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Abstract

The present work concerns the derivation of a well-balanced scheme to

approximate the weak solutions of the shallow-water model. Here, the nu-

merical scheme exactly captures all the smooth steady solutions with non-

vanishing velocities. To address such an issue, a Godunov-type scheme

is adopted. A particular attention is paid on the derivation of the inter-

mediate states within the approximate Riemann solver. Indeed, because

of the moving steady states, the intermediate states may be ill-defined.

Here, we introduce a suitable correction in order to get a fully well-defined

finite volume scheme. In addition, the numerical method is established

to be positive preserving and to satisfy a discrete entropy inequality up

to small perturbations. Several numerical experiments, including wet/dry

transition, illustrate the relevance of the designed scheme.
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1 Introduction

The present works is devoted to the numerical approximation of the solutions of the
well-known shallow-water system given as follows:

∂th+ ∂xhu = 0, x ∈ R, t > 0,

∂thu+ ∂x

(
hu2 + g

h2

2

)
= −gh∂xz,

(1)

where h(x, t) ≥ 0 stands for the water height and u(x, t) ∈ R denotes the water
velocity. Here, g > 0 is the gravitational constant and z(x) is a given smooth
function to represent the bottom topography. For the sake of simplicity in the
forthcoming notations, we set

w =

(
h
hu

)
, f(w) =

 hu

hu2 + g
h2

2

 and S(w, z) =

(
0

−gh∂xz

)
.

In addition, we introduce Ω ⊂ R2 the set of physical admissible states given by

Ω = {w ∈ R2; h > 0, u ∈ R}.

At this level, we do not consider the dry areas and we have imposed h > 0. However,
the derived scheme will be seen relevant to deal with wet/dry transitions. Since the
first-order extracted system is knows to be hyperbolic, in a finite time, the solution
may contain discontinuities governed by the Rankine-Hugoniot conditions [14,27,28].
In order to rule out nonphysical solutions, the system (1) must be endowed with an
entropy inequality defined by

∂tη(w) + ∂xG(w) ≤ −ghu∂xz, (2)

where both entropy function η : Ω → R and entropy flux function G : Ω → R are
given by

η(w) = h
u2

2
+ g

h2

2
and G(w) =

(
u2

2
+ gh

)
hu. (3)

Now, considering the numerical approximation of the solution of the system (1),
after the pioneer works by Bermudez [2] and Greenberg-LeRoux [18] (for instance,
see also Gosse [16] or Jin [21]), the steady solutions must be accurately approximate
to ensure the relevance of the designed scheme. These solutions of particular interest
are governed by the following system:

∂x(hu) = 0,

∂x

(
hu2 + g

h2

2

)
= −gh∂xz.

(4)

After direct computations, the smooth steady solutions are defined by
∂x(hu) = 0,

∂x

(
u2

2
+ g(h+ z)

)
= 0.
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Figure 1: Numerical approximation of the lake at rest obtained by adopting an HLL
first-order scheme [20] supplemented with a centred discretization of the source term.

As a consequence, for any given constant pair (Q,B) ∈ R2, the smooth steady
solutions are characterized by the two following relations:

hu = Q,

u2

2
+ g(h+ z) = B.

(5)

For the sake of simplicity in the forthcoming developments, we set

B(w, z) =
u2

2
+ g(h+ z). (6)

During the two last decades, numerous works are devoted to the derivation of nu-
merical schemes to approximate the weak solutions of (1) and able to accurately
capture the steady solutions. Indeed, after [2, 17–19], if steady solutions are not
correctly captured, the approximation may involve huge errors for large time (see
Figure 1 for an illustration).

Since (5) turns out to be nonlinear, several works only consider the lake at rest
steady states defined by u = 0 and a constant free surface h + z. For instance
the reader is referred to the well-known hydrostatic reconstruction introduce by
Audusse and al. [1] (see also [6]). Such an easy technique has been adopted in lot
of situations and the preservation of the lake at rest is now very usual to develop
well-balanced scheme (see [5,7,9,10] for a non exhaustive list of references). Since (5)
may admit one, two or three solutions according to the choice of the pair (Q,B) ∈
R×R+, it is clear that the derivation of a scheme able to capture all smooth steady
solutions is a very challenging. In [16], the nonlinear system (5) is solved at each
interface to get a fully well-balanced scheme able to exactly capture all the smooth
steady solutions (moving and non moving). Next, in [8], the authors proposed a
suitable extension of the hydrostatic reconstruction in order to deal with moving
steady solutions. Unfortunately, this generalized hydrostatic reconstruction does
not preserve the water height non negative. Several works by Xing [24, 30, 31] (see
also [25, 26]) proposed relevant extensions of the high order discontinuous Galerkin
method to preserve all the steady states solutions of (5).

International Journal on Finite Volumes 3
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More recently, in [3], a Godunov-type scheme is derived in order to introduce
the source term within the approximate Riemann solver. They got a positive and
entropy preserving scheme which exactly capture all the smooth steady solutions.
Unfortunately, once again, a strongly non linear equation must be solved at each
interface.

Next, in [22,23], a relevant linearization of the Godunov-type scheme is designed
to get a positive preserving fully well-balanced scheme. From now on, we underline
that this numerical technique exactly capture all the steady solutions without solving
(5), which make very attractive such a scheme. However, the obtained topography
source term discretization involves some difficulties. Indeed, in [22, 23], the source
term is approximated at each interface as follows:

(h∂xz)
n
i+1/2 =

hni h
n
i+1

(hni + hni+1)/2
× zi+1 − zi

∆x
+

1

2(hni + hni+1)
×

[h]3i+1/2

∆x
, (7)

where

[h]i+1/2 =

{
hni+1 − hni if |hni+1 − hni | ≤ C∆x,

C∆x otherwise.
(8)

Here, the definition of the constant C remains open. Moreover, we remark that,
with a flat topography, the source term is given by O(∆x2) instead of zero. In
addition, the adopted linearization introduces a perturbation within the definition
of the numerical flux function given by

(h∂xz)
n
i+1/2

g
hni +hni+1

2 − (q2i +q2i+1)/2

hni h
n
i+1

∆x. (9)

Such a perturbation is necessary to recover the exact capture of the moving steady
states. But we note that this needed above perturbation may be undefined as soon
as we have

g
hni + hni+1

2
=

(qni )2 + (qni+1)2

2hni h
n
i+1

. (10)

This failure is underlined in [22,23], but the authors claimed that the equality (10)
never holds during the numerical experiments. However, it seems that this lack of
consistency may produce numerical errors as illustrated in Figure 2.

The objective of the present paper is twofold. First, we propose a new source term
discretization which is naturally consistent without involving some cutoff technique
as introduce in (7)-(8). Next, the fully well-balanced perturbation (9) is improved
in order to get a well-defined numerical method. In addition, the resulting fully
well-balanced scheme must be water positive preserving and entropy preserving in
a sense to be prescribed.

To address such an issue, the paper is organized as follows. In the next section,
we design the Godunov-type scheme with source term. Such a scheme comes form
a suitable definition of the approximate Riemann solver. After [3,22,23], the mains
novelty here stays in the introduction of the source term in the definition of the
approximate Riemann solver. The next section, is devoted to design a relevant ap-
proximation of the source term to be put within the approximate Riemann solver.
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(a) (b)

(c) (d)

Figure 2: Figure (a) displays the free surface for a transcritical flow with shock test
case obtained by the scheme introduced in [22, 23]. In (b), we present a zoom of
the spurious perturbation of the water height produced by the ill-posed quantity

P = g
hni +hni+1

2 − (qni )2+(qni+1)2

2hni h
n
i+1

. In order to illustrate the failure of this method, in

(c) and (d), we respectively present the behavior of the water height and ill-posed
quantity P. We remark that P vanishes and produces the spurious perturbation.
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Here, we impose to the source term approximation to be fully consistent in order to
avoid some cutoff technique. The fourth section concerns the complete derivation
of the approximate Riemann solver. A suitable improvement is adopted to get a
well defined fully well-balanced scheme. Next, in Section 5, we exhibit the main
properties satisfied by the derived scheme. In the last section, several numerical ap-
proximations, including wet/dry transition, illustrate the relevance of the proposed
scheme.

2 Godunov-type schemes for shallow-water with source
term

To approximate the solution of (1), we first introduce a space discretization made of
cells (xi−1/2, xi+1/2) with a constant size ∆x. Then, we have xi+1/2 = xi−1/2 + ∆x
for all i ∈ Z and we denote xi = xi−1/2 + ∆x/2 the cell center. Considering the
time discretization, we set tn+1 = tn + ∆t where the time increments ∆t must be
restricted according to a CFL-like condition.

At time tn, we assume known a constant piecewise approximation of the solution
of (1) as follows:

wn∆(x, t = 0) = wni if x ∈ (xi−1/2, xi+1/2).

We research for an updated approximation of the solution at time tn+1 = tn + ∆t.
To address such an issue, after [15,20,28], the updated state wn+1

i is given by

wn+1
i =

1

∆x

∫ xi+1/2

xi−1/2

wn∆(x,∆t) dx, (11)

where wn∆(x, t) stands for the juxtaposition of non-interacting approximate Riemann
solvers stated at each interface xi+1/2 as follows:

wn∆(x, t) = w̃R

(
x− xi+1/2

t
;wni , w

n
i+1, zi, zi+1

)
if (x, t) ∈ (xi, xi+1)× (0,∆t).

Here, w̃R
(
x
t ;wL, wR, zL, zR

)
denotes a suitable approximation of Riemann solution

of (1) associated with the initial data

(w, z)(x, t = 0) =

{
(wL, zL) if x < 0,

(wR, zR) if x > 0.
(12)

According to [20], the approximate Riemann solver has to satisfy the following in-
tegral consistency condition:

1

∆x

∫ ∆x/2

−∆x/2
w̃R(

x

t
;wL, wR, zL, zR) dx =

1

∆x

∫ ∆x/2

−∆x/2
wR(

x

t
;wL, wR, zL, zR) dx,

(13)

International Journal on Finite Volumes 6
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where wR(xt ;wL, wR, zL, zR) is nothing but the exact solution of the Riemann prob-
lem for (1) associated with the initial data (12). Now, since the system (1) under
consideration contains a source term, the average of the exact Riemann solution is
not reachable. Indeed, as long as ∆t is small enough such that

wR

(
−∆x/2

∆t
;wL, wR, zL, zR

)
= wL and wR

(
∆x/2

∆t
;wL, wR, zL, zR

)
= wR,

the integration of (1) over the domain (−∆x/2,∆x/2)×(0,∆t), after straightforward
computation, reads

1

∆x

∫ ∆x/2

−∆x/2
wR(

x

t
;wL, wR, zL, zR) dx =

1

2
(wL + wR)− ∆t

∆x
(f(wR)− f(wL))

− g

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
(̃h∂z)R(

x

∆t
, wL, wR, zL, zR) dx.

(14)

Because of the source term integral, which must be defined in a prescribed sense, the
expected average of the exact Riemann solution is, a priori, not correctly defined.
As a consequence, we suggest to introduce S̄LR to approximate this integral (for
instance, see [11,12]). Hence, we impose the approximate Riemann solver to satisfy,
instead of (13), the following approximated consistency condition:

1

∆x

∫ ∆x/2

−∆x/2
w̃R(

x

t
;wL, wR, zL, zR) dx =

1

2
(wL + wR)− ∆t

∆x
(f(wR)− f(wL)) + ∆tS̄LR,

(15)

where S̄LR = S̄LR(wL, wR, zL, zR) must be defined according to a consistent dis-
cretization of (0,−gh∂xz)T . Now equipped with the approximate Riemann solver
w̃R( x

∆t ;wL, wR, zL, zR), the updated state wn+1
i , can be reformulate in a standard

finite volume formulation. Indeed, from (11) we easily get

wn+1
i =

1

∆x

∫ xi

xi−1/2

w̃R

(
x− xi−1/2

∆t
;wni−1, w

n
i , zi−1, zi

)
dx+

1

∆x

∫ xi+1/2

xi

w̃R

(
x− xi+1/2

∆t
;wni , w

n
i+1, zi, zi+1

)
dx.

According to the interface location xi+1/2, we adopt a change of variable, given by
x→ x− xi+1/2, to obtain

1

∆x

∫ xi+1/2

xi

w̃R

(
x− xi+1/2

∆t
;wni , w

n
i+1, zi, zi+1

)
dx =

1

∆x

∫ 0

−∆x/2
w̃R

( x

∆t
;wni , w

n
i+1, zi, zi+1

)
dx

1

∆x

∫ xi+1

xi+1/2

w̃R

(
x− xi+1/2

∆t
;wni , w

n
i+1, zi, zi+1

)
dx =

1

∆x

∫ ∆x/2

0
w̃R

( x

∆t
;wni , w

n
i+1, zi, zi+1

)
dx.

International Journal on Finite Volumes 7
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For the sake of simplicity in the notations, we set

I−i+1/2 =
1

∆x

∫ 0

−∆x/2
w̃R

( x

∆t
;wni , w

n
i+1, zi, zi+1

)
dx, (16)

I+
i+1/2 =

1

∆x

∫ ∆x/2

0
w̃R

( x

∆t
;wni , w

n
i+1, zi, zi+1

)
dx, (17)

so that the updated state wn+1
i immediately rewrites as follows:

wn+1
i = I+

i−1/2 + I−i+1/2,

=
1

2

(
I−i−1/2 + I+

i−1/2

)
+

1

2

(
I−i+1/2 + I+

i+1/2

)
+

1

2

(
I+
i−1/2 − I

−
i−1/2

)
+

1

2

(
I−i+1/2 − I

+
i+1/2

)
.

Since, for all i ∈ Z

1

2

(
I−i+1/2 + I+

i+1/2

)
=

1

∆x

∫ ∆x/2

−∆x/2
w̃R

( x

∆t
;wni , w

n
i+1, zi, zi+1

)
dx,

arguing the consistency condition (15), we obtain

wn+1
i = wni −

∆t

∆x

(
f∆(wni , w

n
i+1, zi, zi+1)− f∆(wni−1, w

n
i , zi−1, zi)

)
+

∆t

2

(
S̄i+1/2 + S̄i−1/2

)
, (18)

with the numerical flux function given by

f∆(wR, wL, zL, zR) =
1

2
(f(wR) + f(wL))− ∆x

4∆t
(wR − wL) +

∆x

2∆t

(
I+
LR − I

−
LR

)
,

where

I+
LR =

1

∆x

∫ ∆x/2

0
w̃R

( x

∆t
;wL, wR, zL, zR

)
dx,

I−LR =
1

∆x

∫ 0

−∆x/2
w̃R

( x

∆t
;wL, wR, zL, zR

)
dx.

Concerning the source term discretization, with clear notations, we have

S̄i+1/2 := S̄LR(wni , w
n
i+1, zi, zi+1),

where S̄LR is introduce in (15). The presentation of the Godunov-type scheme with
source term is then achieved. Now, the full scheme derivation will be completed as
soon as the approximate Riemann solver w̃R(x/∆t;wL, wR, zL, zR) and the source
term approximation S̄LR(wL, wR, zL, zR) are characterized.

International Journal on Finite Volumes 8
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3 Discretization of the source term

In this section, the local approximation of the source term S̄LR(wL, wR, zL, zR),
stated at each interface, is defined in order to preserve the stationary solutions.
First, according to (5), a locally smooth steady solution is defined as follows:

hLuL = hRuR, B(wL, zL) = B(wR, zR) and ‖wR −wL‖ = o(|zR − zL|), (19)

where B(w, z) is given by (6). As a consequence, S̄LR must be fixed such that
w̃R(x/∆t;wL, wR, zL, zR) remains stationary; namely

w̃R(x/∆t, wL, wR, zL, zR) =

{
wL if x < 0,

wR if x > 0.
(20)

as soon as (wL, wR, zL, zR) satisfies (19). Now, let us underline that the integral
consistency condition (15), for smooth steady solution in the form (20), rewrites as
follows:

∆xS̄LR = f(wR)− f(wL).

Since (wL, wR, zL, zR) are given according (19), with S̄LR = (S̄hLR, S̄
q
LR)T , we get

∆xS̄hLR = 0,

∆xS̄qLR = (hRu
2
R + g

h2
R

2
)− (hLu

2
L + g

h2
L

2
). (21)

Since the evolution equation of the water height does not contain source term, we
fix S̄hLR = 0. We focus our attention on S̄qLR and we have to design this quantity in
order to be consistent with the topography source term −gh∂xz and such that (21)
holds as soon as (wL, wR, zL, zR) defines a local steady solution (19). To address
such an issue, we now state a necessary condition to be satisfied by S̄qLR.

Lemma 3.1 Let us introduce

F̄ 2
r =

q2
0h̄

gh2
Lh

2
R

, where h̄ =
1

2
(hL + hR) and q0 = hLuL = hRuR, (22)

an approximation of the well-known Froude number. As soon as F̄r 6= 1 and
(wL, wR, zL, zR) are steady states according to (19), the identity (21) reformulates
as follows:

∆xS̄qLR = −gh̄(zR − zL) +
q2

0

4h2
Lh

2
R

× (hR − hL)(zR − zL)2

(1− F̄ 2
r )2

. (23)

From now on, we remark that (23) immediately gives a consistent definition of S̄qLR.
Indeed, for smooth enough topography function, we have

lim
∆x→0

(zR − zL)2

∆x
= 0,

International Journal on Finite Volumes 9
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to ensure that S̄qLR is consistent with −gh∂xz. However, this relevant definition of
S̄qLR must be improved in order to deal with F̄r = 1. Now, we establish the above
lemma.

Proof With q0 = hLuL = hRuR, the relation (21) easily rewrites

∆xS̄qLR = q0

(
1

hR
− 1

hL

)
+ gh̄(hR − hL),

to get

∆xS̄qLR =

(
gh̄− q2

0

hLhR

)
(hR − hL). (24)

Now, since we have B(wL, zL) = B(wL, zL) with B(w, z) given by (6), we have

q2
0

2h2
L

+ g(hL + zL) =
q2

0

2h2
R

+ g(hR + zR),

to obtain

(hR − hL) + (zR − zL) =
q2

0

2g
×
h2
R − h2

L

h2
Lh

2
R

.

We introduce F̄r, defined by (22), to write the above relation as follows:

hR − hL = −zR − zL
1− F̄ 2

r

. (25)

Next, we plug the above water height jump into (24) to have

∆xS̄LR = −gh̄×

(
1− q20

ghLhRh̄

)
(
1− F̄ 2

r

) × (zR − zL), (26)

which rewrites as follows:

∆xS̄LR = −gh̄(zR − zL)− q2
0

4h2
Lh

2
R

× (hL − hR)2

1− F̄ 2
r

∆z. (27)

The expected identity (23) is obtained by introducing (25) into (27). The proof is
then completed. �

In order to propose a suitable correction within (23) to get a well-defined dis-
cretization of the source term, we exhibit the behavior of (23) in the limit of F̄r to
1.

Lemma 3.2 Let us consider (wL, wR, zR, zL) according to (19) so that S̄qLR is given
by (23). Then we have

lim
F̄r→1

S̄qLR = O(∆x2).

Proof Since (wL, wR, zL, zR) is given according (19), then the relation (25) holds
and we easily reformulate (23) as follows:

∆xS̄qLR = gh̄(hR − hL)(1− F̄ 2
r ) +

gF̄ 2
r

4h̄
(hR − hL)3,

International Journal on Finite Volumes 10



A moving steady states capturing Godunov-type scheme for Shallow-water model

to immediately obtain the following limit

lim
F̄ 2
r→1

S̄qLR =
g

4h̄

(hR − hL)3

∆x
. (28)

First, as soon as the water height is a smooth solution, we have hR − hL = O(∆x)
and the proof is achieved. Next let us show that, in the limit of F̄r to 1, necessarily
the approximated water height is smooth and then hR − hL = O(∆x). Indeed, let
us assume wL and wR be connected by a stationary shock solution. Because of the
Rankine-Hugoniot relations (see [27]), since the shock velocity is equal to 0, we have

qL = qR = q0,(
q2
R

hR
+ g

h2
R

2

)
−
(
q2
L

hL
+ g

h2
L

2

)
= 0,

so that we obtain

(hR − hL)gh̄

(
1− q2

0

gh̄hLhR

)
= 0, (29)

where h̄ is defined by (22). With hL 6= hR, from (29), it comes
q20

gh̄hLhR
= 1. In the

limit of Fr to 1, with F̄r given by (22), we get

q2
0

gh̄hLhR
=

q2
0h̄

gh2
Lh

2
R

,

to obtain hL = hR in contradiction with hL 6= hR. As a consequence, in the limit of
F̄r to 1, we always have hR − hL = O(∆x). The proof is then completed. �

In fact, the above result states that the discretization (23) is well-defined for
all values of F̄r as long as the local equilibrium condition (19) is satisfied. As a
consequence, (23) must be improved in order to be well-defined for all values of F̄r
with left and right states not verifying a local steady solution (19). We now suggest
an improvement in order to get a formula well-defined for all values of F̄r. In the
present work, we propose the following discretization of the topography source term

∆xS̄qLR = −gh̄(zR − zL) +
q2

4h2
Lh

2
R

× (hR − hL)(zR − zL)2

(1− F̄ 2
r )2 + εLR∆xk

, (30)

where k > 0 is a parameter to be fixed and

q2 = |qLqR|, εLR =
√
|B(wR, zR)− B(wL, zL)|+ |qR − qL|. (31)

From now on, we note that εLR = 0 if and only if (wL, wR, zL, zR) define a lo-
cal steady solution according to (19). As a consequence, the suggested discretiza-
tion (30) satisfy the necessary condition (23) for local steady solution. Moreover,
the discretization (30) is well-defined for all values of F̄r. Indeed, as long as,
the local equilibrium, given by (19), is satisfied, arguing Lemma 3.2 the source
term discretization is well-defined as expected. Next, for non-steady states, since
(1 − F̄ 2

r )2 + εLR∆xk 6= 0, once again (30) is well-defined for all values of F̄r. Of
course, since the correction is given by εLR∆xk, the consistency property of S̄qLR is
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preserved. Moreover, according to the continuous extension argument given Lemma
3.2, we impose S̄qLR = 0 if we have simultaneously F̄r = 1 and εLR = 0.

Now, concerning the value of k > 0, let us underline a specific behavior of S̄qLR
with F̄r = 1 but far away from local equilibrium. Indeed, enforcing F̄r = 1, we have

S̄qLR = −gh̄(zR − zL)

∆x
+

q2

4h2
Lh

2
R

× (hR − hL)(zR − zL)2

εLR
∆x−1−k,

since the topography function is smooth, we have zR − zL = O(∆x) so that

S̄qLR = −gh̄(zR − zL)

∆x
+

(hR − hL)

εLR
O(∆x1−k).

Next, we have εLR = O(∆x1/2) with smooth enough solutions. Then we obtain

S̄qLR = −gh̄(zR − zL)

∆x
+O(∆x

3
2
−k).

As a consequence, we fix k = 1
2 .

4 Approximate Riemann solver

To complete the characterisation of the numerical scheme (18), we now have to
define a suitable approximate Riemann solver w̃R(x/t;wL, wR, zL, zR) according to
the integral consistency condition (15) where the source term approximation S̄LR =
(0, S̄qLR)T is defined by (30). In the present work, we adopt an approximate Riemann
solver made of two intermediate constant states, w∗L and w∗R, as follows:

wR(x/t; vL, vR) =


wL if x

t < λL,
w∗L if λL <

x
t < 0,

w∗R if 0 < x
t < λR,

wR if x
t > λR,

(32)

where λL < 0 and λR > 0 denote the discontinuity propagation speed. As usual
(see [20,29]), we impose

λL ≤ min(−|uL| −
√
ghL,−|uR| −

√
ghR),

λR ≥ max(|uL|+
√
ghL, |uR|+

√
ghR),

so that the cone defined by λL ≤ x
t ≤ λR contains the exact cone coming from

the exact Riemann solution associated with the initial data (12). Now, the integral
consistency condition (15) reads as follows:

λL(h∗L − hL) + λR(hR − h∗R) = qR − qL, (33)

λL(q∗L − qL) + λR(qR − q∗R) =(
hRu

2
R +

1

2
gh2

R

)
−
(
hLu

2
L +

1

2
gh2

L

)
+ ∆xS̄qLR. (34)
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For the sake of simplicity in the notations, let us introduce (see [20])

hHLL =
λRhR − λLhL
λR − λL

− qR − qL
λR − λL

, (35)

qHLL =
λRqR − λLqL
λR − λL

− 1

λR − λL

((
hRu

2
R +

1

2
gh2

R

)
−
(
hLu

2
L +

1

2
gh2

L

))
. (36)

Then, both relations (33) and (34) reformulate as follows:

λRh
∗
R − λLh∗L = (λR − λL)hHLL, (37)

λRq
∗
R − λLq∗L = (λR − λL)qHLL + ∆xS̄qLR. (38)

Let us emphasize that the full determination of w̃R is achieved as soon as the two
intermediate states, (h∗L, q

∗
L) and (h∗R, q

∗
R), are fixed. As a consequence, we have

to define four values while, at this level, we have two equations (37) and (38).
Clearly, two relations are missing. We must also preserve the steady states. Hence,
we formally adopt the local steady state definition (19) to propose suitable closure
relations. First, we note that the discharge must be constant to define a steady state.
Then, concerning the intermediate discharge we adopt the following equalities:

q∗L = q∗R = q∗. (39)

Because of (38), the intermediate discharge is then given by

q∗ = qHLL +
∆xS̄qLR

(λR − λL)
. (40)

Now, concerning the evaluation of the intermediate water heights, h∗L and h∗L, we
have the equation (37) to be supplemented with an additional relation such that the
pair (h∗L, h

∗
R) is solution of (2 × 2) system. Our objective is to propose a relevant

additional equation such that h∗L = hL and h∗R = hR is the unique solution as soon
as (wL, wR, zL, zR) verifies (19). For instance, in [3], the expected second equation
is given by B(w∗L, zL) = B(w∗R, zR). But such a choice involves strong nonlinearities.
After [22, 23], this nonlinear system can be substituted by a linear system which
preserve all the required properties. In [22, 23], the authors adopt the following
additional relation:

h∗R − h∗L =
∆xS̄qLR
αLR

, (41)

where

αLR = gh̄− q2

hLhR
, (42)

where q2 is defined by (31). The 2× 2 linear system made of (37) and (41) does not
admit a unique solution as long as q2 = gh̄hLhR. As a consequence, we suggest the
following improvement:

h∗R − h∗L =
αLR∆xS̄qLR

α2
LR + εLR∆xk

. (43)
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At the main discrepancy with (41), we remark that the right hand side in (43)
is well-defined. Indeed, if α2

LR + εLR∆xk = 0, necessarily we have αLR = 0 and
εLR = 0. But εLR = 0 holds if and only if (19) is satisfied. Then, according to (24),
we have ∆xS̄qLR = αLR(hR − hL), and as a consequence, we get

lim
αLR,εLR→0

αLR∆xS̄qLR
α2
LR + εLR∆xk

= hR − hL. (44)

To conclude, h∗L and h∗R are given as solution of the 2×2 linear system made of (37)
and (43). The solution is directly given by

h∗L = hHLL +
λR∆xS̄qLRαLR

(λR − λL)(α2
LR + εLR∆xk)

, (45)

h∗R = hHLL +
λL∆xS̄qLRαLR

(λR − λL)(α2
LR + εLR∆xk)

. (46)

However, such an evaluation of the intermediate water heights does not ensure the
required positiveness of h∗L and h∗R. Here, we adopt a positive cutoff introduce in [3]
(see also [4, 22,23]). As a consequence, h∗L and h∗R are corrected as follows:

h∗L = min

(
max

(
hHLL +

λR∆xS̄qLRαLR

(λR − λL)(α2
LR + εLR∆xk)

, σ

)
,(

1− λR
λL

)
hHLL +

λR
λL
σ

)
(47)

h∗R = min

(
max

(
hHLL +

λL∆xS̄qLRαLR

(λR − λL)(α2
LR + εLR∆xk)

, σ

)
,(

1− λL
λR

)
hHLL +

λL
λR

σ

)
(48)

where σ = min(hL, hR, h
HLL).

Now, let us remark that hHLL > 0 as long as the exact water height Riemann
solution hR remains positive. Moreover, by definition of σ, we have σ − hHLL ≤ 0.
Since λL < 0 < λR then we get(

1− λR
λL

)
hHLL +

λR
λL
σ = hHLL +

λR
λL

(
σ − hHLL

)
> 0,(

1− λL
λR

)
hHLL +

λL
λR

σ = hHLL +
λL
λR

(
σ − hHLL

)
> 0.

As a consequence, we immediately get h∗L > 0 and h∗R > 0.
In addition to this positiveness statement, it is worth noticing that the proposed

water height cut-off correction preserves the conservation since the relation (37), or
equivalently (33), always is satisfied. To establish (37), for the sake of simplicity in
the notations, let us set

ΣLR =
λLλR∆xS̄qLRαLR

(λR − λL)(α2
LR + εLR∆xk)

,
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so that we have

λRh
?
R − λLh?L = min

(
max

(
λRh

HLL + ΣLR, λRσ
)
, (λR − λL)hHLL + λLσ

)
+ min

(
max

(
−λLhHLL − ΣLR,−λLσ

)
, (λR − λL)hHLL − λRσ

)
.

The above quantity is easily evaluated by comparing ΣLR, λR(σ−hHLL) and λL(σ−
hHLL). Indeed, let us first assume

λR(σ − hHLL) < ΣLR < λL(σ − hHLL). (49)

Then we get

max
(
λRh

HLL + ΣLR, λRσ
)

= λRh
HLL + ΣLR,

max
(
−λLhHLL − ΣLR,−λLσ

)
= −λLhHLL − ΣLR.

Moreover, we easily notice that the assumption (49) imposes

λRh
HLL + ΣLR ≤ (λR − λL)hHLL + λLσ,

− λLhHLL − ΣLR ≤ (λR − λL)hHLL − λRσ,

to recover the conservation relation (37).
Now, let us assume

ΣLR < λR(σ − hHLL) < λL(σ − hHLL), (50)

to get

max
(
λRh

HLL + ΣLR, λRσ
)

= λRσ,

max
(
−λLhHLL − ΣLR,−λLσ

)
= −λLhHLL − ΣLR.

In addition, according to (50), from a direct evaluation, we obtain

λRσ ≤ (λR − λL)hHLL + λLσ,

− λLhHLL − ΣLR ≥ (λR − λL)hHLL − λRσ,

and once again we recover the expected relation (37). We here skip the last assump-
tion λR(σ−hHLL) < λL(σ−hHLL) < ΣLR since the establishment of (37) is similar
to the above case with (50).

The definition of the approximate Riemann solver (32) is now achieved. To
conclude this section, we establish that the approximate Riemann solver preserves
the steady solutions.

Lemma 4.1 Let wL and wR be given in Ω. Consider the approximate Riemann
solver in the form (32) where the intermediate states are given by (40), (47) and
(48). If (wL, wR, zL, zR) satisfy the local steady state condition (19) with F̄r 6= 1,
then the approximate Riemann solver stays at rest, namely we have

w̃R(x/∆t;wL, wR, zL, zR) =

{
wL if x < 0

wR if x > 0.
(51)
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Proof Since the local steady condition (19) is satisfied, the topography source term,
given by (30), reads

∆xS̄qLR = −gh̄(zR − zL)− q2

4h2
Lh

2
R

× (hL − hR)(zR − zL)2

(1− F̄ 2
r )2

,

where q = qL = qR. As long as F̄r 6= 1, arguing Lemma 3.1, S̄qLR is now given by
(21). Then, from (40), straightforward computations gives q∗ = q, and then the
discharge is stationary. Concerning the intermediate water height, since the local
steady condition (5) is verified, we have the following equality:

hHLL −
λL,R

λR − λL
∆xS̄qLR

αLR
α2
LR + εLR∆xk

=
1

2
(hL + hR)−

λL,R
λR − λL

∆xS̄qLR
αLR

,

where αLR is given by (42). For the sake of simplicity in the notations, we have set
λL,R = λL or λR. With αLR 6= 0, since the relation (24) holds, we directly obtain

hHLL −
λL,R

λR − λL
∆xS̄qLR

αLR
α2
LR + εLR∆xk

= hL,R.

Then according to (47) and (48), we easily obtain h∗L = hL and h∗R = hR, and the
proof is achieved. �

5 Main properties of the scheme

Equipped with the approximate Riemann solver (32), where the intermediate states
are given by (40), (47) and (48), supplemented with the source term discretization
(30), then the scheme (18) is fully determined. Now, we state the main properties
satisfied by the derived numerical approximation.

Theorem 5.1 Assume the following CFL-like restriction:

∆t

∆x
max
i∈Z

(
|λLi+1/2|, |λ

R
i+1/2|

)
≤ 1

2
. (52)

The scheme (18) is consistent with (1). Let wni be in Ω for all i ∈ Z. The updated
states wn+1

i given by the scheme (18), satisfy the following properties:

1. Positiveness preservation: hn+1
i > 0 for all i ∈ Z,

2. Preservation of all smooth steady states: wn+1
i = wni for all i ∈ Z as soon as

(wni )i∈Z verifies

qni = Q and
(qni )2

2(hni )2
+ g(hni + zi) = B for all i ∈ Z, (53)

for given constants Q and B such that two successive states satisfy (19).

3. An incomplete entropy inequality in the form:

ηn+1
i − ηni

∆t
+
Gi+1/2 −Gi−1/2

∆x
≤ −S̄ηi +O(∆x), (54)
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is satisfied as long as

hHLLi+1/2 +
λLi+1/2∆xS̄qi+1/2αi+1/2

α2
i+1/2 + εi+1/2∆xk

> 0 and hHLLi+1/2 +
λRi+1/2∆xS̄qi+1/2αi+1/2

α2
i+1/2 + εi+1/2∆xk

> 0,

(55)
where we have set

Gi+1/2 =
1

2
(G(wni+1)+G(wni ))+

∆x

4∆t
(η(wni+1)−η(wni ))+

∆x

2∆t
(Iη

+

i+1/2−I
η−

i−1/2), (56)

with

Iη
+

i+1/2 =
1

∆x

∫ ∆x/2

0
η(w̃R(

x

∆t
;wni , w

n
i+1, zi, zi+1)) dx, (57)

Iη
−

i+1/2 =
1

∆x

∫ 0

−∆x/2
η(w̃R(

x

∆t
;wni , w

n
i+1, zi, zi+1)) dx, (58)

and

S̄ηi =
1

2

(
hni−1 + hni

2

qHLLi−1/2

hHLLi−1/2

(
zi − zi−1

∆x
) +

hni + hni+1

2

qHLLi+1/2

hHLLi+1/2

(
zi+1 − zi

∆x
)

)
. (59)

Before we establish the above result, let us comment the discrete entropy inequality
(54). Indeed, it is worth noticing that the residue, given by O(∆x), is governed by
the smoothness of the topography function z and never depends on the unknowns
(eventually discontinuous). As a consequence, the well-known Lax-Wendroff The-
orem can be applied so that the converged solution turns out to be an entropy
preserving weak solution of (1).

In addition, let us highlight the assumption (55) to get the discrete entropy
inequality (54). In fact, (55) enforces the intermediate water heights to be given by
(45) and (46) so that the cut-off corrections (47) and (48) stay inactive. Put in other
words, we here present discrete entropy inequalities far away from the dry areas and
wet/dry transitions.

Now, in order to establish the above result, we need the following technical
lemma where we state the behavior of the entropy at each interface.

Lemma 5.1 Let wL and wR be in Ω such that h∗L and h∗R, defined by (47) and (48),
coincide with (45) and (46). Let η and G be given by (3). Assume a CFL-like
restriction in the form

∆t

∆x
max (|λL|, |λR|) ≤

1

2
. (60)

The approximate Riemann solver (32) with the intermediate states given by (40),
(47) and (48) verifies the following inequality:

1

∆x

∫ ∆x/2

−∆x/2
η(w̃R(x/∆t;wL, wR, zL, zR)) dx ≤ 1

2
(η(wL) + η(wR))

− ∆t

∆x
(G(wR)−G(wL))−∆tS̄ηLR +

∆t

∆x
O(∆x2),

(61)

where

S̄ηLR(∆x,wL, wR, zL, zR) =
gh̄qHLL

hHLL
× zR − zL

∆x
. (62)
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Proof With an approximate Riemann solver given by (32), under the CFL-like
condition (60) we immediately have

1

∆x

∫ ∆x/2

−∆x/2
η(w̃R(x/∆t;wL, wR, zL, zR)) dx =

(
1

2
− λL

∆t

∆x

)
η(wL)

+
∆t

∆x
(λRη(w∗R)− λLη(w∗L)) +

(
1

2
− λR

∆t

∆x

)
η(wR).

(63)

Now, we have

η(w∗L) =
(q∗)2

2h∗L
+ g

(h∗L)2

2
and η(w∗R) =

(q∗)2

2h∗R
+ g

(h∗R)2

2
,

where q∗ and h∗L,R are given by (40), (45) and (46). Since the topography function
is smooth, then zR − zL = O(∆x). As a consequence, as long as αLR 6= 0, we have

q∗ = qHLL − gh̄

λR − λL
(zR − zL) +O(∆x2),

h∗R = qHLL +
λL

λR − λL
gh̄

αLR
(zR − zL) +O(∆x2),

h∗L = qHLL +
λR

λR − λL
gh̄

αLR
(zR − zL) +O(∆x2).

Then, straightforward computations give

λRη(w∗R)− λLη(w∗L) = (λR − λL)η(wHLL)− g h̄q
HLL

hHLL
(zR − zL) +O(∆x2). (64)

Moreover, after [20], we have

η(wHLL) ≤ λR
λR − λL

η(wR)− λL
λR − λL

η(wL)− 1

λR − λL
(G(wR)−G(wL)),

so that

λRη(w∗R)− λLη(w∗L) ≤ λRη(wR)− λLη(wL)− (G(wR)−G(wL))

−g h̄q
HLL

hHLL
(zR − zL) +O(∆x2). (65)

The expected inequality (61) comes combining (63) with the above estimation. To
complete the proof, let us underline that h∗L = h∗R = hHLL if αLR = 0 so that the
estimation (64) immediately holds. The proof is then achieved. �

Equipped with the above result, we are able to establish Theorem 5.1.
Proof First, we establish the consistency of the derived scheme (18). To address

such an issue, first we notice that the CFL-like condition (52) ensures that the
sequence of approximate Riemann solver are non-interacting. Next, we show the
consistency of both numerical flux and source term. Concerning the numerical flux,
we have

f∆(w,w, zL, zR) = f(w) +
∆x

2∆t
(I+
LR − I

+
LR),
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where I+
LR and I−LR are defined by (17) and (16). Since the approximate Riemann

solver is in the form (32), then we get

f∆(w,w, zL, zR) = f(w) +
λR
2

(w∗R − w) +
λL
2

(w∗L − w).

Arguing the definition of the intermediate states, with wL = wR = w ∈ Ω, enforcing
∆x to be small enough, we get

q∗ = q − 1

λR − λL
gh(zR − zL),

h∗L = h+
λR

λR − λL
gh(zR − zL)

gh− q2/h2

(gh− q2/h2)2 + ∆xk
√
|zR − zL|

,

h∗L = h+
λR

λR − λR
gh(zR − zL)

gh− q2/h2

(gh− q2/h2)2 + ∆xk
√
|zR − zL|

,

to immediately obtain the expected consistency of the numerical flux as follows:

lim
zL,zR→z

f∆(w,w, zL, zR) = f(w).

Next, concerning the consistency of the discrete source term, given by (30), as soon
as wL = wR = w we have

S̄qLR(w,w, zL, zR) = −gh(zR − zL)

∆x
.

With a smooth topography function, let us fix zL = z(x− ∆x
2 ) and zR = z(x+ ∆x

2 )
so that we obtain

lim
∆x→0

S̄qLR(w,w, zL, zR) = −gh∂xz,

and the scheme (18) is established to be consistent.
Now, we show the positiveness of hn+1

i . After (11), since the intermediate water
height, defined by (47)-(48), involved within the approximate Riemann solver, are
positive, then hn+1

i is nothing but the integral of the positive quantities. As a
consequence, we get hn+1

i > 0.
Next, concerning the well-balanced property, since (wni )i∈Z verify (53), at each

interface the local steady condition (19) is satisfied. As a consequence of Lemma
4.1, all the non interacting approximate Riemann solution are steady so that we get

w̃R

(
x− xi+1/2

∆t
;wni , w

n
i+1, zi, zi+1

)
=

{
wni if xi+1/2 < 0,

wni+1 if xi+1/2 > 0.
(66)

Then we have the following sequence of equalities

wn+1
i =

1

∆x

∫ xi

xi−1/2

w̃R(
x− xi−1/2

∆t
;wni−1, w

n
i , zi−1, zi) dx

+
1

∆x

∫ xi+1/2

xi

w̃R(
x− xi+1/2

∆t
;wni , w

n
i+1, zi, zi+1) dx,

= wni .
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To conclude the proof, we establish the entropy inequality (54). Since the entropy
function η is convex, the well-known Jensen inequality gives

η(wn+1
i ) ≤ 1

∆x

∫ xi+1/2

xi−1/2

η(w∆
R(x, tn + ∆t)) dx,

≤ 1

∆x

∫ ∆x/2

0
η(w̃R(

x

∆t
;wni−1, w

n
i , zi−1, zi)) dx

+
1

∆x

∫ 0

−∆x/2
η(w̃R(

x

∆t
;wni , w

n
i+1, zi, zi+1)) dx,

so that, arguing (57) and (58), we obtain

η(wn+1
i ) ≤ 1

2
(Iη
−

i−1/2 + Iη
+

i−1/2) +
1

2
(Iη

+

i−1/2 − I
η−

i−1/2)

+
1

2
(Iη
−

i+1/2 + Iη
+

i+1/2)− 1

2
(Iη

+

i+1/2 − I
η−

i+1/2).

(67)

Next, because of (55), necessarily the intermediate water heights, given by (45) and
(46), are positive. Since the positive water height cut-off corrections (47) and (48) is
not active then Lemma 5.1 can be applied. As a consequence, from (61), we deduce

Iη
−

i+1/2 + Iη
+

i+1/2 ≤ 1

2
(η(wni )) + η(wni+1))− ∆t

∆x
(G(wni+1))−G(wni )

−∆tS̄ηLR +
∆t

∆x
O(∆x2),

where, according to (59), we have set S̄ηi+1/2 = S̄ηLR(∆x,wni , w
n
i+1, zi, zi+1). Now,

by introducing the above estimation in (67), after straightforward computation, we
obtain the expected discrete entropy inequality (54). The proof is then achieved. �

6 Numerical experiments

In this section, we perform several numerical experiments to illustrate the behavior
of the designed fully well-balanced corrected scheme (FWBC). A comparison with
the well-known hydrostatic reconstruction (HR) method [1], applied to the HLL
scheme [20], and the well-balanced scheme (FWB) proposed in [22,23], is displayed
for all the simulations. Concerning the FWB-scheme, according to the source term
discretization given by (7) and (8), a parameter denoted C must be fix. In the
present work, all the displayed numerical simulations are performed considering
C ∈ [1, 2.5] according to the realized simulations. We emphasize that spurious
oscillations appear with C ≥ 5 while the approximate solutions blow-up with C ≥ 10.
Once again, we underline that the proposed correction of the FWB-scheme is now
free from this parameter C.

As long as the exact solution is known, the behavior of the obtained approximate
solutions is exhibited by evaluating the L1, L2 and L∞ errors. Such errors are given
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(a) (b)

Figure 3: Free surface (3a) and discharge (3b) for the simulation of a subcritical
flow.

by

||wn − wex(., tn)||L1 =
∑
i∈Z
|wni − wex(xi, t

n)|∆x, (68)

||wn − wex(., tn)||L2 =

√∑
i∈Z

(wni − wex(xi, tn))2∆x, (69)

||wn − wex(., tn)||L∞ = max
i∈Z
|wni − wex(xi, t

n)|, (70)

where (wni )i∈Z is defined by the adopted numerical scheme while wex(x, t) denotes
the expected exact solution.

6.1 The subcritical flow

This test is used to see the ability of the scheme to capture steady states. The
domain is [0, 25] and the topography is defined by z(x) = (0, 0.2 − 0.05(x − 10)2)+

where x+ = max(0, x). The initial conditions are h(x, 0) = 2 and q(x, 0) = 4.42.
On the left boundary condition, the water height satisfies a homogeneous Neumann
condition and the discharge is equal to q0 = 4.42. On the right boundary, the
water height is equal to h0 = 2 and the discharge follows a homogeneous Neumann
boundary condition.

h+ z q

L1
error L2

error L∞error L1
error L2

error L∞error
HR-scheme 1.32e-02 1.36e-02 1.59e-02 2.89e-03 2.89e-03 2.89e-02

FWB-scheme 1.15e-13 1.20e-13 1.51e-13 6.63e-14 6.99e-14 8.26e-14

FWBC-scheme 1.10e-13 1.17e-13 1.44e-13 6.57e-14 6.84e-14 8.21e-14

Table 1: Free surface and discharge errors for the subcritical flow.

The domain is here discretized with 1000 cells. At times t = 100, so that the steady
regime is researched, the approximate solutions are displayed in Figure 3. In Table
1, we present the numerical errors. We note that the approximate solution given
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(a) (b)

Figure 4: Free surface (4a) and discharge (4b) for the simulation of a transcritical
flow without shock.

by the fully well-balanced scheme (18) is in very good agreements with the exact
solution since such a scheme exactly preserves this solution.

6.2 The transcritical flow without shock

We consider a computational domain given by [0, 25] and the topography is defined
by z(x) = (0, 0.2− 0.05(x− 10)2)+. We consider the initial data given by h(x, 0) =
0.66 and q(x, 0) = 1.53. On the left boundary condition, the water height satisfies
a homogeneous Neumann condition and the discharge is equal to q0 = 1.53. On the
right boundary, the water height is equal to h0 = 0.66 and the discharge follows
a homogeneous Neumann boundary condition. The obtained numerical simulation
are displayed Figure 4 at time t = 500 with 1000 cells.

h+ z q

L1
error L2

error L∞error L1
error L2

error L∞error
HR-scheme 4.79e-02 6.07e-02 8.12e-02 8.28e-04 3.30e-03 1.82e-02

FWB-scheme 1.67e-14 2.13e-14 4.26e-14 1.47e-14 1.58e-14 2.04e-14

FWBC-scheme 1.27e-14 1.67e-14 3.14e-14 1.27e-14 1.48e-14 1.98e-14

Table 2: Free surface and discharge errors for the transcritical flow without shock.

Once again, the fully well-balanced corrected scheme gives very good agreement
with the exact solution in the steady regime which is exactly captured by the here
derived scheme. The very good behavior of the numerical solution is highlight by
Table 2 where the numerical errors are given.

6.3 The perturbed transcritical flow without shock

In this numerical simulation, we test the behavior of the derived scheme to deal
with a perturbed stationary solution. Here, the initial data is given by h(x, 0) =
h0(x) + hδ(x) and q(x, 0) = q0(x) + qδ(x) where (h0, q0) stands for the stationary
solution of a transcritical flow without shock according to the numerical experiment
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(a) (b)

Figure 5: Initial free surface (5a) and discharge (5b) for the the perturbed trans-
critical flow without shock.

(a) (b)

Figure 6: Free surface (6a) and discharge (6b) for the the perturbed transcritical
flow without shock.

presented Section 6.2 and (hδ, qδ) given by

hδ(x) =

{
1 if 10 < x < 11,

0 otherwise,
and qδ(x) =

{
2 if 13 < x < 16,

0 otherwise.

This initial data is displayed Figure 5.
The resulting numerical approximations obtained with a mesh made of 200 cells

for the HR-scheme, the FWB-scheme and FWBC-scheme at time t = 500 are dis-
played Figure 6. After a long time, the stationary solution is recovered according to
the scheme accuracy (see also Table 3).

h+ z q

L1
error L2

error L∞error L1
error L2

error L∞error
HR-scheme 4.89e-02 6.17e-02 8.22e-02 8.38e-04 3.43e-03 1.98e-02

FWB-scheme 2.79e-14 2.85e-14 4.20e-14 1.62e-14 1.85e-14 2.18e-14

FWBC-scheme 2.77e-14 2.87e-14 4.14e-14 1.58e-14 1.75e-14 2.08e-14

Table 3: Free surface and discharge errors for the perturbed transcritical flow without
shock.
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(a) (b)

Figure 7: Free surface (7a) and discharge (7b) for the simulation of a transcritical
flow with shock.

Figure 8: Zoom of the spurious perturbation of the water height produced by the

ill-posed quantity P = g
hni +hni+1

2 − (qni )2+(qni+1)2

2hni h
n
i+1

with respect to the made correction.

6.4 Transcritical flow with shock

In this simulation, we show the behavior of an hydraulic jump approximation. The
domain of the computation is [0, 25] and the topography fixed by z(x) = (0, 0.2 −
0.05(x − 10)2)+. The initial data are given by h(x, 0) = 0.33 and q(x, 0) = 0.18.
On the left boundary condition, the water height satisfies a homogeneous Neumann
condition and the discharge is equal to q0 = 0.18. On the right boundary, the water
height is equal to h0 = 0.33 and the discharge follows a homogeneous Neumann
boundary condition.

h+ z q

L1
error L2

error L∞error L1
error L2

error L∞error
HR-scheme 1.16e-03 1.82e-03 5.12e-02 1.54e-04 1.53e-03 4.00e-02

FWB-scheme 2.81e-03 3.01e-03 9.85e-02 2.94e-04 3.35e-03 5.39e-02

FWBC-scheme 2.49e-03 2.40e-03 8.84e-02 2.851e-04 3.65e-03 5.08e-02

Table 4: Free surface and discharge errors for the transcritical flow with shock.

The numerical simulation obtained at time t = 1000 with the fully well-balanced
scheme are displayed Figure 7. It is worth noting that the failure of scheme detected
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(a) (b)

Figure 9: Free surface (9a) and discharge (9b) for the dam-break on a dry domain.

in [22, 23] and illustrated Figure 2, is now corrected. Indeed, in Figure 8, we notice
that the spurious perturbation no longer stays. The good behavior of the scheme is
highlight by the errors evaluations given Table 4.

6.5 Wet/dry transition flow

According to [22, 23], we impose a vanishing velocity as soon as the water height
vanishes. In addition, we have enforced u

h = 0 in the limit of h to zero. As a
consequence, in a wet/dry transition interface, with hL = 0 or hR = 0, we get

∆xS̄qLR = −gh̄(zR − zL) and αLR = gh̄, (71)

so that all required properties, stated Theorem 5.1, are preserved.

6.5.1 Dam-break on a dry domain

This numerical experiment illustrates the ability of the scheme to correctly locate
and treat the wet/dry transition. The domain is [0, 10] with a flat topography. The
initial data is made of a vanishing discharge in the whole domain while the water
height is defined by

h(x, 0) =

{
0.005 if 0 < x < 5,

0 if 5 < x < 10.

We adopt homogeneous Neumann boundary conditions.

h+ z q

L1
error L2

error L∞error L1
error L2

error L∞error
HR-scheme 7.06e-5 5.20e-5 1.33e-4 1.33e-5 1.15e-5 2.92e-5

FWB-scheme 1.50e-4 9.54e-5 1.92e-4 2.62e-5 2.11e-5 4.17e-5

FWBC-scheme 1.51e-4 9.54e-5 1.92e-4 2.62e-5 2.11e-5 4.18e-5

Table 5: Free surface and discharge errors for the dam-break on a dry domain.
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(a) (b)

Figure 10: Free surface (10a) and discharge (10b) for dam-break test case on steps
topography.

The domain is here discritized with 500 cells and the obtained approximate solution
at time t = 6 is displayed Figure 9. We notice the ability of the FWBC-scheme to
deal with wet/dry transition and the here proposed correction preserves the relevance
of the numerical method (see Table 5).

6.5.2 Dam-break on a step topography

This numerical simulation is devoted to illustrate the relevance of the scheme ap-
proximating the solution when the topography function is discontinuous. Here, in
the domain [−10, 10], the topography is made of three successive steps as follows:

z(x) =


0 if x < 0,

0.1 if 0 < x < 3,

0.4 if 3 < x < 5,

0.7 if x > 5.

The initial discharge is vanishing in the whole domain and the initial water height
is defined by

h(x, 0) =

{
1 if x < 0,

0 if x > 0.

We consider homogeneous Neumann boundary conditions. The approximate so-
lution for the free surface and the discharge are displayed Figure 10. We notice
the good behaviors of both HR-scheme and FWBC-scheme while the discharge of
the original FWB-scheme presents spurious values located at the discontinuities of
the topography function. In Figure 11, we display the behavior of the time step
∆t throughout the simulation. We remark that the derived correction does not
drastically modify the behavior of ∆t.

6.5.3 Lake at rest with an emerged bottom

In the computational domain [0, 25], the bottom is defined by z(x) = (0, 0.2 −
0.05(x − 10)2)+. For the initial water height, we adopt h(x, 0) = (0.15 − z(x))+ so
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Figure 11: Evolution of the time step ∆t versus time during the simulation of the
dam-break test case on steps topography.

(a) (b)

Figure 12: Free surface (12a) and discharge (12b) for the lake at rest with emerged
bottom.

that this simulation contains an emerged bottom. Concerning the initial discharge,
we impose a vanishing velocity in the whole domain. We consider the homogeneous
Neumann boundary conditions.

h+ z q

L1
error L2

error L∞error L1
error L2

error L∞error
HR-scheme 2.78e-19 2.78e-18 2.78e-17 2.60e-17 2.89e-17 4.58e-17

FWB-scheme 3.11e-17 5.01e-17 8.33e-17 2.72e-17 3.69e-17 1.02e-16

FWBC-scheme 2.11e-19 2.81e-18 3.33e-18 2.75e-19 3.01e-18 3.82e-18

Table 6: Free surface and discharge errors for the lake at rest with an emerged
bottom.

In Figure 12 we display the approximate solution with 500 cells at time t = 100.
According to the errors presented Table 6, the solution is exactly captured.
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(a) (b)

Figure 13: Both exact and approximate free surface (13a) and both exact and ap-
proximate discharge (13b) for the Thacker test case.

6.5.4 Thacker test case

The computational domain is [0, L] and the topography is defined by

z(x) = h0

(
1

a2

(
x− L

2

)2

− 1

)
,

where h0, a and L are parameters to be fixed. The exact solution is an oscillation
of the free surface between the points

x1(t) = − b
w

cos(wt)− a+
L

2
and x2(t) = − b

w
cos(wt) + a+

L

2
,

where w =
√

2gh0/a, b = w/2 and the period T = 2π/w. The initial conditions are
given by q(x, 0) = 0 and

h(x, 0) =

−
h0

a2

((
(x− L

2
) +

b√
2gh0

)2

− a2

)
if x1(0) < x < x2(0),

0 otherwise.

The exact water height is given by

h(x, t) =

−
h0

a2

((
(x− L

2
) +

b√
2gh0

cos(wt)

)2

− a2

)
if x1(t) < x < x2(t),

0 otherwise,

while the exact velocity reads

u(x, t) =

{
b sin(wt) if x1(t) < x < x2(t),

0 otherwise.

Concerning the parameters, we fix a = 1, L = 4 and h0 = 1/2. In Figure 13, the
approximate solution is displayed at time t = 10.0303 with 1000 cells.
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FWBC-scheme

q

cells L1
error L2

error L∞error
1600 3.74e-2 2.76e-2 2.64e-2

2000 2.66e-2 1.97e-2 1.94e-2

4000 1.15e-2 8.56e-3 9.51e-3

Table 7: Discharge errors for the Thacker test case for different cells using FWBC-
scheme.

FWB-scheme

q

cells L1
error L2

error L∞error
1600 1.24e-2 1.31e-2 3.30e-2

2000 1.10e-2 1.16e-2 2.99e-2

4000 7.98e-3 7.88e-3 2.19e-2

Table 8: Discharge errors for the Thacker test case for different cells using FWB-
scheme.

HR-scheme

q

cells L1
error L2

error L∞error
1600 7.29e-2 5.59e-2 5.36e-2

2000 5.83e-2 4.47e-2 4.48e-2

4000 2.91e-2 2.23e-2 2.13e-2

Table 9: Discharge errors for the Thacker test case for different cells using HR-
scheme.

Concerning the water height, displayed in Figure 13a, we obtain a good approx-
imation of the wet/dry transition. Now, the approximation of the discharge is not
good as expected. However, we recall that usual method like the hydrostatic recon-
struction cannot give good approximation of the discharge. In Tables 7, 8 and 9, we
present the obtained errors for q. We notice that the here designed FWBC-scheme
produces better approximation than the hydrostatic reconstruction scheme.

6.6 Drain on a non-flat bottom

This numerical experiment is proposed in [13], where the topography is defined by
z(x) = (0.2 − 0.05(x − 10)2)+ over a computational domain given by [0,25]. The
initial data is fixed as follows:

h(x, 0) + z(x) = 0.5 and q(x, 0) = 0.

Concerning the boundary conditions, according in [13], the left boundary condition
is given by

hL = hn1 and qL = 0,
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(a) (b)

Figure 14: Free surface (14a) and discharge (14b) for the simulation of drain on a
non-flat bottom

while the right boundary condition is imposed as follows:

hR = min

(
1

9g
(unN + 2

√
ghnN )2, hnN

)
and qR =

hR
3

(unN + 2
√
ghnN ).

The domain discretization is made of 500 cells. In Figure 14, we displays the nu-
merical approximation obtained at time tend = 0, 10, 20, 100, 1000. Once again,
we notice a very good behavior of the approximate solution.
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des gaz et la magnétohydrodynamique lagrangiennes. Comptes Rendus de
l’Académie des Sciences-Series I-Mathematics, 332(11):1037–1040, 2001.

[12] G. Gallice. Positive and entropy stable godunov-type schemes for gas dynamics
and mhd equations in lagrangian or eulerian coordinates. Numerische Mathe-
matik, 94(4):673–713, 2003.
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