patterns into 
account [44]) and the instance migration issues. 

Thirdly, regarding future works in relation to adaptation 
patterns many challenges have to be addressed, in addition to 
their implementation in the BPMN4VC-Modeller. Among 
those identified in [45], we highlight the following ones: 

• Formalization of collaborative process adaptation
patterns, to obtain unambiguous pattern definitions
that will allow their implementation in collaborative
process support systems. This formalization will also
help when using recommended adaptation patterns as
a means for evaluating collaborative process change
support in existing PaIS.

• Correctness of collaborative process schemas after
using the recommended adaptation patterns: in
particular, we have to check whether the compatibility
and consistency properties of the collaborating
business partners are to be kept [46].

• Use of the collaborative process adaptation patterns to
answer the following question: how does the use of
these adaptation patterns influence the modelling of
collaborative process schemas?

VI. REFERENCES

[1] M. Dumas, W. van der Aalst, and A. ter Hofstede, “Process-Aware
Information Systems: Bridging People and Software through Process 
Technology”. Wiley & Sons, 2005. 

[2] M. Weske, “Business Process Management: Concepts, Languages, 
Architectures”. Springer, 2007. 

[3] M. Reichert, and B. Weber, “Enabling Flexibility in Process-Aware 
Information Systems: Challenges, Methods, Technologies”. Springer,
2012. 

[4] M. Rosemann, and W. van der Aalst, “A Configurable Reference 
Modeling Language”. Information Systems, vol. 32, n°1, 2007, pp. 1–23. 

[5] A. Hallerbach, T. Bauer, and M. Reichert, “Capturing Variability in 
Business Process Models: the Provop Approach”. Software 
Maintenance, vol. 22, n°6-7, June 2010, pp. 519–546. 

[6] S. Rinderle, and M. Reichert, “Data-Driven Process Control and 
Exception Handling in Process Management Systems”. Int. Conference 
on Advanced Information System Engineering, Luxembourg, June 2006, 
pp. 273–287. 

[7] M. Adams, A. ter Hofstede, D. Edmond, and W. van der Aalst,
“Dynamic and Extensible Exception Handling for Worklows: A Service-
Oriented Implementation”. Int. Conference on Cooperative Information 
Systems, Vilamoura, Portugal, November 2007, pp. 95–112. 

[8] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. “Workflow Evolution”. Data 
and Knowledge Engineering, vol. 24, n°3, 1998, pp. 211–238. 

[9] P. Kammer, G. Bolcer, R. Taylor, and R. Bergman, “Techniques for 
supporting Dynamic and Adaptive Workflow”. Int. Journal on 
Computer Supported Cooperative Work, vol. 9, n°3/4, 1999, pp. 269–
292. 



[10] M. Kradolfer, and A. Geppert, “Dynamic Workflow Schema Evolution 
based on Workflow Type Versioning and Workflow Migration. Int. 
Conference on Cooperative Information Systems, Edinburgh, Scotland, 
September 1999, pp. 104–114. 

[11] S. Rinderle, M. Reichert, and P. Dadam, “Flexible Support of Team 
Processes by Adaptive Workflow Systems”. Distributed and Parallel 
Databases, vol. 16, n°1, 2004, pp. 91–116. 

[12] X. Zhao, X., and C. Liu, “Version Management in the Business Change 
Context”. Int. Conference on Business Process Management, Brisbane, 
Australia, September 2007, pp. 198–213.

[13] M. Adams, A. ter Hofstede, D. Edmond, and W. van der Aalst,
“Worklets: a Service-Oriented Implementation of Dynamic Flexibility in 
Workflows”. Int. Conference on Cooperative Information Systems, 
Montpellier, France, October 2006, pp. 291–308. 

[14] E.Andonoff, L. Bouzguenda, and C. Hanachi, “Specifying Web
Workflow Services for Finding Partners in the Context of Loose Inter-
organizational Workflow”. Int. Conference on Business Process 
Management, Nancy, France, September 2005, pp. 120–136. 

[15] E. Andonoff, W. Bouaziz, C. Hanachi and L. Bouzguenda., “An Agent-
based Model for Autonomic Coordination of Inter-Organizational 
Business Processes”. Informatica, vol. 20, n°3, September 2009, pp. 
323–342. 

[16] R. Lu, S. Sadiq, and G. Governatori, “On Managing for Business 
Process Variant”. Data and Knowledge Engineering, vol. 68, n°7, 2009, 
pp. 642–664. 

[17] M. Pesic, H. Schonenberg, N. Sidorova, and W. van der Aalst, 
“DECLARE: full support for Loosely-Structured Processes”. Int. 
Conference on Enterprise Distributed Object Computing, Annapolis, 
Maryland, USA, October 2007, pp. 287–300. 

[18] M. Pesic, H. Schonenberg, and W. van der Aalst, “Constraint-based 
Workflow Models: Change made Easy”. Int. Conference on Cooperative 
Information Systems, Vilamoura, Portugal, November 2007, pp. 77–94. 

[19] D. Müller, M. Reichert, and J. Herbst., “Data-driven Modeling and 
Coordination of Large Process Structures”. Int. Conference on 
Cooperative Information Systems, Vilamoura, Portugal, November
2007, pp. 131–149. 

[20] Müller, D., Reichert, M., Herbst, J.: A New Paradigm for the Enactment 
and Dynamic Adaptation for Data-driven Process Structures. 
International Conference on Advanced Information Systems
Engineering, Montpellier, France, June 2008, pp. 48–63. 

[21] W. van der Aalst, M. Weske, and D. Grünbaur, “Case Handling: a New 
Paradigm for Business Process Support”. Int. Journal on Data 
Knowledge Engineering, vol. 53, n°2, 2005, pp.129–162. 

[22] G. Bruno, F. Dengler, B. Jennings, R. Khalaf, S. Nurcan, M. Prilla, M., 
Sarini, M., Schmidt, R., and R. Silva, “Key Challenges for Enabling 
Agile BPM with Social Software. Software Maintenance and Evolution: 
Research and Practice, vol. 23, n°4, June 2011, pp. 297–326. 

[23] M. Döhring, B. Zimmermann, and L. Karg “Flexible Workflows at
Design-time and Run-time using BPMN2 Adaptation Patterns”. Int. 
Conference on Business Information Systems, Poznan, Poland, June 
2011, pp. 25–36. 

[24] R. Angles, P. Ramadour, C. Cauvet, and S. Rodier, “V-BPMI: A 
variability-oriented Framework for web-based Business Processes
Modeling and Implementation”. Int Conference on Research Challenges 
in Information Science, Paris, France, May 2013, pp. 313–323. 

[25] V. Torres, S. Zugal, B. Weber, M. Reichert, C. Ayora, and V. 
Pelechano, “A Qualitive Comparison of Approaches Supporting 
Business Process Variability”. Business Process Management 
Workshops (rBPM), Tallin, Estonia, September 2008, pp. 560–572. 

[26] P. Dadam, and M. Reichert, “The ADEPT Project: a decade of research 
and vevelopment for Robust and Flexible Process Support”. Computer 
Science – R&D, vol. 23, 2009, pp. 81–97. 

[27] MA. Chaâbane, E. Andonoff, L. Bouzguenda, and R. Bouaziz, 
“Versions to Address Business Process Flexibility Issue”. Int. 
Conference on Advances in Databases and Information Systems, Riga, 
Latvia, September 2009, pp. 2–14. 

[28] I. Ben Said, MA. Chaabane, E. Andonoff, and R. Bouaziz, “Extending 
BPMN 2.0 Meta-model for Process Version Modelling”. Int. Conference 

on Enterprise Information Systems, Lisbon, Portugal, April 2014, pp. 
384–393. 

[29] I. Ben Said, MA. Chaabane, E. Andonoff, and R. Bouaziz, “Context-
Aware Adaptive Process Information Systems: The Context-BPMN4V 
Meta-Model”. Int. Conference on Advances in Databases and 
Information Systems, Ohrid, Macedonia, September 2014, pp. 366–382. 

[30] B. Weber, M. Reichert, and S. Rinderle, “Change Patterns and Change 
Support Features – Enhancing Flexibility in Process-Aware Information 
Systems”. Data and Knowledge Engineering, vol. 66, n°3, 2008, pp 
438–466.

[31] W. van der Aalst, “Loosely Coupled Inter-Organizational Workflows:
Modelling and Analysing Workflows Crossing Organizational 
Boundaries”. Information and Management, vol. 37, n°2, 2000, pp. 67–
75. 

[32] I. Chebbi., S. Dustdar and S. Tata, “The View-based Approach to 
Dynamic Inter-Organizational Workflow Cooperation”. Data 
Knowledge Engineering, vol. 56, no. 2, 2006, pp. 139–173. 

[33] J. Meng, S. Su, H. Lam, A. Helal, J. Xian, X. Liu and S. Yang, 
“DynaFlow: a Dynamic Inter-Organisational Workflow Management 
System”. Business Process Integration and Management, vol. 1, n°2, 
2006, pp. 101–115. 

[34] E. Andonoff and L. Bouzguenda, “Agent-Based Negotiation between
Partners in Loose Inter-Organizational Workflow”. Int. Conference on 
Intelligent Agent Technology, Compiègne, France, September 2005, pp. 
619–625. 

[35] W. Bouaziz, and E. Andonoff, “Autonomic Protocol-based Coordination 
in Dynamic Inter-Organizational Workflow”. Int Conference on 
Research Challenges in Information Science, Paris, May 2013, pp. 555–
566. 

[36] S. Boukhedouma, M. Oussalah, Z. Alimazighi, and D. Tamzalit, 
“Adaptation patterns for Service-based Inter-Organizational 
Workflows”. Int. Conference on Research Challenges in Information 
Science, Paris, France, May 2013, pp. 567–576. 

[37] S. Boukhedouma, M. Oussalah, Z. Alimazighi, and D. Tamzalit, 
“Flexible Loosely Coupled Inter-Organizational Workflows using 
SOA”. Int. Conference on Computer Systems and Applications, Ifrane,
Morocco, May 2013, pp. 1–8. 

[38] D. Domingosa , R. Martinhoa, and C. Cândidoa, ”Flexibility in cross-
organizational WS-BPEL Business Processes”. Procedia Technology, 
vol. 9, 2013, pp. 584–595. 

[39] W. Fdhila, A. Baouab, K. Dahman, C. Godart, O. Perrin, and F. Charoy,
“Change Propagation in Decentralized Composite Web Services”. Int. 
Conference on Collaborative Computing: Networking, Applications and 
Worksharing. Orlando, Florida, USA, October 2011, pp. 508–511. 

[40] W. Fdhila, S. Rinderle-Ma, and M. Reichert, “Change Propagation in 
Collaborative Processes Scenarios“. Int. Conference on Collaborative 
Computing: Networking, Applications and Worksharing. Pittsburg, 
Pennsylvania, USA, October 2012, pp. 452–461. 

[41] W. Fdhila, C. Indiono, S. Rinderle-Ma, and M. Reichert, “Dealing with 
Change in Process Choreographies: Design and Implementation of 
Propagation Algorithms“. Information Systems, vol. 49, 2015, pp. 1–24. 

[42] OMG,. Business Process Model and Notation (BPMN) Version 2.0. 
OMG Document Number: formal/2011-01-03, available at: 
http://www.omg.org/spec/BPMN/2.0, 2011. 

[43] E. Andonoff, G. Hubert, A. Le Parc, and G. Zurfluh, “Integrating 
Versions in the OMT Models”. Int. Conference on Conceptual 
Modeling, Cottbus, Germany, October 1996, pp. 472–487. 

[44] J. Kuster, C. Gerth, and G. Engels. “Dynamic Computation of Change 
Operations in Version Management of Business Process Models”. Int. 
Conference on Model Driven architecture – Foundations and 
Applications, Paris, France, June 2010, pp. 201–216. 

[45] M. Reichert, and B. Weber, “Process Change Patterns: Recent Research, 
Use Cases, Research Directions”. Seminal Contributions to Information 
Systems Engineering, 2013, pp. 397–404. 

[46] G. Decker, and M. Weske, “Behavioral Consistency for B2B Process
Integration”. Int. Conference on Advanced Information Systems 
Engineering, Trondheim, Norway, June 2007, pp.81–95. 


